
A Framework for Asynchronous Circuit Modeling and
Verification in ACL2

Cuong Chau1, Warren A. Hunt, Jr.1,
Marly Roncken2, and Ivan Sutherland2

{ckcuong,hunt}@cs.utexas.edu,
marly.roncken@gmail.com, ivans@cecs.pdx.edu

1 The University of Texas at Austin
2 Portland State University

November 16, 2017

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 1 / 26



Outline

1 Introduction

2 The DE System

3 Modeling and Verification Approach

4 32-Bit Self-Timed Serial Adder Verification

5 Future Work and Conclusions

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 2 / 26



Outline

1 Introduction

2 The DE System

3 Modeling and Verification Approach

4 32-Bit Self-Timed Serial Adder Verification

5 Future Work and Conclusions

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 3 / 26



Introduction

Synchronous circuits (or clocked circuits): changes in the state of storage
elements are synchronized by a global clock signal.

Asynchronous circuits (or self-timed circuits): no global clock signal. The
communications between storage elements are performed via local
communication protocols.

Why asynchronous?

Low power consumption,
High operating speed,
Elimination of clock skew problems,
Better composability and modularity for large systems,
...

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 4 / 26



Introduction

Synchronous circuits (or clocked circuits): changes in the state of storage
elements are synchronized by a global clock signal.

Asynchronous circuits (or self-timed circuits): no global clock signal. The
communications between storage elements are performed via local
communication protocols.

Why asynchronous?

Low power consumption,
High operating speed,
Elimination of clock skew problems,
Better composability and modularity for large systems,
...

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 4 / 26



Introduction

Synchronous circuits (or clocked circuits): changes in the state of storage
elements are synchronized by a global clock signal.

Asynchronous circuits (or self-timed circuits): no global clock signal. The
communications between storage elements are performed via local
communication protocols.

Why asynchronous?

Low power consumption,
High operating speed,
Elimination of clock skew problems,
Better composability and modularity for large systems,
...

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 4 / 26



Introduction

Our goal: developing scalable methods for reasoning about the functional
correctness of self-timed systems using ACL2.

Using the DE system [Hunt:2000], which is built in ACL2, to specify
and verify self-timed circuit designs.
Developing a hierarchical verification approach to support scalability.
Exploring strategies for reasoning with non-deterministic circuit
behavior.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 5 / 26



Introduction

Our goal: developing scalable methods for reasoning about the functional
correctness of self-timed systems using ACL2.

Using the DE system [Hunt:2000], which is built in ACL2, to specify
and verify self-timed circuit designs.

Developing a hierarchical verification approach to support scalability.
Exploring strategies for reasoning with non-deterministic circuit
behavior.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 5 / 26



Introduction

Our goal: developing scalable methods for reasoning about the functional
correctness of self-timed systems using ACL2.

Using the DE system [Hunt:2000], which is built in ACL2, to specify
and verify self-timed circuit designs.
Developing a hierarchical verification approach to support scalability.

Exploring strategies for reasoning with non-deterministic circuit
behavior.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 5 / 26



Introduction

Our goal: developing scalable methods for reasoning about the functional
correctness of self-timed systems using ACL2.

Using the DE system [Hunt:2000], which is built in ACL2, to specify
and verify self-timed circuit designs.
Developing a hierarchical verification approach to support scalability.
Exploring strategies for reasoning with non-deterministic circuit
behavior.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 5 / 26



Outline

1 Introduction

2 The DE System

3 Modeling and Verification Approach

4 32-Bit Self-Timed Serial Adder Verification

5 Future Work and Conclusions

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 6 / 26



The DE System
DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].

The DE system supports hierarchical verification:

Prove the following two lemmas hierarchically for each module: a
value lemma specifying the module’s outputs and a state lemma
specifying the module’s next state.
If a module doesn’t have an internal state (purely combinational),
only the value lemma need be proven.
These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any
details about the submodules.
This approach has been demonstrated its scalability to large systems,
as shown on contemporary x86 designs at Centaur
Technology [Slobodova et al.:2011].

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 7 / 26



The DE System
DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].

The DE system supports hierarchical verification:

Prove the following two lemmas hierarchically for each module: a
value lemma specifying the module’s outputs and a state lemma
specifying the module’s next state.

If a module doesn’t have an internal state (purely combinational),
only the value lemma need be proven.
These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any
details about the submodules.
This approach has been demonstrated its scalability to large systems,
as shown on contemporary x86 designs at Centaur
Technology [Slobodova et al.:2011].

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 7 / 26



The DE System
DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].

The DE system supports hierarchical verification:

Prove the following two lemmas hierarchically for each module: a
value lemma specifying the module’s outputs and a state lemma
specifying the module’s next state.
If a module doesn’t have an internal state (purely combinational),
only the value lemma need be proven.

These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any
details about the submodules.
This approach has been demonstrated its scalability to large systems,
as shown on contemporary x86 designs at Centaur
Technology [Slobodova et al.:2011].

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 7 / 26



The DE System
DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].

The DE system supports hierarchical verification:

Prove the following two lemmas hierarchically for each module: a
value lemma specifying the module’s outputs and a state lemma
specifying the module’s next state.
If a module doesn’t have an internal state (purely combinational),
only the value lemma need be proven.
These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any
details about the submodules.

This approach has been demonstrated its scalability to large systems,
as shown on contemporary x86 designs at Centaur
Technology [Slobodova et al.:2011].

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 7 / 26



The DE System
DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].

The DE system supports hierarchical verification:

Prove the following two lemmas hierarchically for each module: a
value lemma specifying the module’s outputs and a state lemma
specifying the module’s next state.
If a module doesn’t have an internal state (purely combinational),
only the value lemma need be proven.
These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any
details about the submodules.
This approach has been demonstrated its scalability to large systems,
as shown on contemporary x86 designs at Centaur
Technology [Slobodova et al.:2011].

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 7 / 26



Outline

1 Introduction

2 The DE System

3 Modeling and Verification Approach

4 32-Bit Self-Timed Serial Adder Verification

5 Future Work and Conclusions

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 8 / 26



Modeling

No global clock signal

⇒ Adding local signaling to state-holding devices

Local communication protocols

⇒ Modeling the link-joint model introduced by Roncken et al., a
universal communication model for various self-timed circuit
families [Roncken et al.:2015]

Non-deterministic behavior due to variable delays in wires and gates

⇒ Employing an oracle, which we call a collection of go signals.
These signals are part of the input.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 9 / 26



Modeling

No global clock signal
⇒ Adding local signaling to state-holding devices
Local communication protocols

⇒ Modeling the link-joint model introduced by Roncken et al., a
universal communication model for various self-timed circuit
families [Roncken et al.:2015]

Non-deterministic behavior due to variable delays in wires and gates

⇒ Employing an oracle, which we call a collection of go signals.
These signals are part of the input.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 9 / 26



Modeling

No global clock signal
⇒ Adding local signaling to state-holding devices
Local communication protocols
⇒ Modeling the link-joint model introduced by Roncken et al., a
universal communication model for various self-timed circuit
families [Roncken et al.:2015]
Non-deterministic behavior due to variable delays in wires and gates

⇒ Employing an oracle, which we call a collection of go signals.
These signals are part of the input.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 9 / 26



Modeling

No global clock signal
⇒ Adding local signaling to state-holding devices
Local communication protocols
⇒ Modeling the link-joint model introduced by Roncken et al., a
universal communication model for various self-timed circuit
families [Roncken et al.:2015]
Non-deterministic behavior due to variable delays in wires and gates
⇒ Employing an oracle, which we call a collection of go signals.
These signals are part of the input.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 9 / 26



The Link-Joint Model

We model self-timed systems as finite state machines (FSMs) representing
networks of communication links.

Links communicate with each other locally via handshake components,
which are called joints, using the link-joint model.

Links are communication channels in which data and full/empty
states are stored.
Joints are handshake components that implement flow control and
data operations.

Joints are the meeting points for links to coordinate states and
exchange data.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 10 / 26



The Link-Joint Model

We model self-timed systems as finite state machines (FSMs) representing
networks of communication links.

Links communicate with each other locally via handshake components,
which are called joints, using the link-joint model.

Links are communication channels in which data and full/empty
states are stored.
Joints are handshake components that implement flow control and
data operations.

Joints are the meeting points for links to coordinate states and
exchange data.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 10 / 26



The Link-Joint Model

We model self-timed systems as finite state machines (FSMs) representing
networks of communication links.

Links communicate with each other locally via handshake components,
which are called joints, using the link-joint model.

Links are communication channels in which data and full/empty
states are stored.
Joints are handshake components that implement flow control and
data operations.

Joints are the meeting points for links to coordinate states and
exchange data.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 10 / 26



The Link-Joint Model

D0

S0. F D /

fullin

Comb. Logic

firedrain

D1

S1. F D /

fill

fullout

JointLink Link

L0 L1

GO
A joint can have several input and output links connected to it.
A joint can have multiple (guarded) mutually exclusive actions.
Necessary conditions for a joint-action to fire: all input and output links
of that action are full and empty, respectively.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 11 / 26



The Link-Joint Model

D0

S0. F D /

fullin

Comb. Logic

firedrain

D1

S1. F D /

fill

fullout

JointLink Link

L0 L1

GO

A joint can have several input and output links connected to it.
A joint can have multiple (guarded) mutually exclusive actions.
Necessary conditions for a joint-action to fire: all input and output links
of that action are full and empty, respectively.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 11 / 26



The Link-Joint Model

D0

S0. F D /

fullin

Comb. Logic

firedrain

D1

S1. F D /

fill

fullout

JointLink Link

L0 L1

GO
A joint can have several input and output links connected to it.
A joint can have multiple (guarded) mutually exclusive actions.
Necessary conditions for a joint-action to fire: all input and output links
of that action are full and empty, respectively.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 11 / 26



The Link-Joint Model

fullin0...
fullinm

...

GO

fullout0...
fulloutn

...

drain0 ...
drainm

fill0...
filln

Comb. Logic
Din0...
Dinm

Dout0...
Doutn

When a joint-action fires, three tasks will be executed in parallel:
transfer data computed from the input links to the output links,
fill the output links, make them full,
drain the input links, make them empty.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 12 / 26



Verification

Hierarchical reasoning:

The output and next state of a module are formalized using the
formalized outputs and next states of submodules, without delving
into details about the submodules.
Self-timed modules can be abstracted as “complex” links or
“complex” joints.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 13 / 26



Self-Timed Modules

Ci

A

B

+

Co

S

A complex link: an adder

L0 L1

A complex joint: a queue of two links

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 14 / 26



Verification

Multi-step decomposition reasoning:
Functional properties of self-timed systems may involve multi-step
executions that are quite burdensome to establish directly.

Decompose the executions into sub-steps in such a way that
sub-properties after executing each of these sub-steps can be carried
out much easier.
The desired properties are then established by simply composing these
sub-properties.

Induction:
We apply induction to establishing loop invariants of iterative
circuits, i.e., circuits with feedback loops in their dataflows.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 15 / 26



Verification

Multi-step decomposition reasoning:
Functional properties of self-timed systems may involve multi-step
executions that are quite burdensome to establish directly.
Decompose the executions into sub-steps in such a way that
sub-properties after executing each of these sub-steps can be carried
out much easier.

The desired properties are then established by simply composing these
sub-properties.

Induction:
We apply induction to establishing loop invariants of iterative
circuits, i.e., circuits with feedback loops in their dataflows.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 15 / 26



Verification

Multi-step decomposition reasoning:
Functional properties of self-timed systems may involve multi-step
executions that are quite burdensome to establish directly.
Decompose the executions into sub-steps in such a way that
sub-properties after executing each of these sub-steps can be carried
out much easier.
The desired properties are then established by simply composing these
sub-properties.

Induction:
We apply induction to establishing loop invariants of iterative
circuits, i.e., circuits with feedback loops in their dataflows.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 15 / 26



Verification

Multi-step decomposition reasoning:
Functional properties of self-timed systems may involve multi-step
executions that are quite burdensome to establish directly.
Decompose the executions into sub-steps in such a way that
sub-properties after executing each of these sub-steps can be carried
out much easier.
The desired properties are then established by simply composing these
sub-properties.

Induction:
We apply induction to establishing loop invariants of iterative
circuits, i.e., circuits with feedback loops in their dataflows.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 15 / 26



Verification

Reasoning with highly non-deterministic behavior in iterative self-timed
systems is very challenging.

Computing loop invariants in these systems becomes much more
complicated than in synchronous systems.

We impose design restrictions on iterative circuits to reduce
non-determinism, and consequently reduce the complexity of the set of
execution paths:

These restrictions enable our framework to verify loop invariants
efficiently via induction and subsequently verify the functional
correctness of self-timed circuit designs.

Design restrictions: A module is ready to communicate with other modules
only when it finishes all of its internal operations and becomes quiescent.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 16 / 26



Verification

Reasoning with highly non-deterministic behavior in iterative self-timed
systems is very challenging.

Computing loop invariants in these systems becomes much more
complicated than in synchronous systems.

We impose design restrictions on iterative circuits to reduce
non-determinism, and consequently reduce the complexity of the set of
execution paths:

These restrictions enable our framework to verify loop invariants
efficiently via induction and subsequently verify the functional
correctness of self-timed circuit designs.

Design restrictions: A module is ready to communicate with other modules
only when it finishes all of its internal operations and becomes quiescent.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 16 / 26



Verification

Reasoning with highly non-deterministic behavior in iterative self-timed
systems is very challenging.

Computing loop invariants in these systems becomes much more
complicated than in synchronous systems.

We impose design restrictions on iterative circuits to reduce
non-determinism, and consequently reduce the complexity of the set of
execution paths:

These restrictions enable our framework to verify loop invariants
efficiently via induction and subsequently verify the functional
correctness of self-timed circuit designs.

Design restrictions: A module is ready to communicate with other modules
only when it finishes all of its internal operations and becomes quiescent.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 16 / 26



Outline

1 Introduction

2 The DE System

3 Modeling and Verification Approach

4 32-Bit Self-Timed Serial Adder Verification

5 Future Work and Conclusions

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 17 / 26



We demonstrate our framework by modeling and verifying the functional
correctness of a 32-bit self-timed serial adder.

We prove that the self-timed serial adder indeed performs the addition
under an appropriate initial condition.

When the adder finishes its execution, the result is proven to be the
sum of the two 32-bit input operands and the carry-in.

Multi-step decomposition reasoning:

Divide the adder’s execution into two parts: the loop part and the
exit part (the execution after exiting the loop),
Formalize a loop invariant for the loop part and the adder behavior
during the exit part,
Prove the functional correctness of the adder by glueing these two
parts together.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 18 / 26



We demonstrate our framework by modeling and verifying the functional
correctness of a 32-bit self-timed serial adder.

We prove that the self-timed serial adder indeed performs the addition
under an appropriate initial condition.

When the adder finishes its execution, the result is proven to be the
sum of the two 32-bit input operands and the carry-in.

Multi-step decomposition reasoning:

Divide the adder’s execution into two parts: the loop part and the
exit part (the execution after exiting the loop),
Formalize a loop invariant for the loop part and the adder behavior
during the exit part,
Prove the functional correctness of the adder by glueing these two
parts together.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 18 / 26



Dataflow of a 32-Bit Self-Timed Serial Adder

Shift-Reg0
0 1

�
1
�

Shift-Reg1
0 1

�
1
�

Ci

1
�

A
1
�

B
1
�

+

Co
1
�

S
1
�

1
�

1
�

1
�

1
�

1
�

Shift-Reg2

32
�

App

33�

Result+1
5�

1
�

1
�

Cntl-State

5�

Cntl-State’
5
� Done- 015

�

go-a

go-b

go-buf-cntl

go-cntl

go-add

go-carry

go-s

go-result

M1

M2

Full

Full

Full

Full Full

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 19 / 26



Correctness Theorems

Theorem 1 (Partial correctness).

async serial adder(netlist) ∧ (1)
init state(st) ∧ (2)
(operand size = 32) ∧ (3)
interleavings spec(input-list, operand size) ∧ (4)
(st ′ = run(netlist, input-list, st, n)) ∧ (5)
full(st ′.result.status) (6)

⇒ st ′.result.data = st.shift reg 0.data +
st.shift reg 1.data +
st.ci .data

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 20 / 26



Correctness Theorems

Theorem 2 (Termination).

async serial adder(netlist) ∧ (1)
init state(st) ∧ (2)
(operand size = 32) ∧ (3)
interleavings spec(input-list, operand size) ∧ (4)
(st ′ = run(netlist, input-list, st, n)) ∧ (5)
(n ≥ num steps(input-list, operand size)) (6′)

⇒ full(st ′.result.status)

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 21 / 26



Outline

1 Introduction

2 The DE System

3 Modeling and Verification Approach

4 32-Bit Self-Timed Serial Adder Verification

5 Future Work and Conclusions

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 22 / 26



Future Work

We are developing new proof techniques for partial correctness of
self-timed circuit designs that DO NOT have any conditions on the values
of go signals.

Our new method does not impose the aforementioned design
restrictions on loop-free circuits.

For termination proofs, we need a constraint on go signals guaranteeing
that delays are bounded.

We intend to follow a hierarchical approach to prove module-level
properties of iterative circuits of the following form:

Given an initial state of the module, the module’s final state meets
its specification after that module completes execution.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 23 / 26



Future Work

We are developing new proof techniques for partial correctness of
self-timed circuit designs that DO NOT have any conditions on the values
of go signals.

Our new method does not impose the aforementioned design
restrictions on loop-free circuits.

For termination proofs, we need a constraint on go signals guaranteeing
that delays are bounded.

We intend to follow a hierarchical approach to prove module-level
properties of iterative circuits of the following form:

Given an initial state of the module, the module’s final state meets
its specification after that module completes execution.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 23 / 26



Future Work

We are developing new proof techniques for partial correctness of
self-timed circuit designs that DO NOT have any conditions on the values
of go signals.

Our new method does not impose the aforementioned design
restrictions on loop-free circuits.

For termination proofs, we need a constraint on go signals guaranteeing
that delays are bounded.

We intend to follow a hierarchical approach to prove module-level
properties of iterative circuits of the following form:

Given an initial state of the module, the module’s final state meets
its specification after that module completes execution.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 23 / 26



Conclusions
We have presented a framework for modeling and verifying self-timed
circuits using the DE system.

Our goal is to develop a methodology that is capable of verifying the
functional correctness of self-timed circuit designs at large scale.

This work also provides a library for analyzing self-timed systems in
ACL2.

We model self-timed systems as networks of links communicating with
each other locally via joints, using the link-joint model introduced by
Roncken et al.

We model the non-determinism of event-ordering in self-timed circuits
by associating each joint with an external go signal.

Our key proof techniques are hierarchical reasoning, multi-step
decomposition reasoning, and induction.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 24 / 26



References

W. Hunt (2000)
The DE Language
Computer-Aided Reasoning: ACL2 Case Studies, Kluwer Academic Publishers
Norwell, MA, USA, 151 – 166.

M. Roncken, S. Gilla, H. Park, N. Jamadagni, C. Cowan, I. Sutherland (2015)
Naturalized Communication and Testing
ASYNC 2015, 77 – 84.

A. Slobodova, J. Davis, S. Swords, and W. Hunt (2011)
A Flexible Formal Verification Framework for Industrial Scale Validation
MEMOCODE 2011, 89 – 97.

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 25 / 26



Questions?

Chau et al. (UT Austin, PSU) Asynchronous Circuit Verification November 16, 2017 26 / 26


	Introduction
	The DE System
	Modeling and Verification Approach
	32-Bit Self-Timed Serial Adder Verification
	Future Work and Conclusions

