
9/26/2007 Model Based Testing 1

Model Based Testing

Connecting Specifications and
Testing

9/26/2007 Model Based Testing 2

A working definition
• Model-based testing is

“The automatic generation of efficient test
procedures/vectors using models of system
requirements and specified functionality.”
www.goldpractices.com/practices/mbt/index.php

• There are also benefits of model creation and
analysis beyond that of automated test
generation, e.g. validation of requirements

• Mostly for integration and acceptance testing

http://www.goldpractices.com/practices/mbt/index.php

9/26/2007 Model Based Testing 3

Why a formal model?
• Informal specification documents enable

engineers to get vague understanding of system
functionality

• Reliance on such implicit, mental, informal
models renders testing process that is

- Unstructured
- Hardly reproducible
- Unmotivated in its details
• Informal models cannot support automated test

generation and validation

9/26/2007 Model Based Testing 4

Cost-benefit analysis
• Model creation costs time/money, but:
• Systems get more complex, release schedules

shorter
• Automated model-based test generation now

possible
• Testing is 50-70% of total cost of product

release, clear need to cut that cost factor
• Models can be reused, can correct

requirements, can inform design activities
→ Model-based testing often cost-effective but

requires certain skills within organization

9/26/2007 Model Based Testing 5

Possible workflow
1. Build the model; e.g. finite-state machine

abstraction of system’s event structure
2. Generate expected inputs; e.g. trace of events

for finite-state machine
3. Generate expected output; e.g. target state
4. Compare actual output with expected one, e.g.

was target state reached?
5. Decide on further actions; e.g. modify model,

generate more tests, estimate reliability

9/26/2007 Model Based Testing 6

Model building during
development

• Requirements engineer, designer, tester,
or developer forms mental representation
of system’s functionality

• Describes/expands mental model in easily
understandable formalism

• Uses formalism and choice of model that
facilitate frequent, automated, and
effortless test generation

9/26/2007 Model Based Testing 7

Model creation: other needs
• E.g. maintenance: often requires automated

extraction of information from system artifacts,
e.g. from documentation, source code, data files
etc.

• Many useful kinds of information: call graphs, file
dependences, frequent usage patterns, event
interactions, etc.

• Example application: extract event interactions
from black-box legacy system, use that model to
determine causal structure of events

9/26/2007 Model Based Testing 8

Kinds of behavioral models, all
have tool support

• Decision tables: tables showing sets of
conditions and actions that result from conditions
being true

• Finite-state machines (FSM): finite number of
states and transitions (possibly labeled with
actions) between them

• Markov chains: like finite-state machines but
transitions guided by probability distribution

• State charts: UML diagram, shows states that
system can assume, shows circumstances that
cause state change

9/26/2007 Model Based Testing 9

Example of a state chart

www.agilemodeling.com/style/stateChart
Diagram.htm

9/26/2007 Model Based Testing 10

Example FSM model

9/26/2007 Model Based Testing 11

Example of Markov chain

9/26/2007 Model Based Testing 12

Choice of modeling method

• E.g. use finite-state machines to model state-rich
system such as telephony

• E.g. use state charts for system with few states,
or hierarchical structure, transitions caused by
user input and external conditions

• E.g. use Markov chains when statistical analysis,
failure data, or reliability assessments are
desired

9/26/2007 Model Based Testing 13

Heuristics for building a model

1. List all inputs
2. For each input: list situations in which input

can be applied; ditto for situations in which it
cannot be applied

3. For each input: list situations in which input
causes different behaviors or outputs,
depending on application context of input

9/26/2007 Model Based Testing 14

Recall FSM model

9/26/2007 Model Based Testing 15

Details of example FSM model

• FSM is model of simple phone system
• Model is of phone that can call out
• Nodes are states of phone, e.g. OnHook
• Edges are actions user can take, i.e. system

input, e.g. HangUp
• Test cases specify
- sequence of inputs
- states system should reach after each action
- and value of outputs of system

9/26/2007 Model Based Testing 16

Generating test cases

OnHook <PickUP> DialTone <Dial/PartyBusy> Busy
<HangUp> OnHook <PickUp> DialTone
<Dial/PartyReady> Ringing … // Exercise: extend
sequence to cover all transitions

9/26/2007 Model Based Testing 17

Action coverage

OnHook <PickUP> DialTone … sequence (from
previous slide) has 15 inputs, achieves action
coverage: every action possible at each state
“executed” at least once; easiest test coverage
criterion for FSM model

9/26/2007 Model Based Testing 18

Action coverage

• Generated action-coverage sequence not unique,
each such sequence stresses software differently but
with same coverage criterion

• Said sequence consists of four test cases, i.e.
sequences beginning at OnHook

• If system outputs only its abstract state, can use FSM
as effective test oracle

9/26/2007 Model Based Testing 19

Switch coverage

• Switch coverage: for each state, each pair of actions leading
(into,out) of that state is in test sequence

• Switch coverage: more rigorous than action coverage
• Example: at DialTone we need to consider 2*3 = 6 such pairs,

e.g. the pair
<PartyHangsUp> DialTone <Dial/PartyReady>

• 26 (> 15) inputs needed for switch coverage here

9/26/2007 Model Based Testing 20

From models to tests & back
• Models deliberately abstract: simplification enables

comprehension and communication of functionality or
requirements

• Models generate test cases guided by coverage criteria,
e.g. action coverage, or other test purposes, e.g.
“Requirement A2”

• Generated test cases have to be concrete enough to be
executable: test scripts/drivers

• Executable test results too concrete to map directly back
to models

→ Automation needs to enable move from abstract to
concrete and vice versa

9/26/2007 Model Based Testing 21

Test scripts
• Aka test drivers, run automatically without

human interaction
• Provide general mechanisms for supporting

other test automation methods
• E.g. capture/playback and test generation

approaches
• Test scripts developable in standard application

languages VB, C, Java, C#, Tcl, …
→ Model-based testing needs to bridge the gap

between abstract models and concrete test
scripts

9/26/2007 Model Based Testing 22

Common test script pattern
• Initialize the SUT
• Iterate, for each test case:
- initialize target (optional)
- Initialize output to value other than expected (if

possible)
- Set inputs
- Run SUT
- Capture output and state of results so that later

on a test report can be created

9/26/2007 Model Based Testing 23

Capture/playback approach
• Captures sequences of manual operations (e.g.

in GUI) in test script written by test engineer
• Has shortcomings, e.g.
- needs to recognize GUI objects when layout has

changed
- Changing system functionality forces manual

recapture of playback sequence
- Manual recording of today’s website interaction

too complex to handle

9/26/2007 Model Based Testing 24

Model-based testing: benefits
• Comprehensive tests: models determine logical

paths, locations of program boundaries, identify
reachability problems

• Improved requirements: testable requirement
has to be complete, consistent, unambiguous;
testing may expose “feature interaction”
requirement defects

• Defect discovery: studies suggest mode-based
testing results in early defect detection, sufficient
for Return On Investment

9/26/2007 Model Based Testing 25

Some Additional Resources

http://www.goldpractices.com/practices/mbt/i
ndex.php

http://www.geocities.com/model_based_testi
ng/

http://www.goldpractices.com/practices/mbt/index.php
http://www.goldpractices.com/practices/mbt/index.php
http://www.geocities.com/model_based_testing/
http://www.geocities.com/model_based_testing/

	Model Based Testing
	A working definition
	Why a formal model?
	Cost-benefit analysis
	Possible workflow
	Model building during development
	Model creation: other needs
	Kinds of behavioral models, all have tool support
	Example of a state chart
	Example FSM model
	Example of Markov chain
	Choice of modeling method
	Heuristics for building a model
	Recall FSM model
	Details of example FSM model
	Generating test cases
	Action coverage
	Action coverage
	Switch coverage
	From models to tests & back
	Test scripts
	Common test script pattern
	Capture/playback approach
	Model-based testing: benefits
	Some Additional Resources�

