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While microprocessor pipeline depths have increased dramatically over the last decade, they are fast approaching
their optimal depth. As shown in Figure 9.6.1, the number of logic levels in modern processors is nearing 10 fanout-
of-4 (FO4) inverter delay. Substantial further reductions will be undesirable due to pipeline overheads and power con-
sumption [1]. Technology trends also show that global on-chip wire delays are growing significantly, eventually
increasing cross-chip communication latencies to tens of cycles and rendering the expected chip area reachable in a
single cycle to be less than 1% in a 35nm technology, as shown in Figure 9.6.2. The challenge for architects is to
design new architectures that achieve both a fast clock rate (low FO4) and high concurrency, despite slow global
wires. Because existing superscalar microarchitectures rely on global communication, they are poorly matched to the
technology challenges of the coming decade.

The Grid Processor architecture (GPA) is designed to address these technology challenges [2]. As shown in Figure
9.6.3, each GPA implementation consists of a 2-D array (4x4 in this example but scalable to larger dimensions) of
ALUs connected via a routed operand network, with L1 I-cache, D-cache, and register file banks around the periph-
ery of the ALU array. Each ALU includes an integer unit, a floating point unit, instruction buffers, operand buffers,
and an operand router. While [3] proposes ALU chaining similar to the GPA and clustered VLIW architectures have
similar partitioning strategies, GPAs permit out-of-order execution and fast clock rates, achieving performance far
higher than conventional architectures.

In a GPA program, spatial instruction placement is static but execution order is dynamic. The compiler forms large
single-entry, multiple exit regions (hyperblocks) and schedules them to the ALU array. Current hyperblock genera-
tion techniques yield instruction blocks consisting of 14-119 (average of 47) useful instructions, each with typically
fewer than 10 input and 10 output registers, for the benchmarks shown in Figure 9.6.5 (SPECINT and SPECFP). The
instructions along the critical path of the block are mapped to the grid to minimize communication latency by using
the short physical paths between adjacent ALUs (Figure 9.6.4) and the bypass path within an ALU. At runtime, the
instructions of a block are fetched en masse from the multi-ported instruction cache and distributed horizontally into
the grid. Instructions execute in dataflow order, dictated by the arrival time of the operands at each ALU. Intermediate
values are routed directly from the producing ALU to the consuming ALU without being written back to the register
file. Block outputs are written to the register file at block completion and are dynamically bypassed directly to
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instructions in the next block. A next-block predictor speculatively selects subsequent blocks to be mapped and exe-
cuted while the current block is being executed. Mis-speculations and exceptions cause rollback to the last committed
block boundary. Figure 9.6.5 shows the instructions per clock (IPC) currently achieved on an 8x8 GPA, comparing it
to the Alpha 21264.

The GPA offers specific technology scaling advantages over conventional architectures. First, it facilitates partition-
ing in the ALU array, instruction caches, and register files, providing both faster access and higher bandwidth to the
memory structures. Second, communication delays in the ALU array are exposed to the compiler for optimization,
reducing the need for broadcast communication networks within the core. Third, GPAs enable block-atomic state
tracking and orchestration, as opposed to the conventional instruction-oriented approaches. This block-atomic model
serves to eliminate many per-instruction overheads and centralized structures associated with instruction fetch,
rename, register read, commit, and exception handling. Finally, the instruction buffers associated with each ALU
serve as a set of distributed reservation stations, enabling an effective dynamic scheduling window of hundreds to
thousands of instructions.

GPA-based systems provide unique opportunities for power efficiency. The elimination of structures dedicated to
instruction-level register renaming, associative operand comparisons, and state tracking reduce the overhead circuitry
and power on a per-ALU basis. ALU chaining dramatically reduces the number of global register file accesses in
exchange for short point-to-point connections. The dynamic power of the ALU array and banked memory structures
can be actively managed to reduce consumption during periods of lighter utilization. The dataflow execution model of
the GPA is also amenable to power-efficient asynchronous design techniques.

In addition to high ILP, a secondary design goal of the GPA is polymorphism, or the ability to adapt the hardware to
the execution characteristics of the application. Grid Processors can be easily sub-divided into sub-processors, allow-
ing discrete threads to be assigned to different sub-processors for high thread-level parallelism (TLP). Grid Proces-
sors can also be configured to target data-level parallelism (DLP), often exhibited in media, streaming, and scientific
codes. For DLP applications, the same GPA hardware employs a different execution model in which instructions for
kernels or inner loops are mapped to the ALUs and stay resident for multiple iterations. In addition, each access to a
data cache bank provides multiple values that are distributed to the ALUs in each row. Initial results on a set of 7 sig-
nal processing kernels show that an 8x8 GPA can average 48 compute instructions per cycle. Assuming an 8-GHz
clock in 50nm CMOS, this configuration would achieve a performance level of 384 GFlops.

As shown in Figure 9.6.6, we are planning a prototype chip that will consist of four 4x4 cores, a shared L2 cache
structure built from an array of 128KB memory banks connected by a routed network, and a set of distributed mem-
ory controllers with channels to external memory. The prototype will be built using a 130nm process and is targeted
for completion in 2005. Future technology generations will enable similar chips with even more powerful 8x8 cores.
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List of figure captions:

Figure 9.6.1: Historical reduction in cycle time driven by pipelining.

Figure 9.6.2: Projected fraction of chip reachable in one cycle with an 8FO4 clock period.

Figure 9.6.3: Grid Processor block diagram.

Figure 9.6.4: Mapping of dataflow critical path to physical ALUs.

Figure 9.6.5: An 8x8 GPA achieves 1.1-14x greater instructions per clock (IPC) than a conventional out-of-order
core.

Figure 9.6.6: Diagram of proposed chip-multiprocessor (CMP) prototype with four GPA cores.
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Figure 9.6.1: Historical reduction in cycle time driven by pipelining.
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Figure 9.6.2: Projected fraction of chip reachable in one cycle with an 8FO4 clock period.

Figure 9.6.3: Grid Processor block diagram. Figure 9.6.4: An 8x8 GPA achieves 1.1-14x greater instructions per clock 
(IPC) than a conventional out-of-order core.
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Figure 9.6.5: Mapping of dataflow critical path to physical ALUs. Figure 9.6.6: Diagram of proposed chip-multiprocessor (CMP) prototype 
with four GPA cores.


