
Towards Pervasive Parallelism

Kunle Olukotun
Pervasive Parallelism Laboratory

Stanford University

UT Austin, October 2008

End of Uniprocessor
Performance

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
ce

 (
vs

.
V

A
X

-1
1

/7
8

0
)

25%/year

52%/year

??%/year

From Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 4th
edition, October, 2006

The free lunch is over!

< 20%/ year

Predicting The End of
Uniprocessor Performance

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
ce

 (
vs

.
V

A
X

-1
1

/7
8

0
)

25%/year

52%/year

??%/year

Stanford Hydra Project
CMP + TLS

Afara Websystems

Sun Niagara 1

Superior performance and
performance/Watt using
multiple simple cores

The Looming Crisis
 Software developers will soon face systems with

 > 1 TFLOP of compute power

 32+ of cores, 100+ hardware threads

 Heterogeneous cores (CPU+GPUs), app-specific accelerators

 Deep memory hierarchies

 Challenge: harness these devices productively
 Improve performance, power, reliability and security

 The parallelism gap
 Threads, locks, messages

 Pthreads, OpenMP, MPI
 Too difficult find parallelism, to debug, maintain and get good

performance for the masses

 Yawning divide between the capabilities of today’s programming
environments, the requirements of emerging applications, and the
challenges of future parallel architectures

The Stanford Pervasive
Parallelism Laboratory

 Goal: the parallel computing platform for 2012
 Make parallel application development practical for the

masses
 Not parallel programming as usual

 PPL is a combination of
 Leading Stanford researchers across multiple domains

 Applications, languages, software systems, architecture

 Leading companies in computer systems and software
 Sun, AMD, Nvidia, IBM, Intel, HP, NEC

 An exciting vision for pervasive parallelism

The PPL Team

 Applications
 Ron Fedkiw, Vladlen Koltun, Sebastian Thrun

 Programming & software systems
 Alex Aiken, Pat Hanrahan, Mendel Rosenblum

 Architecture
 Bill Dally, Mark Horowitz, Christos Kozyrakis,

Kunle Olukotun (Director), John Hennessy

John Hennessy’s View on
Future of Parallelism
 We are ten years behind and need to catch up

 Don't look to the methods developed for high-end
scientific computing to solve the problem

 10 procs. up instead of 10K procs. down

 Don’t Focus on scientific and engineering apps
 These will be bulk of new applications and programmers

 Don't focus on absolute parallel efficiency
 Focus on ease of use for programmer

Need a change: Parallel applications
without parallel programming

The PPL Vision

Parallel Object Language

Hardware Architecture

OOO Cores SIMD Cores Threaded Cores

Scalable
Interconnects

Programmable
Hierarchies

Scalable
Coherence

Isolation &
Atomicity

Pervasive
Monitoring

Virtual
Worlds

Autonomous
Vehicle

Data
Mining

Scientific
Engineering

Physics
DSL

Scripting
DSL

Probabilistic
DSL

Analytics
DSL

Rendering
DSL

Common Parallel Runtime

Explicit / Static Implicit / Dynamic

The PPL Vision
Virtual
Worlds

Autonomous
Vehicle

Financial
Services

Physics
DSL

Scripting
DSL

Probabilistic
DSL

Analytics
DSL

Rendering
DSL

Parallel Object Language

Hardware Architecture

OOO Cores SIMD Cores Threaded Cores

Scalable
Interconnects

Partitionable
Hierarchies

Scalable
Coherence

Isolation &
Atomicity

Pervasive
Monitoring

Common Parallel Runtime

Explicit / Static Implicit / Dynamic

Virtual Worlds Application
 Next-gen web platform

 Immersive collaboration
 Social gaming
 Millions of players in vast landscape

 Parallelism challenges
 Client-side game engine
 Server-side world simulation
 AI, physics, large-scale rendering
 Dynamic content, huge datasets

 More at http://vw.stanford.edu/

The PPL Vision
Virtual
Worlds

Autonomous
Vehicle

Financial
Services

Physics
DSL

Scripting
DSL

Probabilistic
DSL

Analytics
DSL

Rendering
DSL

Parallel Object Language

Hardware Architecture

OOO Cores SIMD Cores Threaded Cores

Scalable
Interconnects

Partitionable
Hierarchies

Scalable
Coherence

Isolation &
Atomicity

Pervasive
Monitoring

Common Parallel Runtime

Explicit / Static Implicit / Dynamic

Domain Specific Languages (DSL)
 Leverage success of DSL across application domains

 SQL (data manipulation), Matlab (scientific), Ruby/Rails (web),…

 DSLs ⇒ higher productivity for developers
 High-level data types & ops tailored to domain

 E.g., relations, matrices, triangles, …
 Express high-level intent without specific implementation artifacts

 Programmer isolated from details of specific system

 DSLs ⇒ scalable parallelism for the system
 Allows aggressive optimization
 Declarative description of parallelism & locality patterns

 E.g., ops on relation elements, sub-array being processed, …
 Portable and scalable specification of parallelism

 Automatically adjust data structures, mapping, and scheduling as
systems scale up

DSL Research
 Goal: create framework for DSL development

 Initial DSL targets
 Rendering, physics simulation, probabilistic machine learning

computations

 Approach
 DSL implementation ⇒ embed in base PL

 Start with Scala (OO, type-safe, functional, extensible)
 Use Scala as a scripting DSL that also ties multiple DSLs

 DSL-specific optimizations ⇒ active libraries

 Use domain knowledge to optimize & annotate code

The PPL Vision
Virtual
Worlds

Autonomous
Vehicle

Financial
Services

Physics
DSL

Scripting
DSL

Probabilistic
DSL

Analytics
DSL

Rendering
DSL

Parallel Object Language

Hardware Architecture

OOO Cores SIMD Cores Threaded Cores

Scalable
Interconnects

Partitionable
Hierarchies

Scalable
Coherence

Isolation &
Atomicity

Pervasive
Monitoring

Common Parallel Runtime

Explicit / Static Implicit / Dynamic

 Common Parallel Runtime (CPR)

 Goals
 Provide common, portable, abstract target for all DSLs
 Manages parallelism & locality

 Achieve efficient execution (performance, power, …)
 Handles specifics of HW system

 Approach
 Compile DSLs to common IR

 Base language + low-level constructs & pragmas
 Forall, async/join, atomic, barrier, …

 Per-object capabilities
 Read-only or write-only, output data, private, relaxed coherence, …

 Combine static compilation + dynamic management
 Static management of regular tasks & predictable patterns
 Dynamic management of irregular parallelism

The PPL Vision
Virtual
Worlds

Autonomous
Vehicle

Financial
Services

Physics
DSL

Scripting
DSL

Probabilistic
DSL

Analytics
DSL

Rendering
DSL

Parallel Object Language

Hardware Architecture

OOO Cores SIMD Cores Threaded Cores

Scalable
Interconnects

Partitionable
Hierarchies

Scalable
Coherence

Isolation &
Atomicity

Pervasive
Monitoring

Common Parallel Runtime

Explicit / Static Implicit / Dynamic

Hardware Architecture @
2012

 The many-core chip
 100s of cores

 OOO, threaded, & SIMD

 Hierarchy of shared memories
 Scalable, on-chip network

 The system
 Few many-core chips
 Per-chip DRAM channels
 Global address space

 The data-center
 Cluster of systems

L2 Memory L2 Memory

L1L1L1L1 L1

L2 Memory L2 Memory

L3 Memory

L1

L1L1L1L1 L1 L1

L1 L1 L1 L1L1 L1

I/O
DRAM

CTL

TCTCTC OOO
TC

SIMD
TCTCTC OOO

TC
SIMD

OOO SIMD OOO SIMD
TC TC

Architecture Research
 Revisit architecture & microarchitecture for parallelism

 Define semantics & implementation of key primitives
 Communication, atomicity, isolation, partitioning, coherence, consistency,

checkpoint
 Fine-grain & bulk support

 Software-managed HW primitives
 hardware provides key mechanisms, software synthesizes into useful

execution systems
 Exploit high-level knowledge from DSLs & CPR

 Software synthesizes primitives into execution systems
 Streaming system: partitioning + bulk communication
 Thread-level spec: isolation + fine-grain communication
 Transactional memory: atomicity + isolation + consistency
 Security: partitioning + isolation
 Fault tolerance: isolation + checkpoint + bulk communication

 Challenges: interactions, scalability, cost, virtualization
 100s to 100s of cores

Architecture Research
 Revisit architecture & microarchitecture for parallelism

 Define semantics & implementation of key primitives
 Communication, atomicity, isolation, partitioning, coherence, consistency,

checkpoint
 Fine-grain & bulk support

 Software-managed HW primitives
 hardware provides key mechanisms, software synthesizes into useful

execution systems
 Exploit high-level knowledge from DSLs & CPR

 Software synthesizes primitives into execution systems
 Streaming system: partitioning + bulk communication
 Thread-level spec: isolation + fine-grain communication
 Transactional memory: atomicity + isolation + consistency
 Security: partitioning + isolation
 Fault tolerance: isolation + checkpoint + bulk communication

 Challenges: interactions, scalability, cost, virtualization
 100s to 100s of cores

Transactional Memory (TM)

 Memory transaction [Knight’86, Herlihy & Moss’93]

 An atomic & isolated sequence of memory accesses
 Inspired by database transactions

 Atomicity (all or nothing)
 At commit, all memory updates take effect at once
 On abort, none of the memory updates appear to take effect

 Isolation
 No other code can observe memory updates before commit

 Serializability
 Transactions seem to commit in a single serial order

Advantages of TM
 Easy to use synchronization construct

 As easy to use as coarse-grain locks
 Programmer declares, system implements

 Performs as well as fine-grain locks
 Automatic read-read & fine-grain concurrency
 No tradeoff between performance & correctness

 Failure atomicity & recovery
 No lost locks when a thread fails
 Failure recovery = transaction abort + restart

 Composability
 Safe & scalable composition of software modules

Warehouse

stockTable
(B-Tree)

itemTable
(B-Tree)

TM Example: 3-tier Server

 3-tier benchmark (SpecJBB2000)
 Shared data within and across warehouses

 Parallelized actions within one warehouse
 Orders, payments, delivery updates, etc on shared data

orderTable
(B-Tree)

District

Warehouse

newIDApplication
Manager

Driver Threads

Driver Threads

Client Tier Application Server Tier Database Tier

stockTable
(B-Tree)

itemTable
(B-Tree)

Sequential Code for NewOrder
TransactionManager::go() {

 // 1. initialize a new order transaction
 newOrderTx.init();
 // 2. create unique order ID
 orderId = district.nextOrderId(); // newID++
 order = createOrder(orderId);
 // 3. retrieve items and stocks from warehouse
 warehouse = order.getSupplyWarehouse();
 item = warehouse.retrieveItem(); // B-tree search
 stock = warehouse.retrieveStock(); // B-tree search
 // 4. calculate cost and update node in stockTable
 process(item, stock);
 // 5. record the order for delivery
 district.addOrder(order); // B-tree update
 // 6. print the result of the process
 newOrderTx.display();
}

 Non-trivial code with complex data-structures
 Fine-grain locking  difficult to get right
 Coarse-grain locking  no concurrency

TM Code for NewOrder
TransactionManager::go() {

atomic { // begin transaction
// 1. initialize a new order transaction
// 2. create a new order with unique order ID
// 3. retrieve items and stocks from warehouse
// 4. calculate cost and update warehouse
// 5. record the order for delivery
// 6. print the result of the process

} // commit transaction
}

 Whole NewOrder as one atomic transaction
 2 lines of code changed for parallelization
 No need to analyze storage scheme, ordering issues, …

Implementing Memory Transactions

 Data versioning for updated data
 Manage new & old values for memory data
 Deferred updates (lazy) vs direct updates (eager)

 Conflict detection for shared data
 Detect R-W and W-W for concurrent transactions
 Track the read-set and write-set of each transaction
 Check during execution (pessimistic) or at the end (optimistic)

 Ideal implementation
 Software only: works with current & future hardware
 Flexible: can modify, enhance, or use in alternative manners
 High performance: faster than sequential code & scalable
 Correct: no incorrect or surprising execution results

Performance with Hardware
TM

 Scalable performance, up to 7x over STM [ISCA’07]

 Within 10% of sequential for one thread
 Uncommon HTM cases not a performance challenge

STAMP Benchmark Suite
 Stanford Transactional Applications for

Multiprocessing

 8 applications from variety of domains
 http://stamp.stanford.edu

28

STAMP Applications

Pure HTMs Have Limitations

 Conflict detection granularity can be important

Architecture Research
Methodology
 Conventional approaches are useful

 Develop app & SW system on existing platforms
 Multi-core, accelerators, clusters, …

 Simulate novel HW mechanisms

 Need some method that bridges HW & SW research
 Makes new HW features available for SW research

 Does not compromise HW speed, SW features, or scale

 Allows for full-system prototypes

 Needed for research, convincing for industry, exciting for students

 Approach: commodity chips + FPGAs in memory system
 Commodity chips: fast system with rich SW environment

 FPGAs: prototyping platform for new HW features

 Scale through cluster arrangement

MemoryMemory

Memory Memory

Core 0 Core 1

Core 2 Core 3

Core 0 Core 1

Core 2 Core 3

Core 0 Core 1

Core 2 Core 3

Core 0 Core 1

Core 2 Core 3

FARM: Flexible Architecture
Research Machine

MemoryMemory

Memory Memory

Core 0 Core 1

Core 2 Core 3

Core 0 Core 1

Core 2 Core 3

Core 0 Core 1

Core 2 Core 3

FPGA

SRAM

I
O

FARM: Flexible Architecture
Research Machine

MemoryMemory

Memory Memory

Core 0 Core 1

Core 2 Core 3

Core 0 Core 1

Core 2 Core 3

FPGA

SRAM

I
O

GPU/Stream

FARM: Flexible Architecture
Research Machine

MemoryMemory

Memory Memory

Core 0 Core 1

Core 2 Core 3

Core 0 Core 1

Core 2 Core 3

Core 0 Core 1

Core 2 Core 3

FPGA

SRAM

(scalable
)

Infiniband
Or PCIe
InterconnectI

O

FARM: Flexible Architecture
Research Machine

FARM Prototype
Procyon System

 AMD Opteron™ (supports Quad-Core
“Barcelona” processor family)

 Broadcom HT2100/HT1000 Chipset
 Connects to peripheral boards via

HyperTransport or PCI Express
 DDR2 DIMM x 2
 Gigabit Ethernet x 2
 USB2.0 x 4
 VGA
 SATA and eSATA
 System monitor function
 AMI BIOS
 Supports CompactPCI peripheral

boards

16-bit
HyperTransport

x1 PCI Express

64-bit/33MHz PCI

Leda : Procyon Evaluation
Backplane

AD7003 : Single Board computer Pollux : Procyon Interface
Evaluation Board

 Altera FPGA Stratix II
 Interface to backplane

 Hyper Transport I/F x16 *2
 x1 PCIe

 Panel I/O Ports
 8 DO / 8 DI (TTL)

 DDR2 Memory (32 x 16M bit)

Conclusions
 Need a full system vision for pervasive parallelism

 Applications, programming models, programming languages,
software systems, and hardware architecture

 Key initial ideas
 Domain-specific languages

 Combine implicit & explicit resource management

 Flexible HW primitives

 Real system prototypes

