
FORMAL METHODS

FRAMEWORK
Contract #: F30602-99-C-0166

Final Monthly Status Report

Prepared for:

Prepared by:

October 26, 1999

Air Force Research Laboratory/IFGB
Attn: Michael Nassif

525 Brooks Road
Rome, NY 13441-4505

WetStone Technologies, Inc.
273 Ringwood Road

Freeville, NY 13068-9618
607-539-9981

www.wetstonetech.com

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 2

Table of Contents

1 PERIOD OF PERFORMANCE ... 3

2 DETAILED PROGRAM SCHEDULE.. 3

3 BACKGROUND... 3

3.1 EXISTING TOOL CLASSIFICATION AND TERMINOLOGY DOCUMENTS .. 4

4 PROJECT ACTIVITY .. 6

4.1 CLASSIFICATION OF FORMAL TOOLS... 6

4.2 TAXONOMY OF FORMAL TERMS.. 8

5 CONCLUSIONS AND FUTURE WORK ... 8

5.1 LONG-TERM FUTURE WORK: FORMAL METHODS FRAMEWORK... 9

5.2 TRAVEL ... 10

5.3 REFERENCES.. 10

6 APPENDIX A – QUESTIONNAIRES ... 13

6.1 ACL2 .. 13

6.2 HOL .. 19

6.3 LARCH PROVER (LP) ... 24

6.4 PVS... 30

6.5 Z/EVES... 37

6.6 CONCURRENCY FACTORY ... 43

6.7 MURPHI ... 49

6.8 SVM CADENCE ... 55

6.9 SPIN.. 61

6.10 NRL PROTOCOL ANALYZER ... 67

6.11 SCR*... 73

6.12 TATAMI ... 79

6.12.1 What Tool Makers Need for Tool Integration (1 received response) 84

APPENDIX B: FORMAL METHODS TERM TAXONOMY ... 86

6.13 BACKGROUND ... 86

6.14 TAXONOMY ... 86

QUESTIONNAIRE: TOOLS MAKERS / USERS.. 91

QUESTIONNAIRE: POTENTIAL USERS.. 97

QUESTIONNAIRE: TOOLS MAKERS / ENTEGRATORS ... 98

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 3

1 Period of Performance

This report reflects performance from 5/26/99 through 10/26/99.

2 Detailed Program Schedule

The following represents the schedule for this project:

Progress Months
Jun Jul Aug Sep Oct Nov

Perform initial research & project setup 4

Form Collaborations / Research Tools / Distribute questionnaires

Examine tools for possible framework properties

Identify framework properties

Prepare Final Report

JANET: “identify framework properties” was supposed to happen after FM99, but with
Rome asking us to pay for the trip out of this budget, there is no time for it. I just wrote
something but really it should be a whole chapter if it was worked on for 2 weeks. ?
Also, Mike Nassif was not interested in the framework anymore, but was more pushing
towards taxonomy, classification of tools, etc. so when I came back, I worked some more
on that.

3 Background

Our survey of the current practices in formal methods in academia and industry [Barj98]
indicates that formal methods (FM) are a promising technology that is eliciting more and
more industrial interest. Major issues in software and hardware industry are complexity
and size, and current practices such as simulation cannot perform to the desired level of
satisfaction anymore.

In the hardware industry, formal tools are popular and adopted in standard engineering
practice. Many tool vendors such as Crysallis or Synopsis make formal tools and/or
integrate formal tools in their commercial CAD toolkits. For Example, Cadence is
currently producing a “Verification Cockpit” toolset. Incentives are: high cost of design
errors, standard notation (VHDL/Verilog), and use of standard tools. Formal methods
replace simulation, with the prevalent use of model checking to reveal errors.

In the commercial software industry, there is none or very little use of formal methods.
The barriers include: product patches are distributed electronically, software is written in

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 4

many languages, there is very little use of any tools, and software engineering is not a
discipline based on formalism and mathematics such is digital design.

High assurance and telecommunications software industry use formal tools to some
degree, with their use increasing. Telecommunications industry is driven by (often
international) standards compliance and need for test–case derivation. Information
security industries, such as electronic commerce and banking, network security, and
military applications are motivated by the virtue of information as commodity, with
tangible material and strategic cost. Safety critical applications applications, such as
avionics, medicine, railroads, and nuclear power applications are motivated by having
human lives at stake.

Most formal methods practitioners agree that many additional steps are needed to take
formal methods from research to industrial practice. Most commonly mentioned features
include: infrastructure, such as robust and supported tools, easy to use, with verified
libraries; publicizing success stories; and user education.

Some preliminary work can be done in order to make formal methods more approachable
to users. IEEE Formal Methods Planning Group met in an open meeting in November
1998 at SRI International, Menlo Park, CA, to discuss what steps, if any, can be taken
towards standardization of formal methods. The consensus was that standardization is
premature, and that it would be necessary to collect information on the existing formal
tools and somehow classify them, and collect and standardize formal methods
terminology. The project described in this report addresses those concerns.

We attended World Congress on Formal Methods, which was attended by about 500
formal methods specialists from all over the world. During 1.5 hr meeting called IEEE
Formal Methods Planning Group Birds-of-a feather meeting, formal methods experts
discussed what needs to be done in formal methods, using our work on tool classification
and taxonomy. The resulting recommendations are included in the conclusion.

A long term goal of WetStone Technologies, Inc. is to produce a robust, industrially
usable Formal Methods Framework (FMF) that is populated by several formal methods
and tools. This framework must be extensible, scaleable, and general enough to address a
range of application problems but specific enough to address desired application
domains. An undertaking of this size would require partnership between several teams
with different expertise and several years of work. In this effort, we are taking the first
step by outlining the preliminary work necessary to pave the way for the creation of the
fully developed Formal Methods Framework.

3.1 Existing Tool Classification and Terminology Documents

Some documents and databases which outline formal methods terminology, tools used
and experience reports already exist. We will not discuss databases of links to various
tool pages, such as [BoweWWW], but rather databases which attempted to classify tools
based on some predetermined criteria.

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 5

Formal Methods Europe (FME) is “an organization supported by the Commission of the
European Union, with the mission of promoting and supporting the industrial use of
formal methods for computer systems development.” FME organizes seminars and a
yearly international symposium, and produces a newsletter. FME’s web page [FME]
contains some case studies, formal methods database, and a tools database. The case
studies database seems not to be up to date, and the tools database seems not to be up to
date, with the latest additions in 1997, although the web page claims 6-month updates.
The tools database contains about 60 international tools and is, in our opinion, suitable
for a quick overview of tools. The tools are classified by the following categories:
• Tool name
• Usage and applicability
• Languages supported
• List of applications (if available)
• Functionality: yes/no answers to the following:

• Syntax checking
• Static semantics
• Animation.execution
• GUI
• Pretty-print
• Typechecking
• Proof support
• Refinement
• Test-case generation

• Environment, number of installations, last update
• Contact
• Availability
• Description.

European Workshop on Industrial Computer Systems (EWICS) Formal Methods
subgroup produced documents that contain some formal methods terminology, formal
methods database, and a classification of methods by their theoretical basis [EWICS98].
EWICS formal methods database is relatively current (dated June 1998) but it contains
only CCS, COLD, OBJ, SAGA-LUSTRE, Z, RAISE, B and VSE formal methods, and it
focuses more on methods than on tools. The methods are classified as:
• Formal method name
• Summary
• Applications
• Properties
• Relation to other formal methods
• Theoretical basis
• Tools
• Appraisal:

• Maturity
• Availability
• Strength

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 6

• Industrial experience
• Tool availability

• Application and experience matrix
• Tools matrix
• Bibliography

Craigen, Gerhart and Ralston have published “An International Survey of Industrial
Applications of Formal Methods” [CrGeRa93], which contains much valuable
information but is dated as 1993. [ClWi96] paper has some experience reports as well
and is more recent. Experience reports need to be kept in an up-to-date database available
on the web.

Some definitions of formal methods terms are published in the following reports and
databases, such as: NASA’s Formal Methods Guidebooks [NASA97, NASA98];
EWICS’ Guide [EWICS98]; Laprie’s report “Dependability: Basic Concepts and
Terminology” [Lapr]; “Dictionary of Algorithms, Data Structures and Problems”
[Black99], compiled by Paul Black for CRC Dictionary of Computer Science,
Engineering and Technology; and Rushby’s technical report on “Formal Methods and
Their Role in the Certification of Critical Systems” [Rush93, Rush95]. Various formal
methods terminology is scattered throughout the published literature, such as [ClWi96].
Effort is needed to collect the terminology as is used today and converge it into a
common terminology, i.e. formal methods “lingua franca.”

4 Project Activity

The immediate goals for this project were to:
1. Collect terminology and develop a taxonomy of terms used in formal methods
2. Classify a subset of formal tools.

Our intent is to contribute to a more widespread use of formal methods by making formal
methods more accessible and understandable to potential users, including industrially-
oriented users new to formal methods. We developed a questionnaire that should help
potential and new users assess what tools are available for their needs. The questionnaire
was used to collect information on selected tools, and develop classification and
taxonomy based on the collected information.

We have presented this work at World Congress on Formal Methods (FM’99) during
IEEE Formal Methods Planning Group Birds-of-a-Feather meeting. Discussion ensued
that points in the direction of future work and confirms the orientation towards industrial
practitioners. The main points of the discussion are outlined in the “Conclusions” section.

4.1 Classification of Formal Tools

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 7

We compiled information on the best-known and widely used formal tools, with
emphasis on tools aimed at industrial practitioners without extensive formal methods
expertise. The tools are:
1. Theorem provers: PVS, ACL2, HOL, Larch LP tool, Z/EVES;
2. Model checkers: SMV, SPIN, Murphi, Concurrency Factory;
3. Other tools: NRL Protocol Analyzer, SCR*, Tatami.

We have devised a questionnaire to aid in collecting and classifying this information.
There are many criteria for classifying the tools, based on the intended use of the tool
survey. Possible audiences include tool developers, industry/users, and
academia/researchers. We have assumed that the tool survey will be used by users new to
the tools to aid them in selecting appropriate tools. We envisioned users who are
interested in practical application of the tools and possibly do not have extensive
background in formal methods. We chose the main categories for classifying the tools to
be:

1. general description of the tool;
2. tool implementation (such as what language the tool is implemented in, is the tool

extensible);
3. tool features and utilities (such as validated libraries, GUI, typechecking,

prettyprinting, editing);
4. tool input and output;
5. tool applications (such as application domains, levels of abstraction;
6. resources required to run the tool (such as licensing, platform, operating system);
7. resources available (such as manuals, courses, contacts);
8. more specific detailed questions pertaining specifically to model checkers and

theorem provers; and
9. open-ended questions for quick assessment of tools’ strengths and weaknesses,

and a list of case studies and experience reports.

We have designed the basic questionnaire and revised it based on the feedback from the
Engineering Consortium, various verification mailing lists, and SRI CSL. We also
modified the questionnaire for on-line filling.

For each tool, we filled the questionnaire as a “new” user, i.e. we have studied the readily
available literature about the tool as if we are evaluating it for potential use.
Questionnaires were then distributed to tool makers and user mailing lists for feedback.
Returned questionnaires were edited for consistency between various responses. All
questionnaires came back with feedback except for Larch LP, Tatami, and NRL Protocol
Analyzer. (According to Jeannette Wing at FM’99, use of Larch language and tools is on
the sharp decline and that might explain lack of interest in participating in this survey.)

The questionnaires are in the Appendices. We posted the questionnaires on WetStone’s
web page, as http://www.wetstonetech.com/fm_quest.html, and requested that it be linked
to various formal methods web repositories, such as Engineering Consortium page and
World Wide Web Virtual Library on Formal Methods. The questionnaires were presented
at the World Congress on Formal Methods (FM’99).

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 8

4.2 Taxonomy of Formal Terms

We have examined [NASA97, NASA98] FM guidebooks, various papers on formal
methods including [ClWi96] and many others, various technical reports such as
[Rushby95] and combined existing definitions into a formal methods terminology. The
taxonomy is application-domain independent. It is intended to satisfy a wide range of
users, including practicing engineers who might not be fully trained in mathematical
logic. For a more theoretical treatment of technical details involved in formal methods, a
reader is referred to textbooks on logic and theoretical studies of languages such as
[EWICS98]. The taxonomy is presented in the Appendix, and posted on WetStone’s web
page at http://www.wetstonetech.com/fm_quest.html.

5 Conclusions and Future Work

The following work is needed to move formal methods into a more mainstream practice:
1. A common terminology. Various differing definitions need to be converged into a

common terminology to be accepted as the “lingua franca” of formal methods, and
potentially standardized.

2. Common APIs and exchange formats for tool interoperability, potentially to be
standardized.

3. Classification of formal methods, based on their language, method, and tool, as well
as the relationship between them. Ideally, also include classification based on
application domains.

4. Guidelines for using formal methods in industrial practice, including the following:
a. Overview of the state-of-the-art in formal methods practice.
b. A classification of tools, containing short overview and description of each tool,

time-stamped and indicating if the tool is industrial strength or research prototype.
c. A questionnaire which users can use to guide them in selecting tools.
d. Experiences database, organized by application type and industry area; or, for

each tool, what types of problems it was used for.
e. Examples done in each tool, using similar problems as benchmarks.
f. A catalogue of formal methods courses, training, books, and other educational

resources.
g. “Method behind the method” for tools, i.e. how can each method/tool be used

and/or what is its theoretical basis for implementation.
h. A bibliography of links to the above information, to be posted on a web site.

5. Developed “infrastructure,” such as verified libraries and transition from research
prototype tools into industrial strength tools.

6. Integration of tools into toolkits, and integration of tools into industrial process flow.

This project has accomplished items 3.b and 3.c, and produced the first draft of item 1.
[Barj98] addressed item 3.a, but the overview needs to be updated yearly. The future
work would be to address the remaining items.

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 9

5.1 Long-term Future Work: Formal Methods Framework

In order to integrate tools into a framework, items 2 and 3.g must be completed first. Our
perspective and long-term goal is to identify robust tools that can be integrated together
in a formal toolkit or added to existing toolkits. In order to accomplish that, we need to:
• Identify application or class of problems. Possible choices at this moment seem to be:

• hardware/software co-design
• information/networking security
• system-level design.

• Identify collaborators. Tool integration can be achieved only with the assistance of
tool makers. We need to identify collaborators that can bridge the gap between
research and industrial practice.

Potential collaborators include: Derivation Systems (contact Dr. Bhaskar Bose); Dr. Perry
Alexander (U of Cincinnati); SLDL project (contact Dave Barton, Intermetric Inc.) and
the tool integration group at Ptolemy Project (contact Dr. Edward Lee, U of California at
Berkeley).

Derivation Systems company is dedicated to making industrial formal methods products.
Employees are Ph.D.-level trained in formal methods. Therefore, this company provides
expertise in commercial applications of formal methods research. Furthermore, the
company sells formal hardware tools, and recently has acquired software expertise in
formal network assurance for secure Java applets.

SLDL (System-Level Design Language) project is an ongoing, industry-driven effort to
develop a language and its tool support for describing systems-on-silicon. SLDL is
intended for use by electrical engineers designing microsystems with embedded software.
SLDL is of interest to our project because of its plug-and-play architecture. SLDL
framework will include bridging the semantics of several existing domain-specific system
languages (e.g. Esterel, SDL, and C++).

Dr. Perry Alexander has been involved in several projects that bridge the gaps between
formal methods research and industrial practice, hardware and software. For example,
CEENS project (sponsored by Air Force), SLDL project, and HEPE project (sponsored
by DARPA/ITO). CEENS project had the goal to develop methodology and tools
necessary to support board and module level of electronic integration and develop a
commercial products. The project involved collaboration between Dr. Alexander and
commercial companies TRW, Motorola, and Mentor Graphics, and included industry
review board. HEPE project deals with high assurance heterogeneous network assurance
prediction, and thus provides with software experience.

Some of the tools we have examined already integrate with other tools, for example PVS
integrates with SCR*, which integrates with SPIN. The trend is between integration
between theorem provers and model checkers, such as in PVS and SMV.

There are many ways to integrate tools. Ideal toolkit would consist of a “stack” of tools
that can address various levels of abstraction to aid in development by transformation.

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 10

Ideally, tools would be able to share common data. In practice, tools have been integrated
based on shared APIs and sockets (such as in Z/EVES); or common meta-language (such
as in UniForm and Express IT toolkits, and many commercial non-formal CAD toolkits)
or some logic as the logical framework (such in Maude). We envision a formal methods
framework that integrates several tools in an open environment. The tools should be
either extensible or with provided API, and contain many “convenience” non-formal
tools, such as typecheckers, editors and prettyprinters, as well as validated libraries. What
is needed is more validated libraries for theorem proving, and macros of temporal logic
formulas for model checking. Our goal would be to integrate theorem proving and model
checking in an efficient way.

Tools which look promising for such integration are PVS, SCR* and SPIN, since they
have already begun their integration. For example, PVS already contains a model
checker, but it would be more efficient from a user’s point of view to not have to learn
another tool, e.g. an experienced SPIN user should be able to supply input to PVS and
vice versa.

An outcome of this work would be to produce guidelines on how to express various
properties in various tools, which is one of the features states as “needed” by the formal
methods community.

An advantage of combining tools such as PVS and SPIN is the possible extent of
cooperation from tool vendors and users. PVS distribution does not contain source code,
so it is not user extensible, but PVS is a product of a commercial company and there are
human resources available to extend the tool, even though PVS itself is free. SPIN source
code is freely available and often extended by users. The combination of the two could
result in a tool suite that is free and capable of integrating model checking and theorem
proving in an effective way.

5.2 Travel

Date Destination Purpose of Trip
September 1999 Tolouse FM’99

5.3 References

[ACL2] Applicative Common Lisp (ACL2) home page,
http://www.cs.utexas.edu/users/moore/acl2/index.html.

[Barj98] Milica Barjaktarovic, “The State-of-the-art in Formal Methods,” AFOSR
Summer Research technical report for Rome Research Site, AFRL/IFGB.
http://www.wetstonetech.com/fm_quest.html.

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 11

[Blac99] Paul Black, ed., “Dictionary of Algorithms, Data Structures, and
Problems,” compiled originally for the CRC Dictionary of Computer
Science, Engineering and Technology.
http://hissa.ncsl.nist.gov/~black/DADS.

[BoweWWW] Jonathan Bowen (webmaster): “WWW Virtual Library on Formal
Methods”, http://www.comlab.ox.ac.uk/archive/formal-methods/,
links to individual tools’ pages.

[ClWi96] Edmund M. Clarke, Jeannette M. Wing, at. al. “Formal Methods: State of
the Art and Future Directions.” ACM Computing Surveys, 28(4):626-643.

[EWICS98] European Workshop on Industrial Computer Systems, Technical
Committee 7 (Safety, Reliability, Security), Formal Methods subgroup,
“Guidance on the Use of Formal Methods in the Development of High
Integrity Industrial Computer Systems.” Parts I, II, working paper 4001,
June 1998. http://www.ewics.org.

[EWICS98’] European Workshop on Industrial Computer Systems, Technical
Committee 7 (Safety, Reliability, Security), Formal Methods subgroup,
“Guidance on the Use of Formal Methods in the Development of High
Integrity Industrial Computer Systems.” Part III, “A Directory of Formal
Methods,” working paper 4002, June 1998. http://www.ewics.org.

[Factory] Concurrency Factory home page, http://www.cs.sunysb.edu/~concurr

[FME] Formal Methods Europe home page, http://www.cs.tcd.ie/FME/, or
http://www.fme-nl.org.

[HOL90] HOL home pages,
http://www.comlab.ox.ac.uk/archive/formal-methods/hol.html

[Lapr] Jean-Claude Laprie, “Dependability: Basic Concepts and Terminology.”
Laboratory for Analysis and Architecture of Systems (LAAS) - CNRS,
LAAS report No92043. http://www.laas.fr.

[Murphi] Murϕ homepage, http://sprout.stanford.edu/dill/murphi.html.

[NASA98] "Formal Methods Specification and Verification Guidebook for Software
and Computer Systems, Volume I: Planning and Technology Insertion"
[NASA/TP-98-208193], 1998.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 12

[NASA97] "Formal Methods Specification and Analysis Guidebook for the
Verification of Software and Computer Systems, Volume II: A
Practitioner's Companion" [NASA-GB-001-97], 1997.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

[NRL] NRL home page,
http://www.itd.nrl.navy.mil/ITD/5540/projects/crypto.html

[PaulWWW] Larry Paulson (webmaster):
http://www.cl.cam.ac.uk/users/lcp/hotlist#Systems

[TalcWWW] Carolyn Talcott (webmaster):
http://www_formalstanford.edu/clt/ARS/ars-db.html

[PVS] PVS home page, http://pvs.csl.sri.com

[Rush93] John Rushby, “Formal Methods and Their Role in the Certification of
Critical Systems”, SRI International Technical Report CSL-93-7, March
1993. http://csl.sri.com/csl-93-7.html.

[Rush95] John Rushby, “Formal Methods and Their Role in the Certification of
Critical Systems”, SRI International Technical Report CSL-95-1, March
1995. http://csl.sri.com/csl-95-1.html.

[SCR] SCR home page, http://www.chacs.itd.nrl.navy.mil/SCR

[SMV] SMV home page, http://www-cad.eecs.berkeley.edu/~kenmcmil

[Spin] Spin home page, http://netlib.bell-labs.com/netlib/spin/whatispin.html

[Z/EVES] Z/EVES home page, http://www.ora.on.ca/z-eves.

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 13

6 Appendix A – Questionnaires

6.1 ACL2

****************************** ACL2 ***********************************
****************************Sep. 1999**********************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
____ model checker
____ theorem prover
____ mechanized proof assistant
_X__ other: _integrated toolkit: logic, mechanized proof

assistant,
 executable model environment.

o Application domain(s) or class(es) of problems originally intended.
Formal verification o digital systems.
Building executable models that can be run and/or symbolically

executed.
o Intended audience.

Engineers and mathematicians working on industrial-strength
applications.

More generally, anyone wanting to reason about formal models.
o Language(s) and/or technique(s) that the tool is based on.

ACL2 logic (a subset of first-order applicative Common Lisp, i.e.
excluding non-applicative aspects such as higher-order functions,
circular structures, and Common Lisp Object System).

o Reasoning mechanisms used for the tool.
Mathematical induction, rewriting, decision procedures (equality,

BDDs,
linear arithmetic), heuristics

o Comparable languages/tools.
HOL, PVS, (Pc-)Nqthm.
ACL2 is industrial-strength successor of Boyer-Moore theorem

prover
Nqthm).

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.
Applicative Common Lisp (Allegro, GCL, Lispworks, Lucid, MCL).

o How extensible and/or customizable is the tool.
_X__ source code given
_X__ tool implemented in a public-domain language
_X__ other: _users post libraries___________

Features enabling modification include
extensive comments in sources and applicative
coding style (e.g., no global variables).

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 14

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):
____ GUI
_X__ Library of standard types, functions, and other

constructions
_X__ the library is validated

The extent of the library is (speaking from the point of
view of

a potential user):
___ not very comprehensive
X reasonably comprehensive
___ quite comprehensive

_X__ Editing and document preparation tools
__GNU Emacs_____________
__ACL2 event files can be published in LaTex, HTML, Scribe,

or
 ASCII text. Formatting is user-extensible.____________

____ Cross-referencing
____ Browsing
____ Requirements tracing
_X__ Incremental development across multiple sessions
____ Change control and version management
_X__ Consistency checking

 (via the "encapsulate" form)
_X__ Completeness checking

 (in the sense that theorems can be proved)
_X__ Other:

_infix interface to ACL2, to ease familiarizing with ACL2
for

 those not familiar with Lisp prefix syntax._____________

o How interactive/mechanized/automated is the tool.
_X__ fully automated

(model execution)
_X__ user guided

(theorem prover)
____ other: ____________

4. TOOL INPUT AND OUTPUT

o Tool supports these models:
_X__ synchronous
_X__ asynchronous
_X__ mixed

o Input to the tool.
Model in ACL2 and proof hints.

o Output from the tool.
Proof results.
Execution results.

o The language used for input to the tool has (check all that apply):
_X__ formal semantics
_X__ modern programming language constructs (e.g. if-else):

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 15

____ strong typing
_X__ modularity
_X__ hierarchical design
_X__ parameterization

 (in the sense that functions can be parameterized)
____ communication between processes

____ buffered
_X__ built-in model of computation
____ other: ____________

5. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply):
_X__ requirements
_X__ design specification
_X__ implementation
_x__ test derivation

 (not part of the system, but conveniently user-
implementable)

_X__ RTL
_X__ netlists
____ transistor level
_X__ other: In principle, any level can be addressed, but some

 levels would require more work than others.
o Has the tool been integrated with other tools?

____ no
____ yes

with _____________________
with _____________________

_X__ do not know
 _Many loose integration, via translators into ACL2,

_but no tight integration known to tool makers.

6. RESOURCES

o Resource requirements for the tool:
UNIX version __Sun OS, Linux________
Windows version __________
Mac version _X____
Memory: __at least 16MB, preferably at least 64MB__

o Cost, rights and restrictions:
____ free, no license
_X__ free, license required

(GNU General Public License)
___ for educational and research use only

____ nominal distribution charge
____ fee for underlying tool(s)
____ flat license fee
____ per user license fee
____ royalties per use
____ other: ____________

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 16

o User background prerequisites (check all that apply):
_X__ BS degree
____ MS degree
____ Ph.D. degree
_X__ knowledge of logic

_X__ first-order
____ high order

____ familiarity with a high-level programming language
____ familiarity with process algebra
____ familiarity with temporal logic
_X__ other: __minimal familiarity with Common Lisp__________

o User's learning curve, if all prerequisites are met:
____ one month
____ two months
_X__ less than six months
____ other:

______ months
o Tool support

_X__ upgrades/maintenance
Last version produced at this date: _ACL2 v.2.4, 1999__

_X__ manual
_X__ on the web

_X__ training
(tutorials on the web)

_X__ listserv
____ mailing list
_X__ dedicated conference(s)/workshop(s)

 (One held in March 1999; next is anticipated in Oct. 2000)
____ human "help line"
_x__ book(s)

 (To appear in 2000).
_X__ journal/conference publications
_X__ other: _bug reports to acl2@lists.cc.utexas.edu__

_libraries, hypercard on the web____________
o Current contact.

http://www.cs.utexas.edu/users/moore/acl2/index.html
acl2@lists.cc.utexas.edu (subscribe to acl2-

request@lists.cc.utexas.edu)

7. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply):
____ equivalence
____ modal logic
____ temporal logic
____ system or process invariants
____ built-in support for checking for:

___ deadlock
___ livelock
___ other: ____________

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 17

____ other: ____________

o Tool supports (check all that apply):
____ optimization and state reduction mechanism

using _________________________
____ simulator:

____ interactive
____ random

____ feedback on in what state verification failed
___ trace leading to the state

8. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

o Degree of proof mechanization.
____ fully mechanized
_X__ partially mechanized

o Support for developing and viewing the proof.
 Prover gives output showing the progress of the proof that users
 typically inspect in order to develop appropriate lemmas (rules)
to
 assist in subsequent attempts. An interactive loop allows finer
 control of the proof process, as does a tool for monitoring the
 rewriter. "Proof trees" provide a sort of outline mode for the
 proof that can ease browsing.
o Presentation of proof to the user.
 The proof is presented as formulas that the prover is attempting
to reduce
 to "true".
o Tool supports (check all that apply):

_X__ automated support for arithmetic reasoning
_X__ automated support for efficient handling of large

propositional
 expressions
_X__ automated support for rewriting
_X__ possible to use lemmas before they are proved.
_X__ possible to state and use axioms without having to prove

them.
_X__ new definitions can be introduced and existing definitions
 modified during proof

 (at least, if "during proof" is interpreted as "during
 the proof effort" then this is done all the time)

____ facilities for editing proofs
_X__ the foundations (i.e., all axioms, definitions, assumptions,
 lemmas) of the proof are identified

 Caveat to the above: Some of the basic foundations are
 collapsed, e.g., as "trivial observations"

_X__ reasonably easy to reverify a theorem after slight changes
to

 the specification

9. OPEN-ENDED QUESTIONS

o Strengths of this tool.
Industrial-strength tool.
Built and based on a programming language, so models can be

symbolically
executed, run, and theorem-proved.

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 18

State-of-the-art heuristics and efficiency for inductive theorem
proving.
o Limitations of this tool.

Reasoning directly about quantified notions can be very awkward.
Learning curve.

o Estimated possible uses of the tool, such as applications, classes of
problems, stages of production cycle.

Digital systems verification.
Bridging the gap between current practice (simulation) to the

goal
practice (formal verification) using symbolic execution, or
less ambitiously, by providing a formal language for
reasonably efficient simulation.

o Applications that the tool was used for - case studies, examples,
success stories.

See http://www.cs.utexas.edu/users/moore/publications/acl2-
papers.html.

Examples:
industrial microprocessor AMD5K86 and K7 floating-point

verification,
Motorola CAP DSP design.
Verification of COBOL Year 2000 conversion rules.

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook
for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 19

6.2 HOL

***************************** HOL *****************************
********************************Sep. 1999****************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
____ model checker
____ theorem prover
_X__ mechanized proof assistant
____ other: _________________

o Application domain(s) or class(es) of problems originally intended.
General - from formalizing pure mathematics to verification of
industrial hardware.
Has been used for hardware and software verification.

o Intended audience.
General.

o Language(s) and/or technique(s) that the tool is based on.
Higher-order logic interfaced to Standard ML as the meta

language.
o Reasoning mechanisms used for the tool.

Higher order logic, using predicate calculus with terms from the
typed

lambda calculus (i.e. simple type theory).
o Comparable languages/tools.

ACL2, Eves, Isabelle, Nqthm, LAMBDA, LP, Nuprl, PVS
ProofProver (commercial implementation of HOL used fo reasoning

about Z
specifications)

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.
Standard ML (Moscow ML for HOL98, New Jersey ML for HOL90).
A non-standard ML for HOL88.

o How extensible and/or customizable is the tool.
_X__ source code given
_X__ tool implemented in a public-domain language
____ not extensible by user
____ other: ____________

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):
_X__ GUI

(as a downloadable extension to HOL)
_X__ Library of standard types, functions, and other

constructions

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 20

_X__ the library is validated

The extent of the library is (speaking from the point of
view of

a potential user):
___ not very comprehensive
___ reasonably comprehensive
X quite comprehensive

_X__ Editing and document preparation tools
_emacs interface (as a downloadable

extension)______________

____ Cross-referencing
____ Browsing
____ Requirements tracing
____ Incremental development across multiple sessions
____ Change control and version management
____ Consistency checking
____ Completeness checking
____ Other:

o How interactive/mechanized/automated is the tool.
____ fully automated
_X__ user guided
____ other: ____________

4. TOOL INPUT AND OUTPUT

o Input to the tool.
Higher-order logic proof description.

o Output from the tool.
Proof goals proved or not.

o The language used for input to the tool has (check all that apply):
_X__ formal semantics
_X__ modern programming language constructs (e.g if-else):

_X__ strong typing
_X__ modularity
_X__ hierarchical design
_X__ parameterization
_X__ built-in model of computation
____ other: ____________

5. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply):
_X__ requirements
_X__ design specification

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 21

_X__ implementation
____ test derivation
_X__ RTL
_X__ netlists
_X__ transistor level
_X__ other: _mathematics__________
(in principle, every level can be addressed, but lower levels
require more work)

o Has the tool been integrated with other tools?
____ no
_X__ yes

with _Isabelle____________________
with _ProofProver___________________
with _CHOL, non-specialist user interface to HOL__
with ____________________

____ do not know
Note: Many extensions and interfaces, such as GUI, Emacs.

Many embedded languages, such as Z, CCS.

6. RESOURCES

o Resource requirements for the tool:
UNIX version ___precompiled binaries for Sun3, Sun4, MIPS,

Alpha__
Windows version __________
Mac version ___________
Memory: _____________

o Cost, rights and restrictions:
_X__ free, no license
____ free, license required

____ for educational and research use only
____ nominal distribution charge
____ fee for underlying tool(s)
____ flat license fee
____ per user license fee
____ royalties per use
____ other: ____________

o User background prerequisites (check all that apply):
____ BS degree
_X__ MS degree
_X__ PhD degree
_X__ knowledge of logic

____ first-order
_X__ high order

____ familiarity with a high-level programming language
____ familiarity with process algebra
____ familiarity with temporal logic
____ other: ____________

o User's learning curve, if all prerequisites are met:
____ one month
____ two months
____ less than six months
_X__ other

___6__ months
o Tool support

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 22

_X__ upgrades/maintenance
Last version produced at this date: __HOL98____

_X__ manual
_X__ on the web

_X__ training
(courses at various locations, lectures and tutorials on

the web)
_X__ listserv
_X__ mailing list
_X__ conference(s)/workshop(s)

(annual international intercontinental conference TPHOL)
____ human
_X__ book(s)
_X__ journal publications
_X__ other: __web pages with code depositories and ftp/faq

 archive__________
__HOL2000 initiative, to design next generation
 HOL-like provers_____
__special journal issues related to HOL
__user meetings
__very extensive documentation (tutorial,

description,
 manual, manual for each supported library, primer

for
 beginners, notes, user manuals, applications)
__bug/problem reports: hol-supprt@cl.cam.ac.uk

o Current contact.
http://www.cl.cam.ac.uk/Research/HVG/HOL
info-hol@lal.cs.byu.edu (subscribe at info-hol-

request@lal.cs.buy.edu)

7. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply):
____ equivalence
____ modal logic
____ temporal logic
____ system or process invariants
____ other: ____________

o Tool supports (check all that apply):
____ optimization and state reduction mechanism(s)

using _________________________
____ simulator

____ interactive
____ random

____ feedback on in what state verification failed
___ trace leading to the state

____ built-in support for checking for:
___ deadlock
___ livelock
___ boolean propositions
___ other: ____________

8. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 23

o Degree of proof mechanization.
____ fully mechanized
_X__ partially mechanized

o Support for developing and viewing the proof.

o Presentation of proof to the user (e.g., user input or canonical
expressions,
with or without quantifiers).

o Tool supports (check all that apply):
____ automated support for arithmetic reasoning
____ automated support for efficient handling of large

propositional
 expressions
_X__ automated support for rewriting
____ possible to use lemmas before they are proved.
____ possible to state and use axioms without having to prove

them.
_X__ new definitions can be introduced and existing definitions
 modified during proof
____ facilities for editing proofs
_X__ the foundations (i.e., all axioms, definitions, assumptions,
 lemmas) of the proof are identified
_X__ reasonably easy to reverify a theorem after slight changes

to
 the specification

9. OPEN-ENDED QUESTIONS

o Strengths of this tool.
Powerful proof mechanism for formal verification, induction,
infinite data sets. Active and large established user group.

o Limitations of this tool.
Difficult to specify control sequences, takes a long time to

learn.
Less payoff for lower levels of abstraction.

o Estimated possible uses of the tool, such as applications, classes of
problems, stages of production cycle.

Verification of problems containing extensive data path.
o Applications that the tool was used for - case studies, examples,
success stories.

Some are posted http://www.dcs.glasgow.ac.uk/~tfm/hol-bib.html
Examples: embedding of various languages (e.g. Z, CCS, hardware
languages); security; distributed systems; protocols; hardware;
networking elements; compiler verification; real-time systems;

reactive
systems.

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook
for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 24

6.3 Larch Prover (LP)

***************************** Larch Prover (LP) **********************
********************************** Sep. 1999**************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
____ model checker
____ theorem prover
_____ mechanized proof assistant
__X__ other: __integrated suite of tools:

 LP mechanized proof assistant, LSL checker
and

 LCLint C program checker.
o Application domain(s) or class(es) of problems originally intended.

Software design and verification. Concurrent algorithms in
hardware and software. Circuits.
Intended to assist users in finding and correcting flaws in
conjectures that need to be proven.

o Intended audience.
Programmers, designers.

o Language(s) and/or technique(s) that the tool is based on.
Multi-sorted first order logic. User specifies axiomative

theories
to be proved.

Note: each Larch specification contains two components: one
written in a Larch Interface Language, which is designed for
a specific programming language; and another written in
Larch Shared language (LSL), which is independent of any
programming language. Larch Interface Languages exists for
C (LCL), Ada, Modula-3, VHDL, and others.

LSL tool checks for syntax and type errors in LSL specifications,
and can translate it into input files for LP.

LCLint tool statically checks C programs, including common lint
checks such as type inconsistencies, ignored return values,
likely infinite loops, as well as assertions about assumptions in
desired places in the C code ad errors in dynamic memory

management.

o Reasoning mechanisms used for the tool.
Theorem proving, including forward and backward inference,

equational
term-rewriting, induction rules.

o Comparable languages/tools.
HOL, PVS.

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 25

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.

o How extensible and/or customizable is the tool.
____ source code given
____ tool implemented in a public-domain language
____ not extensible by user
____ other: ____________

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):
____ GUI
____ Library of standard types, functions, and other

constructions
____ the library is validated

The extent of the library is (speaking from the point of
view of

a potential user):
___ not very comprehensive
___ reasonably comprehensive
___ quite comprehensive

____ Editing and document preparation tools

____ Cross-referencing
____ Browsing
____ Requirements tracing
____ Incremental development across multiple sessions
____ Change control and version management
____ Consistency checking
____ Completeness checking
____ Other:

o How interactive/mechanized/automated is the tool.
____ fully automated
_X__ user guided
____ other: ____________

4. TOOL INPUT AND OUTPUT

o Tool supports these models:

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 26

____ synchronous
____ asynchronous
____ mixed

o Input to the tool.

o Output from the tool.

o The language used for input to the tool has (check all that apply):
_X__ formal semantics
_X__ modern programming language constructs (e.g. if-else):

_X__ strong typing
_X__ modularity
_X__ hierarchical design
_X__ parameterization
____ communication between processes

____ buffered
_X__ built-in model of computation
____ other: ____________

3. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply):
____ requirements
_X__ design specification
_X__ implementation
____ test derivation
____ RTL
____ netlists
____ transistor level
____ other: ____________

o Has the tool been integrated with other tools?
____ no
_X__ yes - please name tool and applications

with __LSL and LCLint, as mentioned
above___________________

with _____________________
with _____________________

____ do not know

4. RESOURCES

o Resource requirements for the tool:
UNIX version _Intel Linux, SPARC SunOS4.1, Solaris 5.3_________
Windows version __________
Mac version ___________
Memory: _____________

o Cost, rights and restrictions:

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 27

_X__ free, no license
____ free, license required

____ for educational and research use only
____ nominal distribution charge
____ fee for underlying tool(s)
____ flat license fee
____ per user license fee
____ royalties per use
____ other: ____________

o User background prerequisites (check all that apply):
____ BS degree
_X__ MS degree
____ Ph.D. degree
_X__ knowledge of logic

_X__ first-order
____ high order

____ familiarity with a high-level programming language
____ familiarity with process algebra
____ familiarity with temporal logic
____ other: ____________

o User's learning curve, if all prerequisites are met:
____ one month
____ two months
_X__ less than six months
____ other

______ months
o Tool support

_X__ upgrades/maintenance
Last version produced at this date: _vs3.1b, 1999____

_X__ manual
_X__ on the web

____ training
____ listserv
____ mailing list
_X__ dedicated conference(s)/workshop(s)
____ human “help line” _X__ book(s)
_X__ journal/conference publications
_X__ other: __newsgroup comp.specification.larch__________

__ftp archive _____
o Current contact.

http://www.sds.lcs.mit.edu/spd/larch/

6. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply):
____ equivalence
____ modal logic
____ temporal logic
____ system or process invariants
____ built-in support for checking for:

___ deadlock
___ livelock
___ other: ____________

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 28

____ other: ____________

o Tool supports (check all that apply):
____ optimization and state reduction mechanism

using _________________________
____ symbolic simulator:

____ interactive
____ random

____ feedback on in what state verification failed
___ trace leading to the state

7. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

o Degree of proof mechanization.
____ fully mechanized
_X__ partially mechanized

o Support for developing and viewing the proof.

o Presentation of proof to the user (e.g., user input or canonical
expressions,
with or without quantifiers).

o Tool supports (check all that apply):
____ automated support for arithmetic reasoning
____ automated support for efficient handling of large

propositional
 expressions
____ automated support for rewriting
____ possible to use lemmas before they are proved.
____ possible to state and use axioms without having to prove

them.
____ new definitions can be introduced and existing definitions
 modified during proof
____ facilities for editing proofs
____ the foundations (i.e., all axioms, definitions, assumptions,
 lemmas) of the proof are identified
____ reasonably easy to reverify a theorem after slight changes

to
 the specification

8. OPEN-ENDED QUESTIONS

o Strengths of this tool.

o Limitations of this tool.

o Estimated possible uses of the tool, such as applications, classes of
problems, stages of production cycle.

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 29

o Applications that the tool was used for - case studies, examples,
success stories.

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook
for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 30

6.4 PVS

***************************** PVS ***************************
******************************* Sep. 1999**************************

For this particular tool, please answer the following questions based
on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
____ model checker
____ theorem prover
____ mechanized proof assistant
_X__ other:

 Verification system consisting of a specification language
 and support tools, including a mechanized proof checker
 integrated with a model checker, ground evaluator, and
tabular
 specification tool.
o Application domain(s) or class(es) of problems originally intended:
 Formalization and verification of requirements and design-level
 specifications of hardware and software systems.
o Intended audience:
 Anyone interested in formal support for conceptualization and
 debugging of algorithms, and of software and hardware systems.
 Both academic and industrial settings.
o Language(s) and/or technique(s) that the tool is based on:
 Classical, typed higher order logic augmented with predicate
subtypes,
 dependent typing, abstract data types, and parameterized
theories.
o Reasoning mechanisms used for the tool:
 Low-level decision procedures (including propositional
 simplification; ground procedures for equality, arithmetic,
 array, and datatype operations; and model checking) combined
 with user-definable, high-level proof strategies.
 Sequent Calculus notation.
 CTL model checking using mu-calculus.
o Comparable languages/tools:
 PVS provides more automation than a low-level proof checker
 (e.g., LCF, HOL, Nuprl, Coq), and more control than a highly
 automatic theorem prover (e.g., Otter, ACL2). PVS's capabilities
 are somewhat less generic than Isabelle's.

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation:
 Common Lisp (preferably Franz Inc's Allegro Lisp) with CLOS
extensions.
 Emacs or XEmacs (version 19 or later), Tcl/Tk, LaTex.
o How extensible and/or customizable is the tool?

____ source code given

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 31

_X__ tool implemented in a public-domain language
____ not extensible by the user
_X__ other:

 The PVS environment, including Lisp, Emacs, X windows,
 and Tcl/Tk, are customizable. Tool makers accept and

 incorporate suggestions for extending/integrating PVS.

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):
_X__ GUI
_X__ Library of standard types, functions, and other

constructions
_X__ the library is validated

The extent of the library is (speaking from the point
of view of a potential user):
___ not very comprehensive
X reasonably comprehensive
___ quite comprehensive

_X__ Editing and document preparation tools
X GNU or X Emacs
X Customized prettyprinting and typesetting (using LaTex)

____ Cross-referencing
_X__ Browsing
____ Requirements tracing
_X__ Incremental development across multiple sessions
____ Change control and version management
_X__ Consistency checking
_X__ Completeness checking
____ Other

o How interactive/mechanized/automated is the tool?
____ fully automated
_X__ user guided

 (simpler steps are automated)
_X__ other:

 __The user may also define application-specific
 strategies to automate the verification.

4. TOOL INPUT AND OUTPUT

o Tool supports these models:
____ synchronous
____ asynchronous

 _X__ mixed:
o Input to the tool:
 ASCII text consisting of a specification in the PVS language.
o Output from the tool:
 Proof results, status information, alltt and latex output,
 specification files, proof files.
o The language used for input to the tool has (check all that apply):

_X__ formal semantics
_X__ modern programming language constructs(e.g. if-else):
 __if-else, let, where

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 32

 __structured datatypes (e.g., records, tuples,
ennumerations)

 __abstract data types
 __tabular notation

_X__ strong typing
_X__ modularity
____ hierarchical design
_X__ parameterization
____ communication between processes

____ buffered
____ built-in model of computation
_X__ other:

 __Undecidable typechecking: to cope with this, the
 typechecker generates proof obligations, most
 of which are discharged automatically by the prover.
 __Overloading: PVS allows a liberal amount of overloading.
 __Automated support for judgements and coercions
(conversions).
 __Total vs partial functions: in PVS, functions represent
 total maps; partial functions are admitted within this
 framework via the predicate subtype mechanism.

5. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply):
_X__ requirements
_X__ design specification
_X__ implementation
_X__ test derivation
_X__ RTL
____ netlists
____ transistor level
_X__ other:

 __mathematics
(in principle, every level can be addressed, but some levels
require more work than others)

o Has the tool been integrated with other tools?
____ no
_X__ yes:

 __model-checker (Janssen's BDD-based model checker for the
 propositional mu-calculus __Technical Univ. of
Eindhoven)
 __TAME (Lynch-Vaandrager Timed Automata system models
__NRL)
 __SCR* (Software Cost Reduction method __NRL)
 __InVest (Tool for automatic invariant generation
__Verimag)
 __Pamela (VDM-style verification system __Univ. of Bremen)
 __Mona (language/tool for monadic second order logic
__BRICS)
 __SVC (Stanford Validity Checker for subset of first-order
 logic __Stanford University)

6. RESOURCES

o Resource requirements for the tool:

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 33

UNIX version: __precompiled for Solaris 2 or higher (SPARC
workstations),

 Redhat Linux
Windows version __________

 Mac version __________
 Memory: 20 mb disk space, 50 mb swap space, 32 mb real memory

o Cost, rights and restrictions:
____ free, no license
_X__ free, license required

____ for educational and research use only
____ nominal distribution charge
____ fee for underlying tool(s)
____ flat license fee
____ per user license fee
____ royalties per use
____ other

o User background prerequisites (check all that apply):
_X__ BS degree
____ MS degree
____ Ph.D. degree
_X__ knowledge of logic

_X__ first-order
____ high order

_X__ familiarity with a high-level programming language
____ familiarity with process algebra
____ familiarity with temporal logic
____ other:

o User's learning curve, if all prerequisites are met:
____ one month
____ two months
____ less than six months
_X__ other

__6__ months

o Tool support:
_X__ upgrades/maintenance

Last version produced at this date: PVS 2.3, 1999
_X__ manual

_X__ on the web
_X__ training

(tutorials on the web)
____ listserv
_X__ mailing list
____ dedicated conference(s)/workshop(s)
____ human "help line"
____ book(s)
_X__ journal/conference publications
_X__ other:

__bugs, problems, suggestions to pvs-bugs@csl.sri.com
__list of user suggestions and SRI's responses on the

web
__archive, FAQ, libraries on the web

o Contact:
pvs-request@csl.sri.com

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 34

http://pvs.csl.sri.com

7. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply):
_X__ equivalence
_X__ modal logic
_X__ temporal logic

(CTL and fair CTL)
_X__ system or process invariants
_X__ built-in support for checking for:

X deadlock
X livelock
X boolean propositions
X other: __fairness__

____ other

o Tool supports (check all that apply):
_X__ optimization and state reduction mechanism
____ simulator

____ interactive
____ random

_x__ feedback on state in which verification failed
 (Counterexample generation is currently under

development.)

8. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

o Degree of proof mechanization:
____ fully mechanized
_X__ partially mechanized
(although finite state verification and the proof of many
straightforward results are fully automatic. There is also a

batch
mode in which proofs may be easily rerun, and a facility for
defining proof strategies to automate proofs.

o Support for developing and viewing the proof:
 Tcl/Tk interface to display proof trees and theory hierarchies.
 Proofs yield scripts that may be edited, attached to additional
formulas,
 and rerun. Proofs may also be checkpointed, providing rapid
access to
 parts of a proof the user wishes to examine or adjust.

o Presentation of proof to the user (e.g., user input or canonical
expressions
 with or without quantifiers):
 Proofs are presented in a sequent-style representation. PVS takes
 care to assure that the initial proof goal transparently
reproduces
 the formula input by the user. Quantification is retained;
implicit
 universal quantification in the user's specification is made
explicit.

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 35

o Tool supports (check all that apply):
_X__ automated support for arithmetic reasoning
_X__ automated support for efficient handling of large

propositional
 expressions
_X__ automated support for rewriting
_X__ possible to use lemmas before they are proved.
_X__ possible to state and use axioms without having to prove

them.
_X__ new definitions can be introduced and existing definitions
 modified during proof
_X__ facilities for editing proofs
_X__ the foundations (i.e., all axioms, definitions, assumptions,
 lemmas) of the proof are identified
_X__ reasonably easy to reverify a theorem after slight changes

to
 the specification
_X__ other:
 __integration with CTL model checking

 __ground evaluator (providing "run" speeds comparable to
 imperative programs)
 __proof strategies
 __proof storage, replay, and checkpointing
 __graphical display of proof trees, theory hierarchies,
and
 prover commands
 __proof chain analysis
 __proof and theory status reporting

9. OPEN-ENDED QUESTIONS

o Strengths of this tool:
 Comprehensive, interactive environment for writing formal
 specifications and checking formal proofs, including tight
integration of
 algorithmic and deductive proof technologies.
 Generic system well suited to, e.g., prototyping specialized
 strategies, embedding logics, and exploring strategies for
integrating
 formal techniques, as well as to undertaking proofs of difficult

algorithms and complex systems.
o Limitations of this tool:
 PVS's capabilities complement, but do not compete with those of
dedicated
 lightweight tools for specialized applications.
 Not industrial strength, but a mature research prototype.

User learning curve.

o Estimated possible uses of the tool (e.g., applications, classes of
 problems, stages of production cycle):
 Hardware verification, embedding logics, fault-tolerant
algorithms,
 library development, invariant generation and abstraction,
distributed
 algorithms, requirements specification and verification, security

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 36

protocols, test generation.

o Applications that the tool was used for - case studies, examples,
 success stories:

 Posted on http://pvs.csl.sri.com. Examples:
Hardware:

 __Collins Commercial Avionics microprocessor design
 __Fujitsu high level design and validation of ATM switch
 __NASA single pulser digital circuit

 __IEEE 854 floating point standard
 __SRT division
 Distributed Algorithms:
 __FLASH cache coherence protocol
 __bounded retransmission protocol
 __real-time controllers
 Fault Tolerant Algorithms:
 __Fault-tolerant agreement and diagnosis protocols for
various
 architectures and fault models
 Embedding Logics:
 __Duration calculus
 __The B-method
 __A real-time Hoare logic
 Invariant Generation and Abstraction:
 __PVS has been used as a simplifier in several systems for
 the heuristic discovery of loop invariants for distributed
 protocols
 Requirements:
 __Space Shuttle flight software
 __Cassini spacecraft fault-protection software

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook
for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 37

6.5 Z/EVES

************************************Z/EVES*****************************
************************************Sep. 1999**************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
____ model checker
____ theorem prover
_X__ mechanized proof assistant
____ other: __Z interface to EVES mechanized proof assistant.___

o Application domain(s) or class(es) of problems originally intended.
Analytical support for writers of Z specifications.
Formal methods courses.
Various applications in safety- and security- domains.
o Intended audience.
 Students, lecturers, researchers, commercial users interested in
rigorous
 specifications supported by rigorous analysis.
o Language(s) and/or technique(s) that the tool is based on.

Z, Verdi, s-Verdi.
Verdi is a language based on untyped set theory.

o Reasoning mechanisms used for the tool.
General theorem proving, specifying and implementing programs,
proving consistency between specification and implementation.

Syntax and type checking, schema expansion, domain checking,
pre-condition calculation, refinement, and general conjectures about a
specification.
EVES has a programming component and supports pre/post
proofs, in addition to general mathematical modeling.
o Comparable languages/tools.

ProofPower, Cadiz and Zola.

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.
Implemented in Lisp.

o How extensible and/or customizable is the tool.
____ source code given
_X__ tool implemented in a public-domain language
_X__ not extensible by user
____ other: ____________

APIs are now defined for Z/EVES allowing for interchanges between

tools.
Plans are to augment Z/EVES with 3rd party developments.

Currently, only
executables are distributed.

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 38

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):
_X__ GUI
_X__ Library of standard types, functions, and other

constructions
__X_ the library is validated
The extent of the library is (speaking from the point of

view of
a potential user):
___ not very comprehensive
__ reasonably comprehensive
X quite comprehensive

It contains all of the Spivey toolkit, which is the
general

basis for all Z specifications.
_X__ Editing and document preparation tools

_Framemaker-based Z editor_____________
_Framemaker editor that has an API connection to Z/EVES.

____ Cross-referencing
__X_ Browsing

(to be completed soon)
____ Requirements tracing
__X_ Incremental development across multiple sessions

(to be completed soon)
____ Change control and version management
__X_ Consistency checking
__X_ Completeness checking
_X__ Other:

__syntax and type checking_____________
__schema expansion_____________
__precondition calculation_____________
__domain checking_____________
__proving consistncy between specification and

implementation___
__support for the Mathematical Toolkit as described in
 Spivey's 2nd edition of "The Z Notation"____

o How interactive/mechanized/automated is the tool.
____ fully automated
_X__ user guided

some prover steps are automated
____ other: ____________

4. TOOL INPUT AND OUTPUT

o Tool supports these models:
____ synchronous
____ asynchronous
____ mixed

o Input to the tool.
Z, Verdi or s-Verdi specification.

o Output from the tool.
Proof results.

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 39

o The language used for input to the tool has (check all that apply):
 Note: the following paragraph refers to Verdi language:

_X__ formal semantics
_X__ modern programming language constructs (e.g. if-else):

_X__ strong typing
_X__ modularity
_X__ hierarchical design
_X__ parameterization
_X___ communication between processes

____ buffered
____ built-in model of computation
____ other: ____________

3. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply):
_X__ requirements
_X__ design specification
_X__ implementation
____ test derivation
____ RTL
____ netlists
____ transistor level
_X__ other: __mathematics__________

o Has the tool been integrated with other tools?
____ no
_X__ yes - please name tool and applications

with __Z browser, supplies text input to Z/EVES___
with __Z-browser plug-in, for displaying Z notation using
 Netscape; runs on Windows 95/NT__
with __Z Abstract Syntax Tree Viewer, to display abstract

syntax trees of Z specifications; runs on Windows
95/NT__

with __Zeus (Framemaker editor)__
with __RoZ (an environment integrating UML and Z)__
with __Z animator (work in progress)__

____ do not know

4. RESOURCES

o Resource requirements for the tool:
UNIX version __SunOS 4.x, Linux ELF________
Windows version __3.1,95,98,NT________
Mac version ___________
Memory: __at least 32Mb___________

o Cost, rights and restrictions:
____ free, no license
_X__ free, license required

___ for educational and research use only
____ nominal distribution charge
____ fee for underlying tool(s)

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 40

____ flat license fee
____ per user license fee
____ royalties per use
____ other: ____________

o User background prerequisites (check all that apply):

_X__ BS degree
____ MS degree
____ Ph.D. degree
_X__ knowledge of logic

_X__ first-order
____ high order

____ familiarity with a high-level programming language
____ familiarity with process algebra
____ familiarity with temporal logic

_X__ other: __The above checked fields refer to performing proofs.
Type checking, schema expansion, pre-condition calculation,
domain checking without proof, require no knowledge of
logic.__________

o User's learning curve, if all prerequisites are met:

____ one month
____ two months
____ less than six months
____ more than six months

______ months
Note: Depends upon application. Type checking, schema
expansion, pre-condition calculation, and domain checking (without
proof)
should only take a day or two to learn. Learning to preform more
serious
proofs could take several months.
o Tool support

_X__ upgrades/maintenance
Last version produced at this date: _vs.3x, due November

1999_____
_X__ manual

_X__ on the web
_X__ training

Course is provided.
_X__ listserv
____ mailing list
_X__ conference(s)/workshop(s)
_X__ human

ORA will provide consulting.
____ book(s)
_X__ journal/conference publications
____ other: ____________

o Current contact.

http://www.ora.on.ca/z-eves/
zeves@ora.on.ca (subscribe at zeves-request@ora.on.ca)

6. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply):
____ equivalence

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 41

____ modal logic
____ temporal logic
____ system or process invariants
____ built-in support for checking for:

___ deadlock
___ livelock
___ other: ____________

____ other: ____________

o Tool supports (check all that apply):
____ optimization and state reduction mechanism

using _________________________
____ symbolic simulator:

____ interactive
____ random

____ feedback on in what state verification failed
___ trace leading to the state

7. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

o Degree of proof mechanization.
____ fully mechanized
_X__ partially mechanized

o Support for developing and viewing the proof.
Proof browsing.

o Presentation of proof to the user (e.g., user input or canonical
expressions,
with or without quantifiers).
Z-like notation.
o Tool supports (check all that apply):

_X__ automated support for arithmetic reasoning
_X__ automated support for efficient handling of large

propositional
 expressions
_X__ automated support for rewriting
_X__ possible to use lemmas before they are proved.
_X__ possible to state and use axioms without having to prove

them.
_X__ new definitions can be introduced and existing definitions
 modified during proof

Would have to restart the proof.
_X__ facilities for editing proofs
_X__ the foundations (i.e., all axioms, definitions, assumptions,
 lemmas) of the proof are identified
_X__ reasonably easy to reverify a theorem after slight changes

to
 the specification

8. OPEN-ENDED QUESTIONS

o Strengths of this tool.
Rigorously developed SPARC Verdi compiler for EVES/Verdi.

Synergy of an expressive writable notation (Z) with an automated
Analytical engine. Useful for the Z community.
o Limitations of this tool.

Limited to Z community, can take long time to learn.
o Estimated possible uses of the tool, such as applications, classes of

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 42

problems, stages of production cycle.
Education, safety, security.

o Applications that the tool was used for - case studies, examples,
success stories.

Some are posted on http://www.ora.on.ca/biblio-welcome.html.
Analysis of authentication protocols, including X.509.
Design of a prototype High Assurance One-Way Link.
Many proprietary applications.

References:

[NASA98] NASA, "Formal Methods Specification and Verification Guidebook
for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 43

6.6 Concurrency Factory

********************** CONCURRENCY FACTORY ************************
****************************Sep. 1999******************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
____ model checker
____ theorem prover
____ mechanized proof assistant
_X__ other: _integrated toolset: model checker, simulators,

 graphical and textual user interface, code
 generator_______

o Application domain(s) or class(es) of problems originally intended.
Concurrent systems, such as protocols or control systems;
networks of finite-state processes.
Industrial problems, e.g. in telecommunications industry.

o Intended audience.
Protocol engineers and software developers.

o Language(s) and/or technique(s) that the tool is based on.
GCCS, a graphical variant of the process algebra CCS aimed at
specifying hierarchical networks of processes.
VPL, a textual language for hierarchical networks of processes,
with support for complex data and control structures.

o Reasoning mechanisms used for the tool.
Computing set of transitions possible for a system in a given

state
using formal operational semantics.
GCCS interpreted by all the tools in the toolkit.

o Comparable languages/tools.
CWB, Spin.

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.
C++, Tcl/Tk.

o How extensible and/or customizable is the tool.
____ source code given
_X__ tool implemented in a public-domain language
____ not extensible by user
____ other: ____________

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):
_X__ GUI

__for GCCS__
____ Library of standard types, functions, and other

constructions

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 44

____ the library is validated

The extent of the library is (speaking from the point of
view of

a potential user):
___ not very comprehensive
___ reasonably comprehensive
___ quite comprehensive

_X__ Editing and document preparation tools
_textual user interface for VPL___________

____ Cross-referencing
____ Browsing
____ Requirements tracing
____ Incremental development across multiple sessions
____ Change control and version management
____ Consistency checking
____ Completeness checking
____ Other:

__graphical compiler for generating Facile code (similar
 to Standard ML and CCS), Java and Ada'95

code._____________
__graphical simulators for GCCS
__simulator for VPL_____________

o How interactive/mechanized/automated is the tool.
_X__ fully automated
____ user guided
____ other: ____________

4. TOOL INPUT AND OUTPUT

o Tool supports these models:
____ synchronous
_X__ asynchronous
____mixed

o Input to the tool.
GCCS or VPL specification or combination of the two.

o Output from the tool.
Step 1: networks of finite-state processes.
Step 2: model checking and/or code generation.

o The language used for input to the tool has (check all that apply):
 GCCS:

_X__ formal semantics
____ modern programming language constructs (e.g. if-else):

____ strong typing
____ modularity
_X__ hierarchical design
____ parameterization
_X__ communication between processes

____ buffered

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 45

____ built-in model of computation
_X__ other: _graphical___________

_based on CCS___

 VPL:
_X__ formal semantics
_X__ modern programming language constructs (e.g. if-else):

__integers of limited size
__arrays and records of integers__________
__if-then-else__
__while-do__
__select___

____ strong typing
____ modularity
____ hierarchical design
_X__ parameterization
____ communication between processes

____ buffered
____ built-in model of computation
_X__ other: __finite data domain__________

3. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply):
____ requirements
_X__ design specification
_X__ implementation

(code generation)
____ test derivation
____ RTL
____ netlists
____ transistor level
____ other: ____________

o Has the tool been integrated with other tools?

_X__ no
____ yes

with _____________________
____ do not know

4. RESOURCES

o Resource requirements for the tool:
UNIX version __SunOS 4.1 or Solaris on Sun SPARC__
Windows version __________
Mac version ___________
Memory: _____________

o Cost, rights and restrictions:
____ free, no license
_X__ free, license required

_X__ for educational and research use only
____ nominal distribution charge

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 46

____ fee for underlying tool(s)
____ flat license fee
____ per user license fee
____ royalties per use
____ other: ____________

o User background prerequisites (check all that apply):
_X__ BS degree
____ MS degree
____ Ph.D. degree
____ knowledge of logic

____ first-order
____ high order

_X__ familiarity with a high-level programming language
____ familiarity with process algebra
____ familiarity with temporal logic
____ other: ____________

o User's learning curve, if all prerequisites are met:

_X__ one month
____ two months
____ less than six months
____ other

______ months
o Tool support

_X__ upgrades/maintenance
Last version produced at this date: _1998_
New version to be released in near future.

____ manual
____ on the web

____ training
____ listserv
____ mailing list
____ dedicated conference(s)/workshop(s)
____ human "help line"
____ book(s)
_X__ journal/conference publications
____ other: ____________

o Current contact.

concurr@cs.sunysb.edu
http://www.cs.sunysb.edu/~concurr

6. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply):
____ equivalence
_X__ modal logic

_linear-time local and global model checker for alteration-
free

 modal mu-calculus
_local model checker for real-time extension for the above

logic
____ temporal logic
____ system or process invariants
____ built-in support for checking for:

___ deadlock

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 47

___ livelock
___ other: ____________

_X__ other: __strong and weak bisimulation____________

o Tool supports (check all that apply):
 LMC (local model checker):

_X__ optimization and state reduction mechanism
using __on-the-fly execution and partial order reduction_

____ simulator:
____ interactive
____ random

__X_ feedback on in what state verification failed
X trace leading to the state

(if the user chooses so)

7. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

o Degree of proof mechanization.
____ fully mechanized
____ partially mechanized

o Support for developing and viewing the proof.
o Presentation of proof to the user (e.g., user input or canonical
expressions,
 with or without quantifiers).
o Tool supports (check all that apply):

____ automated support for arithmetic reasoning
____ automated support for efficient handling of large

propositional
 expressions
____ automated support for rewriting
____ possible to use lemmas before they are proved.
____ possible to state and use axioms without having to prove

them.
____ new definitions can be introduced and existing definitions
 modified during proof
____ facilities for editing proofs
____ the foundations (i.e., all axioms, definitions, assumptions,
 lemmas) of the proof are identified
____ reasonably easy to reverify a theorem after slight changes

to
 the specification

8. OPEN-ENDED QUESTIONS

o Strengths of this tool.
 Designed for use by protocol engineers and software developers, for
 industrial-scale problems.
 Specification, simulation, verification and code generation of
concurrent
 systems modeled as hierarchical networks of finite-state processes.
 Sophisticated graphical support for specification and simulation.
 Automatic code generation from verified specifications.
o Limitations of this tool.
 Finite-state systems.
o Estimated possible uses of the tool, such as applications, classes of

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 48

problems, stages of production cycle.
 Main application area is reactive systems, including embedded
system
 software, process control systems, telecommunication protocols,
security
 protocols, and e-commerce protocols.
 o Applications that the tool was used for - case studies, examples,
success stories.
 Posted on http://www.cs.sunysb.edu/~concurr/. Examples:
 Specification and verification of: GNU UUCP i-Protocol, E-2C
Hawkeye Early
 Warning Aircraft Display LAN Protocol, RETHER real-time Ethernet
protocol.

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook
for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 49

6.7 Murphi

***************************** MURPHI **********************************
***************************** Sep. 1999********************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
_X__ model checker
____ theorem prover
____ mechanized proof assistant
____ other: _________________

o Application domain(s) or class(es) of problems originally intended.
Hardware protocol verification, optional extensions for

cryptographic
 protocols.

Early design stages, error finding.
o Intended audience.

Digital designers.
o Language(s) and/or technique(s) that the tool is based on.

Murphi language: collection of guarded rules (condition/action),
which are executed repeatedly in an infinite loop (similar to
Chandy and Misra's Unity language.)

o Reasoning mechanisms used for the tool.
Explicit state space enumeration, depth- or breath- first search;
simulation.

o Comparable tools:
SMV, Spin, Concurrency Factory, CWB.

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.
C++.

o How extensible and/or customizable is the tool.
_X__ source code given
_X__ tool implemented in a public-domain language
____ not extensible by user
____ other: ____________

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):
____ GUI
____ Library of standard types, functions, and other

constructions
____ the library is validated

The extent of the library is (speaking from the point of
view of

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 50

a potential user):
___ not very comprehensive
___ reasonably comprehensive
___ quite comprehensive

Note: while there is no standard library, a number of types and
functions that are commonly provided by a library are

provided in
 the language, for example, arrays, records, Multiset and
Scalarset.

____ Editing and document preparation tools

____ Cross-referencing
____ Browsing
____ Requirements tracing
____ Incremental development across multiple sessions
____ Change control and version management
____ Consistency checking
____ Completeness checking
____ Other:

o How interactive/mechanized/automated is the tool.
_X__ fully automated
____ user guided
____ other: ____________

4. TOOL INPUT AND OUTPUT

o Tool supports these models:
____ synchronous
_X__ asynchronous

 (interleaving)
____ mixed

o Input to the tool.
Murphi description.

o Output from the tool.
If a boolean invariant is violated, error message and error

trace.
Reports if error or assertion statements are reached.

o The language used for input to the tool has (check all that apply):
_X__ formal semantics
_X__ modern programming language constructs (e.g. if-else):

__if_________
__switch__________
__for__________
__while_______

____ strong typing
____ modularity
____ hierarchical design
_X__ parameterization
____ communication between processes

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 51

____ buffered
____ built-in model of computation
____ other: ____________

5. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply):
____ requirements
_X__ design specification
____ implementation
____ test derivation
____ RTL
____ netlists
____ transistor level
____ other: ____________

o Has the tool been integrated with other tools?
____ no
_X__ yes

with ___SVC__________________
with _____________________

____ do not know

6. RESOURCES

o Resource requirements for the tool:
UNIX version __precompiled for: INDY IRIX 5.3,

 SunSPARC20 SunOS 4.1.3_U1, 4.1.4, 5.4,
 SunSPARCserver-1000 SunOS 5.5,
 Intel Linux 1.3.48, 2.0.27, 2.0.34, 2.0.36_

Windows version __________
Mac version ___________
Memory: _____________

o Cost, rights and restrictions:
____ free, no license
_X__ free, license required

(however, user does not have to send in anything)
____ for educational and research use only

____ nominal distribution charge
____ fee for underlying tool(s)
____ flat license fee
____ per user license fee
____ royalties per use
____ other: ____________

o User background prerequisites (check all that apply):
_X__ BS degree
____ MS degree
____ Ph.D. degree
____ knowledge of logic

____ first-order
____ high order

_X__ familiarity with a high-level programming language
____ familiarity with process algebra

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 52

____ familiarity with temporal logic
____ other: ____________

o User's learning curve, if all prerequisites are met:
_X__ one month
____ two months
____ less than six months
____ other:

______ months
o Tool support

_X__ upgrades/maintenance
Last version produced at this date: _Murphi 3.1, 1999

_X__ manual
_X__ on the web

____ training
____ listserv
_X__ mailing list
____ dedicated conference(s)/workshop(s)
____ human "help line"
____ book(s)
_X__ journal/conference publications
_X__ other: __bug reports, suggestions to

murphi@verify.stanford.edu

o Current contact.
http://sprout.stanford.edu/dill/murphi.html
murphi@verify.stanford.edu

7. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply):
____ equivalence
____ modal logic
____ temporal logic
_X__ system or process invariants (boolean propositions true
 for all states of the system/process)
____ built-in support for checking for:

X deadlock
___ livelock
___ other: __error statements__________

__assertion statements_________

____ other: ____________

o Tool supports (check all that apply):
_X__ optimization and state reduction mechanism

state reduction using:
__symmetry (description has identical elements that
 can be permuted consistently without changing
 verification properties)
__reversible rules (condition/action can be executed

"in
 reverse")

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 53

__repetition constructors (keeping track of how many
processes

 are in the same state)
__hash compression algorithms for probabilistic

verification
optimization using:

__probabilistic verification
__state space caching
__parallel Murphi
__using magnetic disk instead of main memory

____ simulator:
____ interactive
__X_ random

_X__ feedback on in what state verification failed
X trace leading to the state

____ other:

8. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

o Degree of proof mechanization.
____ fully mechanized
____ partially mechanized

o Support for developing and viewing the proof.
o Presentation of proof to the user (e.g., user input or canonical
expressions,
 with or without quantifiers).
o Tool supports (check all that apply):

____ automated support for arithmetic reasoning
____ automated support for efficient handling of large

propositional
 expressions
____ automated support for rewriting
____ possible to use lemmas before they are proved.
____ possible to state and use axioms without having to prove

them.
____ new definitions can be introduced and existing definitions
 modified during proof
____ facilities for editing proofs
____ the foundations (i.e., all axioms, definitions, assumptions,
 lemmas) of the proof are identified
____ reasonably easy to reverify a theorem after slight changes

to
 the specification

9. OPEN-ENDED QUESTIONS

o Strengths of this tool.
Designed for industrial use by non-experts in formal methods.
Optimization and state reduction algorithms and techniques.

o Limitations of this tool.
No checking for liveness and fairness properties (e.g. livelock).
No message communication.
Not possible to describe sequential behavior.

o Estimated possible uses of the tool, such as applications, classes of
problems, stages of production cycle.

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 54

Multiprocessor cache coherence protocols. Security protocols.
o Applications that the tool was used for - case studies, examples,
success stories.

Listed at http://sprout.stanford.edu/dill/murphi.html. Examples:
Verification of cache coherence protocols for Sun UltraSparc-1
Verification of cache coherence and link level protocol for Sun's

S3.mp
multiprocessor
Specification and verification of Sparc V9 TSO, PSO, RMO memory

models
Cryptographic and security protocols
Verification of a part of "Scalable Coherent Interface" IEEE Std

1596-1992
Proprietary industrial protocols, for Fujitsu, HAL Computer

Systems,
HP, IBM, ad others

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook
for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 55

6.8 SVM Cadence

**
******************** SMV Cadence Berkeley Labs *********************
**************************** Sep. 1999******************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
 __X_ model checker
 ____ theorem prover
 __X_ mechanized proof assistant
 (of limited scope and built on top of the model checker)
 ____ other: _________________
o Application domain(s) or class(es) of problems originally intended.

Hardware verification.
o Intended audience.

General.
o Language(s) and/or technique(s) that the tool is based on.

SMV input language is used to describe a refinement hierarchy
(that

is, specifications at multiple levels of abstraction).
Specifications are written in temporal logic, or an HDl-like
equational notation. It is also possible to input models in a
synchronous version of the Verilog HDL. The logic is effectively
a first-order, quantifier free, linear time temporal logic.

o Reasoning mechanisms used for the tool.
Model checking (determines the truth of temporal formulas by

exhaustive
state-space exploration).

o Comparable languages/tools.
Spin, the Concurrency Workbench, the Concurrency Factory, VIS,
Mocha, COSPAN, FormalCheck.
This tool is an extension of Carnegie Mellon SMV to support
compositional methods.
Note: SMV is a research vehicle, and is not directly related the
FormalCheck product from Cadence.

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.
OBDD-based model checking algorithm, implemented in C language.
Compositional proof methods, also implemented in C.

o How extensible and/or customizable is the tool.
 ____ source code given
 ____ tool implemented in a public-domain language
 _X__ not extensible by the user.
 ____ other: ____________

3. TOOL FEATURES AND UTILITIES

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 56

o Tool supports the following (check all that apply):
 _X__ GUI
 ____ Library of standard types, functions, and other
constructions
 ____ the library is validated
 The extent of the library is (speaking from the point
of view of
 a potential user):
 ___ not very comprehensive
 ___ reasonably comprehensive
 ___ quite comprehensive

 Note: while there is no standard library, a number of types and
 functions that are commonly provided by a library are provided

in the
 language, for example, bit vectors and binary arithmetic,

arrays,
 structures. Queues are notably absent, however.

 _X__ Editing and document preparation tools
 __Emacs interface_____________

 ____ Cross-referencing
 _X__ Browsing
 ____ Requirements tracing
 ____ Incremental development across multiple sessions
 ____ Change control and version management
 ____ Consistency checking
 ____ Completeness checking
 _X__ Other:
 __BDD library (implemented in C) for sequential
verification_
 __support for refinement verification______________

o How interactive/mechanized/automated is the tool.
 __X_ fully automated
 __X_ user guided

(User guidance is required for refinement verification.)
 ____ other: ____________

4. TOOL INPUT AND OUTPUT

o Tool supports these models:
 _X__ synchronous
 _X__ asynchronous
 _X__ mixed
o Input to the tool.
 Model in SMV language (a collection of properties expressed
 in temporal logic) or Synchronous Verilog (which is then
translated
 into SMV language).
o Output from the tool.
 Yes/no answer to posed temporal formulas, counterexample if
"no." Also,

 keeps track of the status of proof obligations in compositional
proofs.
o The language used for input to the tool has (check all that apply):

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 57

 ____ formal semantics
 _X__ modern programming language constructs (e.g. if-else):
 control constructs: if/else, while, forall, default
 data types: scalars, enumerated types, structures,
arrays
 _X__ strong typing

 (typing is used only to enforce symmetry)
 _X__ modularity
 _X__ hierarchical design
 _X__ parameterization

 (can describe designs with arbitrary number of
components, etc.)
 _X__ communication between processes

(signals and shared variables)
 ____ buffered
 ____ built-in model of computation
 ____ other: ____________

5. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply):
 ____ requirements
 _X__ design specification
 _X__ implementation
 ____ test derivation
 _X__ RTL
 _X__ netlists
 ____ transistor level
 ____ other: ____________

o Has the tool been integrated with other tools?
 ____ no
 _X__ yes - please name tool and applications
 with _bounded model checker form CMU_
 with _____________________
 with _____________________
 ____ do not know

6. RESOURCES

o Resource requirements for the tool:
 UNIX version ___Intel 386 Linux, SPARC SunOS, Solaris, HPUX,
MIPS/Irix.
 Windows version __NT, 95________
 Mac version ___________
 Memory: _____________
o Cost, rights and restrictions:
 ____ free, no license
 __X_ free, license required

_X__ for educational and research use only
 ____ nominal distribution charge
 ____ fee for underlying tool(s)
 ____ flat license fee
 ____ per user license fee
 ____ royalties per use
 ____ other: ____________

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 58

o User background prerequisites (check all that apply):
 _X__ BS degree
 ____ MS degree
 ____ Ph.D. degree
 ____ knowledge of logic
 ____ first-order
 ____ high order
 ____ familiarity with a high-level programming language
 ____ familiarity with process algebra
 _X__ familiarity with temporal logic
 ____ other: ____________

o User's learning curve, if all prerequisites are met:
 ____ one month
 _X__ two months
 ____ less than six months
 ____ other
 ______ months
o Tool support
 _X__ upgrades/maintenance
 Last version produced at this date: __1999___
 _X__ manual
 _X__ on the web
 _X__ training

lecture notes and tutorials, on the web
 ____ listserv

 _X__ mailing list
 ____ dedicated conference(s)/workshop(s)
 ____ human “help line”
 ____ book(s)
 ____ journal/conference publications
 _X__ other: _archive and FAQ, on the web_

_questions and comments to smv-
users@cadence.com

o Current contact.
 http://www.cs.cmu.edu/~modelcheck/index.html for older version
of SMV

 http://www.cis.ksu.edu/santos/smv-doc/
 http://www-cad.eecs.berkeley.edu/~kenmcmil/
 smv-users@cadence.com

7. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply):
 ____ equivalence
 ____ modal logic
 _X__ temporal logic

__CTL, LTL__
 ____ system or process invariants
 ____ built-in support for checking for:
 ___ deadlock
 ___ livelock
 ___ other: ____________

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 59

 ____ other: ____________

o Tool supports (check all that apply):
 _X__ optimization and state reduction mechanism
 using _ compositional methods: data type reduction,

uninterpreted functions,
cone-of-influence reduction,
temporal case splitting,
constant propagation,
circular compositional proofs,
symmetry reductions,
induction over the natural numbers,
refinement verification.

 _X__ simulator:
 ____ interactive
 ____ random
 _X__ feedback on in what state verification failed
 X trace leading to the state
8. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

Note: SMV is not a general purpose theorem prover, but it does provide
a special-purpose proof assistant.

o Degree of proof mechanization.
 ____ fully mechanized
 _X__ partially mechanized
o Support for developing and viewing the proof.

Graphical browser.
o Presentation of proof to the user (e.g., user input or canonical
expressions,
with or without quantifiers).

None.
o Tool supports (check all that apply):
 _X__ automated support for arithmetic reasoning

 (limited to modular, binary arithmetic)
 _X__ automated support for efficient handling of large
propositional
 expressions
 ____ automated support for rewriting
 _X__ possible to use lemmas before they are proved.
 _X__ possible to state and use axioms without having to prove
them.
 _X__ new definitions can be introduced and existing definitions
 modified during proof
 _X__ facilities for editing proofs
 _X__ the foundations (i.e., all axioms, definitions,
assumptions,
 lemmas) of the proof are identified
 _X__ reasonably easy to reverify a theorem after slight changes
to
 the specification

9. OPEN-ENDED QUESTIONS

o Strengths of this tool.
Combines model checking and compositional proof methods.

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 60

This means that, on the one hand, the state explosion
problem can be avoided by decomposition, while on the other hand,

model
checking can be used to avoid writing detailed invariants by

hand.
o Limitations of this tool.

Not user-extensible, in the way that most proof assistants are.
Limited to first-order temporal logic.

o Estimated possible uses of the tool, such as applications, classes of
problems, stages of production cycle.

Hardware verification.
o Applications that the tool was used for - case studies, examples,
success stories.

Verification of the RTL-level implementation of a cache coherence
protocol

(SGI), as well as numerous cache coherence protocols at an
abstract level.
Verification of standard hardware protocols, e.g. Futurebus+ and

PCI
local bus protocols.
Numerous applications in low-level hardware verification.

References:
[NASA98] NASA, "Formal Methods Specification and Verification
Guidebook for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 61

6.9 SPIN

**
***************************** Spin *******************************
*******************************Sep. 1999******************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
_X__ model checker
____ theorem prover
____ mechanized proof assistant
____ other: _________________

o Application domain(s) or class(es) of problems originally intended.
Software, distributed systems.

o Language(s) and/or technique(s) that the tool is based on.
PROMELA (PROcess MEta LAnguage), a non-deterministic language
loosely based on Dijkstra's guarded command language notation,
and borrowing the notation for I/O operations from Hoare's CSP

language.
o Reasoning mechanisms used for the tool.

State space exploration (exhaustive or partial); simulation.

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.
ANSI C, on-the-fly checking.

o How extensible and/or customizable is the tool.
_X__ source code given
_X__ tool implemented in a public-domain language
____ not extensible by user
____ other: ____________

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):
_X__ GUI

(Xspin)
____ Library of standard types, functions, and other

constructions
___ the library is validated

The extent of the library is (speaking from the point of
view of

a potential user):
___ not very comprehensive
___ reasonably comprehensive
___ quite comprehensive

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 62

Note: while there is no standard library, a number of types
and

functions that are commonly provided by a library are
provided in
 the language, for example, arrays and queues.

____ Editing and document preparation tools

____ Cross-referencing
____ Browsing
____ Requirements tracing
____ Incremental development across multiple sessions
____ Change control and version management
_X__ Consistency checking
_X__ Completeness checking
____ Other:

__depository of source code extensions on SPIN web
page_____________

o How interactive/mechanized/automated is the tool.
_X__ fully automated
_X__ user guided

(simulation option)
____ other: ____________

4. TOOL INPUT AND OUTPUT

o Tool supports these models:
____ synchronous
_X__ asynchronous

(interleaving)
____ mixed

o Input to the tool.
Model written in PROMELA (somewhat resembles a C program).

o Output from the tool.
Yes/no answer to posed tests;
trace leading to errors;
% coverage of state space.

o The language used for input to the tool has (check all that apply):
_X__ formal semantics
_X__ modern programming language constructs (e.g. if-else):

__if-else__________
__do__________

____ strong typing
____ modularity
____ hierarchical design
_X__ parameterization
_X__ communication between processes

__X__ buffered
__X__ rendezvous
__X__ through shared memory

_X__ built-in model of computation
____ other: ____________

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 63

5. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply):
_X__ requirements
_X__ design specification
_X__ implementation
_X__ test derivation
____ RTL
____ netlists
____ transistor level
____ other: ____________

o Has the tool been integrated with other tools?
____ no
_X__ yes

with __SCR* toolset for tabular specifications_
with __PEP___________________
with _____________________
with _____________________

____ do not know

6. RESOURCES

o Resource requirements for the tool:
UNIX version __any standard UNIX, Linux________
Windows version __95/98, NT________
Mac version ___________
Memory: _____________

o Cost, rights and restrictions:
____ free, no license
_X__ free, license required

_X__ for educational and research use only
____ nominal distribution charge
____ fee for underlying tool(s)
____ flat license fee
____ per user license fee
____ royalties per use
____ other: ____________

o User background prerequisites (check all that apply):
_X__ BS degree
____ MS degree
____ Ph.D. degree
____ knowledge of logic

____ first-order
____ high order

_X__ familiarity with a high-level programming language
____ familiarity with process algebra
_X__ familiarity with temporal logic
____ other: ____________

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 64

o User's learning curve, if all prerequisites are met:
_X__ one month
____ two months
____ less than six months
____ other:

_____ months
o Tool support

_X__ upgrades/maintenance
Last version produced at this date: __Spin 3.3.3, 1999__

_X__ manual
_X__ on the web

____ training
____ listserv
____ mailing list
_X__ dedicated conference(s)/workshop(s)

(annual, international, since 1995)
____ human “help line”
_X__ book(s)
_X__ journal publications
_X__ other: __regular electronic newsletter

 (mailed out and posted on the web page)_______
__proceedings of Spin workshops, on the web page__
__web page with source code extensions depository__
__bug reports and suggestions, to the

newsletter_________
o Current contact.

spin_list@research.bell-labs.com (newsletter)

7. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply):
____ equivalence
____ modal logic
_X__ temporal logic

 __LTL___
_X__ system or process invariants
_X__ other: __never claims (Buchi automata)__

__trace can be replayed in simulator to demonstrate
 property violation__________

o Tool supports (check all that apply):
_X__ optimization and state reduction mechanism

using __partial order reduction,
 bit-state hashing (optional),
 Wolper’s hash-compact method (optional),
 storing reachable states with minimized automaton,

 statement merging,
 nested depth-first search algorithm____

_X__ simulator
_X__ interactive
_X__ random
_X__ guided

_X__ feedback on in what state verification failed
X__ trace leading to the state

____ built-in support for checking for:
X deadlock
X livelock

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 65

X boolean propositions
X other: __LTL formulas (internally converted into never

claims)
__dynamically growing and shrinking number of
 processes__
__semaphores__________

8. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

o Degree of proof mechanization.
____ fully mechanized
____ partially mechanized

o Support for developing and viewing the proof.
o Presentation of proof to the user (e.g., user input or canonical
expressions,
 with or without quantifiers).
o Tool supports (check all that apply):

____ automated support for arithmetic reasoning
____ automated support for efficient handling of large

propositional
 expressions
____ automated support for rewriting
____ possible to use lemmas before they are proved.
____ possible to state and use axioms without having to prove

them.
____ new definitions can be introduced and existing definitions
 modified during proof
____ facilities for editing proofs
____ the foundations (i.e., all axioms, definitions, assumptions,
 lemmas) of the proof are identified
____ reasonably easy to reverify a theorem after slight changes

to
 the specification

9. OPEN-ENDED QUESTIONS

o Strengths of this tool.
Easy to learn by people with some programming experience.
Optimized for verifying large problem sizes (e.g. bit-state

hashing,
on-the-fly checking).
Actively contributing user community in more than 40 countries.

o Limitations of this tool.
Not efficient to specify large data sets.

o Estimated possible uses of the tool, such as applications, classes of
 problems, stages of production cycle.

Develop verified process control systems from requirements to
implementation.

Trace logical design errors in distributed systems, such as
operating systems, railway signaling protocols, data

communications
protocols, switching systems, concurrent algorithms.

o Applications that the tool was used for - case studies, examples,
 success stories.

Posted throughout Spin News Letters and workshop proceedings,
http://netlib.bell-labs.com/netlib/spin/news.
Some examples include: specification, design, verification and

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 66

implementation of a safe object oriented process control
application,

verification of Java applications, steam boiler,
hardware cache coherence protocols,
NASA's fault tolerant embedded space craft controller,
a multi-threaded plan execution programming language
of NASA's New Millennium Remote Agent artificial intelligence
based spacecraft control system architecture,
telecommunications and security protocols,
Dutch mobile sea-level control.

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook
for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 67

6.10 NRL Protocol Analyzer

**
***************************** NRL PROTOCOL ANALYZER ******************
************************************ Sep. 1999************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
_X__ model checker
____ theorem prover
_X__ mechanized proof assistant
____ other: _________________

o Application domain(s) or class(es) of problems originally intended.
Analysis of cryptographic protocols used to authenticate

principals and
services

and distribute keys in a network.
Proving properties of security protocols and finding flaws in

them.
o Intended audience.

o Language(s) and/or technique(s) that the tool is based on.
NRL language, loosely resembling Prolog, used to
model a protocol as a set of transitions of interacting state

machines.
o Reasoning mechanisms used for the tool.

Extended term-rewriting model of Dolev and Yao.
Specify insecure states and prove them unreachable, by using

either:
exhaustive search backwards from the state; or
proof techniques for reasoning about state models (using

induction
for infinite state and narrowing for word reduction).

o Comparable languages/tools.
STeP.

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.
Prolog.

o How extensible and/or customizable is the tool.
____ source code given
_X__ tool implemented in a public-domain language
____ other: ____________

3. TOOL FEATURES AND UTILITIES

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 68

o Tool supports the following (check all that apply):
____ GUI
____ Library of standard types, functions, and other

constructions
____ the library is validated

The extent of the library is (speaking from the point of
view of

a potential user):
___ not very comprehensive
___ reasonably comprehensive
___ quite comprehensive

____ Editing and document preparation tools

____ Cross-referencing
____ Browsing
____ Requirements tracing
____ Incremental development across multiple sessions
____ Change control and version management
____ Consistency checking
____ Completeness checking
____ Other:

o How interactive/mechanized/automated is the tool.
_X__ fully automated
_X__ user guided

__possible to switch between automated and manual mode__
____ other: ____________

4. TOOL INPUT AND OUTPUT

o Tool supports these models:
____ synchronous
____ asynchronous
____ mixed

o Input to the tool.
Description of state in terms of words known by intruder and

values
of local state variables.

o Output from the tool.
Complete description of all reachable states and non-redundant
paths that may precede the specified state.
Proof failed/passed.

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 69

o The language used for input to the tool has (check all that apply):
_X__ formal semantics
____ modern programming language constructs (e.g. if-else):

____ strong typing
____ modularity
____ hierarchical design
_X__ parameterization
____ communication between processes

____ buffered
____ built-in model of computation
____ other: ____________

3. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply):
____ requirements
_X__ design specification
____ implementation
____ test derivation
____ RTL
____ netlists
____ transistor level
____ other: ____________

o Has the tool been integrated with other tools?
____ no
____ yes

with _____________________
with _____________________
with _____________________

____ do not know

Interface for a requirements language.
Interface for high-level security language CAPSL.

4. RESOURCES

o Resource requirements for the tool:
UNIX version __________
Windows version __________
Mac version ___________
Memory: _____________

o Cost, rights and restrictions:
____ free, no license
____ free, license required
____ nominal distribution charge
____ fee for underlying tool(s)
____ free for educational and research use only
____ flat license fee

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 70

____ per user license fee
____ royalties per use
____ other: ____________

o User background prerequisites (check all that apply):
____ BS degree
____ MS degree
____ Ph.D. degree
_X__ knowledge of logic

____ first-order
____ high order

____ familiarity with a high-level programming language
____ familiarity with process algebra
____ familiarity with temporal logic
____ other: ____________

o User's learning curve, if all prerequisites are met:
____ one month
____ two months
____ less than six months
____ more than six months

______ months
o Tool support

_X__ upgrades/maintenance
Last version produced at this date: __1999____

____ manual
____ on the web

____ training
____ listserv
____ mailing list
____ conference(s)/workshop(s)
____ human
____ book(s)
_X__ journal/conference publications
____ other: ____________

o Current contact.

Catherine Meadows
Code 5543, Naval Research Laboratory, Washington DC 20375
meadows@itd.nrl.navy.mil

http://www.itd.nrl.navy.mil/ITD/5540/projects/crypto.html

6. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

Note: we will consider the state exploration portion of NRL
Protocol Analyzer as "model checker."

o Verification mechanism(s) (check all that apply):
____ equivalence
____ modal logic
____ temporal logic

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 71

____ system or process invariants
____ built-in support for checking for:

___ deadlock
___ livelock
___ other: ____________

____ other: __state exploration__________

o Tool supports (check all that apply):
_X__ optimization and state reduction mechanism

using __narrowing algorithm___
 __built-in rules for discarding redundant/unreachable
 paths and states_______________________
 __user-generated rules using a database of formal

languages____
____ symbolic simulator:

____ interactive
____ random

_X__ feedback on in what state verification failed
X trace leading to the state

7. QUESTIONS ABOUT THEOREM PROVERS/MECHANIZED PROOF ASSISTANTS [NASA98]

Note: we will consider the proof-oriented part of NRL protocol Analyzer
as "theorem prover".

o Degree of proof mechanization.
____ fully mechanized
____ partially mechanized

o Support for developing and viewing the proof.
o Presentation of proof to the user (e.g., user input or canonical
expressions,
with or without quantifiers).

o Tool supports (check all that apply):
____ automated support for arithmetic reasoning
____ automated support for efficient handling of large

propositional
 expressions
____ automated support for rewriting
____ possible to use lemmas before they are proved.
____ possible to state and use axioms without having to prove

them.
____ new definitions can be introduced and existing definitions
 modified during proof
____ facilities for editing proofs
____ the foundations (i.e., all axioms, definitions, assumptions,
 lemmas) of the proof are identified
____ reasonably easy to reverify a theorem after slight changes

to
 the specification

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 72

8. OPEN-ENDED QUESTIONS

o Capabilities of this tool.
o Limitations of this tool.
o Estimated possible uses of the tool, such as applications, classes of
problems, stages of production cycle.
o Applications that the tool was used for - case studies, examples,
success stories.

Questionnaire for potential users:

o Briefly describe problems that you need solved (in order to help us
estimate if those problems can be addressed by formal tools).
o Have you used formal tools? If yes, for what application? What were
the areas of satisfaction? What were the problem areas? What would you
like to see in the future?
o Describe your dream toolkit.
o What would you consider a "good place" to integrate formal tools
in existing or separate toolkits?

Questionnaire for tool makers/integrators:
--
o If you already produce and/or sell toolkits, would you be interested
in integrating formal tools in the toolkit, and why.
o What information do you need in order to be able to integrate formal
tools in a toolkit.

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook
for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 73

6.11 SCR*

*************** Software Cost Reduction (SCR*) ************************
************************ Sep. 1999*************************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
____ model checker
____ theorem prover
____ mechanized proof assistant
_X__ other: __integrated environment.

 Consistency checker and simulator
 integrated with external tools:
 model checker (Spin) and mechanized
 proof assistant (PVS).

o Application domain(s) or class(es) of problems originally intended.
Software requirements specification.

o Intended audience.
Software developers.

o Language(s) and/or technique(s) that the tool is based on.
SCR requirements method, based on tables.

o Reasoning mechanisms used for the tool.
A form of classic state machine model.

o Comparable languages/tools.
Requirements State Machine Language (RSML)/SMV, SVC.

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.
Currently: C, C++, executes on Sun workstations.
New version, scheduled for October 1999, is implemented in Java
and will execute on PC’s.

o How extensible and/or customizable is the tool.
____ source code given
_X__ tool implemented in a public-domain language
_X__ other: __currently developing a toolset architecture that

 will make the integration of external tools
easier__

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):
_X__ GUI
____ Library of standard types, functions, and other

constructions
____ the library is validated

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 74

The extent of the library is (speaking from the point of
view of

a potential user):
___ not very comprehensive
___ reasonably comprehensive
___ quite comprehensive

_X__ Editing and document preparation tools
_specification editor for creating requirements

specifications_____

_X__ Cross-referencing
_X__ dependency graph browser___

_X__ Browsing
____ Requirements tracing
_X__ Incremental development across multiple sessions
____ Change control and version management
_X__ Consistency checking
_X__ Completeness checking
____ Other:

__simulator, with visual front ends tailored to
 particular applications (e.g. cockpit

controls)______________
__automatic derivation of more abstract models from SCR
 specifications (e.g. for more efficient model checking)_
__pretty-printer_____________
__typechecker_____________
__syntax checker_____________

o How interactive/mechanized/automated is the tool.
_X__ fully automated
_X__ user guided
____ other: ____________

4. TOOL INPUT AND OUTPUT

o Tool supports this kind of models:
____ synchronous
__X_ asynchronous
____ mixed

o Input to the tool.
Tabular SCR specification; asynchronous input from non-

deterministic
environment.

o Output from the tool.
Specification editor output:

__dictionaries with static information (e.g. names of
variables,

 user-defined types)__
__tables__

Dependency graph browser:
__directed graph depicting dependencies among variables.__

Consistency checker:
__syntax and type errors, missing cases, variable name
 discrepancies, unwanted nondeterminism, and circular

definitions.
Abstraction derivator:

__more abstract model, eliminated irrelevant variables and

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 75

 unneeded detail__
o The language used for input to the tool has (check all that apply):

_X__ formal semantics
____ modern programming language constructs (e.g. if-else):

_X__ strong typing
_X__ modularity
____ hierarchical design
____ parameterization
____ communication between processes

____ buffered
_X__ built-in model of computation
____ other: ____________

3. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply):
_X__ requirements
____ design specification
____ implementation
____ test derivation
_x__ RTL

(under current investigation)
____ netlists
____ transistor level
_X__ other: __documentation______

__levels that can be addressed with Spin and PVS_
o Has the tool been integrated with other tools?

____ no
_X__ yes

with _Spin model checker__
with _PVS theorem prover__ using TAME high-level user

interface
with _____________________
with _____________________

____ do not know

4. RESOURCES

o Resource requirements for the tool:
UNIX version ___SunOS____
Windows version ___for Oct’99 release___
Mac version ___________
Memory: _____________

o Cost, rights and restrictions:
____ free, no license
_X__ free, license required

_X__ for educational and research use only
____ nominal distribution charge
____ fee for underlying tool(s)
____ flat license fee
____ per user license fee
____ royalties per use

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 76

____ other: ____________
o User background prerequisites (check all that apply):

_X__ BS degree
____ MS degree
____ Ph.D. degree
____ knowledge of logic

____ first-order
____ high order

____ familiarity with a high-level programming language
____ familiarity with process algebra
____ familiarity with temporal logic
____ other: ____________

o User's learning curve, if all prerequisites are met:
_X__ one month
____ two months
____ less than six months
____ other

______ months
o Tool support

_X__ upgrades/maintenance
Last version produced at this date: _1998_____

_X__ manual
____ on the web

_X__ training
____ listserv
____ mailing list
____ dedicated conference(s)/workshop(s)
____ human “help line”
____ book(s)
_X__ journal/conference publications
____ other: _________________

o Current contact.
Naval Research Laboratory,
Code 5546, Washington DC 20375
kirby@itd.nrl.navy.mil
labaw@itd.nrl.navy.mil

http://www.chacs.itd.nrl.navy.mil/SCR

6. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

Note: this section applies to model checker Spin.

o Verification mechanism(s) (check all that apply):
____ equivalence
____ modal logic
_X__ temporal logic

 __LTL___
_X__ system or process invariants
_X__ other: __never claims (Buchi automata)__

__trace can be replayed in simulator to demonstrate
 property violation__________

o Tool supports (check all that apply):
_X__ optimization and state reduction mechanism

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 77

using __partial order reduction,
 bit-state hashing (optional),
 Wolper’s hash-compact method (optional),
 storing reachable states with minimized automaton,

 statement merging,
 nested depth-first search algorithm____

_X__ simulator
_X__ interactive
_X__ random
_X__ guided

_X__ feedback on in what state verification failed
X__ trace leading to the state

____ built-in support for checking for:
X deadlock
X livelock
X boolean propositions
X other: __LTL formulas (internally converted into never

claims)
__dynamically growing and shrinking number of
 processes__
__semaphores__________

7. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

Note: this section applies to mechanized proof assistant PVS, with TAME
interface and SCR validity checker.

o Degree of proof mechanization:
____ fully mechanized
_X__ partially mechanized
(although finite state verification and the proof of many
straightforward results are fully automatic. There is also a

batch
mode in which proofs may be easily rerun, and a facility for
defining proof strategies to automate proofs.

o Support for developing and viewing the proof:
 Tcl/Tk interface to display proof trees and theory hierarchies.
 Proofs yield scripts that may be edited, attached to additional
formulas,
 and rerun. Proofs may also be checkpointed, providing rapid
access to
 parts of a proof the user wishes to examine or adjust.
o Presentation of proof to the user (e.g., user input or canonical
expressions
 with or without quantifiers):
 Proofs are presented in a sequent-style representation. PVS takes
 care to assure that the initial proof goal transparently
reproduces
 the formula input by the user. Quantification is retained;
implicit
 universal quantification in the user's specification is made
explicit.
o Tool supports (check all that apply):

_X__ automated support for arithmetic reasoning
_X__ automated support for efficient handling of large

propositional
 expressions

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 78

_X__ automated support for rewriting
_X__ possible to use lemmas before they are proved.
_X__ possible to state and use axioms without having to prove

them.
_X__ new definitions can be introduced and existing definitions
 modified during proof
_X__ facilities for editing proofs
_X__ the foundations (i.e., all axioms, definitions, assumptions,
 lemmas) of the proof are identified
_X__ reasonably easy to reverify a theorem after slight changes

to
 the specification
_X__ other:
 __integration with CTL model checking

 __ground evaluator (providing "run" speeds comparable to
 imperative programs)
 __proof strategies
 __proof storage, replay, and checkpointing
 __graphical display of proof trees, theory hierarchies,
and
 prover commands
 __proof chain analysis
 __proof and theory status reporting

8. OPEN-ENDED QUESTIONS

o Capabilities of this tool.
Mathematically founded tool for non-specialists in formal

methods.
Well-developed user interface.

o Limitations of this tool.
Flat structure of specifications.

o Estimated possible uses of the tool, such as applications, classes of
 problems, stages of production cycle.

Requirements specification, specification, verification,
documentation.
o Applications that the tool was used for - case studies, examples,
success stories.

Listed in
http://www.itd.nrl.navy.mil/ITD/5540/personnel/heitmeyer.html.

Avionics systems, telephone networks, nuclear power plants, etc.:
English-language requirements for NASA International Space

Station.
Requirements specification for flight guidance system.
Specification and verification of contractor-developed: Weapons

Control
Panel, and a cryptographic system.

References:
[NASA98] NASA, "Formal Methods Specification and Verification
Guidebook for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 79

6.12 Tatami

**
***************************** Tatami System ************************
******************************* Sep. 1999***************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
____ model checker
____ theorem prover
_X__ mechanized proof assistant
_X__ other: _integrated suite of tools: Kumo, web-based proof

 assistant; barista proof server; tatami database and
 protocol for data exchange; and truth maintenance
 system, for keeping track of users who are
 cooperating on the same proof. ________________

o Application domain(s) or class(es) of problems originally intended.
Web-based cooperative design, specification and validation of
software systems, especially concurrent OO systems.

o Intended audience.
Software engineers.

o Language(s) and/or technique(s) that the tool is based on.
OBJ3 (order sorted equational logic), BOBJ (extension of OBJ,
first order logic with equations as atoms).

o Reasoning mechanisms used for the tool.
Inference rules in first order logic with equational logic,
including induction and coinduction.

o Comparable languages/tools.
This system is an extension of CafeOBJ system, which is a
network-based environment for supporting systematic
creation, checking, verification and maintenance of OO formal
specifications.

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.
Java 1.2, OBJ3.

o How extensible and/or customizable is the tool.
____ source code given
_X__ tool implemented in a public-domain language

____ other: ____________

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):
_X__ GUI

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 80

____ Library of standard types, functions, and other
constructions

____ the library is validated

The extent of the library is (speaking from the point of
view of

a potential user):
___ not very comprehensive
___ reasonably comprehensive
___ quite comprehensive

_X__ Editing and document preparation tools

____ Cross-referencing
_X__ Browsing
____ Requirements tracing
_X__ Incremental development across multiple sessions
_X__ Change control and version management
____ Consistency checking
____ Completeness checking
_X__ Other:

__executing proof scores on a remote server_____________

o How interactive/mechanized/automated is the tool.
_X__ fully automated
_X__ user guided
____ other: ____________

4. TOOL INPUT AND OUTPUT

o Tool supports these models:
____ synchronous
____ asynchronous
____ mixed

o Input to the tool.
Specification in BOBJ; prof script with execution commands in
Duck language.

o Output from the tool.
Proof results.
Kumo generates web pages with documentation based on user input.

o The language used for input to the tool has (check all that apply):
_X__ formal semantics
_X__ modern programming language constructs (e.g. if-else):

____ strong typing
_X__ modularity

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 81

____ hierarchical design
_X__ parameterization
____ communication between processes

____ buffered
____ built-in model of computation
____ other: ____________

5. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply):
_X__ requirements
_X__ design specification
_X__ implementation
____ test derivation
____ RTL
____ netlists
____ transistor level
____ other: ____________

o Has the tool been integrated with other tools?
____ no
_X__ yes - please name tool and applications

with _CafeOBJ environment____________________
with _____________________
with _____________________

____ do not know

6. RESOURCES

o Resource requirements for the tool:
UNIX version __________
Windows version __________
Mac version ___________
Memory: _____________

o Cost, rights and restrictions:
____ free, no license
____ free, license required
____ nominal distribution charge
____ fee for underlying tool(s)
____ free for educational and research use only
____ flat license fee
____ per user license fee
____ royalties per use
____ other: ____________

o User background prerequisites (check all that apply):
_X__ BS degree
____ MS degree
____ Ph.D. degree
____ knowledge of logic

____ first-order
____ high order

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 82

____ familiarity with a high-level programming language
____ familiarity with process algebra
____ familiarity with temporal logic
____ other: ____________

o User's learning curve, if all prerequisites are met:
____ one month
____ two months
_X__ less than six months
____ other

______ months
o Tool support

_X__ upgrades/maintenance
Last version produced at this date: _1999_____

_X__ manual
_X__ on the web

____ training
____ listserv
_X__ mailing list

for CafeOBJ
_X__ dedicated conference(s)/workshop(s)

for CafeOBJ
____ human “help line”
_X__ book(s)

for OBJ3
_X__ journal/conference publications
____ other: ____________

o Current contact.

http://www-cse.ucsd.edu/groups/tatami/

7. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply):
____ equivalence
____ modal logic
____ temporal logic
____ system or process invariants
____ built-in support for checking for:

___ deadlock
___ livelock
___ other: ____________

____ other: ____________
o Tool supports (check all that apply):

____ optimization and state reduction mechanism
using _________________________

____ symbolic simulator:
____ interactive
____ random

____ feedback on in what state verification failed
___ trace leading to the state

8. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

o Degree of proof mechanization.

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 83

____ fully mechanized
____ partially mechanized

o Support for developing and viewing the proof.
Web-based.

o Presentation of proof to the user (e.g., user input or canonical
expressions,
with or without quantifiers).

o Tool supports (check all that apply):
____ automated support for arithmetic reasoning
____ automated support for efficient handling of large

propositional
 expressions
____ automated support for rewriting
____ possible to use lemmas before they are proved.
____ possible to state and use axioms without having to prove

them.
____ new definitions can be introduced and existing definitions
 modified during proof
____ facilities for editing proofs
____ the foundations (i.e., all axioms, definitions, assumptions,
 lemmas) of the proof are identified
____ reasonably easy to reverify a theorem after slight changes

to
 the specification

9. OPEN-ENDED QUESTIONS

o Capabilities of this tool.
 Ease of use, user interface and system operation designed for
software
 engineers who are not experts in formal methods.
 Will be possible to use various proof checkers other than Kumo.
o Limitations of this tool.
 Kumo is not a powerful proof assistant like HOL or PVS.
o Estimated possible uses of the tool, such as applications, classes of
problems, stages of production cycle.
 Cooperative web-based software system design and validation.
o Applications that the tool was used for - case studies, examples,
success stories.

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook
for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 84

6.12.1 What Tool Makers Need for Tool Integration (1 received response)

Questionnaire for tool makers/integrators:
- --
o If you already produce and/or sell toolkits, would you be interested
in integrating formal tools in the toolkit, and why.

Integration is happening. Need a spectrum of tools for any kind
of useful system.

o What information do you need in order to be able to integrate formal
tools in a toolkit.

API, sockets main link into Z/EVES.

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 86

Appendix B: Formal Methods Term Taxonomy

Formal Methods Term Taxonomy

6.13 Background

Mature life-cycle process, in the context of system engineering, consists of:
requirements definition, system design, high-level design, low-level design,
implementation, testing (unit testing, component testing, and system testing), user
support, and maintenance.

Model is a system of definitions, assumptions and equations, set up to represent and
discuss physical phenomena and systems. In the context of mathematical logic, a model
is an implementation, I, of a set of well-formed formulas of a formal language such that
each member of the set is true in I.

Axiom is a mathematical formula that can assert arbitrary properties over arbitrary (new
or existing) entities.

Definition, is an axiom that introduces a new symbol and gives its value or meaning as a
function of previously existing symbols.

Theorem is a logical formula derived from axioms using inference rules.

Method, in the context in an engineering discipline, describes a way in which a process
is to be conducted. In the context of system engineering, a method consists of: 1)
underlying model of development; 2) a language or languages; 3) defined ordered steps;
and 4) guidance for supplying them in a coherent manner.

Proof is a chain of reasoning using rules of inference and a set of axioms that leads to
conclusion, i.e. it is derivation of a theorem.

Step-wise refinement, in the context of system engineering, is the process of deriving
level i+1 of the process cycle from level i, and refining level i based on level i+1, in
systematic fashion through all cycles of life-cycle.

6.14 Taxonomy

Abstraction is the process of simplifying and ignoring irrelevant details and focusing,
distilling, and generalizing what remains. In formal methods, abstraction is a tool for
eliminating distracting detail, avoiding premature commitment to implementation
choices, and focusing on the essence of the problem at hand.

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 87

Breadth-first search is a search that generates first all the immediate neighbors of a
state, then all the next neighbors, and so on.

Completeness is a property defined as presence of all possible cases.

Consistency is a property defined as lack of conflicting cases.

Explicit model checking is a type of model checking in which the system to be analyzed
is represented by enumerating its states and transitions. State exploration is performed
over individual states. The term “model checking” usually implies explicit model
checking.

Formal analysis is mathematically-based analysis.

Formal method is a mathematically-based technique for describing system components,
properties and/or behavior. Formal methods are different than traditional engineering
mathematics in the sense that they are used for describing digital systems, such as
hardware and software, using logic and discrete mathematics. A formal method has an
underlying theoretical model against which a description can be verified. It consists of a
notation (i.e. formal specification language) and some form of deductive apparatus (i.e.
proof system).

Formal methods may be applied at varying levels of rigor or formalization. Listed in
order of increasing formality and effort, a suggestive guide to levels of rigor includes:

1. Use of notations and concepts derived from logic and discrete mathematics to
develop more precise requirements statements and specifications. Proof, if any, is
informal.

2. Use of formalized specification languages with mechanized support tools ranging
from syntax checkers and prettyprinters to typecheckers.

3. Use of fully formal specification languages with rigorous semantics and
correspondingly formal proof methods that support theorem proving and model
checking.

Formal proof is a complete and mathematically based argument for the validity of a
statement about a system description. A proof proceeds in a series of steps, each of which
draws conclusions from a set of assumptions. Justification for each step is derived from a
small set of rules which state what conclusions can be reasonably drawn from
assumptions. Such justification eliminates ambiguity and subjectivity from the argument.
Formal proofs may be prepared manually or, preferably, with the assistance of a formal
methods tool.

Formal specification is a description of a planned or existing process, entity and/or
system, written in a formal language. It is a concise and unambiguous description of the
behavior and/or properties of the process/entity/system, and can be written at various

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 88

levels of abstraction and formalization. It can be used for requirements, system design,
high-level design, and low-level design specification, as well as test derivation. The most
formal specifications are written in languages with well-defined semantics that support
formal deduction and allow the consequences of the specification to be calculated
through proof of putative theorems.

Formal (specification) language is a mathematically based language, and has a formal
syntax and semantics.
• Formal languages can be broadly classified as model-oriented, property-oriented, or a

combination of both. Model-oriented languages explicitly model system behavior.
Property-oriented language describe properties of the system.

• Formal languages can also be classified as sequential or concurrent, if they are used

to specify sequential or concurrent systems, respectively. For example, process

algebras are model-oriented languages which describe the behavior of concurrent

systems by describing their algebra of communicating processes.

• Formal languages can be executable, and can have tool support.
• Programming languages are formal languages, but are not considered appropriate for

use in formal specifications because of: insufficient abstraction ability (e.g. in “true”
formal languages, types do not have to be directly implementable); often there is a
lack of complete formal semantics.

Formal (methods) tool is a program that implements some aspect of formal analysis,
thus providing mechanized, computer assisted support for formal analysis. Like formal
methods, formal methods tools can be formalized to various levels of rigor, from syntax
checkers to theorem provers.

Formal validation is a type of formal analysis in which an implementation is tested in
execution to demonstrate that it satisfies its requirements specification. Informally, it is
proving that the requirements are right, (i.e. we are building the desired system).

Formal verification is a form of formal analysis in which each level of development is
proven to satisfy the requirements of its superior level, (i.e. formal specification satisfies
the corresponding formal requirements specification, and implementation satisfies the
corresponding formal specification). Informally, it is proving that a system is built to its
requirements.

Formalization is the application of a certain level of mathematical rigor; or the act of
formalizing an informal process, system or entity by making it more mathematically
rigorous. In the context of using formal languages and tools, levels of formalization are
(in increasing order):
1. Use of mathematical concepts and notation, informal analysis (if any), absence of

mechanized assistance.
2. Use of formalized specification language with some mechanical support.
3. Use of formal specification language with comprehensive mechanized environment,

which includes mechanized proof assistant/theorem prover and/or model checker.

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 89

Mechanized proof assistant is a formal tool that implements theorem proving in an
interactive way, requiring the user to guide the proof steps.

Model checking is a type of formal analysis that relies on building a (usually finite)
model of a system and checking that a desired property holds in that model. The
verification task is to demonstrate that the system is a model that satisfies the putative
property. The specification should be syntactically and semantically correct. The check is
performed as an exhaustive or partial state space search, often breadth-first. Model
checking is based on a verification algorithm and thus requires no assistance from the
user, i.e. it is “automatic.”

Model checker is a formal tool that implements model checking. Model checkers usually
rely on various algorithms, such as bit-state hashing or symmetry, to reduce state space
search, and/or in the case of very large systems could provide an option to perform nearly
exhaustive state space search.

Theorem proving is a type of formal analysis in which a proof of a property is
performed over a specification. Both the specification and its properties are expressed as
formulas in some kind of mathematical logic. The verification task is to show that the
formal specification of the system implies the formal statement of a putative system
property. The specification should be syntactically and semantically correct.

Theorem prover is a formal tool that implements theorem proving in an automated way,
not requiring user assistance.

Parser is a formal tool that checks syntactic consistency.

Requirements specification is a specification describing essential, necessary or desired
attributes of a system or system components.

Rule of inference is a rule in mathematical logic that defines the reasoning that
determines when a conclusion may be drawn from a set of premises. In a formal system,
the rules of inference should guarantee that if the premises are true, then the conclusion is
also true.

Specification animators (or emulators) are executable programs which reinterpret a
formal specification into a high-level dynamically executable form. Specification
animations are not formal in a strict sense, but support the formal requirements and
design verification process by providing analysts with an early view of the high-level
dynamic behavior of the requirements.

Symbolic execution is execution which does not require parameters to have known
values, (i.e., allows parameters in symbolic form).

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 90

Symbolic model checking is an approach to model checking in which the system to be
analyzed is described by equations or logical formulas. For example, a form of symbolic
model checking uses the state reduction technique to analyze sets of states, represented as
Boolean formulas, instead of individual states. For illustration, let us consider the state in
which V is set to 0. All states that have V set to 0 are marked, and all states that can reach
the marked states in one step are marked. This procedure is repeated until no new states
can be marked. This set of states is then analyzed.

Symbolic simulation is a form of simulation that allows input parameters to be supplied
in symbolic form, (e.g. as variables or functions).

Traceability of requirements is a property which means that system-level requirements
are traceable to identifiable (functional) subsystems, components, or interfaces.

Typechecking is a form of formal analysis that detects semantic inconsistencies and
anomalies, ensuring that entities must match their declaration and be combined only with
other entities of the same or compatible type.

Typechecker is a formal tool that implements typechecking.

Unparser (or pretty-printer) is a tool that translates internal representations into
display, and outputs formatted text. Usually used at the specification level.

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 91

Questionnaire

Tools Makers/Users

***************************** Tool name ************************
***************************** current date ************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
____ model checker
____ theorem prover
____ mechanized proof assistant
____ other: _________________

o Application domain(s) or class(es) of problems originally intended.

o Intended audience.

o Language(s) and/or technique(s) that the tool is based on.

o Reasoning mechanisms used for the tool.

o Comparable languages/tools.

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.

o How extensible and/or customizable is the tool.
____ source code given
____ tool implemented in a public-domain language
____ not extensible by user

____ other: ____________

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 92

____ GUI

____ Library of standard types, functions, and other
constructions

____ the library is validated

The extent of the library is (speaking from the point of
view of

a potential user):
___ not very comprehensive
___ reasonably comprehensive
___ quite comprehensive

____ Editing and document preparation tools

____ Cross-referencing
____ Browsing
____ Requirements tracing
____ Incremental development across multiple sessions
____ Change control and version management
____ Consistency checking
____ Completeness checking
____ Other:

o How interactive/mechanized/automated is the tool.
____ fully automated
____ user guided
____ other: ____________

4. TOOL INPUT AND OUTPUT

o Tool supports these models:
____ synchronous
____ asynchronous
____ mixed

o Input to the tool.

o Output from the tool.

o The language used for input to the tool has (check all that apply):
____ formal semantics
____ modern programming language constructs (e.g. if-else):

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 93

____ strong typing
____ modularity
____ hierarchical design
____ parameterization
____ communication between processes

____ buffered
____ built-in model of computation
____ other: ____________

5. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply):
____ requirements
____ design specification
____ implementation
____ test derivation
____ RTL
____ netlists
____ transistor level
____ other: ____________

o Has the tool been integrated with other tools?
____ no
____ yes - please name tool and applications

with _____________________
with _____________________
with _____________________

____ do not know

6. RESOURCES

o Resource requirements for the tool:
UNIX version __________
Windows version __________
Mac version ___________
Memory: _____________

o Cost, rights and restrictions:
____ free, no license
____ free, license required

____ for educational and research use only
____ nominal distribution charge
____ fee for underlying tool(s)
____ flat license fee
____ per user license fee
____ royalties per use
____ other: ____________

o User background prerequisites (check all that apply):
____ BS degree
____ MS degree

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 94

____ Ph.D. degree
____ knowledge of logic

____ first-order
____ high order

____ familiarity with a high-level programming language
____ familiarity with process algebra
____ familiarity with temporal logic
____ other: ____________

o User's learning curve, if all prerequisites are met:
____ one month
____ two months
____ less than six months
____ more than six months

______ months

o Tool support
____ upgrades/maintenance

Last version produced at this date: ______
____ manual

____ on the web
____ training
____ listserv
____ mailing list
____ dedicated conference(s)/workshop(s)
____ human "help line"
____ book(s)
____ journal/conference publications
____ other: ____________

o Current contact.

7. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply):
____ equivalence
____ modal logic
____ temporal logic
____ system or process invariants
____ built-in support for checking for:

___ deadlock
___ livelock
___ other: ____________

____ other: ____________

o Tool supports (check all that apply):
____ optimization and state reduction mechanism

using _________________________
____ simulator:

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 95

____ interactive
____ random
____ simbolic

____ feedback on in what state verification failed

___ trace leading to the state
____ other:

8. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

o Degree of proof mechanization.
____ fully mechanized
____ partially mechanized

o Support for developing and viewing the proof.

o Presentation of proof to the user (e.g., user input or canonical
expressions, with or without quantifiers).

o Tool supports (check all that apply):
____ automated support for arithmetic reasoning
____ automated support for efficient handling of large

propositional
 expressions
____ automated support for rewriting
____ possible to use lemmas before they are proved.
____ possible to state and use axioms without having to prove

them.
____ new definitions can be introduced and existing definitions
 modified during proof
____ facilities for editing proofs
____ the foundations (i.e., all axioms, definitions, assumptions,
 lemmas) of the proof are identified
____ reasonably easy to reverify a theorem after slight changes

to
 the specification

9. OPEN-ENDED QUESTIONS

o Capabilities of this tool.

o Limitations of this tool.

o Estimated possible uses of the tool, such as applications, classes of
problems, stages of production cycle.

o Applications that the tool was used for - case studies, examples,
success stories.

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 96

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook
for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 97

Questionnaire

Potential Users

♦ Briefly describe problems that you need solved (in order to help us estimate if
those problems can be addressed by formal tools)

♦ Have you used formal tools? If yes,

♦ For what application?

♦ What were the areas of satisfaction?

♦ What were the problem areas?

♦ What would you like to see in the future?

♦ Describe your dream toolkit.

♦ What would you consider a "good place" to integrate formal tools in existing
or separate toolkits?

Formal Methods Framework – Monthly Status Report
F30602-99-C-0166

WetStone Technologies, Inc. 98

Questionnaire

Tools Makers/Integrators

♦ If you already produce and/or sell toolkits, would you be interested in
integrating formal tools into the toolkit, and why?

♦ What information do you need in order to be able to integrate formal tools into
a toolkit?

