
1

9/10/2007 Design For Verification 1

Approach
Property

Specifications

Verified Components

Abstraction and
Translation

Program

Testing

Model Checking

Theorem Proving

Runtime Monitors

Static Analysis

Abstraction and Translation is implemented through
static analysis

Environment
Specifications

Composer

9/10/2007 Design For Verification 2

Approach: Design for Verification

Property
Specifications

Verified Components

Abstraction and
Translation

Program

Testing

Model Checking

Theorem Proving

Runtime Monitors

Static Analysis

Abstraction and Translation is implemented through
static analysis

Environment
Specifications

Composer

2

9/10/2007 Design For Verification 3

9/10/2007 Design For Verification 4

Design For Verification
• Design Goals

– Functionality
– Robustness
– Peformance
– Security
– Verifiability

• Design for verifiability is required for the other goals to
be meaningful

• Verification has no hope for success unless the program
is designed with verification as a goal.

• We need a design process leading to verifiable systems.

3

9/10/2007 Design For Verification 5

What Makes a System Difficult to
Verify?

• Complexity of structure
• Size of units to be verified
• Non-local state
• Obscure specification of state
• Distribution of functionality across multiple

units.

9/10/2007 Design For Verification 6

What Design Characteristics Make
a System Verifiable?

• Precisely Specified Structure
• Separation of functional concerns
• Localized state
• Verifiable components

4

9/10/2007 Design For Verification 7

Development for Verification

• Formal architectural specification for
system
– Components and relationships among

components
• Formal specification of components

– Unit of execution with specifiable properties.

9/10/2007 Design For Verification 8

1. Components provide a semantic basis for definition of
properties and assumptions.

2. Properties can be established on components under
assumptions which model compositions and
execution environments.

3. The components can then be replaced in verifications of
compositions by an adequate set of established
properties.

4. Exhaustive analysis and/or testing is sometimes possible
on a component by component basis.

5. Components provide a basis for larger semantic units for
monitoring and definition of redundancy.

6. Patterns of components enable definition of properties to
be defined and assumptions for verification of properties

Why Components?

5

9/10/2007 Design For Verification 9

Property
Specifications

Component/Program

Environment
Specifications

Design
Methodology

Design Methodology

Properties are statements about the
states of the program. (Actually
state machines themselves.)

The environment is a state machine
which generates inputs and accepts
outputs from the program.

9/10/2007 Design For Verification 10

Design/Development Flow

Architecture Specification

Component Specification

Components Relationships

Environment Requirements

Component Verification

Component Composition

Program

6

9/10/2007 Design For Verification 11

Architecture Definition

1. Architectures/Templates/Patterns – An architecture is
a composition of components implementing an
input/output specification and conforming to a set of
properties.

2. An architecture is often defined in terms of layers of
functionality/abstraction.

3. There are architectures, templates or patterns
associated with each level of abstraction.

4. Each layer/level has a set of components.
5. An instance of the architecture is defined by a choice

of execution environment and initialization.
6. Components are either selected from libraries or

developed for a specific application.

9/10/2007 Design For Verification 12

Components - Definition

1. A component is a functional specification, a set of properties and an
implementation.

2. A component provides one or more logical functions at the level of
abstraction at which it is defined.

7

9/10/2007 Design For Verification 13

Components - Design
1. Design (and development) begins with writing functional

specifications and deriving properties for the component from the
functional specifications.

2. The control flow of a component is defined by a state machine.

3. The actions associated with each state (Moore) or transition (Mealy)
must be “run to completion”.

4. The states in the properties of the component must be explicitly
visible in the component/program design.

5. Transitions among states in the property specifications should be
explicitly visible in the component/program design.

8. Data which is shared among a set of components should be
encapsulated in a component.

9. The inputs and outputs sequences (environment) for a component
should be specifiable as a state machine.

9/10/2007 Design For Verification 14

Relationships - Definition

• Connector is a word often used in the software
architecture literature to denote the relationship
among components in an architecture.

• Connectors may be defined explicitly in a
language or implicitly through matching of
component specifications

• An interaction is an execution of a
connector/relationship

• Examples:
– Procedure invocations
– Continuations – data flow
– Callbacks

8

9/10/2007 Design For Verification 15

Top Down Phase of Design

1. Specify the environment in which the system will be defined. The
specification may be in terms of message sequence charts, state
machines, or temporal logic properties.

2. Specify the required properties for the system in an appropriate
temporal logic.

3. Specify layers of abstraction within which components may be
defined. (There may be only a single layer.)

4. Specify components within each layer.
5. Specify the relationships (interactions or connectors) within each

layer and across layers as “event streams,” dependence graphs
and/or call/return invocations including sequencing of interactions
in the relationship. (Steps 2, 3, 4 and 5 define a classical software
architecture.)

6. Derive those properties of components which are required as a
result of system properties and the relationships among
components.

9/10/2007 Design For Verification 16

Top Down Phase of Design

7. Identify the sources of components in libraries and/or
as application specific.

8. The properties of a component are the union of the
properties derived with the functionality of the
component and the requirements imposed by the
architecture.

9. Verify the properties of the “primitive” components
using the architecture to derive the environment of the
“primitive” components.

10. Use the architecture to determine pairs or sets of
components which can or should be composed into
components visible in the architecture.

11. Follow the procedure given following to compose
components into larger components.

9

9/10/2007 Design For Verification 17

Modules may require context

information to satisfy a
property

Assumption || Module ⇒
Property

(assume/guarantee
reasoning)

How are assumptions
obtained?

Developer encodes them

Abstractions of environment,
if known

Automatically generate exact
assumption A

Component Specification and Verification

9/10/2007 Design For Verification 18

Component Composition Phase
Overview

1. Verify properties with respect to
environment derived from architecture

2. Compose components at lower levels of
abstraction following architecture and
conformance of properties to get
components at higher levels of
abstraction

10

9/10/2007 Design For Verification 19

Component Composition Phase

1. Construct architecture with components and
relationships following process given
previously.

2. Implement components following the process
given previously.

3. Use the architecture to define the environment
for verification of component properties.

4. Verify the properties of the components by
appropriate methods.

9/10/2007 Design For Verification 20

Component Composition Phase

5. Use architecture to identify compositions
of components.

6. Compose components into “larger”
components including derivation of
specifications and properties.

7. Continue steps 5 and 6 until architecture
is realized.

11

9/10/2007 Design For Verification 21

Comments
• Architectures may be designed from

scratch or be examples of patterns
• Architectures are nearly always

implemented with a mixture of library and
application specific components.

• Incorporation of components from libraries
requires special consideration since
specifications, source and properties may
not be available.

9/10/2007 Design For Verification 22

Microwave Oven Specification

This simple oven has a single control button. When the oven
door is closed and the user presses the button, the oven will cook (that
is, energize the power tube) for 1 minute.

There is a light inside the oven. Any time the oven is cooking,
the light must be turned on, so you can peer through the window in the
oven's door and see if your food is bubbling. Any time the door is
open, the light must be on, so you can see your food or so you have
enough light to clean the oven.

When the oven times out (cooks until the desired preset time),
it turns off both the power tube and the light. It then emits a warning
beep to signal that the food is ready.

The user can stop the cooking by opening the door. Once the
door is opened, the timer resets to zero.

Closing the oven door turns out the light.

Example – Simple Microwave Oven

12

9/10/2007 Design For Verification 23

Properties
• If the door is open, the tube is not on or If

the Door is open then the Tube is off
• If the button is pushed while the Door is

closed the Light and the Tube will turn on.
• If the Door is open then the Light is on
• If the Light is on then the Door is open or
• the Tube is on

9/10/2007 Design For Verification 24

State Table for Microwave Oven

13

9/10/2007 Design For Verification 25

State Table for Microwave Oven

9/10/2007 Design For Verification 26

Components

• Door (open, closed)
• Power tube (on, off)[wattage, etc]
• Light (on, off) [wattage, etc]
• Timer (on and counting down, off and

zero)
• Beeper (on, off)
• Button – Event generator

14

9/10/2007 Design For Verification 27

Structural Model - Cheap Microwave Oven Controller

BEEPER
* BE-ID
• status
• Oven ID (R2)

MicrowaveOven
* Oven ID
• lightOn
• doorOpen
• powerTubeOn
• CookingTime BUTTON (B)

* B-NAME
• B-status
• Oven ID (R1)

POWERTUBE (P)
* tube ID
• wattage
• P-status
• Oven ID (R3)

LIGHT (L)
* light
• L-status
• Oven ID (R4)
• wattage

TIMER (T)
* timer ID
• status
• time of next event
• Oven ID (R5)
• wattage

powers

is powered by

R1R2

R3

R4
R5

Door(D)
* D-NAME
• D-status
• Oven ID (R1)

USER(U)

U-ID

9/10/2007 Design For Verification 28

Component Composition Detail

• Assume we have components where we
have the requirements specifications and
the implementations.

• Assume we have derived properties for
the components.

• Assume we have chosen an execution
model for the system.

15

9/10/2007 Design For Verification 29

Component Model for Verification

• A component, C, is a four-tuple, (E, I, V,
P):
– E is an executable representation of C;
– I is an interface through which C interacts

with other components;
– V is a set of variables defined in E and

references by properties defined in P;
– P is a set of properties defined on I and V,

and have been verified on E.

9/10/2007 Design For Verification 30

Component Property

• A temporal property in P is a pair, (p, A(p)),
– p is a temporal formula defined on I and V;
– A(p) is a set of temporal formulas defined on I and

V
• p holds on C if A(p) holds on the environment

of C.
• The environment of C

– is the set of components that C interacts with
– varies in different compositions.

16

9/10/2007 Design For Verification 31

Component Composition
• (E, I, V, P) from (Ei, Ii, Vi, Pi), 0≤ i <n:

– E is derived by connecting E0, … , En-1 via their
interfaces.

– I is derived from I0, …, In-1: An operation in Ii, 0≤i<n,
is included in I iff it is used as C interacts with
environment.

– V is a subset of ∪Vi, 0≤I<n. A variable in ∪Vi is
included in V iff it is referenced by the properties
defined in P.

– P is a set of temporal properties defined on I and V,
and verified on E by utilizing the properties in P0 , …
, Pn-1.

9/10/2007 Design For Verification 32

Asynchronous Message-passing
Interleaving Model (AIM)

• A component is a process
• A system consists of a set of processes.
• Processes interact through

asynchronous message passing.
• At any moment, only one process

executes.

17

9/10/2007 Design For Verification 33

Instantiation of Component Model on AIM
Computation Model

• A component, C = (E, I, V, P):
– E is an executable representation of C with

semantics conforming to the AIM model,
• E.g., A model in xUML, an executable dialect of

UML;
– I is a messaging interface and a pair, (R, S):

• R is set of input message types;
• S is set of output message types.

9/10/2007 Design For Verification 34

AIM Instantiation of Component Composition

• (E, I, V, P) from (Ei, Ii, Vi, Pi), 0≤ i <n
– Deriving E from E0, … , En-1

• mapping output message types in S0, …, Sn-1
to input message types in R0, …, Rn-1;

– Deriving I from I0, … , In-1
• An output (or input) message type in ∪Ri (or
∪Si) is included in R (or S) if it may be used
when C interacts with its environment.

18

9/10/2007 Design For Verification 35

Case Study: TinyOS
• A run-time system for network sensors;
• Is component-based

– Requirements of different network sensors
differ;

– Physical limitations of network sensors;
• Requires high reliability

– To support concurrency-intensive
operations;

– Loaded to a large number of network
sensors.

9/10/2007 Design For Verification 36

Sensor Component

19

9/10/2007 Design For Verification 37

Sensor Component (cont.)

• The messaging interface, I:
– R = {C_Intr, A_Intr, S_Schd, OP_Ack,

Done};
– S = {C_Ret, A_Ret, S_Ret, Output,

Done_Ack};
• The set, V, of referenced variables:

– {ADC.Pending, STQ.Empty}.

9/10/2007 Design For Verification 38

Sensor Component (cont.)
Properties:

Repeatedly (Output);
After (Output) Never (Output) UntilAfter (OP_Ack);
After (Done) Eventually (Done_Ack);
Never (Done_Ack) UntilAfter (Done);
After (Done_Ack) Never (Done_Ack) UntilAfter(Done);

Assumptions:
After (Output) Eventually (OP_Ack);
Never (OP_Ack) UntilAfter (Output);
After (OP_Ack) Never (OP_Ack) UntilAfter (Output);
After (Done) Never (Done) UntilAfter (Done_Ack);
Repeatedly (C_Intr);
After (C_Intr) Never (C_Intr + A_Intr + S_Schd) UntilAfter (C_Ret);
After (ADC.Pending) Eventually (A_Intr);
After (A_Intr) Never (C_Intr + A_Intr + S_Schd) UntilAfter (A_Ret);
After (STQ.Empty = FALSE) Eventually (S_Schd);
After (S_Schd) Never (C_Intr + A_Intr + S_Schd) UntilAfter (S_Ret);

20

9/10/2007 Design For Verification 39

Network Component

9/10/2007 Design For Verification 40

Network Component (cont.)
Properties:

IfRepeatedly (Data) Repeatedly (RFM.Pending);
IfRepeatedly (Data) Repeatedly (Not RFM.Pending);
After (Data) Eventually (Data_Ack); Never (Data_Ack) UntilAfter
(Data);
After (Data_Ack) Never (Data_Ack) UntilAfter (Data);
After (Sent) Never (Sent) UntilAfter (Sent_Ack);

Assumptions:
After (Data) Never (Data) UntilAfter (Data_Ack);
After (Sent) Eventually (Sent_Ack); Never (Sent_Ack) UntilAfter (Sent);
After (Sent_Ack) Never (Sent_Ack) UntilAfter} (Sent);
After (NTQ.Empty = FALSE) Eventually (N_Schd);
After (N_Schd) Never (N_Schd +R_Intr) UntilAfter (N_Ret);
After (RFM.Pending) Eventually (R_Intr);
After (R_Intr) Never (N_Schd +R_Intr) UntilAfter (R_Ret);

21

9/10/2007 Design For Verification 41

