
Commercial S ystem
Performance Anal ysis at Sun

Brian O'Krafka
Sun Labs Performance and

Architecture Group

�

4/28/03

Commercial System Performance
Analysis at Sun

Introduction

System Modeling
Typical System Model
Modeling Environment

Workload characterization
Miss rate analysis
Processor abstraction using blocking factors

�

4/28/03

The Problem
Timely, accurate performance projections for Sun systems

Why?
early exploration of broad design space
engineering tradeoffs (alternative processors, cache sizes,
interconnect topology, bus sizing, ...)
validation of more detailed models
portfolio management (business planning)

Scope:
single cache coherent multiprocessor systems
"well-behaved" commercial workloads

�

4/28/03

Constraints
workloads are a moving target

traces are very hard to get (esp. instruction traces)

never have traces for all configurations of interest

need broad design space exploration early in project

need good accuracy

detailed, low-level system models aren't a complete solution:
detail is unavailable early in project
don't have traces to drive configurations of interest
difficult to write and debug

many, many configurations

�

4/28/03

Queueing
System
Model

Mem
Timer

CPU
Timer

System Timer

HW
Tradeoffs

System Perf.
Projections

SW Optimization
Ideas

Contingency

Performance
Models

Model
Miss Rates

Performance Analysis Process

Physical HW Workload Data Collection

Counters Bus
Traces

Instr
Traces

SW
Pathlength
& Scaling

Benchmark
Results

Sampling
Scheme

OSMiddlewareApps

CompilerTarget Benchmarks

Full
Benchmark

Approximate
Benchmark

Black
Magic

L1/TLB
Cache Sim

L2/L3
Cache Sim

"Raw"
Miss Rates

"Cooked"
Miss Rates Extrapolate

Miss Rate
 Analysis

- Designer Intent
- Informal Spec

RTL

for
execution-driven

simulation

for
trace-driven
simulation

for probability-driven simulation

�

4/28/03

System Modelin g:
Typical Model
Sysmodel Environment

�

P16 The SPARC Microprocessor Design ©2002 Sun Microsystems, Inc.

Figure 3-1: Architecture of the Sun Fire V1280
Server

The SPARC Microprocessor Design

The Version 9 Architecture

The SPARC architecture has been implemented in processors used in a range of systems from

laptops to supercomputers. SPARC International member companies have implemented

numerous compatible microprocessors since the SPARC platform was first announced — more

than any other RISC (reduced instruction set computing) microprocessor family. As a result, the

SPARC architecture boasts the support of thousands of compatible software and hardware

products. SPARC Version 9 maintains upwards binary compatibility for application software

developed for previous SPARC architecture implementations, including microSPARC®,

TurboSPARC®, SuperSPARC®, and previous versions of UltraSPARC.

The SPARC V9 architecture represents a significant advance for the microprocessor industry. It

provides 64-bit data and addressing, fault tolerance features, fast context switching, support for

advanced compiler optimizations, efficient design for superscalar processors, and a clean

structure for emerging operating systems. And all of this has been accomplished with 100-percent

binary compatibility for existing applications.

The UltraSPARC III Cu Processor

The UltraSPARC III Cu processor is part of a third generation of UltraSPARC pipeline-based

products. In addition to using a new process technology, the UltraSPARC III Cu processor provides

a higher clock frequency, reduced on-chip latencies, support for greater amounts of level-one and

level-two cache, and an integrated external memory controller. Other features include support for

FireplaneFireplane

Power Distribution
Board

Power Distribution
Board

IB_SSC
PCI CardSystem ControllerSystem Controller

SCSI G/Bit Ethernet Alarms

I/O ControllerFan TrayFan Tray

System
Indicators
System

Indicators

DiskDisk

DATDAT

DVD-ROMDVD-ROM

SCCRSCCR

10/100 Ethernet

RJ45 Serial LOM/Console

Rj45 Serial Reserved

System Board
(CPU/Memory)

Level 2
Repeater

Power
Supply

X3 X2

X4

Power Feeds
AC or DC

X6 X2

I/O Chassis

P20 CPU/Memory Boards ©2002 Sun Microsystems, Inc.

a critical design point since misses from large caches tend to cluster, with adjacent misses

impacting performance in systems without high memory transfer rates.

• System Interface Unit (SIU)

Charged with the task of all other off-processor communications (memory, other processors,

and I/O devices) the SIU can handle up to 15 pending transactions with support for full out-of-

order data delivery on each transaction, enabling memory banks in a MP system service a

request as soon as a bank is available. All processor interfaces use error detection and/or

correction codes to quickly detect errors. In the event of an error on the system bus, an

independent 8-bit-wide back door bus allows the use of automated diagnostics to isolate the

problem.

CPU/Memory Boards
The Sun Fire V1280 server can accommodate up to twelve UltraSPARC III Cu processors populated

on three CPU/memory boards. Each board includes four processors, all cache, and main memory.

Memory can be added to a board after initial installation by trained service personnel. In addition,

while all of the processors on a single CPU/memory board must be the same speed, other

CPU/memory boards within the system may use processors clocked at a different speed. This

mixed-speed CPU support results in better investment protection when upgrading by precluding

the need to replace all of the existing processors in a system.

The block diagram of the CPU/memory board used in the Sun Fire V1280 server is shown in

Figure 3-4. Address and control paths are illustrated with dashed lines, and data path with solid

lines. The interconnect components on the left connect to the Sun Fireplane interconnect switch

boards. The bandwidths shown are the peak at each point on the board. (Electronically, the

CPU/memory boards are identical to the Uniboard used in the Sun Fire 3800-6800 servers.

However, they are physically incompatible and are not interchangeable.)

Figure 3-4: CPU/Memory Board Block Diagram

Board Data Switch

Data path
Controller

Address Repeater

CPU Data Switch

CPU and
E-Cache

Memory
(8 GB)

CPU and
E-Cache

2.4 GB/sec.

Memory
(8 GB)

2.4 GB/sec.

CPU Data Switch

CPU and
E-Cache

Memory
(8 GB)

CPU and
E-Cache

2.4 GB/sec.

Memory
(8 GB)

2.4 GB/sec.

4.8 GB/sec.

4.8 GB/sec.

4.8 GB/sec.

150 Million
Addresses/sec.

LD: remote clean (0.000201449)

0% 100% 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

"Core: L1 miss" (1)

"L2 clock align" (2)

ec_addr (4)9%

"L2 miss" (10)

sysq_addr_from_core (1)0%

sysq_addr_to_sysbus (8)2%

chip_inq (6)50%

"switch" (6)

a_sw_outq (6)53%

"L2AR" (6)

a_sw_outq (6)53%

"switch" (6)

chip_inq (6)50%

...ysq_addr_from_sysbus (8)59%

"Remote BIU:" (16)

mcQ (12.5)4%

mbus_a (12)4%

"DRAM read latency" (43.2)

mbus_d (12)6%

"MC: MC to BIU" (4)

...: MC data to sysBus" (4)

sysq_data_to_sysbus (6)1%

cpu_to_l1dx (6)13%

"switch" (6)

l2dxq (6)24%

"switch" (12)

l2dxq (6)24%

"switch" (6)

cpu_to_l1dx (6)13%

...ysq_data_from_sysbus (6)1%

"Local BIU: sysBus to L2" (4)

sysq_data_to_core (1)0%

"l2slice: ld_reload" (3)

dbus (1)12%

"Core: Data to ld/st" (1)

4/28/03

Approach: Queueing Models

easy to write and modify

fast (analytic solution)

good for gross tradeoffs of cache structures, bus bandwidths,
topologies

can be accurate: 5 to 10% (with good workload data!)

can support a wide range of modeling detail: can approach that
of simulation models

validation aid for simulation models

fosters a "crisp" understanding of what is important in a system
model

�

4/28/03

Sysmodel: A Solver/Analyzer for
Queueing Network Models

no suitable vendor offerings for analytic modeling

manually writing analytic model equations is cumbersome and
error-prone: it is much better to have a tool to take a high level
description and create the equations automatically

with a carefully designed high level description language, it is possible
to automatically generate a simulation model from the same description
that is used for the analytic model

a good infrastructure around an analyzer/simulator adds a great deal of
leverage:

automatic miss rate loading from workload generator
concise specification of configurations to analyze
automatic timing diagram generation
sophisticated table and chart generation

�

4/28/03

Sysmodel Modeling Environment

Model
Descr

Builder

SW
Pathlength/

Missrate
Files

Workload
Database

Workload
Generator

Loadable
Module

Analyzer/
Simulator

Results:
Tables, Plots

Debug/Docum. Aids:
- Timing Diagrams

- Algebraic Util. Eqns.
- Topology Plots

Configurations
File

��

4/28/03

Sysmodel Characteristics

natural representation of memory hierarchy models: textual description
of timing diagrams (cache coherence transactions)

built on top of (embedded in) an existing programming language (ie. C
or java):

exploit existing compiler, debugger, IDE, libraries, etc.
less work than creating an entirely new language

modularity:
support for hierarchically interconnected blocks
it should not be necessary to recompile all components for a minor change
to only one component

"first-class" parameter support:
all parameters registered in a simulator database
enforces better model structure
better documentation
used in tables of results

��

4/28/03

Structural Primitives

BlockDef(subblock1) {
In(in5, in5_type);
In(in6, in6_type);
Out(out3, out3_type);
Resource(q3, 1);
Resource(d3, 1e9);
Resource(d4, 1e9);

}

BlockDef(subblock2) {
 ...
}

DefBlock(topblock, STRUCTPARM n) {
int i;
In(in1, in1_type);
Out1D(out1, out1_type, 2);
Resource(q1, 1);
Net1D(net1, out3_type, n);
...
InstBlock1D(subblock1, subblock1, n);
InstBlock(subblock2, subblock2);
for(i=0; i<n; i++) {

ConnectInput(net1[i], subblock2, in7[i]);
ConnectOutput(subblock1[i], out3, net1[i]);
...

}
...

2

nn

n

n copies

inputs

parameterized
arrays of inputs

parameterized
arrays of outputs

parameter n

queueing resource delay resource

top-level block

2nd-level block

in1

in2

in3

in4

out1

d1

d2

q1

q2

d3

d4

q3

topblock

subblock1

in5

in6 out3
sub-

block2

in7
out2 out4net1

��

4/28/03

Serengeti Model Structure

L2AR

addr [nbrds]
(6:1/8B/0D/1)

L2DX

data [nbrds]
(6:1/32B/0D/1)

BIU

L2
EC addr (4:1/3B/0D/1)

EC data (4:1/32B/2D/1)
EC SRAM

core

InfL1CPI
(1.3)

mc
DRAM addr (900:75/3B/1D/1)

DRAM data (900:75/64B/1D/1)chip

L1AR

addr [nchips]
(6:1/8B/0D/1)

L1DX

data [nchips]
(6:1/32B/0D/1)

BIU

L2
EC addr (4:1/3B/0D/1)

EC data (4:1/32B/2D/1)
EC SRAM

core

InfL1CPI
(1.3)

mc
DRAM addr (900:75/3B/1D/1)

DRAM data (900:75/64B/1D/1)chip

BIU

L2
EC addr (4:1/3B/0D/1)

EC data (4:1/32B/2D/1)
EC SRAM

core

InfL1CPI
(1.3)

mc
DRAM addr (900:75/3B/1D/1)

DRAM data (900:75/64B/1D/1)chip

BIU

L2
EC addr (4:1/3B/0D/1)

EC data (4:1/32B/2D/1)
EC SRAM

core

InfL1CPI
(1.3)

mc
DRAM addr (900:75/3B/1D/1)

DRAM data (900:75/64B/1D/1)chip

nchips

board

BIU

L2
EC addr (4:1/3B/0D/1)

EC data (4:1/32B/2D/1)
EC SRAM

core

InfL1CPI
(1.3)

mc
DRAM addr (900:75/3B/1D/1)

DRAM data (900:75/64B/1D/1)chip

L1AR

addr [nchips]
(6:1/8B/0D/1)

L1DX

data [nchips]
(6:1/32B/0D/1)

BIU

L2
EC addr (4:1/3B/0D/1)

EC data (4:1/32B/2D/1)
EC SRAM

core

InfL1CPI
(1.3)

mc
DRAM addr (900:75/3B/1D/1)

DRAM data (900:75/64B/1D/1)chip

BIU

L2
EC addr (4:1/3B/0D/1)

EC data (4:1/32B/2D/1)
EC SRAM

core

InfL1CPI
(1.3)

mc
DRAM addr (900:75/3B/1D/1)

DRAM data (900:75/64B/1D/1)chip

BIU

L2
EC addr (4:1/3B/0D/1)

EC data (4:1/32B/2D/1)
EC SRAM

core

InfL1CPI
(1.3)

mc
DRAM addr (900:75/3B/1D/1)

DRAM data (900:75/64B/1D/1)chip

nchips

board

...

nbrds

BIU

L2
EC addr (4:1/3B/0D/1)

EC data (4:1/32B/2D/1)
EC SRAM

core

InfL1CPI
(1.3)

mc
DRAM addr (900:75/3B/1D/1)

DRAM data (900:75/64B/1D/1)chip

L1AR

addr [nchips]
(6:1/8B/0D/1)

L1DX

data [nchips]
(6:1/32B/0D/1)

BIU

L2
EC addr (4:1/3B/0D/1)

EC data (4:1/32B/2D/1)
EC SRAM

core

InfL1CPI
(1.3)

mc
DRAM addr (900:75/3B/1D/1)

DRAM data (900:75/64B/1D/1)chip

BIU

L2
EC addr (4:1/3B/0D/1)

EC data (4:1/32B/2D/1)
EC SRAM

core

InfL1CPI
(1.3)

mc
DRAM addr (900:75/3B/1D/1)

DRAM data (900:75/64B/1D/1)chip

BIU

L2
EC addr (4:1/3B/0D/1)

EC data (4:1/32B/2D/1)
EC SRAM

core

InfL1CPI
(1.3)

mc
DRAM addr (900:75/3B/1D/1)

DRAM data (900:75/64B/1D/1)chip

nchips

board

nbrds

nbrds

900MHz
d64k32b4w
i32k32b4w

u8m512b4sb2w

��

4/28/03

Queueing Network Routing

L2Itvn
?

Start:InfL1CPI

L1Miss
?

Done

No:
1-P(L1Miss)

Yes:
P(L1Miss)

L2Miss
?

Done

No:
1-P(L2Miss) Delay:

L2Hit

No:1-P(L2Itvn)

Yes: P(L2Miss)

Yes: P(L2Itvn)

Done

Queue:AddrBus

Queue:Memory

Queue:DataBus

Delay:RetData

Done

Queue:AddrBus

Delay:L2Access

Queue:DataBus

Delay:RetData

Routing() {
Start(CPU, InfL1CPI);
Switch(); {

Case(1-P_L1Miss); {
Done();

} EndCase();
Default(); {

Switch(); {
Case(1-P_L2Miss); {
 Delay(T_L2Hit);
} EndCase();
Default(); {
 Switch(); {
 Case(P_L2Itvn); {
 /* L2 Intervention */
 Queue(AddrBus);
 Queue(Memory);
 Queue(DataBus);
 Delay(RetData);
 } EndCase();
 Default(); {
 /* go to memory */
 Queue(AddrBus);
 Queue(Memory);
 Queue(DataBus);
 Delay(RetData);
 } EndDefault();
 } EndSwitch();
} EndDefault();

} EndSwitch();
} EndDefault();

} EndSwitch();
}

��

4/28/03

Sketch of Serengeti Routing

Fork

L1Miss
?

Done

No:
1-P(L1Miss)

L2Miss
? Done

No:
1-P(L2Miss)

Delay:
L2Hit

Yes: P(L2Miss)

Done

Queue:AddrBus

Queue:Memory

Queue:DataBus

Delay:RetData

Queue:AddrBus

Delay:L2Access

Delay:InfL1CPI

Yes: P(L1Miss)

Queue:AddrBus

Delay:L2Access

Mutex:
Data

Wait:
Data

Delay:L2Access

Queue:DataBus

Delay:RetData

Mutex:
Data

...

Queue:DataBus

Delay:RetData

Mutex:
Data

Parent Thread

Delay:Wait for
Response

Delay:Wait for
Response

��

4/28/03

MVA Solver
compute rates and classes from transaction flow graph:

assign visit rates to each node in graph

identify customer classes at each queueing center

find subgraphs for each Send/Receive and Mutex/WaitMutex construct

apply "classical" mean value analysis for product-form queueing
networks, plus these approximations:

Schweitzer's approximation to break recursion

Reiser's approximation for deterministic service

Heidelberger & Trivedi approximation for asynchronous background traffic

a simple heuristic for Fork/Join (Send/Receive) behavior

��

4/28/03

Workload Characterization:
Miss Rate Analysis

��

4/28/03

How Hard Can This Be?

HP L.A.

Tek L.A.

Bus/Instr
Traces

cache
sim

per-instr
miss rates

SW Instr
Tracer

Simics

��

4/28/03

Workload Characterization:
Miss Rate Analysis

estimation of miss rates for cache configurations that we cannot directly simulate
(ie. more processors than available in traces)

includes additional manipulation of cache simulator output to:
account for miss rate increases due to increased multiprogramming level
("MPL-effect")
quickly estimate miss rates for cache configurations that haven't been simulated (but
could be if we had the time)

multidimensional curve fitting with dimensions of:
cache size
line size
associativity
sector size
sharing
threads

automatic fitting tools with seamless interface to sysmodel

L1/TLB
Cache Sim

L2/L3
Cache Sim

"Raw"
Miss Rates

"Cooked"
Miss Rates Extrapolate

Miss Rate
Analysis

��

4/28/03

How Hard Can This Be?
HP L.A.

Tek L.A.

Raw
Traces

Refine/
filter

validate

cache
sim

warming
analysis

surface
fit

miss rate
query

Traces in
std. fmt.

cpustat busstat

miss counts
over time

per-instr
miss rates

full miss rate
surface

.mr files plot

plot

manual
inspection

other
reference

data

validation
report

- remove bad records
- ecc
- response matching

lane,mosher,bj

msp qmr

bj

mpcs
sumo

bj

ilya1 ilya2 qmr

idle time adjustment

��

4/28/03

Miss Rate Surface Fitting
Hastie and Tibshirani "Generalized Additive Models": Curve Fitting on
Steroids

10 miss rate components to model (clean, cache-to-cache, writeback,
each per load/store/i-fetch)

separate multivariate model per rate

get sparse set of (mri, ci): mri is rate observed for cache configuration
ci = (size, line, subline, nthreads, sharing, assoc)

fit an additive model with low order interactions:

 f(x) = Σp=1,P fp(xp) + Σp<r fpr(xp,xr)

extensions for ensuring monotonicity
ie: clean miss rates never get worse as cache size increases

��

4/28/03

Workload Characterization:
Processor Abstraction

��

Overview

How to model memory level parallelism?

Processor with no memory level parallelism:

Cache miss 1: Processor
blocks waiting for data

Data available

Processor with memory parallelism:

Cache miss 1 Cache miss 2 Processor blocks:
out of resources

Cache miss 2

Model

Simple processor model (h stands for hit
rate, p for penalty, and n for number of
cache levels):

Model for processor with parallelism (f
stands for blocking factor):

CPI=CPI ���
i =0

n�1

hi pi

CPI=CPI���
i =0

n�1

hi f i pi

Questions

Does blocking factor depend on

latency?

cache level?

access type (data/instruction load/store)?

miss rates?

Results

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Blocking factor for 1 thread CPU

Test case

B
lo

ck
in

g
fa

ct
or

Results

-1
7

-1
6

-1
5

-1
4

-1
3

-1
2

-1
0

-9 -8 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Blocking factor error histogram 2 threads

Percent error

Te
st

 c
ou

nt

4/28/03

 Observations
good news for probabilistic modeling of out-of-order
processors:

blocking factor is relatively insensitive to broad variations in
miss penalties and cache sizes

as latency goes to infinity, blocking factor does NOT go to 1

additional work shows that making blocking factors a (weak)
function of latency reduces errors substantially

ongoing work to understand this further

��

4/28/03

Validation:
Model vs. Measurement

��

4/28/03

Observations

good correlation (within 8%)

highest utilization is about 50% (system address busses),
so system experiences low queueing congestion

why is model optimistic?
are miss rates from counters correct?
are static latencies correct?
bursty memory accesses?
kernel cage effects?
?

��

4/28/03

Conclusion

��

4/28/03

Conclusion
Goal: timely, accurate performance projections for Sun systems

changing workloads
paucity of traces
need for early design space exploration
many, many configurations to analyze

hierarchical models are effective
detailed timers for processors
queueing network models for system
point models for miss rate analysis

modeling accuracy and breadth of design space determined by
workload characterization methodology:

bus traces and instruction traces
thorough validation
automatic surface fitting

��

4/28/03

Future Directions

extend techniques to clustered, multi-tiered systems

extend techniques to large floating-point computation
architectures

refine processor abstractions

��

4/28/03

Backup Slides

��

4/28/03

Sketch of Solver Algorithm
/* prepare graph */

- assign visit rates to each node

- identify customer classes at each queueing center

- find subgraphs for each Send/Receive and

 Mutex/WaitMutex construct

/* solve the network for response time R (= cpi) */

Rnew = 10; /* a guess */

repeat {
Rold = Rnew
for (each queue i) {

Ri = Si + Si*Qi(N-1)
Qi = N/Rold * Vi * Ri /* Little's Law: L = λ*W */

}
- traverse routing graph and compute Rnew

} until (|Rnew - Rold| < δ)

/* traversing routing graph to compute Rnew: */

- using depth-first search, compute Rthread for each

 thread as follows:

- at visit nodes (to queue i):
Rthread += Vi * Ri

- at Receive(min) nodes:
Rthread = max(Rthread, min{Rsend,j})

- at Receive(max) nodes:
Rthread = max(Rthread, max{Rsend,j})

- at WaitMutex nodes:
Rthread = max(Rthread, Σj Vmutex,j*Rmutex,j)

- Rnew is Rthread for root thread

��

4/28/03

Basic MVA
/* single class */

Rnew = 10; /* a guess */

repeat {
Rold = Rnew
for (each queue i) {

Ri = Si + Si*Qi(N-1)
Qi = N/Rold * Vi * Ri /* Little's Law: L = λ*W */

}
Rnew = Σi Ri

} until (|Rnew - Rold| < δ)

Qi(N-1) here means Qi in same network, but with 1

fewer customer.

/* Schweitzer's approx. to break recursion */

Assume Qi(N-1)/(N-1) O Qi(N)/N

Hence: Qi(N-1) O (N-1)/N * Qi(N) K (N-1)/N * Qi

Ref: P. Schweitzer, "Approximate Analysis of Multiclass Closed
Networks of Queues", JACM, 1981.

/* multi-class */

Rnew = 10; /* a guess */

repeat {
Rold = Rnew
for (each queue i) {

for (each class c) {

 Ri,c = Si,c + ΣkJc Si,k*Qi,k(N-1c)

Qi,c = Nc/Rold * Vi,c * Ri,c /* L = λ*W */

}
}

Rnew = Σi Σc Ri,c

} until (|Rnew - Rold| < δ)

/* multiclass approx. to break recursion */

 Qi,k(N-1c) O (Nc-1)/Nc * Qi,c(N) + ΣkJc Qi,k(N)

��

4/28/03

Additional MVA Approximations
/* Deterministic Service */

instead of:

Ri = Si + (N-1)/N * Si*Qi

use:

Ri = Si + (N-1)/N * [(Qi - Bi)*Si + Bi * Si /2]

where Bi is the probab

ility that an arriving customer

finds the server busy, approximated by:

Bi = (Ui - Ui /N)/(1 - Ui /N)

Ref: M. Reiser, "A Queueing Network Analysis of Computer
Communication Networks with Window Flow

Control", IEEE Trans. Comm., 1979.

/* Asynchronous Background Traffic */

- same as non-background traffic, except do not include
Ri,c for background classes in summation for Rnew

Ref: P. Heidelberger and K. S. Trivedi, "Queueing Network
Models for Parallel Processing with Asynchronous

Tasks", IEEE Trans. on Computers, 1982.

��

4/28/03

Additional MVA Approximations
/* Send/Receive (Fork/Join) */

Assume E(min(A,B)) = min(E(A), E(B))

or E(max(A,B)) = max(E(A), E(B))

- at Receive(min) nodes:
Rthread = max(Rthread, min{Rsend,j})

- at Receive(max) nodes:
Rthread = max(Rthread, max{Rsend,j})

Receive(max):
Local Response

Fork Fork

Delay:LocResp

Send:
Local Response

Delay:LocResp

Send:
Local Response

Why do we expect this to be a reasonable
approximation?

in multiprocessor models, service distributions
are usually deterministic, and utilizations are
often not extreme

The starcat model (TBD) will be the first real test
of this approximation.

Simulation feature of sysmodel will be used for
validation.

��

