Name: 1

CS372H: Spring 2008 — Final Exam

Instructions

This final is closed book and notes.

If a question is unclear, write down the point you find ambiguous, make a reasonable interpretation,
write down that interpretation, and proceed.

State your assumptions and show your work. Write brief, precise, and legible answers. Rambling
brain-dumps are unlikely to be effective. Think before you start writing so that you can crisply
describe a simple approach rather than muddle your way through a complex description that “works
around” each issue as you come to it. Perhaps jot down an outline to organize your thoughts. And
remember, a picture can be worth 1000 words.

For full credit, show your work and explain your reasoning.
There are 11 problems on this exam. The first 10 are worth 8 points each and the last is worth 20.

The exam is scheduled Monday May 12 2-5PM JGP 2.102. The exam is not designed to require the
full 3 hours to complete.

Write your name on this exam

Name: 2

1. (8) In the context of authentication protocols, define the meaning of “jurisdiction” and give an example

of its use.

Solution: If node A trusts node B’s statements on some subject, then A believes B has jurisdiction. More
formally, if A believes B has jurisdiction for statement X and A beleives B believes X, then A
believes X.

Example: if A trusts B to be a key authority for C, and A believes B believes K is a good key for
A and C to use to communicate, then A believes K is a good key to use for communication with C.

2. (8) What protocol can be used to ensure that two nodes are guaranteed to take the same action at the
same time?

Solution: No such protocol exists. It is impossible to guarantee this behavior. 2 generals problem

3. (8) Why is a bitmap a better choice than a linked list for tracking free disk blocks?

Solution: Need to be able to place related data items near one another on disk. Bitmap can be indexed by
location, while linked list cannot (at reasonable cost).

Name: 3

4. (8) In lab 4, the faultalloc testprogram allocated a new page at va on a page fault for a bad reference
to va. The faultalloc program’s umain looks like this:

void

umain(void)

{

set_pgfault_handler (handler) ;
cprintf ("%s\n", (charx*)OxDeadBeef);
cprintf ("%s\n", (char*)OxCafeBffe);
}

You also ran faultallocbad, which replaced the cprintfs above with a call sys_cputs((char *)0xDEADBEEF,
4). If things were working properly, faultallocbad died rather than allocate a new page. The exercise
asked you to understand why faultalloc and faultallocbad behaved differently.

Why do faultalloc and faultallocbad behave differently?

Solution: In faultalloc, the cprintf library function is users space code that attempts to copy data from
OxDeadBeef and 0xCafeBffe to a buffer. This user space code references illegal memory, causing a
page fault that is sent back to user space and fixed. IN contrast in faultallocbad, we do a system
call that causes the kernel to try to access bad memory, so the kernel fault handler just shuts downt
he user program.

5. (8) In file systems, what is a hard link?

Solution: Hard links allow multiple directory entries to refer to the same file number.

Name: 4
6. (8) Why is it difficult to implement hard links in the FAT file system?

Solution: Hard links allow multiple directory entries to refere to the same file number. But since FAT has
no inode it stores file metadata in directory entry. If we have multiple entries, which should store
metadat (e.g., owner, modified time, permissions, link count); how to find other copies when one is
changed? Worst: how to store reference count so that delete/unlink works.

7. (8) An important operating system architecture is a virtual machine monitor or hypervisor. A hypervi-
sor can run multiple unmodified operating systems on separate virtual machines—each guest operating
system believes it is running on its own machine, and the guest operating systems are isolated from
one another so that a bug in one cannot cause a problem in another.

One of the challenges to making this work is that guest operating systems must run with the USER
status bit set so that the hypervisor can limit what guest OSes can do. As a result, guest OS code
cannot execute privileged instructions like 1cr3() to install a page table for itself (e.g., the kernel page
table for the guest OS) or for processes that the guest OS creates.

Describe how a hypervisor could ensure that unmodified guest operating systems can function properly
(while still ensuring isolation among the virtual machines and while still ensuring that processes within
the guest OS are isolated from one another.)

Solution: Two key ideas. (1) hypervisor emulates privleged instructions for each virtual machine: when a
guest OS executes a privleged instruction, hardware issues a trap and calls hypervisor handler
which can simulate the instruction for the guest OS; (2) need to track whether virtual machine is
operating in virtual user mode or virtual kernel mode so that if user process tries to execute privleged
instruction we call guest OS handler but if guest OS executes privleged instruction we emulate it.
Track virtual user/supervisor mode by tracking trap/interrupt/system call/iret instructions, all of
which are dispatched to hypervisor handlers before being bounced back down to guest OS handler.

Name: 5

8. (8) Consider the following sequence of reads and writes (assume all values are initially 0; each operation
occurs at the exact real-time moment specified for each line):

Time Node 1 Node 2 Node 3 Node 4
0:01 | write(A, 12) | write(A, 22)

0:02 | write(B, 13) | write(B, 23)

0:03 | write(C, 14) Write(C 24) | 23 = read(B) | 13 = read(B)
0:04 | write(D, 15) | write(D, 25) | 12 = read(A) | 12 = read(A)
0:05 25 = read(D) | 25 = read(D)
0:06 13 = read(B) | 13 = read(B)

Indicate whether each of the following statements is true or false and explain your answer.

(a) The above system implements linearizability

Solution: false. At time 3 we have two different results for write of B at time 2.

(b) The above system implements sequential consistency

Solution: True. An order consistent with all operations listed above is write(A,2), w(A,12), w(B,23), w(B,13),
w(C,14), w(C, 24), w(D,15), w(D,25)
(¢) The above system implements causal consistency Solution: true

9. (8) Although passwords have limitations, sometimes they must be used for authentication. If you must
design a system that uses passwords for authentication, describe three ways to improve their security.

Solution: force users to use long/varied passwords; don’t store passwords (store hash of password + salt); limit
rate of password guessing by adding delay after missed password; don’t send cleartext password
across network (send challenge/response instead)

Name:

6

10. (8) The MegaGiga hard disk rotates at 10000 rpm (6ms/rot)with a seek time given by = 1 4+ 0.001t
msec, where t is the number of tracks the arm seeks. Assume a block size of 512 bytes, 1024 sector/track,
8192 tracks, and 4 platters. The disk has a 16MB track buffer. The disk controller can DMA read or
write data between memory and the disk device at a rate of 100MB/sec.

(a) What is the storage capacity of this disk?

Solution:

29 bytes/sector * 210 sectors/track * 2'® tracks/platter * 22 platters/disk = 2** bytes/disk = 16GB

(b) Estimate the worst case delay to read 512 bytes from this disk

Solution:

worst case seek is 14.001%8192 = 14-8.192ms = 9.192ms
worst case rotation time is 15000 rev/minute * 1/60 minute/second = 6ms
total = 15.2ms

(¢) Estimate the expected time to read 20 consecutive MB from a random location on disk.

Solution:

Each track holds .5MB, so we need to read 39 full tracks + part of a first track and part of a last
track (only a 1 in 1024 chance that a request is exactly aligned with the start of a a track, so we
can ignore that case as having little impact on expected performance. We will have one random
seek and 40 1-track seeks (or head switches) — total seek time = 40ms + 1 + 8192/3 * .001 =
40 + 1 + 2.7 = 43.Tms

for 39 tracks, we sit on the track for a full rotation. For the last, we will assume that tracks are
offset enough to compensate for the seek, so we have to wait for 1/2 rotation on average (if tracks
are badly laid out, then we could always have to wait for a full rotation.) Finally, for the first track,
if we have to read p percent of it, then there is a p chance we’ll have to wait for a full rotation (since
we arrive “in the middle” of the track); there is a 1-p chance we’ll land in the middle of the free
part and have to wait (on average) (1-p)/2 + p = 0.5+.5p, so we have integrate(p = 0..1)(1.5 +
.5p) = .375p% = .375. So we have total rotation time = 40.375 rotations * 6ms/rot = 242.2ms
This gives us a total time of 285.9ms for 20MB, which is under 80MB/s, so the bus bandwidth
doesn’t limit us.

Name: 7

11. (20) Concurrent programming

Consider the following, simple game: three player each have an unlimited supply of color cards. Player
Blue has a big stack of blue cards. Player Green has a big stack of green cards. Player Red has a
big stack of red cards. The Dealer (a fourth entity) has a big stack of blue cards, a big stack of green
cards, and a big stack of red cards.

The Dealer randomly selects two different colored cards and places them on the table. The player who
has the third color removes the two dealer cards from the table and takes the three cards (two from
the table and one from the player’s hand) and places them in a pile. The Dealer then puts another
two cards on the table, and the cycle repeats.

Write a Table object to synchronize game play among four threads (one thread each for Dealer, Red,
Blue, and Green). The table object has two public methods:

public class Table{
public:
int const BLUE = 0
int const GREEN
int const RED =

= 1;
2;

dealerPutCards(boolean cardList[3]);
playerPullCards(int playerCardColor) ;

The method dealerPutCards() passes an array of three booleans, two of which are true and one of
which is false. It returns once the matching player has played.

The method playerPullCard() passes in an int representing a color. It returns when the player’s
color is the winning color.

To receive credit on this problem, you must follow the coding standards described in the
handout and project.

List Table’s member variables and indicate how they are initialized

Solution:
Lock mutex = new Lock();
Condition dealerDone = new Condition();
Condition playDone = new Condition();
boolean cardsOnTable[] = {0,0,0};

Name:

Implement dealerPutCards(boolean cardList/[3])

Solution:
mutex.lock();
memcpy (cardsOnTable, cardList, 3 * sizeof(boolean));
dealerDone.signal();
while(cardsOnTable[BLUE] || cardsOnTable[GREEN] || cardsOnTable[RED])
playDone.wait(&mutex);
mutex.unlock();

Implement playerPullCards(int playerCardColor)

Solution:
mutex.lock();
while(notMyWin(), playerCardColor)
dealerDone.wait(&mutex);
cardsOnTable[BLUE] = cardsOnTable[GREEN] = cardsOnTable[RED] = false;
playDone.signal();
mutex.unlock();

