
Lecture Notes 26                           Undecidability   1 

Undecidabilty 
 
Read K & S 5.1, 5.3, & 5.4. 
Read Supplementary Materials: Recursively Enumerable Languages, Turing Machines, and Decidability. 
Do Homeworks 21 & 22. 

Church's Thesis 
(Church-Turing Thesis) 

 
An algorithm is a formal procedure that halts. 
 
The Thesis:  Anything that can be computed by any algorithm can be computed by a Turing machine. 
 
Another way to state it:  All "reasonable" formal models of computation are equivalent to the Turing machine. 
 
This isn't a formal statement, so we can't prove it.  But many different computational models have been proposed and they all turn 
out to be equivalent. 
 
Examples: 

�� unrestricted grammars 
�� lambda calculus 
�� cellular automata 
�� DNA computing 
�� quantum computing (?) 

 
 

The Unsolvability of the Halting Problem 
 
Suppose we could implement the decision procedure 

HALTS(M, x) 
M: string representing a Turing Machine 
x: string representing the input for M 
If M(x) halts then True 
           else False 

Then we could define 
 TROUBLE(x) 
  x: string 
  If HALTS(x, x) then loop forever 
                                                      else halt 
 
So now what happens if we invoke TROUBLE(“TROUBLE”), which invokes HALTS(“TROUBLE”, “TROUBLE”) 
 
If HALTS says that TROUBLE halts on itself then TROUBLE loops.  IF HALTS says that TROUBLE loops, then TROUBLE 
halts.  Either way, we reach a contradiction, so HALTS(M, x) cannot be made into a decision procedure. 
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Another View 
 
The Problem View: The halting problem is undecidable. 
 
The Language View: Let H = 
 {"M" "w" : TM M halts on input string w} 
H is recursively enumerable but not recursive. 
 
Why? 
 
H is recursively enumerable because it can be semidecided by U, the Universal Turing Machine. 
 
But H cannot be recursive.  If it were, then it would be decided by some TM MH.  But MH("M" "w") would have to be: 
 If M is not a syntactically valid TM, then False. 
                                                           else HALTS("M" "w") 
 
But we know cannot that HALTS cannot exist. 
 

If H were Recursive 
 
H = {"M" "w" : TM M halts on input string w} 
 
Theorem: If H were also recursive, then every recursively enumerable language would be recursive. 
 
Proof: Let L be any RE language.  Since L is RE, there exists a TM M that semidecides it. 
 
Suppose H is recursive and thus is decided by some TM O (oracle).   
 
We can build a TM M' from M that decides L: 
1. M' transforms its input tape from �❑w❑ to �❑"M""w"❑.   
2. M' invokes O on its tape and returns whatever answer O returns. 
 
So, if H were recursive, all RE languages would be. But it isn't. 

 
Undecidable Problems, Languages that Are Not Recursive, and Partial Functions 

 
The Problem View:  The halting problem is undecidable. 
 
The Language View:  Let H =  
 {"M" "w" : TM M halts on input string w} 
H is recursively enumerable but not recursive. 
 
The Functional View:  Let f (w) = M(w) 
 f is a partial function on Σ* 
 
 
 
 
 
 
   "M""w" pairs 
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 Other Undecidable Problems About Turing Machines 
 
• Given a Turing machine M, does M halt on the empty tape? 
• Given a Turing machine M, is there any string on which M halts? 
• Given a Turing machine M, does M halt on every input string? 
• Given two Turing machines M1 and M2, do they halt on the same input strings? 
• Given a Turing machine M, is the language that M semidecides regular?  Is it context-free?  Is it recursive? 
 

Post Correspondence Problem 
 
Consider two lists of strings over some alphabet Σ.  The lists must be finite and of equal length. 
 
A = x1, x2, x3, …, xn 
B = y1, y2, y3, …, yn 
 
Question: Does there exist some finite sequence of integers that can be viewed as indexes of A and B such that, when elements of 
A are selected as specified and concatenated together, we get the same string we get when elements of B are selected also as 
specified? 
 
For example, if we assert that 1, 3, 4 is such a sequence, we’re asserting that x1x3x4 = y1y3y4 
 
Any problem of this form is an instance of the Post Correspondence Problem. 
 
Is the Post Correspondence Problem decidable? 

Post Correspondence Problem Examples 
 

i A B 
1 1 111 
2 10111 10 
3 10 0 

 
 
 

i A B 
1 10 101 
2 011 11 
3 101 011 

 
Some Languages Aren't Even Recursively Enumerable 

 
A pragmatically non RE language:  L1={ (i, j) : i, j are integers where the low order five digits of i are a street address number 
and j is the number of houses with that number on which it rained on November 13, 1946 }  
 
An analytically non RE language:  L2={x : x = "M" of a Turing machine M and M("M") does not halt} 
 
Why isn't L2 RE?  Suppose it were.  Then there would be a TM M* that semidecides L2.  Is "M*" in L2?   
• If it is, then M*("M*") halts (by the definition of M* as a semideciding machine for L2) 
• But, by the definition of L2, if "M*" ∈  L2, then M*("M*") does not halt. 
Contradiction.   So L2 is not RE. 
 

Another Non RE Language 
 
H 
 
Why not? 
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Reduction 
 
Let L1, L2 ⊆  Σ* be languages.  A reduction from L1 to L2 is a recursive function τ: Σ* → Σ* such that  
  x ∈  L1 iff τ(x) ∈  L2. 
Example:   
  L1 = {a, b : a,b ∈  N : b = a + 1} 
     
    �  τ = Succ 
 
    �  a, b becomes     Succ(a), b 
 
  L2 = {a, b : a,b ∈  N : a = b} 
   
If there is a Turing machine M2 to decide L2, then I can build a Turing machine M1 to decide L1: 
1. Take the input and apply Succ to the first number. 
2. Invoke M2 on the result. 
3. Return whatever answer M2 returns. 
 

Reductions and Recursive Languages 
 
Theorem:  If there is a reduction from L1 to L2 and L2 is recursive, then L1 is recursive. 
 

ττττ y ∈∈∈∈  L2?

M1

yes yes

  x

y =
τ(x)

M2

x ∈∈∈∈  L1?

no no
 

 
Theorem:  If there is a reduction from L1 to L2 and L1 is not recursive, then L2 is not recursive. 
 
 

Reductions and RE Languages 
 
Theorem:  If there is a reduction from L1 to L2 and L2 is RE, then L1 is RE. 

ττττ y ∈∈∈∈  L2?

M1

halt halt

  x

y =
τ(x)

M2

x ∈∈∈∈  L1?

 
 
Theorem:  If there is a reduction from L1 to L2 and L1 is not RE, then L2 is not RE. 
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Can it be Decided if M Halts on the Empty Tape? 
 
This is equivalent to, "Is the language L2 = {"M"  : Turing machine M halts on the empty tape}  recursive?" 
 
  L1  = H =  {s = "M" "w" : Turing machine M halts on input string w} 
 
    �    τ  
 
(?M2)   L2 =   {s = "M" : Turing machine M halts on the empty tape} 
 
Let τ be the function that, from "M" and "w", constructs "M*", which operates as follows on an empty input tape: 

1.  Write w on the tape. 
2.  Operate as M would have. 

 
If M2 exists, then M1 =  M2(Mτ(s)) decides L1. 
 

A Formal Reduction Proof 
 
Prove that L2 = {�M�: Turing machine M halts on the empty tape} is not recursive. 
 
Proof that L2 is not recursive via a reduction from H = {�M, w�: Turing machine M halts on input string w}, a non-recursive 
language.  Suppose that there exists a TM, M2 that decides L2.  Construct a machine to decide H as M1(�M, w�) = M2(τ(�M, w�)).  
The τ function creates from �M� and �w� a new machine M*.  M* ignores its input and runs M on w, halting exactly when M halts 
on w.  

• �M, w� ∈  H � M halts on w � M* always halts �ε ∈  L(M*) � �M*� ∈  L2 � M2 accepts � M1 accepts. 
• �M, w� ∉  H � M does not halt on w � ε ∉  L(M*) � �M*� ∉  L2 � M2 rejects � M1 rejects. 

 
Thus, if there is a machine M2 that decides L2, we could use it to build a machine that decides H.  Contradiction.  ∴ L2 is not 
recursive. 
 

Important Elements in a Reduction Proof 
 

• A clear declaration of the reduction “from” and “to” languages and what you’re trying to prove with the reduction. 
• A description of how a machine is being constructed for the “from” language based on an assumed machine for the “to” 

language and a recursive τ function. 
• A description of the τ function’s inputs and outputs.  If τ is doing anything nontrivial, it is a good idea to argue that it is 

recursive. 
• Note that machine diagrams are not necessary or even sufficient in these proofs.  Use them as thought devices, where 

needed. 
• Run through the logic that demonstrates how the “from” language is being decided by your reduction.  You must do both 

accepting and rejecting cases. 
• Declare that the reduction proves that your “to” language is not recursive. 

 
The Most Common Mistake:  Doing the Reduction Backwards 

 
The right way to use reduction to show that L2 is not recursive:
1. Given that L1 is not recursive, 
2. Reduce L1 to L2, i.e. show how to solve L1 (the known one) in terms of L2 (the unknown one) 

L1 
 
L2

Example: If there exists a machine M2 that solves L2, the problem of deciding whether a Turing machine halts on a blank tape, 
then we could do H (deciding whether M halts on w) as follows: 
1. Create M* from M such that M*, given a blank tape, first writes w on its tape, then simulates the behavior of M. 
2. Return M2("M*"). 
 
Doing it wrong by reducing L2 (the unknown one to L1):  If there exists a machine M1 that solves H, then we could build a 
machine that solves L2 as follows: 
1. Return (M1("M", "")). 
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Why Backwards Doesn't Work 
 
Suppose that we have proved that the following problem L1 is unsolvable:  Determine the number of days that have elapsed since 
the beginning of the universe. 
 
Now consider the following problem L2:  Determine the number of days that had elapsed between the beginning of the universe 
and the assassination of Abraham Lincoln. 
 
Reduce L1 to L2: 
L1 = L2 + (now - 4/9/1865) 
 
 

L1 
 
L2 

Reduce L2 to L1: 
L2 = L1 - (now - 4/9/1865) 

L2 
 
L1 

 
Why Backwards Doesn't Work, Continued 

 
L1 = days since beginning of universe 
L2 = elapsed days between the beginning of the universe and the assassination of Abraham Lincoln. 
L3 = days between  the assassination of Abraham Lincoln and now. 
 
Considering L2: 
Reduce L1 to L2: 
L1 = L2 + (now - 4/9/1865) 
 

L1 
 
L2 

Reduce L2 to L1: 
L2 = L1 - (now - 4/9/1865) 

L2 
 
L1 

 
Considering L3: 
Reduce L1 to L3: 
L1 = oops 
 

 
L1 
 
L3 

Reduce L3 to L1: 
L3 = L1 - 365 - (now - 4/9/1866) 

L3 
 
L1 

 
Is There Any String on Which M Halts? 

 
  L1  = H =  {s = "M" "w" : Turing machine M halts on input string w} 
 
     �    τ  
 
(?M2)   L2 =   {s = "M" : there exists a string on which Turing machine M halts} 
 
Let τ be the function that, from "M" and "w", constructs "M*", which operates as follows: 

1.  M* examines its input tape.   
2.  If it is equal to w, then it simulates M. 
3.  If not, it loops. 

 
Clearly the only input on which M* has a chance of halting is w, which it does iff M would halt on w. 
 
If M2 exists, then M1 = M2(Mτ(s)) decides L1. 
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Does M Halt on All Inputs? 
 
  L1  =   {s = "M"  : Turing machine M halts on the empty tape} 
 
           �    τ  
 
(?M2)   L2 =   {s = "M" :  Turing machine M halts on all inputs} 
 
Let τ be the function that, from "M", constructs "M*", which operates as follows: 

1.  Erase the input tape. 
2.  Simulate M. 

 
Clearly M* either halts on all inputs or on none, since it ignores its input. 
 
If M2 exists, then M1 = M2(Mτ(s)) decides L1. 
 

Rice's Theorem 
 
Theorem: No nontrivial property of the recursively enumerable languages is decidable. 
 
Alternate statement:  Let P: 2Σ*→{true, false} be a nontrivial property of the recursively enumerable languages.   The language 
{“M”: P(L(M)) = True} is not recursive. 
  
By "nontrivial" we mean a property that is not simply true for all languages or false for all languages. 
 
Examples: 
• L contains only even length strings. 
• L contains an odd number of strings. 
• L contains all strings that start with "a". 
• L is infinite. 
• L is regular. 
 
Note: 
Rice's theorem applies to languages, not machines.  So, for example, the following properties of machines are decidable: 

• M contains an even number of states 
• M has an odd number of symbols in its tape alphabet 

Of course, we need a way to define a language.  We'll use machines to do that, but the properties we'll deal with are properties of 
L(M), not of M itself. 

 
Proof of Rice's Theorem 

 
Proof:  Let P be any nontrivial property of the RE languages. 
 L1  = H =  {s = "M" "w" : Turing machine M halts on input string w} 
 
     �    τ  
 
(?M2)  L2 =   {s = "M" : P(L(M)) = true} 
 
Either P(∅ ) = true or P(∅ ) = false.  Assume it is false (a matching proof exists if it is true).  Since P is nontrivial, there is some 
language LP such that P(LP) is true.  Let MP be some Turing machine that semidecides LP. 
 
Let τ construct "M*", which operates as follows: 
1. Copy its input y to another track for later. 
2. Write w on its input tape and execute M on w. 
3. If M halts, put y back on the tape and execute MP. 
4. If MP halts on y, accept. 
 
Claim: If M2 exists, then M1 = M2(Mτ(s)) decides L1. 
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Why? 
 
Two cases to consider: 
• "M" "w" ∈  H � M halts on w � M* will halt on all strings that are accepted by MP � L(M*) = L(MP) = LP � P(L(M*)) = 

P(LP) = true � M2 decides P, so M2 accepts "M*" � M1 accepts. 
 
• "M" "w" ∉  H � M doesn’t halt on w � M* will halt on nothing � L(M*) = ∅  � P(L(M*)) = P(∅ ) = false �  M2 decides 

P, so M2 rejects "M*" � M1 rejects. 
 

Using Rice’s Theorem 
 
Theorem: No nontrivial property of the recursively enumerable languages is decidable. 
 
To use Rice’s Theorem to show that a language L is not recursive we must: 
 
• Specify a language property, P(L) 
 
• Show that the domain of P is the set of recursively enumerable languages. 
 
• Show that P is nontrivial: 

��P is true of at least one language 
��P is false of at least one language 

 
Using Rice’s Theorem: An Example 

 
L  = {s = "M" : there exists a string on which Turing machine M halts}. 
 = {s = "M" : L(M) ≠ ∅  } 
 
• Specify a language property, P(L): 

P(L) = True iff L ≠ ∅  
 
• Show that the domain of P is the set of recursively enumerable languages. 

  The domain of P is the set of languages semidecided by some TM.  This is exactly the set of RE languages. 
 
• Show that P is nontrivial: 
 P is true of at least one language:  P({ε}) = True 
 P is false of at least one language:  P(∅ ) = False 

 
Inappropriate Uses of Rice’s Theorem 

 
Example 1: 
L  = {s = "M" : M writes a 1 within three moves}. 
 
• Specify a language property, P(L) 
 P(M?) = True if M writes a 1 within three moves,  
 False otherwise 
• Show that the domain of P is the set of recursively enumerable languages. 
 ??? The domain of P is the set of all TMs, not their languages 
 
Example 2: 
L  = {s = "M1" "M2": L(M1) = L(M2)}. 
 
• Specify a language property. P(L) 

P(M1?, M2?) = True if L(M1) = L(M2)   
 False otherwise 
• Show that the domain of P is the set of recursively enumerable languages. 
 ??? The domain of P is RE × RE 
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Given a Turing Machine M, is L(M) Regular (or Context Free or Recursive)? 
 
Is this problem decidable? 
 
No, by Rice’s Theorem, since being regular (or context free or recursive) is a nontrivial property of the recursively enumerable 
languages. 
 
We can also show this directly (via the same technique we used to prove the more general claim contained in Rice’s Theorem): 
 
 

Given a Turing Machine M, is L(M) Regular (or Context Free or Recursive)? 
 
 L1 = H = {s = "M" "w" : Turing machine M  halts on input string w} 
 
     �   τ  
(?M2)  L2 =  {s = "M" :  L(M) is regular} 
 
Let τ be the function that, from "M" and "w", constructs "M*", whose own input is a string 
 t = "M*" "w*" 
M*("M*" "w*") operates as follows: 

1. Copy its input to another track for later. 
2. Write w on its input tape and execute M on w.   
3. If M halts, invoke U on "M*" "w*". 
4. If U halts, halt and accept. 

If M2 exists, then ¬M2(M*(s)) decides L1 (H). 
 
 
Why?  
If M does not halt on w, then M* accepts ∅  (which is regular). 
If M does halt on w, then M* accepts H (which is not regular). 
 

Undecidable Problems About Unrestricted Grammars 
 
• Given a grammar G and a string w, is w ∈  L(G)? 
• Given a grammar G, is ε ∈  L(G)? 
• Given two grammars G1 and G2, is L(G1) = L(G2)? 
• Given a grammar G, is L(G) = ∅ ? 
 

Given a Grammar G and a String w, Is w ∈∈∈∈  L(G)? 
 
  L1  = H =  {s = "M" "w" : Turing machine M halts on input string w} 
 
     �    τ  
 
(?M2)   L2 =   {s = "G" "w" : w ∈  L(G)} 
 
Let τ be the construction that builds a grammar G for the language L that is semidecided by M.  Thus 
 w ∈  L(G) iff M(w) halts. 
 
Then  τ("M" "w") = "G" "w" 
 
If M2 exists, then M1 = M2(Mτ(s)) decides L1. 
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Undecidable Problems About Context-Free Grammars 
 
• Given a context-free grammar G, is L(G) = Σ*? 
• Given two context-free grammars G1 and G2, is L(G1) = L(G2)? 
• Given two context-free grammars G1 and G2, is L(G1) ∩ L(G2) = ∅ ? 
• Is context-free grammar, G ambiguous? 
• Given two pushdown automata M1 and M2, do they accept precisely the same language? 
• Given a pushdown automaton M, find an equivalent pushdown automaton with as few states as possible. 
 

Given Two Context-Free Grammars G1 and G2, Is L(G1) = L(G2)? 
 
  L1 = {s = "G" a CFG G and L(G) = Σ*} 
 
     �    τ  
 
(?M2)   L2 =  {s = "G1" "G2" : G1 and G2 are CFGs and L(G1) = L(G2)} 
 
Let τ append the description of a context free grammar GΣ* that generates Σ*. 
 
Then, τ("G") = "G" "GΣ*" 
 
If M2 exists, then M1 = M2(Mτ(s)) decides L1. 
 

Non-RE Languages 
 

There are an uncountable number of non-RE languages, but only a countably infinite number of TM’s (hence RE languages).  
∴ The class of non-RE languages is much bigger than that of RE languages! 
 
Intuition:  Non-RE languages usually involve either infinite search or knowing a TM will infinite loop to accept a string. 
 

{�M�: M is a TM that does not halt on the empty tape} 
{�M�: M is a TM and L(M) = Σ*} 
{�M�: M is a TM and there does not exist a string on which M halts} 

 
 

Proving Languages are not RE 
�� Diagonalization 
�� Complement RE, not recursive 
�� Reduction from a non-RE language 
�� Rice’s theorem for non-RE languages  (not covered) 
 
 

Diagonalization 
 
L={�M�: M is a TM and M(�M�) does not halt} is not RE 
 
Suppose L is RE.  There is a TM M* that semidecides L.  Is �M*� in L?   
• If it is, then M*(�M*�) halts (by the definition of M* as a semideciding machine for L) 
• But, by the definition of L, if �M*� ∈  L, then M*(�M*�) does not halt. 
Contradiction.  So L is not RE. 
 
(This is a very “bare-bones” diagonalization proof.) 
 
Diagonalization can only be easily applied to a few non-RE languages. 
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Complement of an RE, but not Recursive Language 
 

Example:  H = {�M, w�: M does not accept w} 
Consider H = {�M, w�: M is a TM that accepts w}: 

�� H is RE—it is semidecided by U, the Universal Turing Machine. 
�� H is not recursive—it is equivalent to the halting problem, which is undecidable. 

From the theorem, H is not RE. 
 

Reductions and RE Languages 
 
Theorem:  If there is a reduction from L1 to L2 and L2 is RE, then L1 is RE. 

ττττ y ∈∈∈∈  L2?

M1

halt halt

  x

y =
τ(x)

M2

x ∈∈∈∈  L1?

 
 
Theorem:  If there is a reduction from L1 to L2 and L1 is not RE, then L2 is not RE. 
 

Reduction from a known non-RE Language 
 
Using a reduction from a non-RE language: 
 
  L1 = H = {�M, w�: Turing machine M does not halt on input string w} 
 
     �   τ  
 

(?M2)  L2 = {�M�: there does not exist a string on which Turing machine M halts} 
 
Let τ be the function that, from �M� and �w�, constructs �M*�, which operates as follows: 
1.  Erase the input tape (M* ignores its input).   
2.  Write w on the tape 
3.  Run M on w. 
 

ττττ M2

M1

halt halt

�M, w�

�M*�

 
 
 

M*

Mw halt haltx

 
 
 
�M, w� ∈  H � M does not halt on w � M* does not halt on any input � M* halts on nothing � M2 accepts (halts). 
�M, w� ∉  H � M halts on w � M* halts on everything � M2 loops. 
 
If M2 exists, then M1(�M, w�) = M2(Mτ(�M, w�)) and M1 semidecides L1.  Contradiction.  L1 is not RE.  ∴  L2 is not RE. 
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Language 
Summary 

 
 
 
         IN               OUT 
 
Semidecidable     Recursively 
Enumerable     Enumerable 
Unrestricted grammar 
 
 
 
Decision procedure      Recursive       Diagonalization 
Lexicicographically enumerable           Reduction 
Complement is recursively enumer. 
 
 
 
CF grammar          Context Free         Pumping 
PDA                Closure 
Closure 
 
 
 
Regular expression       Regular         Pumping 
FSM                Closure 
Closure 
 


