
Multi-domain, Higher Order Level Set Scheme for 3D Image Segmentation on
the GPU

Ojaswa Sharma 1

os@imm.dtu.dk

Qin Zhang2

zqyork@ices.utexas.edu

François Anton 1

fa@imm.dtu.dk

Chandrajit Bajaj 2

bajaj@cs.utexas.edu

1 DTU Informatics
The Technical University of Denmark, Denmark

2 Computational Visualization Center
The University of Texas at Austin, USA

Abstract

Level set method based segmentation provides an effi-
cient tool for topological and geometrical shape handling.
Conventional level set surfaces are only C0 continuous
since the level set evolution involves linear interpolation to
compute derivatives. Bajaj et al. present a higher order
method to evaluate level set surfaces that are C2 contin-
uous, but are slow due to high computational burden. In
this paper, we provide a higher order GPU based solver for
fast and efficient segmentation of large volumetric images.
We also extend the higher order method to multi-domain
segmentation. Our streaming solver is efficient in memory
usage.

1. Introduction

The segmentation problem addressed here is to subdivide
a three dimensional image I(x, y, z) : Ω 7→ R(Ω ⊂ R3)
into non-overlapping partitions Ωi(i = 1.. nc) such that
∪Ωi = Ω, where each partition is homogeneous in the sense
that it minimizes a certain quantity. Each region is said to
produce a class representing the partition.

Implicit surfaces (or level sets of functions on R3) natu-
rally capture the arbitrary topology of the boundary of sub-
domains (Ωi) in contrast to explicit or parameterized sur-
faces. Deformable level set surfaces under mean curvature
flow (by solving a partial differential equation that mini-
mizes some sort of an energy functional) provide a direct
solution methodology for the segmentation problem. Pio-
neering work by Osher and Sethian [8] present an effective
implicit representation for evolving curves. Later, the work
was developed in context of the Mumford-Shah functional
by Chan and Vese [5] for 2D images that do not contain
prominent edges. In a subsequent paper, the authors sug-
gest a multi-domain segmentation [14] using the same level

set framework. Other variants of the same method exist for
applications like image de-noising based on total variation
minimization [10, 15].

Conventional level set methods solve the interface evolu-
tion equation with linear interpolation of the implicit func-
tion and its derivatives (at sampled grid points). The level
set surface from this results in a C0 continuous surface.
Bajaj et al. [1, 2] present a tri-cubic B-spline based level
set method that produces a C2 continuous level set sur-
face solution. Due to the high computational intensity of
the level set method and inherent parallelism in the solu-
tion of the involved PDEs, a parallel compute environment
is the most appropriate . In particular, in this paper we
explore the multi-core parallelism of Graphics Processing
Units (GPU’s). Schemes for fast evaluation of PDEs are
suggested by Weickert et al. [15]. Multigrid methods are
also suitable for a fast solution of differential equations. An
active contour model using multigrid methods is suggested
by Papandreou and Maragos [9]. Of particular interest is a
solution to the level set equations for segmenting large vol-
umes. Work by [12, 7] show GPU based segmentation and
visualization. Lefohn et al. [7] demonstrated an efficient
sparse GPU segmentation using linear level set methods.

In this work we propose a streaming solver framework
suited to large volume segmentation. With 3D textures
available to the commodity graphics hardware, we show
that a 2D slicing is no longer required for a solution. This
is also in contrast to [7] where the authors use a compact
representation of the active volume packed into 2D tex-
tures. We solve the governing partial differential equations
(PDEs) for a general case of any number of segmentation
sub-domains (or classes). The number of classes is deter-
mined as the level set evolves, creating new classes while
merging some of the existing ones. Every single class then
gives rise to a partition of the volume. Our solver operates in
a streaming fashion and makes optimal use of the available
GPU memory. Global algorithms cannot be directly applied

1

in a streaming compute environment. We employ streaming
counterparts of various algorithms and show memory opti-
mizations via a host memory manager. The result of the
streaming solver is demonstrated with multi-domain seg-
mentation along with speedup benchmarks for tri-linear and
tri-cubic level set computations.

2. Background
The main idea behind a level set based segmentation

method is to minimize an energy term over a domain by
numerically solving the corresponding time varying form
of the variational equation. Let us represent a volume by
a scalar field I(x, y, z) : Ω 7→ K, where Ω is a bounded
open subset of R3, and K ⊂ R is a bounded set of discrete
intensity values sampled over a regular grid. In this setup,
motion by mean curvature provides a deformable level set
formulation where the surface of interest moves in the di-
rection of normal at any point with velocity proportional to
the curvature [8].

The deformable surface is represented by a level set of
an implicit function φ(x, y, z) : Ω 7→ R. In level set meth-
ods, φ is generally chosen to be a signed distance func-
tion for certain properties that they offer [8, chap. 6]. To-
ward a segmentation approach, various energy formulations
are possible. The energy functional is further penalized by
a regularizing term that introduces smoothness in the re-
sulting surface. In this paper, we show how the modified
Mumford-Shah functional of Chan and Vese [5] can be min-
imized in a higher order fashion and also used to perform
a multi-domain segmentation. The Mumford-Shah energy
functional has a distinct advantage of producing better seg-
mentation regions in absence of sharp edges as compared
to an edge based energy functional. Consider an evolving
interface Γ = {(x, y, z) : φ(x, y, z) = 0} in Ω, denoting
Γ+ = {(x, y, z) : φ > 0} as the interior of the volume
bounded by Γ and Γ− = {(x, y, z) : φ < 0} as the exterior
of the volume bounded by Γ. A modified Mumford-Shah
energy functional with regularization can be written as:

F (c1, c2,Γ) = µ ·Area(Γ) + ν ·Vol(Γ+)

+λ1

∫
Γ+

|I − c1|2dV + λ2

∫
Γ−
|I − c2|2dV, (1)

where µ ≥ 0, ν ≥ 0, λ1 > 0, and λ2 > 0 are fixed scalar
control parameters, and c1 and c2 are averages in Γ+ and
Γ− respectively. A time varying variational form of equa-
tion (1) is:

∂φ

∂t
=δε(φ)

[
µ∇·

(
∇φ
|∇φ|

)
−ν−λ1(I−c1)2+λ2(I−c2)2

]
, (2)

where δε is the smooth version of Dirac delta function. Ba-
jaj et al. [1] propose to solve the higher order regularizing
term in equation (2) by tri-cubic B-spline interpolation to
compute accurate higher order derivatives of φ.

2.1. Multi-domain segmentation

Equation (2) defines two regions with respect to the zero
level set surface of φ, i.e., φ > 0 and φ < 0 . Often in seg-
mentation, we need more than two partitions of the input
signal. Vese and Chan [14] show that multiple level set evo-
lutions can be used to keep track of multiple regions in the
signal. In a multi-domain setup a single implicit function
φ is replaced by a vector valued Φ = {φ0, φ1, . . . , φm−1}
function where m is the total number of implicit functions
that are combined to give a maximum of n = 2m partitions
of Ω. Equation (2) is replaced by a system of m PDEs. We
compactly write this system as:

∂φi
∂t

= δε(φi)

{
µ∇ ·

(
∇φi
|∇φi|

)
−ν−

2m−1−1∑
k=0

[(
λ1(I−c1i,k)2

−λ2(I−c0i,k)2
)m−1, p 6=i∏

p=0

(
bk,p+(−1)bk,pHε(φp)

)]}
,(3)

for i ∈ [0,m− 1], where Hε(z) = 1
2

(
1 + 2

π tan−1
(
z
ε

))
is

the smooth version of Heaviside function and
bk,p = pth bit in binary representation of k,∈ {0, 1},

c0i,k = mean(I) in (x, y, z) :

{
φp > 0, if bq,p = 1,
φp < 0, if bq,p = 0

with q = 2k − k mod 2i,∀p ∈ [0,m− 1], (4)

c1i,k = mean(I) in (x, y, z) :

{
φp > 0, if bq,p = 1,
φp < 0, if bq,p = 0

with q = 2k + 2i − k mod 2i,∀p ∈ [0,m− 1].(5)

Consider q ∈ Z+ such that its ith bit is 1 for Γ+
i , 0

for Γ−i , and 0 if i > (m − 1). In this way, q spans the
n possible regions induced by Φ. In equation (3), c1i,k (or
c0i,k) represents the average of intensity values of I in Γ+

i (or
Γ−i) where the other bits determine inside or outside for rest
of the implicit functions. To generate the index for a region,
we enumerate the the possible 2m−1 values and insert a 1 or
a 0 at the ith bit. Alternative expressions for q in equations
(4) and (5) are

q = (k − (k ∧ (2i − 1)))<<1 + k ∧ (2i − 1), and

q = (k − (k ∧ (2i − 1)))<<1 + 2i + k ∧ (2i − 1)

respectively. We find that this representation for keeping
track of various regions of Φ is not only compact but also
efficient for implementation on a constrained compute en-
vironment like the GPU.

3. Solver framework
We provide a framework for streaming computation of

the solution to involved differential equations (2 or 3) based

on NVIDIA’s parallel compute framework called CUDA
[11]. The complexity of the solver is increased by the fact
that m simultaneous PDEs need to be solved to arrive at
a solution to equation (3). Our solver has a very small
memory footprint on the device (GPU) compared to the ac-
tual volume that it can handle. On the host (CPU) side,
memory requirement is of the order of the number of im-
plicit functions. Our GPU computational setup consists of
a host memory manager to handle data streaming and a set
of CUDA kernels to operate on parts of the data fetched to
the device by the host.

3.1. Host Memory Manager

The data on the device is handled in manageable chunks
of a 3D sub-volume called a computational volume. The
memory manager splits the entire volume into minimum
possible number of sub-volumes of size of the computa-
tional volume. The size of such a computational volume
is chosen such that:

• computations are performed by one thread per voxel.

• the computational volume fits into the device memory.

The computational volume is further divided into the CUDA
grid and block for thread invocation. CUDA allows for a
3D block of threads, but not a 3D grid of blocks. We create
a logical hierarchy by creating a 3D grid and a 3D block
of voxels and assigning each voxel with a thread to pro-
cess it. A linear grid of blocks is logically mapped to a 3D
grid of blocks. For a 1283 computational volume, a typical
grid size could be 163 blocks with each block consisting 83

threads. Note that the number of threads in a block cannot
exceed 512 with the version 2.0 of CUDA. The hierarchy of
thread blocks, grid and the computational volume is shown
in Figure 1.

Computational volume! Grid! Thread block!

Full volume!
Threads in a block!

Figure 1. Volume hierarchy for spawning CUDA threads.

For operations that involve accessing voxel neighbors
(e.g., finite differencing or convolution filtering), the host
memory manager appropriately pads the computational vol-
ume to enable required number of shared voxels around the
border of the computational volume. This effectively re-
duces the size of the volume to incorporate neighbors along
the border of the volume. Further, the full volume might not
be an exact multiple of the computational volume, therefore
the memory manager pads the computational volume on the
boundary with null values in the empty space.

Memory copies between device and host are performed
in size of the computational volume. Special care is taken
while copying data along the border of the full volume. The
memory manager also dynamically allocates and frees the
device memory if required by a kernel. Figure 2 shows a
sketch of the setup.

Current sub-volumes from the image, the implicit func-
tions and cubic coefficients are first transferred to the GPU
memory as 3D textures. Individual kernels then operate on
these sub-volumes and the results are stored on the GPU
global memory, which are then transferred back to the host
volumes. Details of PDE evolution algorithms and respec-
tive kernels are presented in the next section.

Texture memory! Global memory!
Device memory!

Intensity!

SD Field!

Host memory!

I!"!

"!

I!

CUDA kernels!Memory manager!

Spare!

Cubic Coefficients C#!

C#!

Figure 2. The memory manager.

4. Level set evolution
Following is our general approach in solving (3):

1. Interface initialization.
2. Signed distance field computation.
3. Average values computation.
4. Cubic coefficients computation.
5. PDE time stepping.
6. Reinitialization.
7. Repeat steps (3) - (6) until convergence.

8. Level set extraction and domain labeling.

Majority of these steps can be executed in a streaming fash-
ion with an exception of average value computation.

4.1. Interface initialization

We choose to initialize the level set interface Γ to a
bounding box or to a super-ellipsoid for a two domain seg-
mentation. Multi-domain initialization should ensure that
all the possible classes occupy non-zero region in space at
the start so that all the domains have a scope of evolution.
The domain Ω is partitioned into smaller sub-domains and
each sub-domain is assigned small super-ellipsoids (with
randomized centers) that form the interface Γ for each im-
plicit function. Vese and Chan [14] observe a better and
faster convergence in a 2D case for an initialization of the
later kind. Our tests confirm this observation for the 3D
case.

The kernel module for interface initialization computes
the implicit function Φ such that:

φi(x, y, z) =

{
k, if (x, y, z) ∈ Γ+

−k, otherwise,

where i ∈ [0,m− 1], and k ∈ R+ is a constant.

4.2. Signed distance field

We create a narrow band signed distance field on GPU
using the d-pass approach by Sharma and Anton [11] to
compute the distance field in d layers where 2d is the integer
width of the narrow band. This is a streaming algorithm to
create a Chamfer distance field [4] that uses optimal values
of coefficients for distance multipliers to minimize accuracy
error with an actual distance field. The algorithm has com-
plexity O(dN), where N is the total number of voxels in
the volume.

The distance field is constructed layer by layer until the
d layers are formed, making a narrow band of width 2d.
Every voxel is updated based on the values of the neigh-
bors. The resulting layer has distance values that are locally
Euclidean. The kernel to compute a signed distance layer
operates on the computational volume that has a shared 1-
voxel border, thus updating 1263 voxels in a computational
volume.

4.3. Average values

In a two-domain segmentation, the zero level set of φ
divides Ω into two regions. Average values c1 and c2 can be
easily computed over these regions.

Multi-domain segmentation creates more than two re-
gions corresponding to every class of segmentation. We
use binary indexing (as explained in subsection 2.1) to keep
track of inside and outside in every implicit function. Thus,

for any q ∈ [0, n], we can compute the average value of
image intensity.

Computation of average values is a serial operation and
requires parsing all the values in the dataset. Reduction al-
gorithms do exist for a parallel computation of sum like op-
erations [3]. A CUDA implementation of the same exists
as the CUDPP library by Harris and Sengupta [6]. With
CUDPP, however, it is difficult to sum up datasets that can-
not fit into the device memory, thus requiring some sort of
data slicing. In our experience, the overhead of data slic-
ing, setting up the prefix sum and computing average values
turns out to be more expensive than a fast CPU computation
of the averages.

4.4. Cubic coefficients

Let

β3(x) =

2
3 − x

2 + 1
2 |x|

3, 0 ≤ |x| < 1,
1
6 (2− |x|)3, 1 ≤ |x| < 2,

0, 2 ≤ |x|,

be the univariate cubic B-spline basis function over the
knots {−2,−1, 0, 1, 2}, and let s(x) =

∑n−1
i=1 ciβ

3(x − i)
be a cubic spline function. Then the spline interpolation
problem is to determine the coefficients c = {ci}n−1

i=1 such
that the following interpolation conditions

s(k) =

n−1∑
i=1

ciβ
3(k − i), k = 1, · · · , n− 1 (6)

are satisfied for any given function values {s(k)}n−1
k=1 . To

avoid inversion of a large matrix to solve the linear system
(6), a better approach is to compute these coefficients in a
recursive fashion (see [1]).

Cubic coefficients are computed for a set of data values
sampled along any direction. Tri-cubic spline coefficients
can be derived from these coefficients by computing cubic
coefficients along each direction sequentially. These corre-
spond to tensor product splines in R3. Rather than oper-
ating in the computational volume, we derive coefficients
along an axis in planar sections orthogonal to one of the co-
ordinate axes. The computation takes place in three steps,
sequentially along each coordinate direction.

The host memory manager determines the largest possi-
ble volume slice (GPU slice) that can fit into the available
device memory. The full volume is then processed in sizes
of the GPU slice. For every plane in the GPU slice, cubic
coefficients are computed along the segments parallel to one
of the coordinate axes. The resulting coefficients are writ-
ten to device array of same size as the GPU slice and copied
back to the host array holding the coefficients. The CUDA
kernel for computing coefficients works on a linear section
per thread. The intermediate sequences are not stored, but
recomputed during the recursive process to evaluate ci.

4.5. PDE time stepping

The PDEs are solved by discretizing equation (3) to com-
pute the lower order term and by computing the spline
derivatives for the higher order curvature term. Each PDE
has a single higher order term, and 2m−1 terms involving
average values. We again use binary indexing to enumerate
the lower order terms in every PDE.

Since all the PDEs must be updated simultaneously (i.e.,
every voxel in all implicit functions must be updated in
parallel), we need cubic coefficients for all the implicit
functions in the device memory at all times. However,
CUDA does not allow dynamically creating texture refer-
ences. Furthermore, a 4D texture (array of 3D textures) is
also not possible in CUDA. Therefore, we simulate a 4D
texture by a large 3D texture containing computational vol-
ume sized coefficient sub-volumes for all implicit functions.

There is a possibility of wasting some device memory
here for very large number of implicit functions, since for
somem (>16) it might not be possible to have a rectangular
3D array. This is because the largest 3D texture in CUDA
can be of size 211×211×211, and we hit this limit along one
dimension for a computational volume of size 128× 128×
128 and m > 16. In such a case, we try to minimize the
unusable device memory locked in the texture by computing
optimal number of three positive factors mx, my and mz

for a number m̂ ≥ m such that (m̂ −m) is minimized and
m̂ = mx ×my ×mz . The three factors are the number of
computational volumes along the coordinate axes. In doing
so, we try to make mx as large as possible, followed by a
similar heuristic for my .

With sub-volumes of Φ, I and the coefficients cached on
the GPU, PDE update is computed for every voxel and for
all the implicit functions.

4.6. Results

We present the results of our multi-domain segmenta-
tion on a CT (Computed Tomography) volume of a human
thoracic region, followed by GPU performance statistics.
The tests are produced on an NVIDIA Tesla C870 machine
with Dual-Core AMD OpteronTM processor 2218 running
at clock speed of 2.6 GHz, and a physical memory of 2 GB.
The GPU has 16 multiprocessors (128 processor cores) run-
ning at clock speed of 1.35 GHz and an onboard memory of
1.6 GB. The program has been implemented in the freely
available software UT-CVC image processing and visual-
ization software called VolRover [13].

Figure 3 shows a volume visualization of our human
thoracic region dataset. The CT volume has a size of
256 × 256 × 256 voxels. Segmentation parameters for this
volume are: λ1 = λ2 = 1, µ = .000005×255×255, ε = 1,
and m = 3. A time stepping ∆t = 0.01 is used. The inter-
face is initialized to a super-ellipsoid of power p = 2 with

a bounding box offset of 5 voxels from all sides. A total
of 60 solver iterations produced the segmentation shown in
Figure 4. The segmentation yields four prominent classes.
These classes separate regions of ribs, spinal chord, lungs
and bronchioles as shown in Figure 4(a), (b), (c), and (d)
respectively.

Figure 3. Volume visualization of computed Tomography (CT)
volume of a human thoracic region dataset.

(a) Ribs (b) Spinal chord

(c) Lungs (d) Bronchioles

Figure 4. Multi-domain segmentation of the CT volume into 4
classes.

Interface initialization CUDA kernel has low arithmetic
intensity, therefore a very high speedup of about 24x to 25x
is achieved. On the other hand, PDE updates are expensive
in terms of arithmetic operations, thus giving a speedup of
about 3x with tri-linear update and that of 11x with tri-cubic
update. It should be noted that the tri-cubic PDE update is
faster than the tri-linear one since the tri-linear uses finite

differencing to compute double derivatives, while the tri-
cubic uses texture lookups and fewer computations. Tri-
cubic B-spline coefficients are expensive to compute and
we obtain a speedup of about 3x here.

Performance speedups of GPU computations compared
to CPU ones are shown in Figures 5 and 6. The speedups
show a general trend (non-linear) of increase in perfor-
mance with increase in size of volume. However, for very
large volumes (e.g. 1602 × 1125 × 195 volume), both the
host and the device computations slow down by a large ex-
tent due to excessive memory paging. Since the device com-
putation reads the volume in small chunks of memory, we
surmise that this access pattern hits the performance even
more by increasing the number of page faults.

0!

10!

20!

30!

40!

50!

60!

70!

0! 100! 200! 300! 400!

Sp
ee

du
p!

No. of voxels (millions)!

Init-interface!
PDE-update!

Figure 5. GPU speedup for tri-linear level set segmentation

0!

10!

20!

30!

40!

50!

60!

70!

0! 100! 200! 300! 400!

Sp
ee

du
p!

No. of voxels (millions)!

Init-interface!
PDE-update!
Coeff!

Figure 6. GPU speedup for tri-cubic level set segmentation

5. Conclusions
In this work we present an efficient parallel (multi-core)

CUDA computation of a multi-domain, higher order level
set method applied to a Mumford-Shah like energy func-
tional. The higher order framework can be easily used with
other energy functional as well. We show results of the seg-
mentation on CT volumes along with performance speedups
obtained with our GPU based implementation. The overall
performance gains we obtain is 20x for the two-domain seg-
mentation and 10x for the multi-domain segmentation.

Acknowledgement
The research of Qin Zhang and Chandrajit Bajaj was

supported in part by NSF grant CNS-0540033 and NIH

contracts R01-EB00487, R01-GM074258, R01-GM07308.
This work was done while Ojaswa Sharma was visiting
Chandrajit Bajaj at UT-CVC. His visit was supported by the
Technical University of Denmark.

References
[1] C. Bajaj, G. Xu, and Q. Zhang. A Higher Order Level Set

Method with Applications to Smooth Surface Constructions.
ICES Report 06-18. Institute for Computational Engineering
and Sciences, The University of Texas at Austin, 2006.

[2] C. Bajaj, G. Xu, and Q. Zhang. A fast variational method for
the construction of resolution adaptive C2-smooth molecu-
lar surfaces. Computer Methods in Applied Mechanics and
Engineering, 198(21-26):1684–1690, 2009.

[3] G. E. Blelloch. Prefix sums and their applications. Techni-
cal Report CMU-CS-90-190, School of Computer Science,
Carnegie Mellon University, Nov. 1990.

[4] G. Borgefors. Distance transformations in digital im-
ages. Computer Vision, Graphics, and Image Processing,
34(3):344–371, 1986.

[5] T. F. Chan and L. A. Vese. A level set algorithm for min-
imizing the Mumford-Shah functional in image processing.
In IEEE Workshop on Variational and Level Set Methods,
pages 161–168, 2001.

[6] M. Harris, S. Sengupta, and J. Owens. Parallel prefix sum
(scan) with CUDA. GPU Gems, 3, 2007.

[7] A. Lefohn, J. Kniss, C. Hansen, and R. Whitaker. A stream-
ing narrow-band algorithm: interactive computation and vi-
sualization of level sets. IEEE Transactions on Visualization
and Computer Graphics, 10(4):422–433, 2004.

[8] S. Osher and R. P. Fedkiw. Level set methods and dynamic
implicit surfaces. Springer, 2003.

[9] G. Papandreou and P. Maragos. Multigrid geometric active
contour models. IEEE Transactions on Image Processing,
16(1):229, 2007.

[10] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation
based noise removal algorithms. Physica D, 60:259–268,
1992.

[11] O. Sharma and F. Anton. CUDA based Level Set Method
for 3D Reconstruction of Fishes from Large Acoustic Data.
In International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision 17, 2009.

[12] R. Strzodka and M. Rumpf. Level set segmentation in graph-
ics hardware. In Proc. IEEE International Conference on
Image Processing (ICIP-2001), pages 1103–1106.

[13] UT-CVC. Volume Rover, 2006. http://cvcweb.
ices.utexas.edu/cvc/projects/project.
php?proID=9.

[14] L. A. Vese and T. F. Chan. A multiphase level set framework
for image segmentation using the Mumford and Shah model.
International Journal of Computer Vision, 50(3):271–293,
2002.

[15] J. Weickert, B. Romeny, M. Viergever, et al. Efficient and re-
liable schemes for nonlinear diffusion filtering. IEEE Trans-
actions on Image Processing, 7(3):398–410, 1998.

