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Commercial System Performance 
Analysis at Sun

Introduction

System Modeling
Typical System Model
Modeling Environment

Workload characterization
Miss rate analysis
Processor abstraction using blocking factors
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The Problem
Timely, accurate performance projections for Sun systems

Why?
early exploration of broad design space
engineering tradeoffs (alternative processors, cache sizes, 
interconnect topology, bus sizing, ...)
validation of more detailed models
portfolio management (business planning)

Scope:
single cache coherent multiprocessor systems
"well-behaved" commercial workloads
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Constraints
workloads are a moving target

traces are very hard to get (esp. instruction traces)

never have traces for all configurations of interest

need broad design space exploration early in project

need good accuracy

detailed, low-level system models aren't a complete solution:
detail is unavailable early in project
don't have traces to drive configurations of interest
difficult to write and debug

many, many configurations
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System Modelin g:
Typical Model
Sysmodel Environment
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Figure 3-1: Architecture of the Sun Fire V1280 
Server

The SPARC Microprocessor Design

The Version 9 Architecture

The SPARC architecture has been implemented in processors used in a range of systems from 

laptops to supercomputers. SPARC International member companies have implemented 

numerous compatible microprocessors since the SPARC platform was first announced — more 

than any other RISC (reduced instruction set computing) microprocessor family. As a result, the 

SPARC architecture boasts the support of thousands of compatible software and hardware 

products. SPARC Version 9 maintains upwards binary compatibility for application software 

developed for previous SPARC architecture implementations, including microSPARC®, 

TurboSPARC®, SuperSPARC®, and previous versions of UltraSPARC.

The SPARC V9 architecture represents a significant advance for the microprocessor industry. It 

provides 64-bit data and addressing, fault tolerance features, fast context switching, support for 

advanced compiler optimizations, efficient design for superscalar processors, and a clean 

structure for emerging operating systems. And all of this has been accomplished with 100-percent 

binary compatibility for existing applications.

The UltraSPARC III Cu Processor

The UltraSPARC III Cu processor is part of a third generation of UltraSPARC pipeline-based 

products. In addition to using a new process technology, the UltraSPARC III Cu processor provides 

a higher clock frequency, reduced on-chip latencies, support for greater amounts of level-one and 

level-two cache, and an integrated external memory controller. Other features include support for 
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a critical design point since misses from large caches tend to cluster, with adjacent misses 

impacting performance in systems without high memory transfer rates.

• System Interface Unit (SIU)

Charged with the task of all other off-processor communications (memory, other processors, 

and I/O devices) the SIU can handle up to 15 pending transactions with support for full out-of-

order data delivery on each transaction, enabling memory banks in a MP system service a 

request as soon as a bank is available. All processor interfaces use error detection and/or 

correction codes to quickly detect errors. In the event of an error on the system bus, an 

independent 8-bit-wide back door bus allows the use of automated diagnostics to isolate the 

problem.

CPU/Memory Boards
The Sun Fire V1280 server can accommodate up to twelve UltraSPARC III Cu processors populated 

on three CPU/memory boards. Each board includes four processors, all cache, and main memory. 

Memory can be added to a board after initial installation by trained service personnel. In addition, 

while all of the processors on a single CPU/memory board must be the same speed, other 

CPU/memory boards within the system may use processors clocked at a different speed. This 

mixed-speed CPU support results in better investment protection when upgrading by precluding 

the need to replace all of the existing processors in a system.

The block diagram of the CPU/memory board used in the Sun Fire V1280 server is shown in 

Figure 3-4. Address and control paths are illustrated with dashed lines, and data path with solid 

lines. The interconnect components on the left connect to the Sun Fireplane interconnect switch 

boards. The bandwidths shown are the peak at each point on the board. (Electronically, the 

CPU/memory boards are identical to the Uniboard used in the Sun Fire 3800-6800 servers. 

However, they are physically incompatible and are not interchangeable.)

Figure 3-4: CPU/Memory Board Block Diagram
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Approach: Queueing Models

easy to write and modify

fast (analytic solution)

good for gross tradeoffs of cache structures, bus bandwidths, 
topologies

can be accurate: 5 to 10% (with good workload data!)

can support a wide range of modeling detail: can approach that 
of simulation models

validation aid for simulation models

fosters a "crisp" understanding of what is important in a system
model
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Sysmodel: A Solver/Analyzer for 
Queueing Network Models

no suitable vendor offerings for analytic modeling

manually writing analytic model equations is cumbersome and 
error-prone: it is much better to have a tool to take a high level 
description and create the equations automatically

with a carefully designed high level description language, it is possible 
to automatically generate a simulation model from the same description 
that is used for the analytic model

a good infrastructure around an analyzer/simulator adds a great deal of 
leverage:

automatic miss rate loading from workload generator
concise specification of configurations to analyze
automatic timing diagram generation
sophisticated table and chart generation
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Sysmodel Modeling Environment
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Sysmodel Characteristics

natural representation of memory hierarchy models: textual description 
of timing diagrams (cache coherence transactions)

built on top of (embedded in) an existing programming language (ie. C 
or java):

exploit existing compiler, debugger, IDE, libraries, etc.
less work than creating an entirely new language

modularity:
support for hierarchically interconnected blocks
it should not be necessary to recompile all components for a minor change
to only one component

"first-class" parameter support:
all parameters registered in a simulator database
enforces better model structure
better documentation
used in tables of results
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Structural Primitives

BlockDef(subblock1) {
In(in5, in5_type);
In(in6, in6_type);
Out(out3, out3_type);
Resource(q3, 1);
Resource(d3, 1e9);
Resource(d4, 1e9);

}

BlockDef(subblock2) {
      ...
}

DefBlock(topblock, STRUCTPARM n) {
int i;
In(in1, in1_type);
Out1D(out1, out1_type, 2);
Resource(q1, 1);
Net1D(net1, out3_type, n);
...
InstBlock1D(subblock1, subblock1, n);
InstBlock(subblock2, subblock2);
for(i=0; i<n; i++) {

ConnectInput(net1[i], subblock2, in7[i]);
ConnectOutput(subblock1[i], out3, net1[i]);
...

}
...

2

nn
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inputs
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Serengeti Model Structure
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Queueing Network Routing

L2Itvn
?

Start:InfL1CPI

L1Miss
?

Done

No:
1-P(L1Miss)

Yes: 
P(L1Miss)

L2Miss
?

Done

No:
1-P(L2Miss) Delay:

L2Hit

No:1-P(L2Itvn)

Yes: P(L2Miss)

Yes: P(L2Itvn)

Done

Queue:AddrBus

Queue:Memory

Queue:DataBus

Delay:RetData

Done

Queue:AddrBus

Delay:L2Access

Queue:DataBus

Delay:RetData

Routing() {
Start(CPU, InfL1CPI);
Switch(); {

Case(1-P_L1Miss); {
Done();

} EndCase();
Default(); {

Switch(); {
Case(1-P_L2Miss); {
        Delay(T_L2Hit);
} EndCase();
Default(); {
        Switch(); {
                Case(P_L2Itvn); {
                        /* L2 Intervention */
                        Queue(AddrBus);
                        Queue(Memory);
                        Queue(DataBus);
                        Delay(RetData);
                } EndCase();
                Default(); {
                        /* go to memory */
                        Queue(AddrBus);
                        Queue(Memory);
                        Queue(DataBus);
                        Delay(RetData);
                } EndDefault();
        } EndSwitch();
} EndDefault();

} EndSwitch();
} EndDefault();

} EndSwitch();
}
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Sketch of Serengeti Routing
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MVA Solver
compute rates and classes from transaction flow graph:

assign visit rates to each node in graph

identify customer classes at each queueing center

find subgraphs for each Send/Receive and Mutex/WaitMutex construct

apply "classical" mean value analysis for product-form queueing
networks, plus these approximations:

Schweitzer's approximation to break recursion

Reiser's approximation for deterministic service

Heidelberger & Trivedi approximation for asynchronous background traffic

a simple heuristic for Fork/Join (Send/Receive) behavior
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Workload Characterization:
Miss Rate Analysis
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How Hard Can This Be?

HP L.A.

Tek L.A.

Bus/Instr
Traces

cache 
sim

per-instr
miss rates

SW Instr
Tracer

Simics
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Workload Characterization:
Miss Rate Analysis

estimation of miss rates for cache configurations that we cannot directly simulate
(ie. more processors than available in traces)

includes additional manipulation of cache simulator output to:
account for miss rate increases due to increased multiprogramming level 
("MPL-effect")
quickly estimate miss rates for cache configurations that haven't been simulated (but 
could be if we had the time)

multidimensional curve fitting with dimensions of:
cache size
line size
associativity
sector size
sharing
# threads

automatic fitting tools with seamless interface to sysmodel

L1/TLB
Cache Sim

L2/L3
Cache Sim

"Raw"
Miss Rates

"Cooked"
Miss Rates Extrapolate

Miss Rate
Analysis
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How Hard Can This Be?
HP L.A.
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Raw
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filter

validate

cache 
sim

warming
analysis

surface 
fit

miss rate 
query

Traces in
std. fmt.

cpustat busstat

miss counts
over time
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.mr files plot

plot
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validation
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- ecc
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Miss Rate Surface Fitting
Hastie and Tibshirani "Generalized Additive Models": Curve Fitting on 
Steroids

10 miss rate components to model (clean, cache-to-cache, writeback, 
each per load/store/i-fetch)

separate multivariate model per rate

get sparse set of (mri, ci): mri is rate observed for cache configuration
ci = (size, line, subline, nthreads, sharing, assoc)

fit an additive model with low order interactions:

                        f(x) = Σp=1,P fp(xp) + Σp<r fpr(xp,xr)

extensions for ensuring monotonicity
ie: clean miss rates never get worse as cache size increases
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Workload Characterization:
Processor Abstraction
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Overview

How to model memory level parallelism?

Processor with no memory level parallelism:

Cache miss 1: Processor
blocks waiting for data

Data available

Processor with memory parallelism:

Cache miss 1 Cache miss 2 Processor blocks:
out of resources

Cache miss 2



Model

Simple processor model (h stands for hit 
rate, p for penalty, and n for number of 
cache levels):

Model for processor with parallelism (f 
stands for blocking factor):

CPI=CPI ���
i =0

n�1

hi pi

CPI=CPI���
i =0

n�1

hi f i pi



Questions

Does blocking factor depend on 

latency?

cache level?

access type (data/instruction load/store)?

miss rates?



Results
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Results

-1
7

-1
6

-1
5

-1
4

-1
3

-1
2

-1
0

-9 -8 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Blocking factor error histogram 2 threads

Percent error

Te
st

 c
ou

nt



4/28/03

 Observations
good news for probabilistic modeling of out-of-order 
processors: 

blocking factor is relatively insensitive to broad variations in 
miss penalties and cache sizes

as latency goes to infinity, blocking factor does NOT go to 1

additional work shows that making blocking factors a (weak)
function of latency reduces errors substantially

ongoing work to understand this further
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Validation:
Model vs. Measurement
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Observations

good correlation (within 8%)

highest utilization is about 50% (system address busses),
so system experiences low queueing congestion

why is model optimistic?
are miss rates from counters correct?
are static latencies correct?
bursty memory accesses?
kernel cage effects?
?
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Conclusion
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Conclusion
Goal: timely, accurate performance projections for Sun systems

changing workloads
paucity of traces
need for early design space exploration
many, many configurations to analyze

hierarchical models are effective
detailed timers for processors
queueing network models for system
point models for miss rate analysis

modeling accuracy and breadth of design space determined by
workload characterization methodology:

bus traces and instruction traces
thorough validation
automatic surface fitting
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Future Directions

extend techniques to clustered, multi-tiered systems

extend techniques to large floating-point computation 
architectures

refine processor abstractions
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Backup Slides
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Sketch of Solver Algorithm
/* prepare graph */

- assign visit rates to each node

- identify customer classes at each queueing center

- find subgraphs for each Send/Receive and

  Mutex/WaitMutex construct

/* solve the network for response time R (= cpi) */

Rnew = 10; /* a guess */

repeat {
Rold = Rnew
for (each queue i) {

Ri = Si + Si*Qi(N-1)
Qi = N/Rold * Vi * Ri    /* Little's Law: L = λ*W */

}
- traverse routing graph and compute Rnew

} until (|Rnew - Rold| < δ)

/* traversing routing graph to compute Rnew: */

- using depth-first search, compute Rthread for each

   thread as follows:

- at visit nodes (to queue i):
Rthread += Vi * Ri

- at Receive(min) nodes:
Rthread = max(Rthread, min{Rsend,j} )

- at Receive(max) nodes:
Rthread = max(Rthread, max{Rsend,j} )

- at WaitMutex nodes:
Rthread = max(Rthread, Σj Vmutex,j*Rmutex,j )

- Rnew  is Rthread for root thread
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Basic MVA
/* single class */

Rnew = 10; /* a guess */

repeat {
Rold = Rnew
for (each queue i) {

Ri = Si + Si*Qi(N-1)
Qi = N/Rold * Vi * Ri    /* Little's Law: L = λ*W */

}
Rnew = Σi  Ri

} until (|Rnew - Rold| < δ)

Qi(N-1) here means Qi in same network, but with 1

fewer customer.

/* Schweitzer's approx. to break recursion */

Assume  Qi(N-1)/(N-1) O Qi(N)/N

Hence:   Qi(N-1) O (N-1)/N * Qi(N) K (N-1)/N * Qi

Ref:  P. Schweitzer, "Approximate Analysis of Multiclass Closed 
Networks of Queues", JACM, 1981.

/* multi-class */

Rnew = 10; /* a guess */

repeat {
Rold = Rnew
for (each queue i) {

for (each class c) {

 Ri,c = Si,c + ΣkJc Si,k*Qi,k(N-1c)

Qi,c = Nc/Rold * Vi,c * Ri,c /* L = λ*W */

}
}

Rnew = Σi  Σc Ri,c

} until (|Rnew - Rold| < δ)

/* multiclass approx. to break recursion */

        Qi,k(N-1c) O (Nc-1)/Nc * Qi,c(N) + ΣkJc Qi,k(N)
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Additional MVA Approximations
/* Deterministic Service */

instead of:

Ri = Si + (N-1)/N * Si*Qi

use:

Ri = Si + (N-1)/N * [(Qi - Bi)*Si  +  Bi * Si /2]

where Bi is the probab

ility that an arriving customer

finds the server busy, approximated by:

Bi = (Ui  - Ui /N)/(1 - Ui /N)

Ref:  M. Reiser, "A Queueing Network Analysis of Computer 
Communication Networks with Window Flow 

Control", IEEE Trans. Comm., 1979.

/* Asynchronous Background Traffic */

- same as non-background traffic, except do not include
Ri,c for background classes in summation for Rnew

Ref:  P. Heidelberger and K. S. Trivedi, "Queueing Network 
Models for Parallel Processing with Asynchronous 

Tasks", IEEE Trans. on Computers, 1982.
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Additional MVA Approximations
/* Send/Receive (Fork/Join) */

Assume E(min(A,B)) = min(E(A), E(B))

or           E(max(A,B)) = max(E(A), E(B))

- at Receive(min) nodes:
Rthread = max(Rthread, min{Rsend,j} )

- at Receive(max) nodes:
Rthread = max(Rthread, max{Rsend,j} )

Receive(max):
Local Response

Fork Fork

Delay:LocResp

Send:
Local Response

Delay:LocResp

Send:
Local Response

Why do we expect this to be a reasonable 
approximation?

in multiprocessor models, service distributions 
are usually deterministic, and utilizations are 
often not extreme

The starcat model (TBD) will be the first real test 
of this approximation.

Simulation feature of sysmodel will be used for 
validation.

��


