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Context-Free Languages and Pushdown Automata 

1 Context-Free Grammars 
Suppose we want to generate a set of strings (a language) L over an alphabet Σ.  How shall we specify our language?  One 
very useful way is to write a grammar for L.  A grammar is composed of a set of rules.  Each rule may make use of the 
elements of Σ (which we'll call the terminal alphabet or terminal vocabulary), as well as an additional alphabet, the non-
terminal alphabet or vocabulary.  To distinguish between the terminal alphabet Σ and the non-terminal alphabet, we will use 
lower-case letters: a, b, c, etc. for the terminal alphabet and upper-case letters: A, B, C, S, etc. for the non-terminal alphabet.  
(But this is just a convention.  Any character can be in either alphabet.  The only requirement is that the two alphabets be 
disjoint.) 
 
A grammar generates strings in a language using rules, which are instructions, or better, licenses, to replace some non-
terminal symbol by some string. Typical rules look like this: 
 S → ASa, B → aB, A → SaSSbB.   
In context-free grammars, rules have a single non-terminal symbol (upper-case letter) on the left, and any string of terminal 
and/or non-terminal symbols on the right.  So even things like A → A and B → ε are perfectly good context-free grammar 
rules.  What's not allowed is something with more than one symbol to the left of the arrow: AB → a, or a single terminal 
symbol: a → Ba, or no symbols at all on the left: ε → Aab.   The idea is that each rule allows the replacement of the symbol 
on its left by the string on its right.  We call these grammars context free because every rule has just a single nonterminal on 
its left.  We can’t add any contextual restrictions (such as aAa).  So each replacement is done independently of all the others. 
 
To generate strings we start with a designated start symbol often S (for "sentence"), and apply the rules as many times as we 
please whenever any one is applicable.  To get this process going, there will clearly have to be at least one rule in the 
grammar with the start symbol on the left-hand side. (If there isn't, then the grammar won't generate any strings and will 
therefore generate ∅ , the empty language.)  Suppose, however, that the start symbol is S and the grammar contains both the 
rules S → AB and S → aBaa.  We may apply either one, producing AB as the "working string" in the first case and aBaa in 
the second. 
 
Next we need to look for rules that allow further rewriting of our working string.  In the first case (where the working string is 
AB), we want rules with either A or B on the left (any non-terminal symbol of the working string may be rewritten by rule at 
any time); in the latter case, we will need a rule rewriting B.  If, for example, there is a rule B → aBb, then our first working 
string could be rewritten as AaBb (the A stays, of course, awaiting its chance to be replaced), and the second would become 
aaBbaa. 
 
How long does this process continue?  It will necessarily stop when the working string has no symbols that can be replaced. 
This would happen if either: 
(1) the working string consists entirely of terminal symbols (including, as a special case, when the working string is ε, the 

empty string), or 
(2) there are non-terminal symbols in the working string but none appears on the left-hand side of any rule in the grammar 

(e.g., if the working string were AaBb, but no rule had A or B on the left). 
 
In the first case, but not the second, we say that the working string is generated by the grammar.  Thus, a grammar generates, 
in the technical sense, only strings over the terminal alphabet, i.e., strings in Σ*.  In the second case, we have a blocked or 
non-terminated derivation but no generated string. 
 
It is also possible that in a particular case neither (1) nor (2) is achieved.  Suppose, for example, the grammar contained only 
the rules S → Ba and B → bB, with S the start symbol.  Then using the symbol � to connect the steps in the rewriting 
process, all derivations proceed in the following way: 
 
S � Ba � bBa � bbBa � bbbBa � bbbbBa � ... 
 
The working string is always rewriteable (in only one way, as it happens), and so this grammar would not produce any 
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terminated derivations, let alone any terminated derivations consisting entirely of terminal symbols (i.e., generated strings).  
Thus this grammar generates the language ∅ . 
 
Now let us look at our definition of a context-free grammar in a somewhat more formal way.  A context-free grammar (CFG) 
G consists of four things: 
 
(1) V, a finite set (the total alphabet or vocabulary), which contains two subsets, Σ (the terminal symbols, i.e., the ones that 
will occur in strings of the language) and V - Σ (the nonterminal symbols, which are just working symbols within the 
grammar). 
 
(2) Σ, a finite set (the terminal alphabet or terminal vocabulary). 
 
(3) R, a finite subset of (V - Σ) x V*, the set of rules.  Although each rule is an ordered pair (nonterminal, string), we’ll 
generally use the notion nonterminal → string to describe our rules. 
 
(4) S, the start symbol or initial symbol, which can be any member of V - Σ. 
 
For example, suppose G = (V, Σ, R, S), where 
 
 V = {S, A, B, a, b}, Σ = {a, b}, and R = {S → AB, A → aAa, A → a, B → Bb, B → b} 
 
Then G generates the string aaabb by the following derivation: 
 
(1) S � AB � aAaB � aAaBb � aaaBb � aaabb 
 
Formally, given a grammar G, the two-place relation on strings called "derives in one step" and denoted by � (or by �G if 
we want to remind ourselves that the relation is relative to G) is defined as follows: 
 
 (u, v) ∈  � iff ∃  strings w, x, y ∈  V* and symbol A ∈  (V - Σ) such that u = xAy, v = xwy, and (A → w) ∈  R. 
 
In words, two strings stand in the "derives in one step" relation for a given grammar just in case the second can be produced 
from the first by rewriting a single non-terminal symbol in a way allowed by the rules of the grammar. 
 
(u, v) ∈  � is commonly written in infix notation, thus: u � v. 
  
This bears an obvious relation to the "yields in one step" relation defined on configurations of a finite automaton. Recall that 
there we defined the "yields in zero or more steps" relation by taking the reflexive transitive closure of the “yields in one step” 
relation.  We’ll do that again here, giving us "yields in zero or more steps" denoted by �* (or �G*, to be explicit), which 
holds of two strings iff the second can be derived from the first by finitely many successive applications of rules of the 
grammar.  In the example grammar above: 
 
• S � AB, and therefore also S �* AB. 
• S �* aAaB, but not S � aAaB (since aAaB cannot be derived from S in one step). 
• A � aAa and A :�* aAa (This is true even though A itself is not derivable from S. If this is not clear, read the 

definitions of � and �* again carefully.) 
• S �* S (taking zero rule applications), but not S � S (although the second would be true if the grammar happened to 

contain the rule S → S, a perfectly legitimate although rather useless rule).  Note carefully the difference between →, the 
connective used in grammar rules, versus � and �*, indicators that one string can be derived from another by means of 
the rules. 

 
Formally, given a grammar G, we define a derivation to be any sequence of strings 
 
 w0 � w1 � … � wn 
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In other words, a derivation is a finite sequence of strings such that each string, except the first, is derivable in one step from 
the immediately preceding string by the rules of the grammar.  We can also refer to it as a derivation of wn  from w0.  Such a 
derivation is said to be of length n, or to be a derivation of n steps. (1) above is a 5-step derivation of aaabb from S according 
to the given grammar G. 
 
Similarly, A � aAa is a one-step derivation of aAa from A by the grammar G.  (Note that derivations do not have to begin 
with S, nor indeed do they have to begin with a working string derivable from S.  Thus, AA � aAaA � aAaa is also a well-
formed derivation according to G, and so we are entitled to write AA �* aAaa). 
 
The strings generated by a grammar G are then just those that are (i) derivable from the start symbol, and (ii) composed 
entirely of terminal symbols.  That is, G = (V, Σ, R, S) generates w iff w ∈  Σ* and S �* w.  Thus, derivation (l) above shows 
that the string aaabb is generated by G.  The string aAa, however, is not generated by G, even though it is derivable from S, 
because it contains a non-terminal symbol.  It may be a little harder to see that the string bba is not generated by G.  One 
would have to convince oneself that there exists no derivation beginning with S and ending in bba according to the rules of G.  
(Question: Is this always determinable in general, given any arbitrary context-free grammar G and string w?  In other words, 
can one always tell whether or not a given w is "grammatical" according to G?  We'll find out the answer to this later.) 
 
The language generated by a grammar G is exactly the set of all strings generated--no more and no less.  The same remarks 
apply here as in the case of regular languages: a grammar generates a language iff every string in the language is generated by 
the grammar and no strings outside the language are generated. 
 
And now our final definition (for this section).  A language L is context free if and only if there exists a context-free grammar 
that generates it. 
 
Our example grammar happens to generate the language a(aa)*bb*.  To prove this formally would require a somewhat 
involved argument about the nature of derivations allowed by the rules of G, and such a proof would not necessarily be easily 
extended to other grammars. In other words, if you want to prove that a given grammar generates a particular language, you 
will in general have to make an argument which is rather specific to the rules of the grammar and show that it generates all the 
strings of the particular language and only those.  To prove that a grammar generates a particular string, on the other hand, it 
suffices to exhibit a derivation from the start symbol terminating in that string.  (Question: if such a derivation exists, are we 
guaranteed that we will be able to find it?) To prove that a grammar does not generate a particular string, we must show that 
there exists no derivation that begins with the start symbol and terminates in that string. The analogous question arises here: 
when can we be sure that our search for such a derivation is fruitless and be called off?  (We will return to these questions 
later.) 

2 Designing Context-Free Grammars 
To design a CFG for a language, a helpful heuristic is to imagine generating the strings from the outside in to the middle. The 
nonterminal that is currently "at work" should be thought of as being at the middle of the string when you are building a string 
where two parts are interdependent. Eventually the "balancing" regions are done being generated, and the nonterminal that's 
been doing the work will give way to a different nonterminal (if there's more stuff to be done between the regions just 
produced) or to some terminal string (often ε) otherwise. If parts of a string have nothing to do with each other, do not try to 
produce them both with one rule. Try to identify the regions of the string that must be generated in parallel due to a 
correlation between them: they must be generated by the same nonterminal(s). Regions that have no relation between each 
other can be generated by different nonterminals (and usually should be.) 
 
Here is a series of examples building in complexity. For each one you should generate a few sample strings and build parse 
trees to get an intuition about what is going on.  One notational convention that we’ll use to simplify writing language 
descriptions:  If a description makes use of a variable (e.g., an), there’s an implied statement that the description holds for all 
integer values ≥ 0. 
 
Example 1: The canonical example of a context-free language is L = anbn, which is generated by the grammar  
 G = ({S, a, b}, {a, b}, R, S) where R = {S → aSb, S → ε}.   
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Each time an a is generated, a corresponding b is generated. They are created in parallel. The first a, b pair created is the 
outermost one. The nonterminal S is always between the two regions of a's and b's.  Clearly any string  anbn ∈  L is produced 
by this grammar, since 

S aSb a Sb a bn n

n steps

n n
� � � ��

� ���� ����
, 

Therefore L ⊆  L(G). 
 
We must also check that no other strings not in anbn are produced by the grammar, i.e., we must confirm that L(G) ⊆  L.  
Usually this is easy to see intuitively, though you can prove it by induction, typically on the length of a derivation. For 
illustration, we'll prove L(G) ⊆  L for this example, though in general you won't need to do this in this class. 
 
Claim: ∀  x, x ∈  L(G) � x ∈  L.  Proof by induction on the length of the derivation of G producing x. 
Base case: Derivation has length 1. Then the derivation must be S � ε, and ε ∈  L. 
Induction step: Assume all derivations of length k produce a string in L, and show the claim holds for derivations of length k 
+ 1. A derivation of length k + 1 looks like: 

S aSb axb
k steps

� � ��
� ��� ���

 

for some terminal string x such that S �* x.  By the induction hypothesis, we know that x ∈  L (since x is produced by a 
derivation of length k), and so x = anbn for some n (by definition of L).  Therefore, the string axb produced by the length k + 1 
derivation is axb = aanbnb = an+1bn+1 ∈  L. Therefore by induction, we have proved L(G) ⊆  L.  
 
Example 2: L = {xy: |x| = |y| and x ∈  {a, b}* and y ∈  {c, d}*}.  (E.g., ε, ac, ad, bc, bd, abaccc ∈  L. )  Here again we will 
want to match a's and b's against c's and d's in parallel.  We could use two strategies.  In the first, 
 G = ({ , , , , { , , , , )S a b c d}, a b c d}, R S  where R = {S → aSc, S → aSd, S → bSc, S → bSd, S → ε}. 
This explicitly enumerates all possible pairings of a, b symbols with c, d symbols.  Clearly if the number of symbols allowed 
in the first and second halves of the strings is n, the number of rules with this method is n2 + 1, which would be inefficient for 
larger alphabets.  Another approach is: 
 G =  ({S, L, R, a, b, c, d}, {a, b, c, d}, R, S) where R = {S → LSR, S → ε, L → a, L → b, R → c, R → d}. 
(Note that L and R are nonterminals here.)  Now the number of rules is 2n+2. 
 
Example 3: L = {wwR : w ∈  {a, b}*}.  Any string in L will have matching pairs of symbols.  So it is clear that the CFG G = 
({S, a, b}, {a, b}, R, S}, where R = {S → aSa, S → bSb, S → ε} generates L, because it produces matching symbols in 
parallel.  How can we prove L(G) = L?  To do half of this and prove that L ⊆  L(G) (i.e, every element of L is generated by 
G), we note that any string x ∈  L must either be ε (which is generated by G (since S � ε )), or it must be of the form awa or 
bwb for some w ∈  L.  This suggests an induction proof on strings: 
 
Claim: ∀ x, x ∈  L � x ∈  L(G).  Proof by induction on the length of x. 
Base case: ε ∈  L and ε ∈  L(G). 
Induction step: We must show that if the claim holds for all strings of length k, it holds for all strings of length ≥ k+2  (We 
use k+2 here rather than the more usual k+1 because, in this case, all strings in L have even length.  Thus if a string in L has 
length k, there are no strings in L of length k +1.).  If |x| = k+2 and x ∈  L, then x = awa or x = bwb for some w ∈  L.  |w| = k, 
so, by the induction hypothesis, w ∈  L(G).  Therefore S �* w.  So either S � aSa �* awa, and x ∈  L(G), or S � bSb �* 
bwb, and x ∈  L(G). 
 
Conversely, to prove that L(G) ⊆  L, i.e., that G doesn't generate any bad strings, we would use an induction on the length of a 
derivation. 
Claim: ∀ x, x ∈  L(G) � x ∈  L. Proof by induction on length of derivation of x.  
Base case: length 1. S � ε and ε ∈  L. 
Induction step: Assume the claim is true for derivations of length k, and show the claim holds for derivations of length k+1. A 
derivation of length k + 1 looks like: 
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S aSa awa
k steps

� � ��
� ��� ���

 

or like 
S bSb bwb

k steps

� � ��
� ��� ���

 

for some terminal string w such that S �* w.  By the induction hypothesis, we know that w ∈  L (since w is produced by a 
derivation of length k), and so x = awa is also in L, by the definition of L. (Similarly for the second class of derivations that 
begin with the rule S → bSb.)  
 
As our example languages get more complex, it becomes harder and harder to write detailed proofs of the correctness of our 
grammars and we will typically not try to do so. 
 
Example 4: L = {anb2n}. You should recognize that b2n = (bb)n, and so this is just like the first example except that instead of 
matching a and b, we will match a and bb.  So we want  
 G = ({S, a, b}, {a, b}, R, S} where R = {S → aSbb, S → ε}. 
 
If you wanted, you could use an auxiliary nonterminal, e.g.,  
 G = ({S, B, a, b}, {a, b}, R, S} where R = {S → aSB, S → ε, B → bb}, but that is just cluttering things up. 
 
Example 5: L = {anbncm}.  Here, the cm portion of any string in L is completely independent of the anbn portion, so we should 
generate the two portions separately and concatenate them together. A solution is  
 G = ({S, N, C, a, b, c}, {a, b, c}, R, S} where R = {S → NC, N → aNb, N → ε, C → cC, C → ε}.  
This independence buys us freedom: producing the c's to the right is completely independent of making the matching anbn, and 
so could be done in any manner, e.g., alternate rules like 

C → CC, C → c, C → ε 
would also work fine. Thinking modularly and breaking the problem into more manageable subproblems is very helpful for 
designing CFG's. 
 
Example 6: L = {anbmcn}. Here, the bm is independent of the matching an…cn.  But it cannot be generated "off to the side." It 
must be done in the middle, when we are done producing a and c pairs. Once we start producing the b's, there should be no 
more a, c pairs made, so a second nonterminal is needed.  Thus we have 
 G = ({S, B, a, b, c}, {a, b, c}, R, S} where R = {S → ε, S → aSc, S → B, B → bB, B → ε}.  
We need the rule S → ε.  We don’t need it to end the recursion on S.  We do that with S → B.  And we have B → ε.  But if n 
= 0, then we need S → ε so we don’t generate any a…c pairs. 
 
Example 7: L = a*b*.  The numbers of a's and b's are independent, so there is no reason to use any rules like S → aSb which 
create an artificial correspondence. We can independently produce a's and b's, using  
 G = ({S, A, B, a, b}, {a, b}, R, S} where R = {S → AB, A → aA, A → ε, B → bB, B → ε} 
But notice that this language is not just context free.  It is also regular.  So we expect to be able to write a regular grammar  
(recall the additional restrictions that apply to rules in a regular grammar) for it.  Such a grammar will  produce a's, and then 
produce b's.  Thus we could write 
 G = ({S, B, a, b}, {a, b}, R, S} where R = {S → ε, S → aS, S → bB, B → bB, B → ε}.  
 
Example 8: L = {ambn: m ≤ n}. There are several ways to approach this one.  One thing we could do is to generate a's and b's 
in parallel, and also freely put in extra b's.  This intuition yields   
 G = ({S, a, b}, {a, b}, R, S} where R = {S → aSb, S → Sb, S → ε}. 
Intuitively, this CFG lets us put in any excess b's at any time in the derivation of a string in L.  Notice that to keep the S 
between the two regions of a's and b's, we must use the rule S → Sb; replacing that rule with S→bS would be incorrect, 
producing bad strings (allowing extra b's to be intermixed with the a's).   
 
Another way to approach this problem is to realize that {ambn : m ≤ n}= {ambm+k : k ≥ 0} = {ambkbm: k ≥ 0}.  Therefore, we 
can produce a's and b's in parallel, then when we're done, produce some more b's.  So a solution is  
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 G = ({S, B, a, b}, {a, b}, R, S} where R = {S → ε, S → aSb, S → B, B → bB, B → ε}. 
Intuitively, this CFG produces the matching a, b pairs, then any extra b's are generated in the middle. Note that this strategy 
requires two nonterminals since there are two phases in the derivation using this strategy.   
 
Since {ambn : m ≤ n}= {ambkbm: k ≥ 0}= {ambmbk: k ≥ 0}, there is a third strategy: generate the extra b's to the right of the 
balanced ambm string.  Again the generation of the extra b's is now separated from the generation of the matching portion, so 
two distinct nonterminals will be needed.  In addition, since the two parts are concatenated rather than imbedded, we'll need 
another nonterminal to produce that concatenation.  So we've got  
 G = ({S, M, B, a, b}, {a, b}, R, S} where R = {S → MB, M → aMb, M → ε, B → bB, B → ε}. 
 
Example 9: L a b a b kn n n nk k= ≥{ : }1 1 0� . E.g., ε, abab, aabbaaabbbabab ∈  L.  Note that L = {anbn}* which gives a clue 
how to do this.  We know how to produce matching strings anbn, and we know how to do concatenation of strings. So a 
solution is  
 G = ({S, M, a, b}, {a, b}, R, S} where R = {S → MS, S → ε, M → aMb, M → ε}. 
Any string  x a b a b Ln n n nk k= ∈1 1

� can be generated by the canonical derivation 
 

S  
�

*  /* k applications of rule S → MS */ 
M Sk  

�  /* one application of rule S → ε  */ 
Mk  

�
*  /* n1 applications of rule M → aMb */ 

a Mb Mn n k1 1 1−  
�  /* one application of rule M → ε  */ 

a b Mn n k1 1 1−  
�

*  /* repeating on k-1 remaining M */ 

a
n

b
n

a
nk b

nk1
�  

 
Of course the rules could be applied in many different orders. 

3 Derivations and Parse Trees 
Let's again look at the very simple grammar G = (V, Σ, R, S), where 
 
 V = {S, A, B, a, b}, Σ = {a, b}, and R = {S → AB, A → aAa, A → a, B → Bb, B → b} 
 
As we saw in an earlier section, G can generate the string aaabb by the following derivation: 
 
(1) S � AB � aAaB � aAaBb � aaaBb � aaabb 
 
Now let's consider the fact that there are other derivations of the string aaabb using our example grammar: 
 
(2)  S � AB � ABb � Abb � aAabb � aaabb 
 
(3)  S � AB � ABb � aAaBb � aAabb � aaabb 
 
(4)  S � AB � ABb � aAaBb � aaaBb � aaabb 
 
(5)  S � AB � aAaB � aaaB � aaaBb � aaabb 
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(6)  S � AB � aAaB � aAaBb � aAabb � aaabb 
 
If you examine all these derivations carefully, you will see that in each case the same rules have been used to rewrite the same 
symbols; they differ only in the order in which those rules were applied.  For example, in (2) we chose to rewrite the B in 
ABb as b (producing Abb) before rewriting the A as aAa, whereas in (3) the same.processes occur in the opposite order. Even 
though these derivations are technically different (they consist of distinct sequences of strings connected by �) it seems that 
in some sense they should all count as equivalent.  This equivalence is expressed by the familiar representations known as 
derivation trees or parse trees. 
 
The basic idea is that the start symbol of the grammar becomes the root of the tree.  When this symbol is rewritten by a 
grammar rule S → x1x2...xn, we let the tree "grow" downward with branches to each of the new nodes x1, x2, …, xn;  thus: 
 
 
       S 
 
    x1          x2    ...    xn 
 
When one of these xi symbols is rewritten, it in turn becomes the "mother" node with branches extending to each of its 
"daughter" nodes in a similar fashion.  Each of the derivations in (1) through (6) would then give rise to the following parse 
tree: 
     S 
 
    A  B 
 
      a  A       a       B          b 
 
         a         b 
 
A note about tree terminology: for us, a tree always has a single root node, and the left-to-right order of nodes is significant; 
i.e.,   X   is not the same tree as X. 
 
   Y        Z                            Z        Y 
 
The lines connecting nodes are called branches, and their top-to-bottom orientation is also significant.  A mother node is 
connected by a single branch to each of the daughter nodes beneath it.  Nodes with the same mother are called sisters, e.g., 
the topmost A and B in the tree above are sisters, having S as mother. 
 
Nodes without daughters are called leaves; e.g., each of the nodes labelled with a lower-case letter in the tree above.  The 
string formed by the left-to-right sequence of leaves is called the yield (aaabb in the tree above). 
 
It sometimes happens that a grammar allows the derivations of some string by nonequivalent derivations, i.e., derivations that 
do not reduce to the same parse tree.  Suppose, for example, the grammar contained the rules S → A, S → B, A → b and B→ 
b  Then the two following derivations of the string b correspond to the two distinct parse trees shown below. 
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  S � A � b    S � B � b 
 
          S             S 
 
          A             B 
 
          b             b 
 
A grammar with this property is said to be ambiguous.  Such ambiguity is highly undesirable in grammars of programming 
languages such as C, LISP, and the like, since the parse tree (the syntactic structure) assigned to a string determines its 
translation into machine language and therefore the sequence of commands to be executed.  Designers of programming 
languages, therefore, take great pains to assure that their grammars (the rules that specify the well-formed strings of the 
language) are unambiguous.  Natural languages, on the other hand, are typically rife with ambiguities (cf. "They are flying 
planes," "Visiting relatives can be annoying," "We saw her duck," etc.), a fact that makes computer applications such as 
machine translation, question-answering systems, and so on, maddeningly difficult. 
 
More Examples of Context-Free Grammars and Parse Trees: 
 
(1) G = (V, Σ, R, S), where  
 V = {S, NP, VP, D, N, V, chased, the, dog, cat}, 

 
 

 Σ = {chased, the, dog, cat }  
 R=     {S → NP VP                                

 NP → D N  
 VP → V NP  
 V → chased  
 N → dog  
 N → cat  
 D → the }  

 
(2) G = (V, Σ, R, S), where  
 V = {S, a, b}, Σ = {a, b},  
 R = {S → aSb 
         S → ε 
     L(G) = {anbn : n ≥ 0} 
 

   S 
 
       a  S       b 
 
   a S b 
 
       a S    b 
 
                                ε 

 
(3) G = (V, Σ, R, S), 

where  
 V = {S, A, a, b},  
 Σ = {a, b}, 
 R = {S → aS 
         S → bA 
         A → aA 
         A → bS 
         S → ε 
     L(G) = {w ∈  {a, b}* : 
w contains an even 
number of b's} 
 

   S 
 
           b      A 
 
      b                 S 
 
                         ε 

   S 
 
           a      S 
 
      b                 A 
 
                     b      S 
 
                             ε 
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4 Designing Pushdown Automata 
In a little bit, we will prove that for every grammar G, there is push down automaton that accepts L(G).  That proof is 
constructive.  In other words, it describes an algorithm that takes any context-free grammar and constructs the corresponding 
PDA.  Thus, in some sense, we don't need any other techniques for building PDAs (assuming that we already know how to 
build grammars).  But the PDAs that result from this algorithm are often highly nondeterministic.  Furthermore, simply using 
the algorithm gives us no insight into the actual structure of the language we're dealing with.  Thus, it is useful to consider 
how to design PDA's directly; the strategies and insights are different from those we use to design a CFG for a language, and 
any process that increases our understanding can't be all bad .... 
 
In designing a PDA for a language L, one of the most useful strategies is to identify the different regions that occur in the 
strings in L.  As a rule of thumb, each of these regions will correspond to at least one distinct state in the PDA.  In this 
respect, PDAs are very similar to finite state machines.  So, for example, just as a finite state machine that accepts a*b* needs 
two states (one for reading a's and one for reading b's after we're done reading a's), so will a PDA that acceps {anbn) need two 
states.  Recognizing the distinct regions is part of the art, although it is usually obvious. 
 
Example 1: In really simple cases, there may not be more than one region.  For example, consider {anan}.  What we realize 
here is that we've really got is just the set of all even length strings of a's, i.e., (aa)*.  In this case, the "border" between the 
first half of the a's and the second half is spurious. 
 
Example 2: L = {anbn}.  A good thing to try first here is to make a finite state machine for a*b* to get the basic idea of the use 
of regions.   (This principle applies to designing PDA's in general: use the design of a finite state machine to generate the 
states that are needed just to recognize the basic string structure.  This creates the skeleton of your PDA.  Then you can add 
the appropriate stack operations to do the necessary counting.)  Clearly you'll need two states since you want to read a's, then 
read b's.  To accept L, we also need to count the a's in state one in order to match them against the b's in state two. This gives 
the PDA M = ({s, f}, {a, b}, {I}, ∆, s, {f}), where ∆ = 
 
         { ((s, a, ε), (s, I)),   /* read a's and count them   */ 
  ((s, ε, ε), (f, ε)),  /* guess that we're done with a's and ready to start on b's   */ 
  ((f, b, I), (f, e))}.  /* read b's and compare them to the a's in the stack   */ 
 
(Notice that the stack alphabet need not be in any way similar to the input alphabet.  We could equally well have pushed a's, 
but we don't need to.)  This PDA nondeterministically decides when it is done reading a's.  Thus one valid computation is 
  (a, aabb, ε) |- (s, abb, I) |- (f, abb, I), 
which is then stuck and so M rejects along this path.  Since a different accepting computation of aabb exists, this is no 
problem, but you might want to elimimate the nondeterminism if you are bothered by it.  Note that the nondeterminism arises 
from the ε transition; we only want to take it if we are done reading a's.  The only way to know that there are no more a's is to 
read the next symbol and see that it's a·b.  (This is analogous to unfolding a loop in a program.)  One other wrinkle: ε ∈  L, so 
now state s must be final in order to accept ε.  The resulting deterministic PDA is M = ({s, f}, {a, b}, {I}, ∆, s, {s, f}), where 
∆ =  
         { ((s, a, ε), (s, I)),   /* read a's and count them  */ 
  ((s, b, I), (f, ε)),   /* only go to second phase if there's a b   */ 
  ((f, b, I), (f, ε))}.  /* read b's and compare them to the a's in the stack   */ 
 
Notice that this DPDA can still get stuck and thus fail, e.g., on input b or aaba (i.e., strings that aren't in L).  Determinism for 
PDA's simply means that there is at most one applicable transition, not necessarily exactly one. 
 
Example 3: L = {ambmcndn}. Here we have two independent concerns, matching the a's and b's, and then matching the c's and 
d's.  Again, start by designing a finite state machine for the language L' that is just like L in structure but where we don't care 
how many of each letter there are.  In other words a*b*c*d*.  It's obvious that this machine needs four states.  So our PDA 
must also have four states.  The twist is that we must be careful that there is no unexpected interaction between the two 
independent parts ambm and cndn.  Consider the PDA M = ({1,2,3,4}, {a,b,c,d}, {I}, ∆, 1, {4}), where ∆ = 
         { ((1, a, ε), (1, I)),   /* read a's and count them  */ 
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  ((1, ε, ε), (2, ε)),  /* guess that we're ready to quit reading a's and start reading b's */ 
  ((2, b, I), (2, ε)),   /* read b's and compare to a’s  */ 
  ((2, ε, ε), (3, ε)),  /* guess that we're ready to quit reading b’s and start reading c’s */ 
  ((3, c, ε), (3, I))  /* read c’s and count them  */ 
  ((3, ε, ε), (4, ε))}.  /* guess that we’re ready to quit reading c’s and start reading d’s  */ 
  ((4, d, I), (4, ε))}.  /* read d’s and compare them to c’s   */ 
 
It is clear that every string in L is accepted by this PDA.  Unfortunately, some other strings are also, e.g., ad. Why is this? 
Because it's possible to go from state 2 to 3 without clearing off all the I marks we pushed for the a's  That means that the 
leftover I’s are available to match d’s.  So this PDA is accepting the language {ambncpdq : m ≥ n and m + p = n + q}, a 
superset of L.  E.g., the string aabcdd is accepted. 
 
One way to fix this problem is to ensure that the stack is really cleared before we leave phase 2 and go to phase 3; this must be 
done using a bottom of stack marker, say B.  This gives M = ({s, l, 2, 3, 4}, {a, b, c, d}, {B, I}, ∆, s, {4}), where ∆ = 
         { ((s, ε, ε), (1, B)),  /* push the bottom marker onto the stack    */ 
  ((1, a, ε), (1, I)),   /* read a's and count them  */ 
  ((1, ε, ε), (2, ε)),  /* guess that we're ready to quit reading a's and start reading b's */ 
  ((2, b, I), (2, ε)),   /* read b's and compare to a’s  */ 
  ((2, ε, B), (3, ε)),  /* confirm stack is empty, then get readty to start reading c’s */ 
  ((3, c, ε), (3, I))  /* read c’s and count them  */ 
  ((3, ε, ε), (4, ε))}.  /* guess that we’re ready to quit reading c’s and start reading d’s  */ 
  ((4, d, I), (4, ε))}.  /* read d’s and compare them to c’s   */ 
 
A different, probably cleaner, fix is to simply use two different symbols for the counting of the a's and the c's.  This gives us 
M = ({1,2, 3,4}, {a,b,c,d}, {A,C}, ∆, 1, {4}), where ∆ =  
         { ((1, a, ε), (1, A)),   /* read a's and count them  */ 
  ((1, ε, ε), (2, ε)),  /* guess that we're ready to quit reading a's and start reading b's */ 
  ((2, b, A), (2, ε)),   /* read b's and compare to a’s  */ 
  ((2, ε, ε), (3, ε)),  /* guess that we're ready to quit reading b's and start reading c's   */ 
  ((3, c, ε), (3, C)),  /* read c’s and count them  */ 
  ((3, ε, ε), (4, ε)),  /* guess that we’re ready to quit reading c’s and start reading d’s  */ 
  ((4, d, C), (4, ε))}.  /* read d’s and compare them to c’s   */ 
 
Now if an input has more a's than b's, there will be leftover A's on the stack and no way for them to be removed later, so that 
there is no way such a bad string would be accepted.  
 
As an exercise, you want to try making a deterministic PDA for this one. 
 
Example 4: L = {anbn} ∪   {bnan).  Just as with nondeterministic finite state automata, whenever the language we’re concerned 
with can be broken into cases, a reasonable thing to do is build separate PDAs for the each of the sublanguages.  Then we 
build the overall machine so that it, each time it sees a string, it nondeterministically guesses which case the string falls into. 
(For example, compare the current problem to the simpler one of making a finite state machine for the regular language a*b* 
∪  b*a*.)  Taking this approach here, we get M = ({s, 1, 2, 3, 4), {a, b}, {I}, ∆, s, {2, 4}), where ∆ = 
         { ((s, ε, ε), (1, ε)),  /* guess that this is an instance of anbn   */ 
  ((s, ε, ε), (3, ε)),  /* guess that this is an instance of bnan   */ 
  ((1, a, ε), (1, I)),  /* a’s come first so read and count them   */ 
  ((1, ε, ε), (2, ε)),  /* begin the b region following the a’s  */ 
  ((2, b, I), (2, ε)),  /* read b’s and compare them to the a’s  */ 
  ((3, b, ε), (3, I)),  /* b’s come first so read and count them  */ 
  ((3, ε, ε), (4, ε)),  /* begin the a region following the b’s  */ 
  ((4, a, I), (4, ε))}.  /*  read a’s and compare them to the b’s  */ 
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Notice that although ε ∈  L, the start state s is not a final state, but there is a path (in fact two) from s to a final state. 
 
Now suppose that we want a deterministic machine.  We can no longer use this strategy.  The ε-moves must be eliminated by 
looking ahead.  Once we do that, since ε ∈  L, the start state must be final.  This gives us M = ({s, 1, 2, 3, 4}, {a, b}, {l}, ∆ , s, 
{s, 2, 4}), where ∆ = 
 
         { ((s, a, ε), (1, ε)),  /* if the first character is a, then this is an instance of anbn   */ 
  ((s, b, ε), (3, ε)),  /* if the first character is b, then this is an instance of bnan   */ 
  ((1, a, ε), (1, I)),  /* a’s come first so read and count them   */ 
  ((1, b, I), (2, ε)),  /* begin the b region following the a’s  */ 
  ((2, b, I), (2, ε)),  /* read b’s and compare them to the a’s  */ 
  ((3, b, ε), (3, I)),  /* b’s come first so read and count them  */ 
  ((3, a, I), (4, ε)),  /* begin the a region following the b’s  */ 
  ((4, a, I), (4, ε))}.  /*  read a’s and compare them to the b’s  */ 
 
Example 5: L = {wwR : w ∈  {a, b}*}.  Here we have two phases, the first half and the second half of the string.  Within each 
half, the symbols may be mixed in any particular order.  So we expect that a two state PDA should do the trick.  See the 
lecture notes for how it works. 
 
Example 6: L = {wwR : w ∈  a*b*}.  Here the two halves of each element of L are themselves split into two phases, reading 
a's, and reading b's.  So the straightforward approach would be to design a four-state machine to represent these four phases.  
This gives us M = ({1, 2, 3, 4), {a, b}, {a, b), ∆, 1, {4}), where ∆ = 
         { ((1, a, ε), (1, a))  /*push a's*/ 
  ((1, ε, ε), (2, ε)),  /* guess that we're ready to quit reading a's and start reading b's */ 
  ((2, b, ε), (2, b)),   /* push b's */ 
  ((2, ε, ε), (3, ε)),  /* guess that we're ready to quit reading the first w and start reading wR  */ 
  ((3, b, b), (3, ε)),   /* compare 2nd b's to 1st b's */ 
  ((3, ε, ε), (4, ε)),  /* guess that we're ready to quit reading b's and move to the last region of a's */ 
  ((4, a, a), (4, ε))}  /* compare 2nd a's to 1st a's */ 
 
You might want to compare this to the straightforward nondeterministic finite state machine that you might design to accept 
a*b*b*a*.   
 
There are various simplifications that could be made to this machine.  First of all, notice that L = {ambnbnam}.  Next, observe 
that bnbn = (bb)n, so that, in effect, the only requirement on the b's is that there be an even number of them.  And of course a 
stack is not even needed to check that.  So an alternate solution only needs three states, giving M = ({1, 2, 3}, {a, b}, {a}, 
{a}, ∆, 1, {3}), where ∆ =  
         { ((1, a, ε), (1, a))  /*push a's*/ 
  ((1, ε, ε), (2, ε)),  /* guess that we're ready to quit reading a's and start reading b's */ 
  ((2, bb, ε), (2, ε)),   /* read bb's */ 
  ((2, ε, ε), (3, ε)),  /* guess that we're ready to quit reading b's and move on the final group of a's  */ 
  ((3, a, a), (3, ε))}.  /* compare 2nd a's to 1st a's */ 
 
This change has the fringe benefit of making the PDA more deterministic since there is no need to guess where the middle of 
the b's occurs.  However, it is still nondeterministic. 
 
So let's consider another modification.  This time, we go ahead and push the a's and the b's that make up w.  But now we 
notice that we can match wR against w in a single phase:  the required ordering b*a* in wR will automatically be enforced if 
we simply match the input with the stack!  So now we have  the PDA M= ({1, 2, 3}, {a, b}, {a, b}, ∆, 1, {3}), where ∆ = 
         { ((1, a, ε), (1, a))  /*push a's*/ 
  ((1, ε, ε), (2, ε)),  /* guess that we're ready to quit reading a's and start reading b's */ 
  ((2, b, ε), (2, b)),   /* push b's */ 
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  ((2, ε, ε), (3, ε)),  /* guess that we're ready to quit reading the first w and start reading wR */ 
  ((3, a, a), (3, ε))  /* compare wR to w*/ 
  ((3, b, b), (3, ε))}.              " 
 
Notice that this machine is still nondeterministic.  As an exercise, you might try to build a deterministic machine to accept this 
language.  You'll find that it's impossible; you've got to be able to tell when the end of the strings is reached, since it's possible 
that there aren't any b's in between the a regions.  This suggests that there might be a deterministic PDA that accepts L$, and 
in fact there is.  Interestingly, even that is not possible for the less restrictive language L = {wwR : w ∈  {a, b}*} (because 
there's no way to tell without guessing where w ends and wR starts).  Putting a strong restriction on string format often makes a 
language more tractable.  Also note that {wwR : w ∈  a*b+} is accepted by a determinstic PDA; find such a·determinstic PDA 
as an exercise. 
 
Example 7: Consider L = {w ∈  {a, b}* : #(a, w) = #(b, w)}.  In other words every string in L has the same number of a's as 
b's (although the a's and b's can occur in any order).  Notice that this language imposes no particular structure on its strings, 
since the symbols may be mixed in any order.  Thus the rule of thumb that we've been using doesn't really apply here.  We 
don't need multiple states for multiple string regions.  Instead, we'll find that, other than possible bookkeeping states, one 
"working" state will be enough. 
 
Sometimes there may be a tradeoff between the degree of nondeterminism in a pda and its simplicity.  We can see that in this 
example.  One approach to designing a PDA to solve this problem is to keep a balance on the stack of the excess a's or b's.  
For example, if there is an a on the stack and we read b, then we cancel them.  If, on the other hand, there is an a on the stack 
and we read another a, we push the new a on the stack.  Whenever the stack is empty, we know that we've seen matching 
number of a's and b's so far.  Let's try to design a machine that does this as deterministically as possible.  One approach is M = 
({s, q, f}, {a, b}, {a, b, c}, ∆, s, {f}), where ∆ = 
 1 ((s, ε, ε), (q, c))  /* Before we do anything else, push a marker, c, on the stack so we'll be able to 
          tell when the stack is empty.  Then leave state s so we don't ever do this again. 
 2 ((q, a, c), (q ,ac))  /* If the stack is empty (we find the bottom c) and we read an a, push c back  
          and then the a (to start counting a's). 
 3 ((q, a, a), (q, aa))  /* If the stack already has a's and we read an a, push the new one. 
 4 ((q, a, b), (q, ε))  /* If the stack has b's and we read an a, then throw away the top b and the new a. 
 5 ((q, b, c), (q, bc))  /* If the stack is empty (we find the bottom c) and we read a b, then  
          start counting b's. 
 6 ((q, b, b), (q, bb))  /* If the stack already has b's and we read b, push the new one. 
 7 ((q, b, a), (q, ε))  /* If the stack has a's and we read a b, then throw away the top a and the new b. 
 8 ((q, ε, c), (f, ε))  /* If the stack is empty then, without reading any input, move to f, the final state.  
          Clearly we only want to take this transition when we're at the end of the input. 
This PDA attempts to solve our problem deterministically, only pushing an a if there is not a b on the stack.  In order to tell 
that there is not a b, this PDA has to pop whatever is on the stack and examine it.  In order to make sure that there is always 
something to pop and look at, we start the process by pushing the special marker c onto the stack. (Recall that there is no way 
to check directly for an empty stack.  If we write just ε for the value of the current top of stack, we'll get a match no what the 
stack looks like.)  Notice, though, that despite our best efforts, we still have a nondeterministic PDA because, at any point in 
reading an input string, if the number of a's and b's read so far are equal, then the stack consists only of c, and so transition 8 
((q, ε, c), (f, ε)) may be taken, even if there is remaining input.  But if there is still input, then either transition 1 or 5 also 
applies.  The solution to this problem is to add a terminator to L. 
 
Another thing we could do is to consider a simpler PDA that doesn't even bother trying to be deterministic.  Consider M 
=({s}, {a, b}, {a, b}, ∆, s, {s}), where ∆ = 
 1 ((s, a, ε), (s, a))  /* If we read an a, push a. 
 2 ((s, a, b), (s, ε))  /* Cancel an input a and a stack b. 
 3 ((s, b, ε), (s, b))  /* If we read  b, push b. 
 4 ((s, b, a), (s, ε))  /* Cancel and input b and a stack a. 
Now, whenever we're reading a and b is on the stack, there are two applicable transitions: 1, which ignores the b and pushes 
the a on the stack, and 2, which pops the b and throws away the a (in other words, it cancels the a and b against each other).  
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Transitions 3 and 4 do the same two things if we're reading b.  It is clear that if we always perform the cancelling transition 
when we can, we will accept every string in L.  What you might worry about is whether, due to this larger degree of freedom, 
we might not also be able to wrongly accept some string not in L.  In fact this will not happen because you can prove that  M 
has the property that, if x is the string read in so far, and y is the current stack contents, 
 #(a, x) - #(b, x) = #(a, y) - #(b, y). 
This formula is an invariant of M.  We can prove it by induction on the length of the string read so far: It is clearly true 
initially, before M reads any input, since 0 - 0 - 0 - 0.  And, if it holds before taking a transition, it continues to hold afterward.  
We can prove this as follows: 
 
Let x' be the string read so far and let y' be the contents of the stack at some arbitrary point in the computation.  Then let us 
see what effect each of the four possible transitions has.  We first consider: 
((s, a, ε), (s, a)): After taking this transition we have that x' = xa and y'  = ay.  Thus we have 

#(a, x') - #(b, x') 
=  /*  x' = xa  */ 

#(a, xa) - #(b, xa) 
=  /* #(b, xa) = #(b, x) 

#(a, xa) - #(b, x) 
= 

#(a, x) + 1 - #(b, x) 
=  /* induction hypothesis  */ 

#(a, y) + 1 - #(b, y) 
= 

#(a, ay) - #(b, ay) 
= /* y' = ay */ 

#(a, y') - #(b, y') 
 
So the invariant continues to be true for x' and y' after the transition is taken.  Intuitively, the argument is simply that when this 
transition is taken, it increments #(a, x) and #(a, y), preserving the invariant equation. The three other transitions also preserve 
the invariant as can be seen similarly: 
((s, a, b), (s, ε)) increments #(a, x) and decrements #(b, y), preserving equality. 
((s, b, ε), (s, b)) increments #(b, x) and #(b, y), preserving equality. 
((s, b, a), (s, ε)) increments #(b, x) and decrements #(a, y), preserving equality.  
 
Therefore, the invariant holds initially, and taking any transitions continues to preserve it, so it is always true, no matter what 
string is read and no matter what transitions are taken.  Why is this a good thing to know?  Because suppose a string x ∉  L is 
read by M.  Since x ∉  L, we know that #(a, x) - #(b, x) ≠ 0, and therefore, by the invariant equation, when the whole string x 
has been read in, the stack contents y will satisfy #(a, y) - #(b, y) ≠ 0   Thus the stack cannot be empty, and x cannot be 
accepted, no matter what sequence of transitions is taken.  Thus no bad strings are accepted by M. 
 

5 Context-Free Languages and PDA's 
 
Theorem: The context-free languages are exactly the languages accepted by nondeterministic PDA's. 
 
In other words, if you can describe a language with a context-free grammar, you can build a nondeterministic PDA for it, and 
vice versa.  Note here that the class of context-free languages is equivalent to the class of languages accepted by 
nondeterministic PDAs.    This is different from what we observed when we were considering regular languages.  There we 
showed that nondeterminism doesn’t buy us any power and that we could build a deterministic finite state machine for every 
regular language.  Now, as we consider context-free languages, we find that determinism does buy us power: there are 
languages that are accepted by nondeterministic PDAs for which no deterministic PDA exists.  And those languages are 
context free (i.e., they can be described with context-free grammars).  So this theorem differs from the similar theorem that we 
proved for regular languages and claims equivalence for nondeterministic PDAs rather than deterministic ones. 
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We’ll prove this theorem by construction in two steps: first we’ll show that, given a context-free grammar G, we can construct 
a PDA for L(G).  Then we’ll show (actually, we’ll just sketch this second proof) that we can go the other way and construct, 
from a PDA that accepts some language L, a grammar for L. 
 
Lemma: Every context-free language is accepted by some nondeterministic PDA.   
 
To prove this lemma, we give the following construction.  Given some CFG G = (V, Σ, R, S), we construct an equivalent 
PDA M in the following way.  M = (K, Σ, Γ, ∆, s, F), where 
 K = {p, q } (the PDA always has just 2 states) 
 s = p (p is the initial state) 
 F = {q} (q is the only final state) 
 Σ = Σ  (the input alphabet is the terminal alphabet of G) 
 Γ = V (the stack alphabet is the total alphabet of G) 
 ∆ contains (1) the transition ((p, ε, ε), (q, S)) 
  (2) a transition ((q, ε, A), (q, α)) for each rule A → α in G 
  (3) a transition ((q, a, a), (q, ε)) for each a ∈  Σ 
 
Notice how closely the machine M mirrors the structure of the original grammar G.  M works by using its stack to simulate a 
derivation by G.  Using the transition created in (1), M begins by pushing S onto its stack and moving to its second state, q, 
where it will stay for the rest of its operation.  Think of the contents of the stack as M’s expectation for what it must find in 
order to have seen a legal string in L(G).  So if it finds S, it will have found such a string.  But if S could be rewritten as some 
other sequence α, then if M found α it would also have found a string in L(G).  All the transitions generated by (2) take care 
of these options by allowing M to replace a stack symbol A by a string α whenever G contains the rule A → α.  Of course, at 
some point we actually have to look at the input.  That’s what M does in the transitions generated in (3).  If the stack contains 
an expectation of some terminal symbol and if the input string actually contains that symbol, M consumes the input symbol 
and pops the expected symbol off the stack (effectively canceling out the expectation with the observed symbol).  These steps 
continue, and if M succeeds in emptying its stack and reading the entire input string, then the input is accepted. 
 
Let’s consider an example.  Let G = (V = {S, a, b, c}, Σ = {a, b, c}, R = {S → aSa, S → bSb, S → c}, S).  This grammar 
generates {xcxR : x ∈  {a, b}*}.  Carrying out the construction we just described for this example CFG gives the following 
PDA: 
M = ({p, q}, {a, b, c}, {S, a, b, c}, ∆, p, {q}), where  

      ∆ = { ((p, ε, ε), (q, S))  
 ((q, ε, S), (q, aSa)) 
 ((q, ε, S), (q, bSb))  
 ((q, ε, S), (q, c))  
 ((q, a, a), (q, ε))  
 ((q, b, b), (q, ε)) 
 ((q, c, c), (q, ε))}  

 
Here is a derivation of the string abacaba by G: 
(1) S � aSa � abSba : � abaSaba � abacaba 
 
And here is a computation by M accepting that same string: 
(2) (p, abacaba, ε) |- (q, abacaba, S) |- (q, abacaba, aSa) |- (q, bacaba, Sa) |- (q, bacaba, bSba) |- (q, acaba, Sba) |-  
 (q, acaba, aSaba) |- (q, caba, Saba) |- (q, caba, caba) |- (q, aba, aba) |- (q, ba, ba) |- (q, a, a) |- (q, ε, ε) 
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If you look at the successive stack contents in computation (2) above, you will see that they are, in effect, tracing out a 
derivation tree for the string abacaba: 
       S 
 
   a,  S  a 
 
      b S b 
 
          a S    b 
 
       c 
 
M is alternately extending the tree and checking to see if leaves of the tree match the input string.  M is thus acting as a top-
down parser.  A parser is something that determines whether a presented string is generated by a given grammar (i.e., whether 
the string is grammatical or well-formed), and, if it is, calculates a syntactic structure (in this case, a parse tree) assigned to 
that string by the grammar.  Of course, the machine M that we have just described does not in fact produce a parse tree, 
although it could be made to do so by adding some suitable output devices.  M is thus not a parser but a recognizer.   We’ll 
have more to say about parsers later, but we can note here that parsers play an important role in many kinds of computer 
applications including compilers for programming languages (where we need to know the structure of each command), query 
interpreters for database systems (where we need to know the structure of each user query), and so forth. 
 
Note that M is properly non-deterministic.  From the second configuration in (2), we could have gone to (q, abacaba, bSb) or 
to (q, abacaba, c), for example, but if we’d done either of those things, M would have reached a dead end. M in effect has to 
guess which one of a group of applicable rules of G, if any, is the right one to derive the given string.  Such guessing is highly 
undesirable in the case of most practical applications, such as compilers, because their operation can be slowed down to the 
point of uselessness.  Therefore, programming languages and query languages (which are almost always context-free, or 
nearly so) are designed so that they can be parsed deterministically and therefore compiled or interpreted in the shortest 
possible time. A lot of attention has been given to this problem in Computer Science, as you will learn if you take a course in 
compilers.  On the other hand, natural languages, such as English, Japanese, etc., were not "designed" for this kind of parsing 
efficiency.  So, if we want to deal with them by computer, as for example, in machine translation or information retrieval 
systems, we have to abandon any hope of deterministic parsing and strive for maximum non-deterministic efficiency.  A lot of 
effort has been devoted to these problems as well, as you will learn if you take a course in computational linguistics. 
 
To complete the proof of our lemma, we need to prove that L(M) = L(G).  The proof is by induction and is reasonably 
straightforward.  We’ll omit it here, and turn instead to the other half of the theorem: 
 
Lemma: If M is a non-deterministic PDA, there is a context-free grammar G such that L(G) = L(M).  
 
Again, the proof is by construction.  Unfortunately, this time the construction is anything by natural.  We’d never want 
actually to do it.  We just care that the construction exists because it allows us to prove this crucial result.  The basic idea 
behind the construction is to build a grammar that has the property that if we use it to create a leftmost derivation of some 
string s then we will have simulated the behavior of M while reading s.  The nonterminals of the grammar are things like <s, 
Z, f’> (recall that we can use any names we want for our nonterminals).  The reason we use such strange looking nonterminals 
is to make it clear what each one corresponds to.  For example, <s, Z, f’> will generate all strings that M could consume in the 
process of moving from state s with Z on the stack to state f’ having popped Z off the stack. 
 
To construct G from M, we proceed in  two steps:  First we take our original machine M and construct a new “simple” 
machine M’ (see below).  We do this so that there will be fewer cases to consider when we actually do the construction of a 
grammar from a machine.  Then we build a grammar from M’.  
 
A pda M is simple iff: 
(1) There are no transitions into the start state, and 
(2) Whenever ((q, a, β), (p, γ)) is a transition in M and q is not the start state, then β ∈  Γ and |γ| ≤ 2. 
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In other words, M is simple if it always consults its topmost stack symbol (and no others) and replaces that symbol either with 
0, 1, or 2 new symbols.  We need to treat the start state separately since of course when M starts, its stack is empty and there 
is nothing to consult.  But we do need to guarantee that the start state can’t bypass the restriction of (2) if it also functions as 
something other than the start state i.e., it is part of a loop.  Thus constraint (1). 
 
Although not all machines are simple, there is an algorithm to construct an equivalent simple machine from any machine M.  
Thus the fact that our grammar construction algorithm will work only on simple machines in no way limits the applicability of 
the lemma that says that for any machine there is an equivalent grammar.   
 
Given any PDA M, we construct an equivalent simple PDA M’ as follows: 
(1) Let M’ = M. 
 
(2) Add to M’ a new start state s’ and a new final state f’.  Add a transition from s’ to M’s original start state that consumes no 
input and pushes a special “stack bottom” symbol Z onto the stack.  Add transitions from of all of M’s original final states to 
f’.  These transitions should consume no input but they should pop the bottom of stack symbol Z from the stack.  For example, 
if we start with a straightforward two-state PDA that accepts wcwR, then this step produces: 
 
                                             a/ε/a               a/a/ 
                         ε/ε/Z                   c//                                 ε/Z/ 
                  s'                   s                                      f                             f' 
 
                          b/ε/b                               b/b/ 
 
(3)  (a) Assure that |β| ≤ 1.  In other words, make sure that no transition looks at more than one symbol on the stack.  It is easy 
to do this.  If there are any transitions in M’ that look at two or more symbols, break them down into multiple transitions that 
examine one symbol apiece. 
      (b) Assure that |γ| ≤ 1.  In other words, make sure that each transition pushes no more than one symbol onto the stack.  
(The rule for simple allows us to push 2, but you’ll see why we restrict to 1 at this point in a minute.)  Again, if M’ has any 
transitions that push more than one symbol, break them apart into multiple steps. 
     (c) Assure that  |β| = 1. We already know that |β| isn’t greater than 1.  But it could be zero.  If there are any transitions that 
don’t examine the stack at all, then change them so that they pop off the top symbol, ignore it, and push it right back on.  
When we do this, we will increase by one the length of the string that gets pushed onto the stack.  Now you can see why we 
did step (b) as we did.  If, after completing (b) we never pushed more than one symbol, we can go ahead and do (c) and still 
be assured that we never push more than two symbols (which is what we require for M’ to be simple). 
  
We’ll omit the proof that this procedure does in fact produce a new machine M’ that is simple and equivalent to M. 
 
Once we have a simple machine M’ (K’, Σ’, Γ’, ∆’, s’, f’) derived from our original machine M (K, Σ, Γ, ∆, s, F), we are 
ready to construct a grammar G for L(M’) (and thus, equivalently, for L(M).  We let G = (V, Σ, R, S), where V contains a 
start symbol S, all the elements of Σ, and a new nonterminal symbol <q, A, p> for every q and p in K’ and every A = ε or any 
symbol in the stack alphabet of M’ (which is the stack alphabet of M plus the special bottom of stack marker).  The tricky part 
is the construction of R, the rules of G.  R contains all the following rules (although in fact most will be useless in the sense 
that the nonterminal symbol on the left hand side will never be generated in any derivation that starts with S): 
(1) The special rule S → <s, Z, f’>, where s is the start state of the original machine M, Z is the special “bottom of stack” 
symbol that M’ pushes when it moves from s’ to s, and f’ is the new final state of M’.  This rule says that to be a string in 
L(M) you must be a string that M’ can consume if it is started in state s with Z on the top of the stack and it makes it to state f’ 
having popped Z off the stack.  All the rest of the rules will correspond to the various paths by which M’ might do that. 
 
(2) Consider each transition ((q, a, B), (r, C)) of M’ where a is either ε or a single input symbol and C is either a single symbol 
or ε.  In other words, each transition of M’ that pushes zero or one symbol onto the stack.  For each such transition and each 
state p of M’, we add the rule  

<q, B, p> → a<r, C, p>. 
Read these rule as saying that one way in which M’ can go from q to p and pop B off the stack is by consuming an a, going to 
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state r, pushing a C on the stack (all of which are specified by the transition we’re dealing with), then getting eventually to p 
and popping off the stack the C that the transition specifies must be pushed.  Think of these rules this way.  The transition that 
motivates them tells us how to make a single move from q to r while consuming the input symbol a and popping the stack 
symbol B.  So think about the strings that could drive M’ from q to some arbitrary state p (via this transition) and pop B from 
the stack in the process.  They include all the strings that start with a and are followed by the strings that can drive M’ from r 
on to p provided that they also cause the C that got pushed to be dealt with and popped.  Note that of course we must also pop 
anything else we push along the way, but we don’t have to say that explicitly since if we haven’t done that we can’t get to C to 
pop it. 
 
(3) Next consider each transition ((q, a, B), (r, CD)) of M’, where C and D are stack symbols.  In other words, consider every 
transition that pushes two symbols onto the stack.  (Recall that since M’ is simple, we only have to consider the cases of 0, 1, 
or 2 symbols being pushed.)  Now consider all pairs of states v and w in K’ (where v and w are not necessarily distinct).  For 
all such transitions and pairs of states, construct the rule 
  <q, B, v> → a<r, C, w><w, D, v> 
These rules are a bit more complicated than the ones that were generated in (2) just because they describe computations that 
involve two intermediate states rather than one, but they work the same way. 
 
(4) For every state q in M’, we add the rule 
  <q, ε, q> → ε 
These rules let us get rid of spurious nonterminals so that we can actually produce strings composed solely of terminal 
symbols.  They correspond to the fact that M’ can (trivially) get from a state back to itself while popping nothing simply by 
doing nothing (i.e., reading the empty string). 
 
See the lecture notes for an example of this process in action.  As you’ll notice, the grammars that this procedure generates are 
very complicated, even for very simple machines.  From larger machines, one would get truly enormous grammars (most of 
whose rules turn out to be useless, as a matter of fact).  So, if one is presented with a PDA, the best bet for finding an 
equivalent CFG is to figure out the language accepted by the PDA and then proceed intuitively to construct a CFG that 
generates that language.  
 
We’ll omit here the proof that this process does indeed produce a grammar G such that L(G) = L(M). 

6 Parsing 
Almost always, the reason we care about context-free languages is that we want to build programs that "interpret" or 
"understand" them.  For example, programming languages are context free.  So are most data base query languages.  
Command languages that need capabilities (such as matching delimiters) that can't exist in simpler, regular languages are also 
context free. 
 
The interpretation process for context free languages generally involves three parts (although these logical parts may be 
interleaved in various ways in the interpretation program): 
1. Lexical analysis, in which individual characters are combined, generally using finite state machine techniques, to form the 

building blocks of the language. 
2. Parsing, in which a tree structure is assigned to the string. 
3. Semantic interpretation, in which "meaning", often in the form of executable code, is attached to the nodes of the tree and 

thus to the entire string itself. 
 
For example, consider the input string "orders := orders + 1;", which might be a legal string in any of a number of 
programming languages.  Lexical analysis first divides this string of characters into a sequence of six tokens, each of which 
corresponds to a basic unit of meaning in the language.  The tokens generally contain two parts, an indication of what kind of 
thing they are and the actual value of the string that they matched.  The six tokens are (with the kind of token shown, followed 
by its value in parentheses):   
 <id> (orders)        :=        <id> orders        <op> (+)        <id> (1)        ; 
 
Assume that we have a grammar for our language that includes the following rules: 
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<statement> → <assignment statement> ; 
<statement> → <loop statement> ; 
<assignment statement> → <id> := <expr> 
<expr> → <expr> <op> <expr> 
<expr> → <id> 
 
Using this grammar and the string of tokens produced above, parsing assigns to the string a tree structure like 
 
        <statement> 
 
 
    <assignment statement>     ; 
 
 
  <id>  orders  :=        <expr> 
 
 
          <expr>         <op>  +     <expr> 
 
 
          <id> orders             <id>  1 
 
Finally, we need to assign a meaning to this string.  If we attach appropriate code to each node of this tree, then we can 
execute this statement by doing a postorder traversal of the tree.  We start at the top node, <statement> and traverse its left 
branch, which takes us to <assignment statement>.  We go down its left branch, and, in this case, we find the address of the 
variable orders.  We come back up to <assignment statement>, and then go down its middle branch, which doesn’t tell us 
anything that we didn’t already know from the fact that we’re in an assignment statement.  But we still need to go down the 
right branch to compute the value that is to be stored.  To do that, we start at <expr>.  To get its value, we must examine its 
subtrees.  So we traverse its left branch to get the current value for orders.  We then traverse the middle branch to find out 
what operation to perform, and then the right branch and get 1.  We hand those three things back up to <expr>, which applies 
the + operator and computes a new value, which we then pass back up to <assignment statement> and then to <statement>. 
 
Lexical analysis is a straightforward process that is generally done using a finite state machine.  Semantic interpretation can 
be arbitrarily complex, depending on the language, as well as other factors, such as the degree of optimization that is desired.  
Parsing, though, is in the middle.  It's not completely straightforward, particularly if we are concerned with efficiency.  But it 
doesn't need to be completely tailored to the individual application.  There are some general techniques that can be applied to 
a wide variety of context-free languages.  It is those techniques that we will discuss briefly here. 

6.1 Parsing as Search 
Recall that a parse tree for a string in a context-free language describes the set of grammar rules that were applied in the 
derivation of the string (and thus the syntactic structure of the string).  So to parse a string we have to find that set of rules.  
How shall we do it?  There are two main approaches: 
1. Top down, in which we start with the start symbol of the grammar and work forward, applying grammar rules and 

keeping track of what we're doing, until we succeed in deriving the string we're interested in. 
2. Bottom up, in which we start with the string we're interested in.  In this approach, we apply grammar rules "backwards".  

So we look for a rule whose right hand side matches a piece of our string.  We "apply" it and build a small subtree that 
will eventually be at the bottom of the parse tree.  For example, given the assignment statement we looked at above, me 
might start by building the tree whose root is <expr> and whose (only) leaf is <id> orders.   That gives us a new "string" 
to work with, which in this case would be orders := <expr> <op> <id>(1).  Now we look for a grammar rule that matches 
part of this "string" and apply it.  We continue until we apply a rule whose left hand side is the start symbol.  At that 
point, we've got a complete tree. 

 
Whichever of these approaches we choose, we’d like to be as efficient as possible.  Unfortunately, in many cases, we’re 
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forced to conduct a search, since at any given point it may not be possible to decide which rule to apply.  There are two 
reasons why this might happen: 
• Our grammar may be ambiguous and there may actually be more than one legal parse tree for our string.  We will 

generally try to design languages, and grammars for them, so that this doesn’t happen.  If a string has more than one parse 
tree, it is likely to have more than one meaning, and we rarely want to use languages where users can’t predict the 
meaning of what they write. 

• There may be only a single parse tree but it may not be possible to know, without trying various alternatives and seeing 
which ones work, what that tree should be.  This is the problem we’ll try to solve with the introduction of various specific 
parsing techniques. 

6.2 Top Down Parsing 
To get a better feeling for why a straightforward parsing algorithm may require search, let’s consider again the following 
grammar for arithmetic expressions: 
 (1) E → E + T 
 (2) E → T 
 (3) T → T * F 
 (4) T → F 
 (5) F → (E) 
 (6) F → id 
 
Let’s try to do a top down parse, using this grammar, of the string   id + id * id.  We will begin with a tree whose only node is 
E, the start symbol of the grammar.  At each step, we will attempt to expand the leftmost leaf nonterminal in the tree.  
Whenever we rewrite a nonterminal as a terminal (for example, when we rewrite F as id), we’ll climb back up the tree and 
down another branch, each time expanding the leftmost leaf nonterminal).  We could do it some other way.  For example, we 
could always expand the rightmost nonterminal.  But since we generally read the input string left to right, it makes sense to 
process the parse tree left to right also. 
 
No sooner do we get started on our example parse but we’re faced with a choice.  Should we expand E by applying rule (1) or 
rule (2)?  If we choose rule (1), what we’re doing is choosing the interpretation in which + is done after * (since + will be at 
the top of the tree).  If we choose rule (2), we’re choosing the interpretation in which * is done after + (since * will be nearest 
the top of the tree, which we’ll detect at the next step when we have to find a way to rewrite T).  We know (because we’ve 
done this before and because we know that we carefully crafted this grammar to force * to have higher precedence than +) that 
if we choose rule (2), we’ll hit a dead end and have to back up, since there will be no way to deal with + inside T.   
 
Let’s just assume for the moment that our parser also knows the right thing to do.  It then produces 
 
     E 
 
    E        +   T 
 
Since E is again the leftmost leaf nonterminal, we must again choose how to expand it.  This time, the right thing to do is to 
choose rule (2), which will rewrite E as T.  After that, the next thing to do is to decide how to rewrite T.  The right thing to do 
is to choose rule (4) and rewrite T as F.  Then the next thing to do is to apply rule (6) and rewrite F as id.  At this point, we’ve 
generated a terminal symbol.  So we read an input symbol and compare it to the one we’ve generated.  In this case, it matches, 
so we can continue.  If it didn’t match, we’d know we’d hit a dead end and we’d have to back up and try another way of 
expanding one of the nodes higher up in the tree.  But since we found a match, we can continue.  At this point, the tree looks 
like 
     E 
 
    E        +   T 
 
    T 
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    F 
 
    id 
 
Since we matched a terminal symbol (id), the next thing to do is to back up until we find a branch that we haven’t yet 
explored.  We back all the way up to the top E, then down its center branch to +.  Since this is a terminal symbol, we read the 
next input symbol and check for a match.  We’ve got one, so we continue by backing up again to E and taking the third 
branch, down to T.  Now we face another choice.  Should we apply rule (3) or rule (4).  Again, being smart, we’ll choose to 
apply rule (3), producing 
     E 
 
    E        +   T 
 
    T             T *      F 
 
    F 
 
    id 
 
The rest of the parse is now easy.  We’ll expand T to F and then match the second id.  Then we’ll match F to the last id. 
 
But how can we make our parser know what we knew?   
 
In this case, one simple heuristic we might try is to consider the rules in the order in which they appear in the grammar.  That 
will work for this example.  But suppose the input had been  id * id * id.  Now we need to choose rule (2) initially.  And we’re 
now in big trouble if we always try rule (1) first.  Why?  Because we’ll never realize we’re on the wrong path and back up and 
try rule (2).  If we choose rule (1), then we will produce the partial parse tree 
 
     E 
 
    E        +   T 
 
But now we again have an E to deal with.  If we choose rule (1) again, we have 
 
     E 
 
    E  +  T 
 
   E + T 
 
And then we have another E, and so forth.  The problem is that rule (1) contains left recursion.  In other words, a symbol, in 
this case E, is rewritten as a sequence whose first symbol is identical to the symbol that is being rewritten.   
 
We can solve this problem by rewriting our grammar to get rid of left recursion.  There’s an algorithm to do this that always 
works.  We do the following for each nonterminal A that has any left recursive rules.  We look at all the rules that have A on 
their left hand side, and we divide them into two groups, the left recursive ones and the other ones.  Then we replace each rule 
with another related rule as shown in the following table: 
 
     Original rules  New rules 
Left recursive rules:  A → Aα1   A′ → α1A′ 
     A → Aα2   A′ → α2A′ 
     A → Aα3 …  A′ → α3A′ … 
     A → Aαn   A′ → αnA′ 
         A′ → ε  
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Non-left recursive rules:  A → β1   A → β1A′ 
     A → β2 …  A → β2A′ … 
     A → βn   A → βnA′  
 
The basic idea is that, using the original grammar, in any successful parse, A may be expanded some arbitrary number of 
times using the left recursive rules, but if we’re going to get rid of A (which we must do to derive a terminal string), then we 
must eventually apply one of the nonrecursive rules.  So, using the original grammar, we might have something like 
 
     A 
 
   A      α2 
 
  A  α3 
 
  β1 
 
Notice that, whatever β1, α3, and α2 are, β1, which came from one of the nonrecursive rules, comes first.  Now look at the new 
set of rules in the right hand column above.  They say that A must be rewritten as a string that starts with the right hand side of 
one of the nonrecursive rules (i.e., some βi).  But, if any of the recursive rules had been applied first, then there would be 
further substrings, after the βi, derived from those recursive rules.  We introduce the new nonterminal A′ to describe what 
those things could look like, and we write rules, based on the original recursive rules, that tell us how to rewrite A′.  Using 
this new grammar, we’d get a parse tree for β1  α3 α2 that would look like 
 
     A 
 
   β1    A′  
 
     α3    A′ 
 
        α2  A′ 
 
          ε  
 
If we apply this transformation algorithm to our grammar for arithmetic expressions, we get 
 (1) E′ → + T E′ 
 (1′) E′ → ε  
 (2) E → T E′  
 (3) T′ → * F T ′  
 (3′) T′ → ε  
 (4) T → F T′  
 (5) F → (E) 
 (6) F → id 
 
Now let’s return to the problem of parsing  id + id * id.  This time, there is only a single way to expand the start symbol, E, so 
we produce, using rule (2),  
     E 
 
    T    E′  
 
Now we need to expand T, and again, there is only a single choice.  If you continue with this example, you’ll see that if you 
have the ability to peek one character ahead in the input (we’ll call this character the lookahead character), then it’s possible 
to know, at each step in the parsing process, which rule to apply. 
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You’ll notice that this parse tree assigns a quite different structure to the original string.  This could be a serious problem 
when we get ready to assign meaning to the string.  In particular, if we get rid of left recursion in our grammar for arithmetic 
expressions, we’ll get parse trees that associate right instead of left.  For example, we’ll interpret a + b + c as  
 (a + b) + c using the original grammar, but  
  
 a + (b + c) using the new grammar.   
 
For this and various other reasons, it often makes sense to change our approach and parse bottom up, rather than top down. 

6.3 Bottom Up Parsing 
Now let’s go back to our original grammar for arithmetic expressions: 
 (1) E → E + T 
 (2) E → T 
 (3) T → T * F 
 (4) T → F 
 (5) F → (E) 
 (6) F → id 
 
Let’s try again to parse the string   id + id * id, this time working bottom up.  We’ll scan the input string from left to right, just 
as we’ve always done with all the automata we’ve built.  A bottom up parser can perform two basic operations: 
1. Shift an input symbol onto the parser’s stack. 
2. Reduce a string of symbols from the top of the stack to a nonterminal symbol, using one of the rules of the grammar.  

Each time we do this, we also build the corresponding piece of the parse tree. 
 
When we start, the stack is empty, so our only choice is to get the first input symbol and shift it onto the stack.  The first input 
symbol is id, so it goes onto the stack.  Next, we have a choice.  We can either use rule (6) to reduce id to F, or we can get the 
next input symbol and push it onto the stack.  It’s clear that we need to apply rule (6) now.  Why?  There are no other rules 
that can consume an id directly.  So we have to do this reduction before we can do anything else with id.  But could we wait 
and do it later?  No, because reduction always applies to the symbols at the top of the stack.  If we push anything on before we 
reduce id, we’ll never again get id at the top of the stack.  So it will just sit there, unable to participate in any rules.  So the 
next thing we need to do is to reduce id to F, giving us a stack containing just F, and the parse tree (remember we’re building 
up from the bottom): 
    F 
 
    id 
 
Before we continue, let’s observe that the reasoning we just did is going to be the basis for the design of a “smart” 
deterministic bottom up parser.  Without that reasoning, a dumb, brute force parser would have to consider both paths at this 
first choice point: the one we took, as well as the one that fails to reduce and instead pushes + onto the stack.  That second 
path will dead end eventually, so even a brute force parser will eventually get the right answer.  But for efficiency, we’d like 
to build a deterministic parser if we can.  We’ll return to the question of how we do that after we finish with this example so 
we can see all the places we’re going to have to make our parser “smart”. 
 
At this point, the parser’s stack contains F and the remaining input is   + id * id.  Again we must choose between reducing the 
top of the stack or pushing on the next input symbol.  Again, by looking ahead and analyzing the grammar, we can see that 
eventually we will need to apply rule (1).  To do so, the first id will have to have been promoted to a T and then to an E.  So 
let’s next reduce by rule (4) and then again by rule (2), giving the parse tree and stack: 
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    E 
 
    T          
 
    F 
 
    id         E 
 
At this point, there are no further reductions to consider, since there are no rules whose right hand side is just E.  So we must 
consume the next input symbol + and push it onto the stack.  Now, again, there are no available reductions.  So we read the 
next symbol, and the stack then contains id + E (we’ll write the stack so that we push onto the left).  Again, we need to 
promote id before we can do anything else, so we promote it to F and then to T.  Now we’ve got: 
 
    E 
 
    T   T      T 
 
    F   F      + 
 
    id   id      E 
 
Notice that we’ve now got two parse tree fragments.  Since we’re working up from the bottom, we don’t know yet how they’ll 
get put together.  The next thing we have to do is to choose between reducing the top three symbols on the stack (T + E) to E 
using rule (1) or shifting on the next input symbol.  By the way, don’t be confused about the order of the symbols here.  We’ll 
always be matching the right hand sides of the rules reversed because the last symbol we read (and thus the right most one 
we’ll match) is at the top of the stack.   
 
Okay, so what should we choose to do, reduce or shift?  This is the first choice we’ve had to make where there isn’t one 
correct answer for all input strings.  When there was just one universally correct answer, we could compute it simply by 
examining the grammar.  Now we can’t do that.  In the example we’re working with, we don’t want to do the reduction, since 
the next operator is *.  We want the parse tree to correspond to the interpretation in which * is applied before +.  That means 
that + must be at the top of the tree.  If we reduce now, it will be at the bottom.  So we need to shift * on and do a reduction 
that will build the multiplication piece of the parse tree before we do a reduction involving +.  But if the input string had been 
id + id + id, we’d want to reduce now in order to cause the first + to be done first, thus producing left associativity.  So we 
appear to have reached a point where we’ll have to branch.  Since our grammar won’t let us create the interpretation in which 
we do the + first, if we choose that path first, we’ll eventually hit a dead end and have to back up.  We’d like not to waste time 
exploring dead end paths, however.  We’ll come back to how we can make a parser smart enough to do that later.  For now, 
let’s just forge ahead and do the right thing. 
 
As we said, what we want to do here is not to reduce but instead to shift * onto the stack.  So the stack now contains * T + E.  
At this point, there are no available reductions (since there are no rules whose right hand side contains * as the last symbol), 
so we shift the next symbol, resulting in the stack  id * T + E.  Clearly we have to promote id to F (following the same 
argument that we used above), so we’ve got 
 
             F 
 
    E         * 
 
    T   T      T 
 
    F   F   F   + 
 
    id   id   id   E 
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Next, we need to reduce (since there aren’t any more input symbols to shift), but now we have another decision to make: 
should we reduce the top F to T, or should we reduce the top three symbols, using rule (3) to T?  The right answer is to use 
rule (3), producing: 
 
    E            T      
 
    T   T        *     T 
 
    F   F   F   + 
 
    id   id   id   E 
 
Finally, we need to apply rule (1), to produce the single symbol E on the top of the stack, and the parse tree:   
 
            E 
 
    E            T      
 
    T   T       
 
    F   F   F    
 
    id        +  id        *  id   E 
 
In a bottom up parse, we’re done when we consume all the input and produce a stack that contains a single symbol, the start 
symbol.  So we’re done (although see the class notes for an extension of this technique in which we add to the input and end-
of-input symbol $ and consume it as well). 
 
Now let’s return to the question of how we can build a parser that makes the right choices at each step of the parsing process.  
As we did the example parse above, there were two kinds of decisions that we had to make: 
• Whether to shift or reduce (we’ll call these shift/reduce conflicts), and 
• Which of several available reductions to perform (we’ll call these reduce/reduce conflicts). 
 
Let’s focus first on shift/reduce conflicts.  At least in this example, it was always possible to make the right decision on these 
conflicts if we had two kinds of information: 
• A good understanding of what is going on in the grammar.  For example, we noted that there’s nothing to be done with a 

raw id that hasn’t been promoted to an F.  
• A peek at the next input symbol (the one that we’re considering shifting), which we call the lookahead symbol.  For 

example, when we were trying to decide whether to reduce T + E or shift on the next symbol, we looked ahead and saw 
that the next symbol was *.  Since we know that * has higher precedence than +, we knew not to reduce +, but rather to 
wait and deal with * first. 

 
So we as people can be smart and do the right thing.  The important question is, “Can we build a parser that is smart and does 
the right thing?”  The answer is yes.  For simple grammars, like the one we’re using, it’s fairly straightforward to do so.  For 
more complex grammars, the algorithms that are needed to produce a correct deterministic parser are way beyond the scope of 
this class.  In fact, they’re not something most people ever want to deal with.  And that’s okay because there are powerful 
tools for building parsers.  The input to the tools is a grammar.  The tool then applies a variety of algorithms to produce a 
parser that does the right thing.  One of the most widely used such tools is yacc, which we’ll discuss further in class.  See the 
yacc documentation for some more information about how it works.   
 
Although we don’t have time to look at all the techniques that systems like yacc use to build deterministic bottom up parsers, 
we will look at one of the structures that they can build.  A precedence table tells us whether to shift or reduce.  It uses just 
two sources of information, the current top of stack symbol and the lookahead symbol.  We won’t describe how this table is 
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constructed, but let’s look at an example of one and see how it works.  For our expression grammar, we can build the 
following precedence table (where $ is a special symbol concatenated to the end of each input string that signals the end of the 
input): 
 

V\Σ ( ) id + * $ 
(       
)  •   •  •  •  
id  •   •  •  •  
+       
*       
E       
T  •   •   •  
F  •   •  •  •  

 
 
Here’s how to read the table.  Compare the left most column to the top of the stack and find the row that matches.  Now 
compare the symbols along the top of the chart to the lookahead symbol and find the column that matches.  If there’s a dot in 
the correponding square of the table, then reduce.  Otherwise, shift.  So let’s go back to our example input string id + id * id.  
Remember that we had a shift/reduce conflict when the stack’s contents were T + E and the next input symbol was *.  So we 
look at the next to the last row of the table, the one that has T as the top of stack symbol.  Then we look at the column headed 
*.  There’s no dot, so we don’t reduce.  But notice that if the lookahead symbol had been +, we’d have found a dot, telling us 
to reduce, which is exactly what we’d want to do.  Thus this table captures the precedence relationships between the operators 
* and +, plus the fact that we want to associate left when faced with operators of equal precedence. 
 
Deterministic, bottom up parsers of the sort that yacc builds are driven by an even more powerful table called a parse table.  
Think of the parse table as an extension of the precedence table that contains additional information that has been extracted 
from an examination of the grammar. 

7 Closure Properties of Context-Free Languages 
Union:  The CFL's are closed under union.  Proof: If L1 and L2 are CFL's, then there are, by definition, CFG's Gl = (V1, Σ1, 
R1, S1) and G2 = (V2, Σ2, R2, S2) generating L1 and L2, respectively.  (Assume that the non-terminal vocabularies of the two 
grammars are disjoint.  We can always rename symbols to achieve this, so there are no accidental interactions between the 
two rule sets.)  Now form CFG G = (V1 ∪  V2, Σ1 ∪  Σ2, R1 ∪  R2 ∪  {S → S1, S → S2}, S).  G generates L1 ∪  L2 since every 
derivation from the start symbol of G must begin either S � S1 or S � S2 and thereafter to derive a string generated by G1 or 
by G2, respectively.  Thus all strings in L(G1) ∪  L(G2) are generated, and no others. 
 
Concatenation:  The CFL's are closed under concatenation.  The proof is similar. Given Gl and G2 as above, form G = (V1 ∪  
V2, Σ1 ∪  Σ2, R1 ∪  R2 ∪  {S→ S1S2}, S).  G generates L1L2 since every derivation from S must begin S � S1S2 and proceed 
thereafter to derive a string of L1 concatenated to a string of L2.  No other strings are produced by G. 
 
Kleene star:  The CFL's are closed under Kleene star.  Proof:  If L is a CFL, it is generated by some CFG G = (V, Σ, R, S).  
Using one new nonterminal symbol S', we can form a new CFG G' = (V ∪  S', Σ, R  ∪  (S' → ε, S' → S'S }, S').  G' generates 
L* since there is a derivation of ε (S' � ε), and there are other derivations of the form S' � S'S � S'SS � ... � S'S...SS � 
S...SS, which produce finite concatenations of strings of L.  G generates no other strings. 
 
Intersection:  The CFL's are not closed under intersection.  To prove this, it suffices to show one example of two CFL's 
whose intersection is not context free.  Let L1 = {aibicj: i, j ≥ 0}. L1 is context-free since it is generated by a CFG with the 
rules S → AC, A → aAb, A → ε, C → cC, C→ ε.  Similarly, let L2 = {akbmcm : k, m ≥ 0}.  L2 is context-free, since it is 
generated by a CFG similar to the one for L1.  Now consider L3 = L1 ∩ L2 = {anbncn : n ≥ 0}.   L3 is not context free.  We'll 
prove that in the next section using the context-free pumping lemma.  Intuitively, L3 isn't context free because we can't count 
a's, b's, and c's all with a single stack. 
 



Supplementary Materials                       Context-Free Languages and Pushdown Automata             26 

Intersection with regular languages:  The CFL's are, however, closed under intersection with the regular languages.  Given a 
CFL, L and a regular language R, the intersection L ∩ R is a CFL.  Proof: Since L is context-free, there is some non-
deterministic PDA accepting it, and since R is regular, there is some deterministic finite state automaton that accepts it. The 
two automata can now be merged into a single PDA by a straightforward technique described in class. 
 
Complementation:  The CFL's are not closed under complement.  Proof:  Since the CFL's are closed under union, if they 
were also closed under complement, this would imply that they are closed under intersection. This is so because of the set-
theoretic equality (L1 ∪  L2) = (L1 ∩ L2). 
 

8 The Context-Free Pumping Lemma 
There is a pumping lemma for context-free languages, just as there is one for regular languages.  It's a bit more complicated, 
but we can use it in much the same way to show that some language L is not in the class of context-free languages.  In order to 
see why the pumping lemma for context-free languages is true, we need to make some observations about parse trees: 
 
1. A path in a parse tree is a continuously descending sequence of connected nodes.  
2. The length of a path in a parse tree is the number of connections (branches) in it. 
         A 
 
 
      A      A      A      A 
 
            A   A 
 
3. The height of a parse tree is the length of the longest path in it. For example, the parse tree above is of height 2. 
4. The width of a parse tree is the length of its yield (the string consisting of its leaves).  For example, the parse tree above is 
of width 5. 
 
We observe that in order for a parse tree to achieve a certain width it must attain a certain minimum height. How are height 
and width connected? The relationship depends on the rules of the grammar generating the parse tree. 
 
Suppose, for example, that a certain CFG contains the rule A → AAAA.  Focusing just on derivations involving this rule, we 
see that a tree of height 1 would have a width of 4.  A tree of height 2 would have a maximum width of 16 (although there are 
narrower trees of height 2 of course).   
 
 A                       A 
 
 
A      A      A      A       A        A      A       A 
 
    A      A      A      A       A      A      A      A             A      A      A      A          A      A      A      A 
 
With height 3, the maximum width is 64 (i.e., 43), and in general a tree of height n has maximum width of 4n.  Or putting it 
another way, if a tree is wider than 4n then it must be of height greater than n. 
 
Where does the 4 come from?  Obviously from the length of the right-hand side of the rule A → AAAA.  If we had started 
with the rule A → AAAAAA, we would find that a tree of height n has maximum width 6n. 
 
What about other rules in the grammar?  If it contained both the rules A → AAAA and A → AAAAAA, for example, then the 
maximum width would be determined by the longer right-hand side.  And if there were no other rules whose right-hand sides 
were longer than 6, then we could confidently say that any parse tree of height n could be no wider than 6n. 
 
Let p = the maximum length of the right-hand side of all the rules in G.  Then any parse tree generated by G of height m can 
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be no wider than pm.  Equivalently, any parse tree that is generated by G and that is wider than pm must have height greater 
than m. 
 
Now suppose we have a CFG G = (V, Σ, R, S).  Let n = |(V - Σ)|, the size of the non-terminal alphabet.  If G generates a parse 
tree of width greater than pn, then, by the above reasoning, the tree must be of height greater than n, i.e., it contains a path of 
length greater than n.  Thus there are more than n + 1 nodes on this path (the number of nodes being one greater than the 
length of the path), and all of them are non-terminal symbols except possibly the last.  Since there are only n distinct non-
terminal symbols in G, some such symbol must occur more than once along this path (by the Pigeonhole Principle).  What this 
says is that if a CFG generates a long enough string, its parse tree is going to be sufficiently high that it is guaranteed to have a 
path with some repeated non-terminal symbol along it.  Let us represent this situation by the following diagram: 
 
       S 
 
 
       A 
 
 
      A 
 
 
                 w 
 
Call the generated string w.  The parse tree has S as its root, and let A be a non-terminal symbol (it could be S itself, of 
course) that occurs at least twice on some path (indicated by the dotted lines). 
 
Another observation about parse trees: If the leaves are all terminal symbols, then every non-terminal symbol in the tree is the 
root of a subtree having terminal symbols as its leaves. Thus, the lower instance of A in the tree above must be the root of a 
tree with some substring of w as its leaves.  Call this substring x.  The upper instance of A likewise roots a tree with a string of 
terminal symbols as its leaves, and furthermore, from the geometry of the tree, we see that this string must include x as a 
substring.  Call the larger string, therefore, vxy.  This string vxy is also a substring of the generated string w, which is to say 
that for some strings u and z, w = uvxyz.  Attaching these names to the appropriate substrings we have the following diagram: 
 
       S 
 
 
       A 
 
 
      A 
 
 
       w = u v      x  y          z 
 
Now, assuming that such a tree is generated by G (which will be true on the assumption that G generates some sufficiently 
long string), we can conclude that G must generate some other parse trees as well and therefore their associated terminal 
strings.  For example, the following tree must also be generated: 
 
       S 
 
 
       A 
 
 
            w =            u                 x         z 
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since whatever sequence of rules produced the lower subtree 
               A 
 
 
           x 
 
could have been applied when the upper A was being rewritten. 
 
Similarly, the sequence of rules that expanded the upper A originally to yield the string vAy could have been applied to the 
lower A as well, and if the resulting third A were now rewritten to produce x, we would have: 
 
       S 
 
 
                A 
 
 
              A 
 
          A 
 
 
w = u            v         v             x  y           y           z 
 
Clearly this process could be repeated any number of times to give an infinite number of strings of the form 
  u            v1  v2  v3…vn           x            y1  y2  y3…yn            z, for all values of n ≥ 0. 
 
We need one further observation before we are ready to state the Pumping Lemma.  Consider again any string w that is 
sufficiently long that its derivation contains at least one repeating nonterminal (A in our example above).  Of course, there 
may be any number of occurrences of A, but let's consider the bottom two.  Consider the subtree whose root is the second A 
up from the bottom (shown in bold): 
 
       S 
 
 
       A 
 
 
              A 
 
            A 
 
 
w = u           v         v             x  y            y             z 
 
Notice that the leaves of this subtree correspond to the sequence vxy.  How long can this sequence be?  The answer relies on 
the fact that this subtree contains exactly one repeated nonterminal (since we chose it that way).  So the maximum height of 
this subtree is pn+1.  (Recall that p is the length of the longest rule in the grammar and n is the number of nonterminals in the 
grammar.)  Why n+1?  Because we have n+1 nonterminals available (all n of them plus the one repeated one).  So we know 
that |vxy| must be ≤ M, where M is some constant that depends on the grammar and that is in fact pn+1.  We are now ready to 
state the Pumping Lemma for context-free languages. 
 
Pumping Lemma for Context-Free Languages:  Let G be a context-free grammar.  Then there are some constants K and M 
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depending on G such that, for every string w ∈  L(G) where |w| > K, there are strings u, v, x, y, z such that 
(1) w = uvxyz,  
(2) |vy| > 0, 
(3) |vxy| ≤ M, and 
(4) for all n ≥ 0, uvnxynz ∈  L(G). 
 
Remarks: The constant K in the lemma is just pn referred to above - the length of the longest right-hand side of a rule of G 
raised to the power of the number of non-terminal symbols.  In applying the lemma we won't care what the value of K actually 
is, only that some such constant exists.  If G generates an infinite language, then clearly there will be strings in L(G) longer 
than K, no matter what K is. If L(G) is finite, on the other hand, then the lemma still holds (trivially), because K will have a 
value greater than the longest strings in L(G).  So all strings in L(G) longer than K are guaranteed to be "pumpable," but no 
such strings exist, so the lemma is trivially true because the antecedent of the conditional is false.  Similarly for M, which is 
actually bigger than K; it is pn+1.  But, again, all we care about is that if L(G) is infinite then M exists.  Without knowing what 
it is, we can describe strings in terms of it and know that we must have pumpable strings. 
 
This lemma, like the pumping lemma for regular languages, addresses the question of how strings grow longer and longer 
without limit so as to produce infinite languages.  In the case of regular languages, we saw that strings grow by repeating 
some substring any number of times: xynz ∈  L for all n ≥ 0.  When does this happen? Any string in the language of sufficient 
length is guaranteed to contain such a "pumpable" substring.  What length is sufficient?  The number of states in the 
minimum-state deterministic finite state machine that accepts the language.  This sets the lower bound for guaranteed 
pumpability. 
 
For context-free languages, strings grow by repeating two substrings simultaneously: uvnxynz ∈  L for all n ≥ 0.  This, too, 
happens when a string in the language is of sufficient length.  What is sufficient? Long enough to guarantee that its parse tree 
contains a repeated non-terminal along some path.  Strings this long exceed the lower bound for guaranteed context-free 
pumpability. 
 
What about the condition that |vy| > 0, i.e., v and y cannot both be the empty string?  This could happen if by the rules of G 
we could get from some non-terminal A back to A again without producing any terminal symbols in the process, and that's 
possible with rules like A → B, B → C, C → A, all perfectly good context-free rules.  But given that we have a string w 
whose length is greater than or equal to K, its derivation must have included some rules that make the string grow longer; 
otherwise w couldn't have gotten as long as it did.  Therefore, there must be some path in the derivation tree with a repeated 
non-terminal that involves branching rules, and along this path, at least one of v or y is non-empty. 
 
Recall that the corresponding condition for regular languages was y ≠ ε.  We justified this by pointing out that if a sufficiently 
long string w was accepted by the finite state machine, then there had to be a loop in the machine and that loop must read 
something besides the empty string; otherwise w couldn't be as long as it is and still be accepted. 
 
And, finally, what about condition (3), |vxy| ≤ M?  How does this compare to the finite state pumping lemma?  The  
corresponding condition there was that |xy| ≤ K.  Since |y| ≤ |xy|, this certainly tells us that the pumpable substring y is 
(relatively) short.  |xy| ≤ K also tells us that y occurs close to the beginning of the string w = xyz.  The context-free version, on 
the other hand, tells us that |vxy| ≤ M, where v and y are the pumpable substrings.  Since |v| ≤ |vxy| ≤ M and |y| ≤ |vxy| ≤ M, we 
know that the pumpable substrings v and y are short.  Furthermore, from |vxy| ≤ M, we know that v and y must occur close to 
each other (or at least not arbitrarily far away from each other).  Unlike in the regular pumping lemma, though, they do not 
necessarily occur close to the beginning of the string w = uvxyz.  This is the reason that context-free pumping lemma proofs 
tend to have more cases: the v and y pumpable substrings can occur anywhere within the string w.   
 
Note that this Pumping Lemma, like the one for regular languages, is an if-then statement not an iff statement. Therefore, it 
cannot be used to show that a language is context-free, only that it is not. 
 
Example 1: Show that L = {anbncn : n ≥ 0} is not context-free. 
 
If L were context-free (i.e., if there were a context-free grammar generating L), then the Pumping Lemma would apply.  Then 
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there would be a constant K such that every string in L of length greater than K would be "pumpable." We show that this is 
not so by exhibiting a string w in L that is of length greater than K and that is not pumpable.  Since we want to rely on clause 
3 of the pumping lemma, and it relies on M > K, we'll actually choose w in terms of M. 
 
Let w = aMbMcM.   (Note that this is a particular string, not a language or a variable expression for a string.  M is some 
number whose exact value we don't happen to know; it might be 23, for example.  If so, w would be the unique string 
a23b23c23.)  This string is of length greater than K (of length 3M, where M is greater than K, in fact), and it is a string in the 
language {anbncn : n ≥ 0}. Therefore, it satisfies the criteria for a pumpable string according to the Pumping Lemma--
provided, of course, that L is context-free. 
 
What does it mean to say that  aMbMcM  is pumpable?  It means that there is some way to factor this string into five parts - 
u,v,x,y,z - meeting the following conditions: 
1. v and y are not both the empty string (although any of u, x, or z could be empty), 
2. |vxy| ≤ M, 
3. uxz ∈  L, uvxyz ∈  L, uvvxyyz ∈  L, uvvvxyyyz ∈  L, etc.; i.e., for all n ≥ 0, uvnxynz ∈  L. 
 
We now show that there is no way to factor aMbMcM  into 5 parts meeting these conditions; thus, aMbMcM is not a pumpable 
string, contrary to the stipulation of the Pumping Lemma, and thus L is not a context-free language. 
 
How do we do this? We show that no matter how we try to divide aMbMcM in ways that meet the first two conditions, the third 
condition always falls.  In other words, every "legal" division of aMbMcM  falls to be pumpable-that is, there is some value of n 
for which uvnxynz ∉  L. 
 
There are clearly a lot of ways to divide this string into 5 parts, but we can simplify the task by grouping the divisions into 
cases just as we did with the regular language Pumping Lemma: 
Case 1: Either v or y consists of more than different letter (e.g., aab).  No such division is pumpable, since for any n ≥ 2, 
uvnxynz will contain some letters not in the correct order to be in L.  Now that we’ve eliminated this possibility, all the 
remaining cases can assume that both v and y contain only a’s, only b’s, or only c’s (although one could also be ε). 
Case 2: Both v and y are located within aM.   No such division is pumpable, since we will pump in only a’s.  So, for n ≥ 2, 
uvnxynz will contain more a's than b's or c's and therefore won't be in L. (Note that n = 0 also works.) 
Cases 3, 4: Both v and y are located within bM or cM.  No such division is pumpable, by the same logic as in Case 2. 
Case 5: v is located within aM and y is located within bM.  No such division is pumpable, since for n ≥ 2, uvnxynz will contain 
more a's than c's or more b's than c's (or both) and therefore won't be in L. (n = 0 also works here.) 
Cases 6, 7: v is located within aM and y is located within cM, or v is located within bM and y is located within cM.  No such 
division is pumpable, by the same logic as in Case 5. 
 
Since every way of dividing aMbMcM into 5 parts (such that the 2nd and 4th are not both empty) is covered by (at least one of 
the above 7 cases, and in each case we find that the resulting division is not pumpable, we conclude that there is no division of 
aMbMcM  that is pumpable.  Since all this was predicated on the assumption that L was a context-free language, we conclude 
that L, is not context-free after all. 
 
Notice that we didn't need to use condition the fact that |vxy| must be less than M in this proof, although we could have used it 
as an alternative way to handle case 6, since it prevents v and y from being separated by a region of size M, which is exactly 
the size of the region of b's that occurs between the a's and the c's. 
 
Example 2: Show that L = {w ∈  {a, b c}* | #(a, w) = #(b, w) = #(c, w)} is not context free.  (We use the notation #(a, w) to 
mean the number of a's in the string w.)  
 
Let's first try to use the pumping lemma.  We could again choose w = aMbMcM.  But now we can't immediately brush off case 1 
as we did in Example 1, since L allows for strings that have the a's, b's, and c's interleaved.   In fact, this time there are ways 
to divide aMbMcM  into 5 parts (v, y not both empty), such that the result is pumpable.  For example, if v were ab and y were c, 
then uvnxynz would be in L for all n ≥ 0, since it would still contain equal numbers of a's, b's, and c’s. 
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So we need some additional help, which we'll find in the closure theorems for context-free languages.  Our problem is that the 
definition of L is too loose, so it's too easy for the strings that result from pumping to meet the requirements for being in L.  
We need to make L more restrictive.  Intersection with another language would be one way we could do that.  Of course, since 
the context-free languages are not closed under intersection, we can't simply consider some new language L' = L ∩ L2, where 
L2 is some arbitrary context-free language.  Even if we could use pumping to show that L' isn't context free, we'd know 
nothing about L.  But the context-free languages are closed under intersection with regular languages.  So if we construct a 
new language L' = L ∩ L2, where L2 is some arbitrary regular language, and then show that L' is not context free, we know 
that L isn't either (since, if it were, its intersection with a regular language would also have to be context free).  Generally in 
problems of this sort, the thing to do is to use intersection with a regular language to constrain L so that all the strings in it 
must have identifiable regions of symbols.  So what we want to do here is to let L2 = a*b*c*.  Then L' = L ∩ L2 = anbncn.  If 
we hadn't just proved that anbncn isn't context free, we could easily do so.  In either case, we know immediately that L isn't 
context free. 
 
 


