
1

Property Specifications –Lecture 1
Jim Browne

Table of Contents

Overview

Temporal Logics

Specification Patterns

Multi-Targeted Specifications

Property
Specifications

Verified Components

Abstraction and
Translation

Program

Testing

Model Checking

Theorem Proving

Runtime Monitors

Static Analysis

Environment
Specifications

Composer

Architectural
Specifications

Property Specification and Evaluation

Temporal Logic
(LTL,PTTL,CTL)

Predicates (PL,FOL)
C Java xUML

Property/Environment
Representation

Static Analysis
Tools

Model Checkers Theorem Provers Instrumented
Programs

Translators

Testing Systems

•Properties = Knowledge of Component/System Behavior

•A property can usually be defined as a state machine.

•Properties are always defined with respect to an
environment for the component/system.

•Environment = Set of properties which generates a closed
system for execution or verification of a component or system.

•Environments should be specifiable as set of properties for
an executable entity

2

What Types Properties Should Be Specifiable?

Pre-Condition/Post-Condition pairs for units with
identifiable semantics.

Occurrence or non-occurrence of specific states or events.

Sequences of states/events/operations which can or cannot
occur => paths.

Security properties => information flow and access control.

Performance properties => time to execute a given path, etc.

Representation Issues

1. Syntax should be consistent with programming system
for components/systems

2. Language should provide a library of templates for
commonly occurring properties.

3. Language should support extending the library of
templates.

4. Language should practice separation of concerns.

Pre-Condition => Post-Condition

Specify some subset of the state of the system before
the execution of a component and some
subset of the state after the execution of a
component.

Pre-Condition => Post-Condition pairs can be specified
in temporal logics

Input/Output Relation is an example of a pre-
condition => post-condition

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 8

Reasoning about Executions

• We want to reason about execution trees
> tree node = snap shot of the program’s state

• Reasoning consists of two layers
> defining predicates on the program states (control points, variable

values)
> expressing temporal relationships between those predicates

[L3, (mt3, vr3), ….]

Explored State-Space (computation tree)

Conceptual View

[L1, (mt1, vr1), ….]

[L2, (mt2, vr2), ….]

[L5, (mt5, vr5), ….]

L1 L4

L2

L3

L5

?b1

?err

?b0

?b1 !a1

?a1
?b0

?err

!a0

3

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 9

Branching Time Logic

• Branching time logic views a
computation as a (possibly infinite) tree
or dag of states connected by atomic
events

• At each state the outgoing arcs
represent the actions leading to the
possible next states in some execution

• Example:

P = (a → P) ⎡⎤ (b→ P)

a b

a b a b

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 10

Notation

• Variant of branching time logic that we
will look at is called CTL*, for
Computational Tree Logic (star)

• In this logic
> A = "for every path"
> E = "there exists a path"
> G = “globally” (similar to)
> F = “future” (similar to ◊)

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 11

Paths versus States

• A & E refer to paths
> A requires that all paths have some

property
> E requires that at least some path has the

property
• G & F refer to states on a path

> G requires that all states on the given path
have some property

> F requires that at least one state on the path
has the property

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 12

Examples

• AG p
> For every computation (i.e., path from the

root), in every state, p is true
> Hence, means the same as p

• EG p
> There exists a computation (path) for which

p is always true
> Note, unlike LTL not all executions need

have this property

4

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 13

Examples

• AF p
> For every path, eventually state p is true
> Hence, means the same as ◊ p
> Therefore, p is inevitable

• EF p
> There is some path for which p is eventually

true
> I.e. p is "reachable”
> Therefore, p will hold potentially

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 14

More Examples

• EFAG p
> For some computation (E), there is a state

(F), such that for all paths from that state
(A), globally (G) p is true

• AGEF halt
> For all computations (A), and for all states in

it (G), there is a path (E) along which
eventually (F) halt occurs

• EGEF p
> For some computation (E), for all states in

that computation (G), there is a path (E) in
which p is eventually (F) true

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 15

Other Operators for States

• Can also have next and until
> represented as X and U respectively
> AX p means that for all next states, p will

hold
> E[p U q] means that for some path there is a

state where q holds and p holds in all states
up to that state

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 16

More Examples

• Show that EGEF p is the same as EGF p
or provide a counter example to
illustrate why not

> EGEF p means that there is a path such that
from all states, there is a path such that p is
eventually true

> EGF p means that there is a path such that
from all states, p is eventually true in that
path

> Consider the following tree
First one is true
Second one is not

p p

p

5

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 17

CTL

• In some versions the symbols are
required to occur in pairs of the form

> AG, AF, EG, EF
> Called CTL (no star)
> Important restriction for tools such as

model checkers

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 18

Traffic Controller

• Consider a traffic controller on a north-
south highway with a road off to the
east

• Each road has a sensor that goes to
true when a car crosses it

• For simplicity, no north or south bound
car will turn

s

s

s

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 19

Traffic Controller

• To reason about them, we name the
sensors

> N (north)
> S (south)
> E (east)

• We also name the output signals at
each end of the intersection

> N-go (cars from the north can go)
> S-go (cars from the south can go)
> E-go (cars from the east can go)

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 20

Safety Property

• If cars from the east have a go-signal,
then no other car can have a go-signal

AG ¬ (E-go ∧ (N-go ∨ S-go))

6

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 21

Liveness properties

• If a sensor registers a car, then the car
will be able to go through the
intersection

AG (¬ N-go ∧ N → AF N-go)
AG (¬ S-go ∧ S → AF S-go)
AG (¬ E-go ∧ E → AF E-go)

• If the above are true, then the controller
is free of deadlock

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 22

Efficiency

• Since north and south bound cars can
safely pass by each other we can state
a possibility

EF (N-go ∧ S-go)

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 23

Fairness

• We can’t have a car stop in the
intersection

AG ¬ (N-go ∧ N)
AG ¬ (S-go ∧ S)
AG ¬ (E-go ∧ E)

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 24

Yet More Temporal Logics

• The logic we’ve used so far is
concerned with instances of state

> assertions about a future state(s)
> predicate is applied to each selected state

• What about contiguous collections of
states?

• Interval temporal logic
> assertions over intervals of time
> have to worry about overlapping intervals

7

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 25

Reasoning about Executions

• We want to reason about execution trees
> tree node = snap shot of the program’s state

• Reasoning consists of two layers
> defining predicates on the program states (control points, variable

values)
> expressing temporal relationships between those predicates

[L3, (mt3, vr3), ….]

Explored State-Space (computation tree)

Conceptual View

[L1, (mt1, vr1), ….]

[L2, (mt2, vr2), ….]

[L5, (mt5, vr5), ….]

L1 L4

L2

L3

L5

?b1

?err

?b0

?b1 !a1

?a1
?b0

?err

!a0

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 26

Computational Tree Logic (CTL)

Φ ::= P …primitive propositions
| !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives
| AG Φ | EG Φ | AF Φ | EF Φ …temporal operators
| AX Φ | EX Φ | A[Φ U Φ] | E[Φ U Φ]

Syntax

Semantic Intuition

AG p …along All paths p holds Globally

EG p …there Exists a path where p holds Globally

AF p …along All paths p holds at some state in the Future

EF p …there Exists a path where p holds at some state in the Future

path quantifier

temporal operator

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 27

Computational Tree Logic (CTL)

Φ ::= P …primitive propositions
| !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives
| AG Φ | EG Φ | AF Φ | EF Φ …path/temporal operators
| AX Φ | EX Φ | A[Φ U Φ] | E[Φ U Φ]

Syntax

Semantic Intuition

AX p …along All paths, p holds in the neXt state

EX p …there Exists a path where p holds in the neXt state

A[p U q] …along All paths, p holds Until q holds

E[p U q] …there Exists a path where p holds Until q holds

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 28

Computation Tree Logic

p

p

p

p p p

p

p

p

p

p

p p p p

AG p

8

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 29

Computation Tree Logic

EG p p

p

p

p

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 30

Computation Tree Logic

AF p

p

p p p

p

p

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 31

Computation Tree Logic

EF p

p

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 32

Computation Tree Logic

AX p

p

p p

p

p p

p

p

p

9

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 33

Computation Tree Logic

EX p

p

p

p

p p p

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 34

Computation Tree Logic

A[p U q]
p

p

p

q q p

p

q

q

p

p

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 35

Computation Tree Logic

E[p U q]
p

p

q q p

p

q

q

q

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 36

Example CTL Specifications

• For any state, a request (for some resource) will eventually be
acknowledged

AG(requested -> AF acknowledged)

• From any state, it is possible to get to a restart state

AG(EF restart)

• An upwards travelling elevator at the second floor does not
changes its direction when it has passengers waiting to go to
the fifth floor

AG((floor=2 && direction=up && button5pressed)
-> A[direction=up U floor=5])

10

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 37

CTL Notes

• Invented by E. Clarke and E. A. Emerson (early
1980’s)

• Specification language for Symbolic Model Verifier
(SMV) model-checker

• SMV is a symbolic model-checker instead of an
explicit-state model-checker

• Symbolic model-checking uses Binary Decision
Diagrams (BDDs) to represent boolean functions
(both transition system and specification

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 38

Linear Temporal Logic

Restrict path quantification to “ALL” (no “EXISTS”)

Reason in terms of linear traces instead of branching trees

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 39

Linear Temporal Logic (LTL)

Semantic Intuition

[]Φ …always Φ

<>Φ …eventually Φ

Φ U Γ …Φ until Γ

Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ

Φ Φ

Φ Φ Φ Φ Φ Φ Γ Φ Γ

Φ ::= P …primitive propositions
| !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives
| []Φ | <>Φ | Φ U Φ | X Φ …temporal operators

Syntax

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 40

LTL Notes

• Invented by Prior (1960’s), and first use to reason
about concurrent systems by A. Pnueli, Z. Manna,
etc.

• LTL model-checkers are usually explicit-state
checkers due to connection between LTL and
automata theory

• Most popular LTL-based checker is Spin
(G. Holzman)

11

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 41

Comparing LTL and CTL

CTL LTL

CTL*

• CTL is not strictly more expression than LTL (and vice versa)
• CTL* invented by Emerson and Halpern in 1986 to unify CTL

and LTL
• We believe that almost all properties that one wants to express about

software lie in intersection of LTL and CTL

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 42

Motivation for
Specification Patterns

• Temporal properties are not always easy to write
• Clearly many specifications can be captured in both CTL

and LTL

LTL: [](P -> <>Q) CTL: AG(P -> AF Q)

Example: action Q must respond to action P

• Capure the experience base of expert designers
• Transfer that experience between practictioners.

We use specification patterns to:

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 43

Pattern Hierarchy

Property Patterns

Occurrence Order

Absence
Universality Existence

Bounded Existence Precedence

Response Chain
Precedence

Chain
Response

Classification

• Occurrence Patterns:
> require states/events to occur or not to occur

• Order Patterns
> constrain the order of states/events

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 44

Occurrence Patterns

• Absence: A given state/event does not occur within a scope
• Existence: A given state/event must occur within a scope
• Bounded Existence: A given state/event must occur k times

within a scope
> variants: at least k times in scope, at most k times in scope

• Universality: A given state/event must occur throughout a scope

12

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 45

Order Patterns

• Precedence: A state/event P must always be preceded by a
state/event Q within a scope

• Response: A state/event P must always be followed a
state/event Q within a scope

• Chain Precedence: A sequence of state/events P1, …, Pn must
always be preceded by a sequence of states/events Q1, …, Qm
within a scope

• Chain Response: A sequence of state/events P1, …, Pn must
always be followed by a sequence of states/events Q1, …, Qm
within a scope

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 46

Pattern Scopes

Global

Before Q

After Q

Between Q and R

After Q and R

State sequence Q R Q Q R Q

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 47

The Response Pattern

To describe cause-effect relationships between a pair of events/states. An
occurrence of the first, the cause, must be followed by an occurrence of the
second, the effect. Also known as Follows and Leads-to.

Intent

Mappings: In these mappings, P is the cause and S is the effect

[](P -> <>S)

<>R -> (P -> (!R U (S & !R))) U R

[](Q -> [](P -> <>S))

[]((Q & !R & <>R) -> (P -> (!R U (S & !R))) U R)

[](Q & !R -> ((P -> (!R U (S & !R))) W R)

Globally:

Before R:

After Q:

Between Q and R:

After Q until R:

LTL:

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 48

The Response Pattern (continued)

Mappings: In these mappings, P is the cause and S is the effect

AG(P -> AF(S))

A[((P -> A[!R U (S & !R)]) | AG(!R)) W R]

A[!Q W (Q & AG(P -> AF(S))]

AG(Q & !R -> A[((P -> A[!R U (S & !R)]) | AG(!R)) W R])

AG(Q & !R -> A[(P -> A[!R U (S & !R)]) W R])

Globally:

Before R:

After Q:

Between Q and R:

After Q until R:

CTL:

Examples and Known Uses:

Response properties occur quite commonly in specifications of concurrent systems.
Perhaps the most common example is in describing a requirement that a resource
must be granted after it is requested.

Relationships
Note that a Response property is like a converse of a Precedence property.
Precedence says that some cause precedes each effect, and...

13

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 49

Specify Patterns in Bandera

The Bandera Pattern Library is populated by writing pattern macros:

pattern {
name = “Response”
scope = “Globally”
parameters = {P, S}
format = “{P} leads to {S} globally”
ltl = “[]({P} –> <>{S})”
ctl = “AG({P} –> AF({S}))”

}

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 50

Evaluation

• 555 TL specs collected from at least 35 different sources
• 511 (92%) matched one of the patterns
• Of the matches...

> Response: 245 (48%)
> Universality: 119 (23%)
> Absence: 85 (17%)

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 51

Questions

• Do patterns facilitate the learning of specification formalisms like

CTL and LTL?
• Do patterns allow specifications to be written more quickly?
• Are the specifications generated from patterns more likely to be

correct?
• Does the use of the pattern system lead people to write more

expressive specifications?

Based on anecdotal evidence, we believe the answer to each of these
questions is “yes”

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 52

For more information...

http://www.cis.ksu.edu/santos/spec-patterns
• Pattern web pages and papers

