
A Formal Object-Oriented Analysis for Software
Reliability: Design for Verification

Natasha Sharygina
�
, James C. Browne

�
, and Robert P. Kurshan

�

�
Bell Laboratories, 600 Mountain Ave.,

Murray Hill, NJ, USA 07974�
natali,k � @research.bell-labs.com�

The University of Texas at Austin, Computer Science Department,
Austin, TX, USA 78712

browne@cs.utexas.edu

Abstract. This paper presents the OOA design step in a methodology which in-
tegrates automata-based model checking into a commercially supported OO soft-
ware development process. We define and illustrate a set of design rules for OOA
models with executable semantics, which lead to automata models with tractable
state spaces. The design rules yield OOA models with functionally structured
designs similar to those of hardware systems. These structures support model-
checking through techniques known to be feasible for hardware. The formal OOA
methodology, including the design rules, was applied to the design of NASA
robot control software. Serious logical design errors that had eluded prior testing,
were discovered in the course of model-checking.

1 Introduction

Problem Statement. Software systems used for control of modern devices are typ-
ically both complex and concurrent. Object-Oriented (OO) development methods are
increasingly employed to cope with the complexity of these software systems. OO de-
velopment systems still largely depend on conventional testing to validate correctness
of system behaviors, however. This is simply not adequate to attain the needed relia-
bility, for complex systems, on account of the intrinsic incompleteness of conventional
testing.

Formal verification of system behavior through model checking [4], on the other
hand, formally verifies that a given system satisfies a desired behavioral property through
exhaustive search of ALL states reachable by the system. Model checking has been
widely and successfully applied to verification of hardware systems. Application of
model checking to software systems, has, in contrast, been much less successful. To ap-
ply model checking to software systems the software systems must be translated from
programming or specification languages to representations to which model checking
can be applied. The resulting representation for model checking must have a tractable
state space if model checking is to be successful. Translation of software systems de-
signed by conventional development processes and even by OO development processes
to representations to which model checking can be applied have generally resulted in
very large interconnected state spaces.

2 Natasha Sharygina, James C. Browne, Robert P. Kurshan

A principal result reported in this paper is a set of design rules (Section 3) for devel-
opment of OO software systems that when translated to representations to which model
checking can be applied, yield manageable state spaces. These design rules are the
critical initial step in the methodology for integration of formal verification by model
checking into OO development processes.

Approach. The validity and usefulness of design rules and the effectiveness of the
integration of formal verification into object-oriented software development can be
evaluated only in the context of their application.

This paper reports a case study in re-engineering the control subsystem for a NASA
robotics software system. The goal of the project was to increase the subsystem’s relia-
bility. This goal was achieved, as serious logical design errors were discovered, through
the application of model-checking. This case study motivates and demonstrates the de-
sign rules for ”design for verifiability” and the application of formal verification by
model checking to a substantial software system.

The robot control subsystem was originally implemented by a conventional devel-
opment process in a procedural OO programming language (C++) generally following
the Booch methodology [1]. In the re-engineering project, a four-step process to obtain
a reliable system was planned:

1. Re-implement the control subsystem as an executable specification in the form
of an Object-Oriented Analysis (OOA) model (in the Shlaer-Mellor (SM) methodology
[26]);

2. Validate this executable specification as thoroughly as possible by testing;
3. Apply model checking to the OOA model to validate its behavior at all possible

states of the system;
4. Generate the control software by compilation of the validated and verified OOA

model.
The application of the SM OOA method captures the robotic domain entities in

terms of classes/objects and relate them using the relationships diagrams. Testing and
evaluation of the execution behavior of the constructed system was greatly simplified
due to the fact that the OOA classes were represented as a set of attributes, confined to
simple types, and that the behavior of the system was state machine specified. Such an
OOA model can be viewed as being designed for testability. This executable specifica-
tion can also be translated by a code generation system to C

���
code. A commercially

supported software system, SES/Objectbench (OB) [25] was used in this step.
OOA models with executable semantics are representations of software system,

which should be amenable to model-based verification techniques. An OOA model
represents the program at a higher level of abstraction than a conventional program-
ming language. The OOA model partitions the system into well-defined classes. But,
attempts to apply model checking to these apparently highly modular OOA models led
to intractably large state spaces for the robot control system model. The cause for this
problem is suggested by examining hardware systems. In hardware, the “calling” mod-
ule and “called” module are separated spatially and communicate through a clean in-
terface and a specified protocol. This “spatial modularity” supports divide-and-conquer
analytical techniques, as each module can be analyzed in isolation. This is essential for
successful model-checking because it resolves a fundamental problem of the state space

Design for Verification 3

explosion. The design rules of OOA methods do not enforce the logical equivalent of
“spatial modularity” in software. (In software, modularity tends to be “temporal”, in
the sense that modular subroutines are invoked in succession. This “temporal modular-
ity” does not directly support divide-and-conquer techniques). For example, accessor
and mutator methods cause coupling of the states of instances of different classes. The
logical equivalent of “spatial modularity” for software is the strong form of name space
modularity where the name spaces modules are rigorously disjoint and all interactions
among modules are across specified interfaces and follow specified protocols. “Spatial
modularity” (strong name space modularity) is consistent with the intent of the OOA
approaches of conceptual encapsulation but it is not explicitly considered in most OO
design methods. We introduce a set of design rules that constrain the syntactic struc-
ture of OOA models to conform to “spatial modularity”. The systems become spatially
modular (in the hardware sense when system elements can be analyzed in isolation) and
support existing verification techniques developed for hardware systems. We applied

Fig. 1. The OOA-based methodology for the spatial development of software systems

the design for verifiability rules to a further redesign of the robot controller system. The
results are encouraging - we were able to apply the partitioned development, model
checking, assume/guarantee reasoning, abstraction techniques [14] developed for hard-

4 Natasha Sharygina, James C. Browne, Robert P. Kurshan

ware systems to our software system. This powerful combination of techniques helped
us to break the computational complexity barrier to the application of verification by
model checking to OOA models of software systems. Model checking was accom-
plished by translation to S/R, an input language of the COSPAN [9] model checker,
using the translator reported in [27].

In this paper, we develop a set of design rules for construction of OOA models to
which verification by model checking can be practically applied, and we demonstrate
the application of the integrated OOA and model-checking methodology for develop-
ment of software systems.

2 Integration of Model Checking with OO Development

A methodology for integration of OOA and model checking shown in Figure 1 is pre-
sented in [27]. Overall, this model fulfills the need for a sound foundation in rigorous
requirements modeling, design analysis, formal verification, and automated code gener-
ation. Model checking is applied to SM OOA (xUML) models [26] that have executable
semantics specified as state/event machines rather than to programs in conventional pro-
gramming languages. An automata-based approach to model checking, supported by
the COSPAN [9] model checker, is used. The OOA models are automatically translated
to automaton models using the OB-SR translator [27]. Predicates over the behavior of
the OOA models are mapped to predicates over the automaton models and evaluated
by the model checker. This research imposes the structural design rules on the software
system reducing its complexity at the design level and thus supports the reuse of the
existing model-checking techniques developed for hardware verification.

xUML Notation. Use of OOA models with executable semantics is moving into the
mainstream of OO software development. The Object Management Group (OMG) [20]
has adopted a standard action language for the Unified Modeling Language (UML) [21].
This action language and SM OOA semantics represented in UML notation define an
executable subset of UML (xUML). The OOA representation used in this research is the
SM OOA as implemented by the capture and validation environment SES/Objectbench
(OB) [25]. We are, on the recommendation of Steve Mellor [private communication]
referring to the OOA model we use as xUML.

We utilize a subset of xUML notation suitable for modeling objects, subsystems,
their static structure, and their dynamic behavior. Static structure diagrams capture con-
ceptual entities as classes with semantics defined by attributes. Object information dia-
grams (OID) describe the classes and relationships that hold between the classes. They
graphically represent a design architecture for an application domain and give an ab-
stract description of tasks performed by cooperating objects. Subsystem relationship di-
agrams situate the application domain in relation to its scope, limits, relationships with
other domains and main actors involved (scenarios). The collaboration diagram is used
for graphical representation of the signals sent from one class to another. This represen-
tation provides a summary of asynchronous communication between state/event models
in the system. The state/event model is a set of Moore state machines that consists of
a fixed number of concurrently executing finite state machines. The state transition di-
agram graphically represents a state machine. It consists of nodes, representing states

Design for Verification 5

and their associated actions to be performed, and event arcs, which represent transitions
between states. The execution of an action occurs after receiving the signal or event.
A transition table is a list of signals, and ”the next” states that are their result. Signals
have an arbitrary identifier, a target class, and associated data elements.

Two types of concurrent model execution are supported by xUML: simultaneous
and interleaved. We utilize only the asynchronous interleaved execution model in the
OOA models of this research.

COSPAN, an Automaton-based Model Checking Tool. COSPAN [9] allows
symbolic analysis of the design model for user-defined behavioral properties. Each such
test of task performance constitutes a mathematical proof (or disproof), derived through
the symbolic analysis (not through execution or simulation). The semantic model of
COSPAN is founded on � -automata [14]. The system to be verified is specified as an � -
automaton P, the task the system is intended to perform is specified as an � -automaton
T, and verification consists of the automata language containment test L(P) � L(T). P is
typically given as the synchronous parallel composition of component processes, spec-
ified as � -automata. Asynchronous composition is modeled through nondeterministic
delay in the components.

Language containment can be checked in COSPAN using either a symbolic (BDD-
based) algorithm or an explicit state-enumeration algorithm.

Systems are specified in the S/R language, which supports nondeterministic, con-
ditional (if-then-else) variable assignments; variables of type bounded integer, enumer-
ated, boolean, and pointer; arrays and records; and integer and bit-vector arithmetic.
Modular hierarchy, scoping, parallel and sequential execution, homomorphism declara-
tion and general � -automata fairness are also available.

3 Design for Verification

An xUML OOA is a natural representation to which to apply model-based verification
techniques. The complexity level of the executable OOA models is far less than the
procedural language programs to which they are translated. In addition to the finite
state representation provided by the OOA techniques, the following features of the OOA
methodology reduce the complexity of the system at the design level:

Abstraction of implementation details. Relationships between objects at the OOA
level are represented as associations and not as pointers. OOA constructs such as signals
in UML express state transitions without reference to the internal states of objects.
Separate specification of class models and behavior models separates specification of
data from control.

Hierarchical system representation. OOA methods support modular designs and
encourage software developers to decompose a system into subsystems, derive inter-
faces that summarize the behavior of each system, and then perform analysis, validation
and verification, using interfaces in place of the details of the subsystems.

“Spatial Modularity” of software systems. The design property which enables
verification of hardware systems by model checking is sometimes called “Spatial Mod-
ularity”. In hardware realized systems functionality is of necessity partitioned into mod-
ules which are spatially disjoint. Interaction among these spatially disjoint functional

6 Natasha Sharygina, James C. Browne, Robert P. Kurshan

modules must take place across precisely defined interfaces and follow precisely de-
fined protocols. The spatial partitioning of hardware modules across well-defined static
interfaces supports the application of divide-and-conquer techniques, necessary to cir-
cumvent the generally infeasible computation problem inherent in model-checking.

The logical equivalent of “spatial modularity” for software is the strong form of
name space modularity where the name spaces of all modules are disjoint and all in-
teractions between functional modules are across specified interfaces and follow spec-
ified protocols. The strong name space modularity is conceptually consistent with the
methodology of separation of concerns advocated by the OOA approaches. It is how-
ever is not explicitly specified in any OO design methods.

Structural design rules. We developed a set of design rules and recommendations
that constrain the structural design of the OOA models to conform to “spatial modu-
larity”. The systems become spatially modular (in the hardware sense where system
elements can be analyzed in isolation) and support existing verification techniques de-
veloped for hardware systems. These design rules for OOA models are similar to those
given for development of truly OO programs in OO procedural languages such as C++.

Design Rule 1. Write access to attributes of one class by another class must be
made through the event mechanism.

The attributes of a class should be local to the class. Change of values of a class in-
stance should be performed only through the event mechanism. This precludes coupling
of internal states of classes.

Design Rule 2. Attribute values which are shared by multiple classes should be
defined in separate class and accessed only through the event mechanism.

This design rule also avoids coupling of internal states of classes.
Design Rule 3. Declaration and definition of functional entities must be performed

within the same component.
A component may have dependencies on other components. To prevent the situation

when functionality of one component can be changed by other components any logical
construct that a component declares should be defined entirely within that component.

Design Rule 4. Inheritance must be confined to extensions of supertypes. Modifica-
tion of the behavior of supertypes (overriding of supertype methods) is prohibited.

This means to follow a meaning of subtyping, along the lines of Liskov’s [17]:
“A type hierarchy is composed of subtypes and supertypes. The intuitive idea of a

subtype is one whose objects provide all the behavior of another type (the supertype)
plus something extra. What is wanted here is something like the following substitution
property: If for every object o1: S there is o2: T such that for all programs P defined
in terms of T, the behavior of P is unchanged when o1 is substituted for o2, then S is a
subtype of T”.

Rule 4 enables reasoning about the correctness of newly derived subtype classes
based on the verification results of previously existing subtype classes.

Recommendation. Creating modular systems the linking between the modules/
subsystems should be minimized.

Subsystems are fundamentally open systems but for verification must be closed
with a definition of the environment in which they will execute. Simulation of the en-
vironment behavior is performed by assuming a sequence of events defined on the sub-

Design for Verification 7

system’s interface. A minimal number of links between subsystems enables effective
definition of the environment used to complete a subsystems definition for verification.

4 The robot controller study

We examine a robotic software used for control of redundant robots 1. Redundant robots
are widely used for sophisticated tasks in uncertain and dynamic environments in life-
critical systems. An essential feature for a redundant robot is that an infinite number of
robot’s joints displacements can lead to a definite wrist (end-effector) position. Failure
recovery is one of the examples of redundancy resolution applications: if one actuator
fails, the controller locks the faulty joint and the redundant joint continues operating.
The general task of the test-case software is to move a robot arm along a specified
path given physical constraints (e.g. obstacles, joints angles and end-effector position
constraints). The specific task is to choose an optimal arm configuration. This decision-
making problem is solved by applying performance criteria [13].

The decision-making method is based on the

Fig. 2. A part of a redundant robot,
demonstrating infinite manipulator
configurations for a single end-
effector position.

local explorations and the concept of a joint-level
perturbation. Perturbation at the joint level means
temporarily changing one or more of the joint an-
gles (joint angle - is the angle between two links
forming this joint) either clockwise or counterclock-
wise. This project focuses on two different explo-
ration strategies: simple and factorial [13]. In the
simple exploration we displace one joint at a time
and find how it effects the configuration of the robot
arm (find all other joint angles) for a given end-
effector position. The other perturbation strategy is
based on

���
factorial search. A detail of a redundant

robot executing the simple exploration strategy for
one of the joints is shown in Figure 2, with � - be-
ing a joint angle, and � - being a displacement.

The original software, OSCAR [13], consisted of a set of robot control algorithms
supported by numerous robotic computational libraries, was developed using a conven-
tional approach. To obtain a reliable system we redesigned its control subsystem as an
executable specification in the form of a SM OOA (xUML) model.

4.1 Domain Analysis and Modeling

The robotic OOA model includes fifteen basic classes, including their variables and
associations.

Classes. In addition to tangible objects (Arm, Joint, EndEffector, PerformanceCri-
terion), incident objects (TrialConfiguration, SearchSpace, SimpleSearchSpace, Facto-
rialSearchSpace), specification objects (Fused Criterion), and role objects (Decision
Tree, OSCAR Interface, Checker) were derived [26].

1 Refer to http:/www.robotics.utexas.edu/rrg/glossary for robotic terms

8 Natasha Sharygina, James C. Browne, Robert P. Kurshan

Fig. 3. OID of the Multi-Criteria Decision Support Robotic System

Attributes. The attributes of the EE object are illustrated below as an example.
EE ID is a key attribute whose value uniquely distinguishes each instance of an EE
object. Current position and Limit are descriptive attributes that provide facts intrinsic
to the EE object. For example, Current position is a vector specifying positions (x, y, z)
and orientation angles (� ,

�
, �) of the EE. Status, end position and ee reference are so

called naming attributes which provide facts about the arbitrary labels carried by each
instance of an object. The domain of the naming attributes is specified by enumeration

Design for Verification 9

of all possible values that the attribute can take on. For example, end position domain
is (0,1) which values reflect if the EE reached the final destination while moving along
the specified trajectory path.

Associations. The executable model is defined using two types of the relation-
ships: binary (those in which objects of two different types participate) and higher-order
supertype-subtype (those when several objects have certain attributes in common which
are placed in the supertype object). For example, one-to-many binary Arm-Joint rela-
tionship states that a single instance of an Arm object consists of many instances of a
Joint object. An example of supertype-subtype relationships is a PerformanceCriterion-
ConstraintCriterion relationship. In this construct one real-world instance is presented
by the combination of an instance of the supertype and an instance of exactly one sub-
type.

Robotic Decision-Support Domain Architecture. The application domain archi-
tecture was divided into computational and optimization subsystems. The input for the
optimization subsystem is one or more trial arm configurations from which the opti-
mization system will either select the best one or provide the computational system
with suggestions on what an optimal arm configuration should be.

The computational subsystem includes kinematics algorithms and interfaces to the
computational libraries of the OSCAR system. There are two methods for the compu-
tational system to define a base point of the optimization search. The first method is to
calculate an EndEffector (EE) position given initial Joint (J) angles of all joints and,
thus, find an initial arm configuration. The second method depicts an EE position as a
new base point from the Trajectory path specified by the user.

A collaboration diagram of the abstracted Kinematics unit which verification results
we discuss in the next section is represented in Figure 6. The control algorithm starts
with defining an initial end-effector position given the initial joint angles. This is done
by solving a forward kinematics problem [13]. The next step is to get a new end-effector
position from a predefined path. The system calculates the joint angles for this position,
providing the solution of the inverse kinematics problem [13] and configures the arm.
At each of the steps described above, a number of physical constraints has to be satis-
fied. The constraints include limits on the angles of joints. If a joint angle limit is not
satisfied, a fault recovery is performed. The faulty joint is locked within the limit value.
Then, the value of the angle of another joint is recalculated for the same end-effector
position. If the end-effector position exceeds the limit, the algorithm registers the un-
desired position, which serves as a flag to stop the execution. A Checker class controls
the joints that pass or fail the constraints check. If all the joints meet the constraints,
the Checker issues the command to move the end-effector to a new position. Otherwise
it either starts a fault recovery algorithm or stops execution of the program (if fault
recovery is not possible).

The optimization subsystem implements the decision-making strategy by apply-
ing decision-making techniques identifying a solution to the multi-criteria problem.
It builds a SearchSpace (SS), which generates sets of JointConfigurations (JC) around
a base point supplied by the computational subsystem. JC instances initiate creation
of TrialConfiguration (TC) instances that normalize a robot arm configuration for any
perturbed joint. A DecisionTree (DT) selects the best TC given a set of Performance-

10 Natasha Sharygina, James C. Browne, Robert P. Kurshan

Criteria (PC) and a number of physical constraints that are globally defined by the user.
The found solution serves as the next base point for another pattern of local exploration.
The search stops when no new solutions are found. The system returns control to the
computational subsystem which changes the position of the EE following the specified
trajectory and determines a new base point for the search.

4.2 Compliance to the design rules

During the construction of the robot control design we followed the design rules speci-
fied in Section 3.

Rule 1: All updates of the attribute values were done through t the event mechanism.
Rule 2: After the design system was completed and validated by simulation, a sep-

arate object Global that contained all the global variables as its attributes was created
and used during verification and code generation.

Rule 3: We restricted the design to insure that all functional components are fully
self-contained.

Rule 4: The users of the developed robotic framework are allowed to add new ele-
ments to the developed architecture. Specifically, new performance criteria can be added
to the architecture. These additions are subtype classes and, in order to satisfy the fourth
rule, it is required that they have a semantic relationship with their supertype classes.
Other words, inheritance is restricted to a purely syntactic role: code reuse and sharing,
and module importation.

Recommendation (System decomposition): As it can be seen in Figure 3 the ar-
chitecture can be represented as a collection of basic robotics functional units. These
functional components (OSCAR Library, Kinematics, Performance Monitoring and De-
cision Making) are depicted by dashed lines. Each functional unit contains a substantial
proportion of components that do not depend on other units.

4.3 OOA Model Validation and Formal Verification

The OOA model was validated by simulation. Several serious error or defects in the
original design and in the original versions of the OOA model were identified and cor-
rected. Space precludes us from describing the validation process and its results. Details
can be found in [22].

We checked a collection of safety and guarantee requirements specifying the coor-
dinated behavior of the robot control processes. We focused on the control intensive
algorithms of the Kinematics unit and abstracted the calculations that were irrelevant
to the actual robot control. Specifically, the Trajectory, TrajectoryPoint and JointCon-
figuration classes used for storage of the predefined trajectory paths and the possible
arm configurations as well as calculations that were done through the interface with the
OSCAR Libraries in the original OOA design were substituted with nondeterministic
assignments of natural numbers. In fact, in this paper we present an instance of the
robot functionality when the robot arm is moving only in the horizontal, i.e. x direction,
which value is assigned nondeterministically in the checked model.

We define and discuss here the properties that did not hold during the verification.
The properties and their descriptions are given in Table 1. The properties are encoded in

Design for Verification 11

Fig. 4. State Transition Diagram of the Checker (left) and Arm (right) objects

Fig. 5. State Transition Diagram of the EndEffector object

12 Natasha Sharygina, James C. Browne, Robert P. Kurshan

a query language of COSPAN. The query variables are declared in terms of state pred-
icates appearing in the state transition diagrams of the objects of the Kinematics unit.
The following declarations are used in Table 1: p - declares the abort var variable of the
Global class; q - declares the undesired position variable of the EE class; r - declares
the ee reference variable of the EE class; s - declares the recovery status variable of the
the Checker class; t - declares the end position variable of the EE class; v - declares the
number of joints variable of the Global class.

Figure 4, 5 schematically represent the lifecycles of the robot control processes
(some actions are omitted due to the space limitations of the paper). For example, the
state UndesiredPosition and the variables undesired position, ee reference of the EE
class appear in Figure 5.

Verification found a number of errors in the robot control algorithms. The failure of
the Property 1 indicated that in some cases the system does not terminate its execution
as specified. The failure of the property 3 that was aimed to check if system terminates
properly confirmed this fact. We learned that an error in the fault resolution algorithm
caused this problem. We will remind the reader that the fault recovery procedure is
activated if one of the robot joints does not satisfy the specified limits. In fact, if during
the process of fault recovery some of the newly recalculated joint angles do not satisfy
the constraints in their turn, then another fault recovery procedure is called. Analysis
of the counterexample provided by COSPAN for Property 3 indicated that a mutual
attempt was made for several faulty joints to recompute the joint angles of other joints
while not resolving the fault situation.

Table 1. Verification properties

N Property Robotic Description Formal Description
1 EventuallyAl-

ways(p=1)
Eventually the robot control terminates Eventually permanently p=1

2 AfterAlwaysUn-
til(q=1, r=1,

p=1)

If the EE reaches an undesired position
than the program terminates prior to a

new move of the EE

At any point in the execution if
q=1 than it is followed by r=1

until p is set to 1
3 AlwaysUntil(p=0,

t=1 OR (s=1 AND
v=1))

The program terminates when it either
completes the task or reaches the state
where there is no solution for the fault

recovery

p=0 holds at any execution of
the program until occurrence of
either t=1 or the combination

of s=1 and v=1

Another error that was found during verification of Property 2 indicated a problem
of coordination between the Arm and Checker processes. The original design assumed
sequential execution. In fact, it was expected that the arm status variable of the Arm
process would be repeatedly updated before the Checker process would initiate a com-
mand to move the EE to a new position. A concurrent interaction between the processes
led to the situation where the Checker process could issue the command based on an
out-of-date value of the arm status variable. This was the reason for Property 2 to fail.

Design for Verification 13

The errors found by model checking were not discovered either during the conven-
tional testing performed by the developers of the original code or during the validation
by simulation of the formalized design. In order to correct these errors a redesign of
both the original system and the OOA model was required. Figure 6 provides the origi-
nal and the modified state transition diagrams of the Kinematics unit demonstrating the
design changes which we made in order to correct the found errors. We introduced a
new class called Recovery, whose functionality provides a correct resolution of the fault
recovery situation described above. Additionally we added exchange messages between
the processes Arm and Checker that fixed the coordination problem reported earlier.

Move

EndEffector

Calculate joint
angles for a given

EE position

for given joint angles

OSCAR

Trial
Configuration Checker

Calculate
EndEffector position

Inform Checker if

Acknowkedge
Arm Status
Update Move to Valid/

Not_Valid state

Libraries

joint limits are met
Adjust
Joints

Calculate
Forward/Inverse

Kinematics

 Position EndEffector

Stop
Operation

Arm

Configure

EndEffectorJoint

Kinematics
Solution

Return

Recovery

Turnjoint angles
Recalculate

EE position

Calculate

Inform Checker if
angles for a given

Calculate joint

EndEffector

joint limits are met

Libraries
OSCAR

Joints
Adjust

Recovery

Stop
operation

Move to Valid/
Not_Valid state

Forward/Inverse

Update
Arm Status
Acknowledge

Update

ON
Recovery
Turn

OFF

Perform

Arm Status
Acknowledge

Recovery
Fault

Move

Joint Position EndEffector

Trial
Configuration

for given joint angles
EndEffector position

Calculate

Checker

EndEffector

Configure

Arm

Fig. 6. Collaboration diagrams of the original (left) and modified (right) Kinematics unit

It is interesting to note that concurrently with this project, we examined the pos-
sibility of integrating testing into the model checking process. The SM OOA exe-
cutable specification of the robot control system was used as a test-bed for that project.
Specifically, an abstracted version of the Kinematics unit was manually translated into
Promela, the input language of the SPIN [12] model checker. PET [8], an interactive
testing tool that supports visual representation of data, was used to establish the con-
formance between the source code and the code accepted by the model checker. SPIN
verification results are presented in [23]. Design errors found using SPIN were cor-
rected and in this paper we use the corrected robot control system. The failure of the
fault tolerance algorithm, however, is demonstrated in both projects. The fact that we
received identical verification results using different model checking tools for property
3 confirms the validity of the verification results.

14 Natasha Sharygina, James C. Browne, Robert P. Kurshan

4.4 Robotic System Engineering

Given the target system specifications, the validated and verified architecture, and the
target system configuration parameters, an instance of the target robotic system was au-
tomatically generated using SES/CodeGenesis system [24]. C++ source code that sup-
ports the implementation of the developed architecture can be found at www.robotics.
utexas.edu/rrg/organization/dual arm/research/ROOA/.

5 Conclusions and Related Work

This paper gives a feasibility demonstration for the application of verification by model
checking to a substantial control intensive application developed in a commercially sup-
ported and widely used OO development process. The results of the demonstration are
highly encouraging. Verification of significant behavioral properties of the robot control
subsystem were carried out. The importance of verification to OOA model design and
development has been shown. Design rules leading to xUML OOA models to which
verification by model checking can be practically applied have been proposed and ap-
plied.

Previous work on application of model checking to software systems has mainly
been either to software systems written in procedural languages or to abstract models
extracted from programs in procedural languages. Feaver [11] targets software sys-
tems written in C while [2], [3] focus on applying model checking on SDL programs.
Havelund and Pressburger [10] apply model checking to Java programs. Corbett, et.al
[5] extract finite state machines from Java programs to which to apply model checking.
The results of verification of a safety critical railroad control system which complexity
is comparable to our test-case study are presented in [7].

Model-checking has been also applied to verification of concurrently executing
state/event machines. Lind-Nielsen, et al. [16] applied SMV [18] for verification of
hardware systems represented by VisualState state machines. Dependency analysis was
used to decompose a large but naturally spatially modular systems. Chan, et al. [6] ver-
ified a complex aircraft collision software. They reported that their ad hoc solutions for
the manual system partitioning frequently caused invalid results. None approaches the
issues of the system redesign prior to model-checking.

Design guidelines for constructing testable and maintainable programs in object-
oriented procedural languages have been proposed and discussed by a number of re-
searchers [15], [17]. Moors [19] has proposed similar design criteria for communication
protocols. However, there is no an effort known to us that would address a problem of
developing the OOA design rules that support resolution of the state-explosion problem
at the design level.

Acknowledgement. This research was partially supported by the Robotics Research
Group of the University of Texas at Austin.

References

1. Booch, G., Object-Oriented Analysis and Design with Applications, Benjamin/Cummings,
Redwood City, CA (1994)

Design for Verification 15

2. Bounimova, E., Levin, V., Basbugoglu, O., and Inan, K., A Verification Engine for SDL Spec.
Of Comm. Protocols, In Proc. of the 1st Symp. on Computer Networks, Istanbul, Turkey,
(1996) 16-25

3. Bosnacki, D., Damm, D., Holenderski, L.,and Sidorova, N., Model checking SDL with Spin,
In Proc. of TACAS2000, Berlin, Germany, (2000) 363-377

4. Clarke, E.M., and Emerson, E.A.: Design and synthesis of synchronization skeletons us-
ing branching time temporal logic, Workshop on Logic of Programs, Yorktown Heights, NY.
LNCS, Vol. 131, (1981) 52-71

5. Corbett, J., Dwyer, M., Hatcliff, J., Laubach, S., Pasareanu, C., Bandera: Extracting finite-
state models for Java source code, In Proc. of 22nd ICSE (2000)

6. Chan, W., Anderson, R., Beame, P., Burns, S., Modugno, F., Notkin, D., Reese, J., Model
Checking Large Software Specifications, In Proc. of IEEE Transaction on Software Engi-
neering (1998) 498-519

7. Gnesi, S., Lenzini, G., Abbaneo, C., Latella, D., Amendola, A., Marmo, P., An Automatic
SPIN Validation of a Safety Critical Railway Control System, In Proc. of Int. Conf. on De-
pendable Systems and Networks, (2000) 119-124

8. Gunter, E., and Peled D., Path Exploration Tool, In Proc. of TACAS 1999, Amsterdam, The
Netherlands (1999) 405-419

9. Hardin R., Har’El, Z., and Kurshan, R.P., COSPAN, In Proc., CAV’96, LNCS, Vol. 1102,
(1996) 423-427

10. Havelund, K., and Pressburger, T., Model Checking Java Programs Using Java PathFinder,
In Proc. 4’th SPIN workshop (1998)

11. Holzmann, G., and Smith, M., Feaver: Automating software feature verification, Bell Labs
Technical Journal, Vol. 5, 2, (2000) 72-87

12. Holzmann, G., The Model Checker SPIN, IEEE Trans. on Software Engineering, Vol. 5(23),
(1997) 279-295

13. Kapoor, C., and Tesar, D.: A Reusable Operational Software Architecture for Advanced
Robotics (OSCAR), The University of Texas at Austin, Report to DOE, Grant No. DE-FG01
94EW37966 and NASA Grant No. NAG 9-809 (1998)

14. Kurshan, R., Computer-Aided Verification of Coordinating Processes - The Automata-
Theoretic Approach, Princeton University Press, Princeton, NJ (1994)

15. Lano, K., Formal Object-Oriented Development, Springer (1997)
16. Lind-Nielsen, J, Andersen H., R., etc., Verification of large State/Event Systems using Com-

positionality and Depenedency Analysis, In Proc. of TACAS’98, Portugal (1998) 201-216
17. Liskov, B., Data Abstraction and Hierarchy, In Proc. of OOPSLA conference (1987)
18. McMillan, K. Symbolic Model Checking, Kluwer (1993)
19. Moors, T., Protocol Organs: Modularity should reflect function, not timing, In Proc. OPE-

NARCH98, (1998) 91-100
20. Object Management Group (OMG), Action Semantic for the UML, OMG (2000)
21. Rumbaugh, J., Jacobson, I. and Booch, G., The Unified Modeling Language Reference Man-

ual, Object Technology Series, Addison-Wesley (1999)
22. Sharygina, N., and Browne, J., Automated Rob. Decision Support Software Reverse Engi-

neering, Tech. Rep., The Univ. of Texas at Austin, Robotics Research Croup (1999)
23. Sharygina, N., and Peled, D., A Combined Testing and Verification Approach for Software

Reliability, In Proc. of FME2001 (to appear), Berlin (2001)
24. SES Inc., CodeGenesis User Reference Manual, SES Inc. (1998)
25. SES inc., ObjectBench Technical Reference, SES Inc. (1998)
26. Shlaer, S., and Mellor, S., Object Lifecycles: Modeling the World in States, Prentice-Hall, NJ

(1992)
27. Xie, F., Levin, V., Browne, J., Integrating model checking into object-oriented software de-

velopment process, Techn.Rep., University of Texas at Austin, Comp. Science Dept. (2000)

