
Solving Quarto with JXTA and JNGI

Matthew Shepherd
University of Texas at Austin

Abstract. This paper presents an implementation of a grid-based
autonomous quarto player. The implementation uses the JNGI
framework which itself is written on top of JXTA.

1 Introduction

Quarto is a game reminiscent of tic-tac-toe. It is played with sixteen unique pieces on a
four-by-four square board. Each piece is large or small, black or white, solid or hollow
and square or round. The game begins with an empty board and all sixteen pieces
available. Two players take successive turns with the first player choosing an available
piece. That piece is given to the second player who places it on an empty spot on the
board. The roles reverse and the process repeats. A player wins by placing the final piece
in a row, column or diagonal where all four pieces have at least one attribute in common.
For example, the winner might place a piece that completes a row of four black pieces or
a column of four round pieces.

My goal was to write an implementation of the game and an autonomous program
for a human player to compete against. The program performs an exhaustive search of
possible moves in order to find the most appropriate one. If the program were to perform
the search on the first move of the game, the sixteen available pieces and sixteen empty
squares would combine to produce a (16!)^2 search space. Eliminating the moves that
take place after a game has already been won reduces that number, but a single processor
would still not be sufficient to perform such a task in a reasonable amount of time. I
proposed implementing the program to run on a grid of available computers hoping to
reduce the running time to a more desirable time span, allowing a user to play against the
program in real-time.

2 Approach

The purpose of the project was to supplement my exposure to grid-based systems in the
classroom with firsthand experience. I felt that the scope of that experience needed to be
restricted to working with a single existing framework in order to gain a sufficient depth
of understanding. I chose to use JXTA as the underlying framework for the game based
on my strong familiarity with Java and related technologies from Sun Microsystems.

2.1 JXTA

JXTA is a response to the growing number of isolated peer-to-peer applications. These
networks often have two flaws in common. First, the advent of each new peer-to-peer
application usually means the introduction of another set of peer-to-peer communication
protocols. These protocols are the way that peers discover and communicate with each
other. The same base set of communication protocols are needed by virtually every peer-
to-peer application. By implementing the protocols needed to support the new
application, the application’s developer frequently writes software that has been written
many times before. Had the developer used an existing framework, the time spent
implementing the underlying protocols could have been put to better use. Second, the
application does not take advantage of its peers acting as peers another network. Many
operations, such as discovery of other peers, might be consolidated across several
applications running on an individual host thereby freeing up system resources for other
uses.

With these goals in mind, Sun Microsystems publicly announced Project JXTA in
February 2001. With the help of researchers at academic institutions, Sun had defined a
set of peer-to-peer communication protocols independent of any platform or
programming language. The protocols define a set of XML documents that peers can
send and receive. These documents can be used to transmit requests or responses among
peers to provide a base set of functionality such as discovery and message routing. These
documents can also be extended for application-specific purposes like coordinating
workers and distributing code in a grid-computing application. The JXTA specification
also introduces the concept of peer groups. It suggests that peer groups can be used to,
among other things, define the scope of messages and administer security.

Sun released the JXTA reference implementation as open source through jxta.org
in April 2001. The initial reference implementation, written in Java, consists of a set of
services that give life to the JXTA protocols. Developers writing peer-to-peer
applications can do so on top of these services at no charge. Like other open source
projects, it also encouraged developers to contribute bug fixes and improvements back to
jxta.org. These modifications along with the work done by the core team eventually lead
to the release of the version used in the implementation of quarto: JXTA v2.1.1.

2.2 JNGI

Many developers have sought to build extensions to JXTA. The extensions enable others
to more easily write complex peer-to-peer applications. One such project is JNGI. JNGI
was first proposed in 2002 in a paper titled “Framework for Peer-to-Peer Distribution
Computing in a Heterogeneous Decentralized Environment” by Jerome Verbeke,
Neelekanth Nadgir, Greg Ruetsch and Ilya Sharapov at Sun Microsystems. The paper

described the framework for a grid of JXTA peers that could be used for various
computationally intensive problems. The primary goal of JNGI is to enable a developer
with little knowledge of JXTA to write a program that taps the computational power of
available JXTA peers.

JNGI defines a Monitor, Worker and Task Dispatcher peer group. Membership in
these peer groups is used to define the roles of the participating peers. A peer can be a
member of one or many groups and there can be one or many instances of each peer
group in the JNGI network. A request to join the JNGI network is handled by the Monitor
peer group. The monitor group also determines which groups and roles to assign to that
peer.

The Monitor peer group grants a job submitter membership to the network, like
any other peer. Once granted membership, the job submitter submits a new job consisting
of logic and data. The logic takes the form of a Java class, implementing
java.lang.Runnable and java.lang.Serializable, compiled into standard byte code. All
worker peers involved in the same job will run the same Java class. Where their work
differs is in the data. The data takes the form of serialized instances of the Java class.
JNGI refers to these instances as tasks. These tasks are instantiated with different data
before they are serialized and distributed.

The task dispatcher group receives the byte code and tasks from the job submitter.
The worker peers have been polling the task dispatcher requesting tasks since they were
granted membership to the JNGI network. Now that the task dispatcher has a set of tasks
to distribute, it responds to the workers with the byte code, if necessary, and a task. The
worker uses the byte code to de-serialize the task and then runs the object as a normal
Java Thread. The object completes its task and sets the result as a member variable. It is
then sent asynchronously back to the Task Dispatcher group. It is possible for the Task
Dispatcher group to send out the same task to multiple workers. In this case, the Task
Dispatcher uses the result returned first and discards the others.

Since submitting the job, the job submitter has been polling the task dispatcher
requesting the completed tasks. Once the task dispatcher receives a response to each task,
it in turn responds to the job submitter with all the serialized objects that were returned by
the workers. The job submitter is responsible for any post processing that might be
necessary.

2.3 Quarto Implementation

The quarto implementation uses JNGI v1.0 and JXTA v2.1.1, the most recent stable
releases at the time of this paper. The quarto grid uses a set of hosts on a single isolated
Local Area Network (LAN). Each peer configures JXTA to use TCP on a single port with
multicast enabled and HTTP access disabled.

2.3.1 Working with JNGI

Figure 2.3.1

The JNGI implementation is a much-simplified version of the framework described
in “Framework for Peer-to-Peer Distribution Computing in a Heterogeneous
Decentralized Environment.” The implementation uses only a single peer group,
MDE:Provider, that is instantiated by the work provider peer. In the JNGI
implementation, the worker provider takes the place of the Task Dispatcher group
described in the JNGI paper. Once the work provider is running and the MDE:Provider
peer group is available, the worker peers can be started. The work provider and worker
peers should both be running prior to the start of the quarto game.

The quarto game interacts with the JNGI network using a RemoteThread. The
RemoteThread class mimics the java.lang.Thread API familiar to Java developers. This
abstracts away the job submitter’s interaction with the work provider thus making the
source code using it fairly straightforward.

2.3.2 Quarto Classes

quarto.Game. The Game class implements the main method and can therefore be invoked
from the command line by the user. It instantiates two Player objects and one Board
object, using them to control the flow of the game.

quarto.Board. The Board class maintains the state of the game including which marks
(pieces) have been played on which spots (squares).

quarto.Player. The Player interface defines the getName(), chooseMark() and
chooseSpot() methods that allows the Game object to treat all player implementations
uniformly.

quarto.User. The User class is the Player implementation that provides the command line
interface that allows a human player to choose marks and spots as the Game object
requests them.

quarto.Robot. Deprecated. The Robot class is an autonomous serial implementation of
the Player interface. It uses the min-max algorithm to choose marks and spots as
requested by the Game object. The class was deprecated in favor of the GridRobot
implementation.

Figure 2.3.2

quarto.grid.GridRobot. The GridRobot class is an autonomous grid implementation of
the Player interface. It uses the min-max algorithm in concert with the JNGI
RemoteThread class to choose marks and spots. The GridRobot is responsible for
dividing up the search into JNGI tasks and making sense of the results.

quarto.grid.Move. The Move class is an abstract class that implements Serializable and
Runnable. This allows its subclasses to be distributed as JNGI Tasks.

quarto.grid.ChooseMark and quarto.grid.ChooseSpot. Theses classes extend the Move
class thereby implementing Serializable and Runnable allowing them to be distributed as
JNGI Tasks. The two classes perform an exhaustive search of the possible boards and
then choose the best available mark or spot.

2.3.3 Quarto in Action

The quarto implementation consists of two java packages. The first package, quarto,
contains the necessary classes to play a command line game between two human players
situated at the same computer. The second package, quarto.grid, provides the
implementation of the grid-based autonomous quarto player.

When the quarto game begins, a Game object is instantiated. The Game object in
turn instantiates two Player objects and one Board object. At least one of the Player

objects will be a GridRobot. The GridRobot acts as the job submitter. The Game will ask
the GridRobot to choose a mark or a spot depending on its turn. The GridRobot will then
instantiate an array of Move objects. The array will consist of either one ChooseSpot
object for each available spot or one ChooseMark object for each available mark. This
array of Move objects, along with the Move, ChooseMove, ChooseSpot and Board
classes, are sent to the work provider using a RemoteThread. Control is given back to the
GridRobot once all Moves have completed their search. The GridRobot sorts through the
completed Moves, chooses the first best Move and returns it to the Game.

The process repeats itself on each of the GridRobot’s turns. Unfortunately, sending
a second job within the same process is a limitation of the existing JNGI implementation.
JNGI attempts to “boot” a new peer each time a RemoteThread is started, but at this point
the peer is already running. The result is that JNGI crashes and the quarto game ends
prematurely. I was able to modify the RemoteThread class to hold a reference to the
existing peer so that it can be reused. Using the modified JNGI code, the GridRobot was
able to play more than a single round of quarto.

3 Results

When a worker receives a task, it must either complete that task itself or not complete it
at all. JNGI does not support a worker dividing up a task further and redistributing its
portions to more workers. This limitation presents an insurmountable hurdle for the
quarto implementation. A single level of distribution can only reduce the initial (16!)^2
by a factor of 16. The search space remains too large for a single host to process. To
verify the implementation worked correctly, the game was seeded with several
predetermined moves. These limited tests proved successful, but given the current
implementation of JNGI it is not practical to play the game from the very beginning.

4 Conclusions

Aside from the lack of branching jobs, JNGI has other serious limitations that were
encountered during the implementation of quarto such as the platform dependent shell
scripts. The scripts are intended to ease the deployment of the peers, but they are both
platform and network dependent making them useless in a typical environment. The
problem is compounded by the lack of documentation regarding peer configuration and
the lack of community involvement on the project website. This results in a long painful
attempt to simply run the example application provided.

Once the sample application does run, however, it becomes clear that the JNGI
implementation differs from the paper that introduced it in several key areas. The three
peer groups described in the paper (Monitor, Worker and Task Dispatcher) are not found
in the implementation. Replacing the Task Dispatcher group is a singe peer known as the
work provider. The instances of Worker groups seem to have been replaced by a lone

MDE:Provider group and the Monitor group is missing entirely. The three peer groups
are the heart of the JNGI framework described in the paper. By removing them, the
implementation has, at best, a vague resemblance to the paper.

The simplification of the JNGI paper and the inability of workers to invoke more
workers cripples the framework. It is necessary for a grid-computing framework to offer
at least some rudimentary form of task branching in order for it to successfully solve
difficult computational problems. The JNGI framework has a solid foundation in JXTA
because the JXTA peer groups offer a great deal of flexibility in building a grid-
computing framework. Unfortunately, that flexibility is not presently passed on to
developers using JNGI and unless it is, the JNGI framework and its implementation will
be of little use to them.

5 References

1. Jerome Verbeke, Neelekanth Nadgir, Greg Ruetsch, Ilya Sharapov.
Framework for Peer-to-Peer Distribution Computing in a Heterogeneous,
Decentralized Environment, 2002, Sun Microsystems, Inc., Palo Alto,
California.

2. Jerome Verbeke, Neelekanth Nadgir. JNGI: P2P Distributed Computing,
September 2003, Sun Microsystems, Inc., Palo Alto, California.

3. Project JXTA Technology: Creating Connected Communities, March 2003,
Sun Microsystems, Inc., Palo Alto, California.

4. Li Gong. Project JXTA: A Technology Overview, November 2002, Sun
Microsystems, Inc., Palo Alta, California.

5. Bernard Traversat, Ahkil Arora, Mohamed Abdelaziz, Mike Duigou, Carl
Haywood, Jean-Christophe Hugly, Eric Pouyoul, Bill Yeager. Project JXTA
2.0 Super-Peer Virtual Network, May 2003, Sun Microsystems, Inc., Palo
Alta, California.

6. Project JXTA v2.0: Java TM Programmer’s Guide, May 2003, Sun
Microsystems, Inc., Palo Alta, California.

7. J. C. Browne, K. Kane, H. Tian. An Associative Broadcast Based
Coordination Model for Distributed Processses, 2002, The University of
Texas, Austin, Texas.

