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End of Uniprocessor
Performance
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25%/year
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From Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 4th
edition, October, 2006

The free lunch is over!

< 20%/ year



Predicting The End of
Uniprocessor Performance
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Stanford Hydra Project
CMP + TLS

Afara Websystems

Sun Niagara 1

Superior performance and
performance/Watt using
multiple simple cores



The Looming Crisis
 Software developers will soon face systems with

 > 1 TFLOP of compute power

 32+ of cores, 100+ hardware threads

 Heterogeneous cores (CPU+GPUs), app-specific accelerators

 Deep memory hierarchies

 Challenge: harness these devices productively
 Improve performance, power, reliability and security

 The parallelism gap
 Threads, locks, messages

 Pthreads, OpenMP, MPI
 Too difficult find parallelism, to debug, maintain and get good

performance for the masses

 Yawning divide between the capabilities of today’s programming
environments, the requirements of emerging applications, and the
challenges of future parallel architectures



The Stanford Pervasive
Parallelism Laboratory

 Goal: the parallel computing platform for 2012
 Make parallel application development practical for the

masses
 Not parallel programming as usual

 PPL is a combination of
 Leading Stanford researchers across multiple domains

 Applications, languages, software systems, architecture

 Leading companies in computer systems and software
 Sun, AMD, Nvidia, IBM, Intel, HP, NEC

 An exciting vision for pervasive parallelism



The PPL Team

 Applications
 Ron Fedkiw, Vladlen Koltun, Sebastian Thrun

 Programming & software systems
 Alex Aiken, Pat Hanrahan, Mendel Rosenblum

 Architecture
 Bill Dally, Mark Horowitz, Christos Kozyrakis,

Kunle Olukotun (Director), John Hennessy



John Hennessy’s View on
Future of Parallelism
 We are ten years behind and need to catch up

 Don't look to the methods developed for high-end
scientific computing to solve the problem

 10 procs. up instead of 10K procs. down

 Don’t Focus on scientific and engineering apps
 These will be bulk of new applications and programmers

 Don't focus on absolute parallel efficiency
 Focus on ease of use for programmer

Need a change: Parallel applications
without parallel programming
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Virtual Worlds Application
 Next-gen web platform

 Immersive collaboration
 Social gaming
 Millions of players in vast landscape

 Parallelism challenges
 Client-side game engine
 Server-side world simulation
 AI, physics, large-scale rendering
 Dynamic content, huge datasets

 More at http://vw.stanford.edu/
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Domain Specific Languages (DSL)
 Leverage success of DSL across application domains

 SQL (data manipulation), Matlab (scientific), Ruby/Rails (web),…

 DSLs ⇒   higher productivity for developers
 High-level data types & ops tailored to domain

 E.g., relations, matrices, triangles, …
 Express high-level intent without specific implementation artifacts

 Programmer isolated from details of specific system

 DSLs ⇒  scalable parallelism for the system
 Allows aggressive optimization
  Declarative description of parallelism & locality patterns

 E.g., ops on relation elements, sub-array being processed, …
 Portable and scalable specification of parallelism

 Automatically adjust data structures, mapping, and scheduling as
systems scale up



DSL Research
 Goal: create framework for DSL development

 Initial DSL targets
 Rendering, physics simulation, probabilistic machine learning

computations

 Approach
 DSL implementation ⇒  embed in base PL

 Start with Scala (OO, type-safe, functional, extensible)
 Use Scala as a scripting DSL that also ties multiple DSLs

 DSL-specific optimizations ⇒  active libraries

 Use domain knowledge to optimize & annotate code
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 Common Parallel Runtime (CPR)

 Goals
 Provide common, portable, abstract target for all DSLs
 Manages parallelism & locality

 Achieve efficient execution (performance, power, …)
 Handles specifics of HW system

 Approach
 Compile DSLs to common IR

 Base language + low-level constructs & pragmas
 Forall, async/join, atomic, barrier, …

 Per-object capabilities
 Read-only or write-only, output data, private, relaxed coherence, …

 Combine static compilation + dynamic management
 Static management of regular tasks & predictable patterns
 Dynamic management of irregular parallelism
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Hardware Architecture @
2012

 The many-core chip
 100s of cores

 OOO, threaded, & SIMD

 Hierarchy of shared memories
 Scalable, on-chip network

 The system
 Few many-core chips
 Per-chip DRAM channels
 Global address space

 The data-center
 Cluster of systems
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Architecture Research
 Revisit architecture & microarchitecture for parallelism

 Define semantics & implementation of key primitives
 Communication, atomicity, isolation, partitioning, coherence, consistency,

checkpoint
 Fine-grain & bulk support

 Software-managed HW primitives
 hardware provides key mechanisms, software synthesizes into useful

execution systems
 Exploit high-level knowledge from DSLs & CPR

 Software synthesizes primitives into execution systems
 Streaming system: partitioning + bulk communication
 Thread-level spec: isolation + fine-grain communication
 Transactional memory: atomicity + isolation + consistency
 Security: partitioning + isolation
 Fault tolerance: isolation + checkpoint + bulk communication

 Challenges: interactions, scalability, cost, virtualization
 100s to 100s of cores
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Transactional Memory (TM)

 Memory transaction [Knight’86, Herlihy & Moss’93]

 An atomic & isolated sequence of memory accesses
 Inspired by database transactions

 Atomicity (all or nothing)
 At commit, all memory updates take effect at once
 On abort, none of the memory updates appear to take effect

 Isolation
 No other code can observe memory updates before commit

 Serializability
 Transactions seem to commit in a single serial order



Advantages of TM
 Easy to use synchronization construct

 As easy to use as coarse-grain locks
 Programmer declares, system implements

 Performs as well as fine-grain locks
 Automatic read-read & fine-grain concurrency
 No tradeoff between performance & correctness

 Failure atomicity & recovery
 No lost locks when a thread fails
 Failure recovery = transaction abort + restart

 Composability
 Safe & scalable composition of software modules



Warehouse

stockTable
(B-Tree)

itemTable
(B-Tree)

TM Example: 3-tier Server

 3-tier benchmark (SpecJBB2000)
 Shared data within and across warehouses

 Parallelized actions within one warehouse
 Orders, payments, delivery updates, etc on shared data

orderTable
(B-Tree)

District

Warehouse

newIDApplication
Manager

Driver Threads

Driver Threads

Client Tier Application Server Tier Database Tier

stockTable
(B-Tree)

itemTable
(B-Tree)



Sequential Code for NewOrder
TransactionManager::go() {

   // 1. initialize a new order transaction
      newOrderTx.init();
      // 2. create unique order ID
      orderId = district.nextOrderId(); // newID++
      order = createOrder(orderId);
      // 3. retrieve items and stocks from warehouse
      warehouse = order.getSupplyWarehouse();
      item = warehouse.retrieveItem();   // B-tree search
      stock = warehouse.retrieveStock(); // B-tree search
      // 4. calculate cost and update node in stockTable
      process(item, stock);
      // 5. record the order for delivery
      district.addOrder(order); // B-tree update
      // 6. print the result of the process
      newOrderTx.display();
}

 Non-trivial code with complex data-structures
 Fine-grain locking  difficult to get right
 Coarse-grain locking  no concurrency



TM Code for NewOrder
TransactionManager::go() {

atomic { // begin transaction
// 1. initialize a new order transaction
// 2. create a new order with unique order ID
// 3. retrieve items and stocks from warehouse
// 4. calculate cost and update warehouse
// 5. record the order for delivery
// 6. print the result of the process

} // commit transaction
}

 Whole NewOrder as one atomic transaction
 2 lines of code changed for parallelization
 No need to analyze storage scheme, ordering issues, …



Implementing Memory Transactions

 Data versioning for updated data
 Manage new & old values for memory data
 Deferred updates (lazy) vs direct updates (eager)

 Conflict detection for shared data
 Detect R-W and W-W for concurrent transactions
 Track the read-set and write-set of each transaction
 Check during execution (pessimistic) or at the end (optimistic)

 Ideal implementation
 Software only: works with current & future hardware
 Flexible: can modify, enhance, or use in alternative manners
 High performance: faster than sequential code & scalable
 Correct: no incorrect or surprising execution results



Performance with Hardware
TM

 Scalable performance, up to 7x over STM [ISCA’07]

 Within 10% of sequential for one thread
 Uncommon HTM cases not a performance challenge



STAMP Benchmark Suite
 Stanford Transactional Applications for

Multiprocessing

 8 applications from variety of domains
 http://stamp.stanford.edu



28

STAMP Applications



Pure HTMs Have Limitations

 Conflict detection granularity can be important



Architecture Research
Methodology
 Conventional approaches are useful

 Develop app & SW system on existing platforms
 Multi-core, accelerators, clusters, …

 Simulate  novel HW mechanisms

 Need some method that bridges HW & SW research
 Makes new HW features available for SW research

 Does not compromise HW speed, SW features, or scale

 Allows for full-system prototypes

 Needed for research, convincing for industry, exciting for students

 Approach: commodity chips + FPGAs in memory system
 Commodity chips: fast system with rich SW environment

 FPGAs: prototyping platform for new HW features

 Scale through cluster arrangement
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FARM Prototype
Procyon System

 AMD Opteron™ (supports Quad-Core
“Barcelona” processor family)

 Broadcom HT2100/HT1000 Chipset
 Connects to peripheral boards via

HyperTransport or PCI Express
 DDR2 DIMM x 2
 Gigabit Ethernet x 2
 USB2.0 x 4
 VGA
 SATA and eSATA
 System monitor function
 AMI BIOS
 Supports CompactPCI peripheral

boards

16-bit
HyperTransport

x1 PCI Express

64-bit/33MHz PCI

Leda : Procyon Evaluation
Backplane

AD7003 : Single Board computer Pollux : Procyon Interface
Evaluation Board

 Altera FPGA Stratix II
 Interface to backplane

 Hyper Transport I/F x16 *2
 x1 PCIe

 Panel I/O Ports
 8 DO / 8 DI (TTL) 

 DDR2 Memory (32 x 16M bit)



Conclusions
 Need a full system vision for pervasive parallelism

 Applications, programming models, programming languages,
software systems, and hardware architecture

 Key initial ideas
 Domain-specific languages

 Combine implicit & explicit resource management

 Flexible HW primitives

 Real system prototypes


