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Lecture S5: Transactions and reliability 
  
********************************* 
Review  -- 1 min 
*********************************   

Naming – which blocks belong to which files? 
 which files belong to which names? 
  
 Directories – regular files containing namefileID mappings 
 
 

*********************************  
Outline - 1 min 
********************************** 
Transactions 

ACID: atomicity, consistency, isolation, durability 
logging 
LFS,  

Reliability 
 disk reliablity 

RAIDs 
 

*********************************   
Preview - 1 min 
*********************************   
 
 
 
*********************************   
Lecture - 20 min 
*********************************   

1. Motivation 
File systems have lots of data structures 
• bitmap of free blocks 
• directory 
• file header 
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• indirect blocks 
• data blocks 
 
For performance, all must be cached! 
Ok for reads, but what about writes? 
 
 

1.1 Modified data in memory (“cached writes”) can be lost 
Options for writing data 
 
write through – write changes immediately to disk 

problem: slow! Have to wait for each write to complete before 
going on. 

Write back – delay writing modified data back to disk (for example, 
until replaced). Problem: can lose data on a crash 
 

1.2 multiple updates 
if multiple updates needed to perform some operation, crash can occur 
between them! 
 
For example, to move a file between directories: 

1)  delete file from old directory 
2)  add file to new directory 

 
 
to transfer $100 from your bank account to mine 

(1) Debit your account 
(2) Credit my account 
 

to update an existing file (e.g., text editor checkpoint) 
(1) overwrite block 1 of file with new data 
(2) overwrite block 2 of file with new data 
(3) …  

 
or 
(1) write new file with new data 
(2) remove old file from directory 
(3) add new file to directory 
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to create new file 

1)  allocate space on disk for header, data 
2)  write new header to disk 
3)  add new file to directory 

 
What if there is a crash in the middle, even with write-through have a 
problem 
 
 

2. Approach 1 (ad-hoc) 
 
Common in older systems 
 
metadata: needed to keep file system logically consistent (directories, 
bitmaps, file headers, indirect blocks, etc.) 
data: user bytes 
 

2.1 Metadata consistency 
For metadata, UNIX uses synchronous write through 
If multiple updates needed, does them in specific order so that if a 
crash occurs, run special program “fsck” that scans entire disk for 
internal consistency to check for “in progress” operations and then fix 
up anything in progress 
 
example: for file create, first write data to file, then update file header, 
then mark file header “allocated” in bitmap, then mark file blocks 
“allocated” in bitmap, then update directory, then (if directory grew) 
mark new file block “allocated” in bitmap 
 
 
 
 
 
 
 
 
 fsck:  

file hdr dir 1 

6 

5 

4 3 

2 
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file header not in bitmap   only writes were to unallocated, 
unreachable blocks; write “disappears” 

 
block or file header allocated, but not in bitmap  update 
bitmap 

 
 file created, but not yet in any directory  delete file 
 
Challenge:  
(1) need to get ad-hoc reasoning exactly right 
(2) poor performance (synchronous writes) 
(3) slow recovery – must scan entire disk 

2.2 User data consistency 
what about user data? 
 write back, forced to disk every 30 seconds (or user can call “sync” 
to force to disk immediately) 
 
No guarantee blocks written to disk in any order 
can lose up to 30 seconds of work 
 
Still, sometimes metadata consistency is enough 
e.g. how should vi or emacs write changes to a file to disk? 
 
option 1:  
 delete old file 
 write new file 
(how vi used to work!) 
 
now vi does the following: 
 write new version to temp file 
 move old version to other temp file 
 move new version to real file 
 unlink old version 
If a crash, look in temp area, if any files there, send e-mail to user that 
there might be a problem 
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But what if user wants to have multiple file operations occur as a unit?  
Example: bank transfer 
 ATM gives you $100 
 debits your account 
must be atomic 
 

2.3 Implementation tricks 

2.3.1 Dependencies 
Instead of blocking until a write makes it to disk, then sending the 
next write, send series of writes separated by BARRIER 
 
OS builds a dependency graph and ensures that a write does not go to 
disk until all writes on which it depends goes to disk 
 
 
Example of a general problem: output commit 
 
 
 
 

3. Transaction 
transaction – group actions together so they are: 
Atomic – all or nothing. either happens or it doesn’t – no partial 
operations 
Consistent – maintains system invariants 
 e.g., “total deposits less total withdrawals = total accounts” 
Isolated – serializable; transactions appear to happen one after 
another 
Durable – persistent -- once it happens, stays happened 
 
QUESTION: How does this compare to critical section? 
Critical sections are atomic, serializable, consistent, but not durable 
 
 
Two more terms 
commit – when transaction is done (visible, durable) 
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rollback – “forget” uncomitted transaction (e.g. if failure occurs in 
middle of transaction, it didn’t happen at all) 
 

4. Implementation (one thread) 
Key idea – fix problem of how you make multiple updates to disk 
atomically, by turning multiple updates into a single disk write! 
 
Illustrate with simple money transfer from acct x to acct y 
 Begin transaction 
  x = x + 1 
  y = y - 1 
 Commit transaction 
 
Keep “write-ahead” log (“redo log”) on disk of all changes in 
transaction 
 
 
A log is like a journal – never erased, record of everything you’ve 
done 
Once both changes are in log, write is committed 
Then can “write behind” changes to disk/checkpoint/final location – if 
crash after commit, replay log to make sure updates get to 
disk/checkpoint/final location 
 

 

Memory 
cache 
 
x: 0 
y: 2 

Disk 
 
 X: 0 
 Y: 2 

X = 1    Y = 1   “commit” 

Write-ahead log (on disk or tape or nvram) 
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Sequence of steps to execute transaction 
1)  write new value of x to log (and cache) 
2)  write new value of y to log (and cache) 
3)  write “commit” to log 
4)  write x to disk 
5)  write y to disk 
6)  reclaim space on log 
 
 
QUESTION: what if we crash after 1? 
 no commit, nothing on disk, so ignore changes 
what if after 2?  
 ditto 
what if after 3, before 4 or 5? 
 commit written to log, so replay those changes back to disk. 
 
 
What if we crash while writing commit? 
As with concurrency, need some primitive atomic operation, or else 
can’t build anything else. 
Writing a single sector on disk (with a CRC) is atomic! 
 

4.1.1 Barriers and write order 
The above 6 steps make sense (I hope) if done in that order. 
 
As with memory writes, system (typically) may reorder pending 
requests. 
 
Option 1: wait for each operation to complete (get to disk) before 
starting the next 
 
What's wrong? SLOW 
-- E.g., wait an entire revolution between two writes to log (1 v. 2) 
 
Solution: Barrier -- tell OS "Finish all before here before starting any 
after here" 
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QUESTION: Where do we need BARRIER in above steps? 
 
variations 
-- block until completion 
-- BARRIER in stream of requests (OS disk scheduler must handle) 
-- DAG -- directed acyclic graph defines required partial order among 
requests 
... 
 
 
Note that commit must block until data on disk (so BARRIER not 
enough) (but, see "Rethink the sync" below) 
 

4.1.2 Alternative: can we write x back to disk before commit?  
Yes: keep an “undo log” – save old values along with new value 
 
If transaction doesn’t commit, “undo” change! 
 
 
QUESTION: can we do transaction with just undo log? 
Just redo log? 
 

4.1.3 Details -- API and log record format: 
 
What needs to be in a log record? 

Name of transaction: 
[Previous log record of this transaction:] 
[Next log record of this transaction:] 
[Time:] 
Type of operation: 
Object of operation: 
Old value: 
New value: 

 
What needs to be in commit record? 
 
What does API look like to programmer? 
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In above example,  
-- API includes TID in read/write calls 
e.g., 
tid = beginTransaction(); 
x = read(tid, "x") 
write(tid, "x", x+1) 
y = read(tid, "y"); 
write(tid, "y", y+1); 
commitTransaction(tid); 
 
QUESTION: What does to log? 
  
 

4.1.4 What about performance? 
Write all data twice – surely that is horrible? 
 
Compare 100 1KB random writes – direct write v. log + writeback 
 
Direct write: 100 * T_randomWrite ~= 1 second 
 
Pessimistic: 
Log + writeback: 100*T_sequential write + 100 * T_randomWrite ~= 
1000KB/50MB/s + 100 * T_randomWrite ~= 2ms + 1s 
 
Realistic: writeback is done in background 
 better response time 
 more opportunities for disk head scheduling  100 random writes 
takes less time for writeback than for direct write case 
 
My opinion: a well designed writeback system can often have 
performance comparable to or better than update in place 
 

5. Implementation (Advanced) – rethink the sync  
 

5.1.1 Rethink the sync (research idea not yet widely deployed) 
 
If a tree falls in the forest and no one hears, does it make a sound? 
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If the OS lies about what is on disk but no one catches it, did it reall 
lie? 
 
When application says “sync this to disk”, the OS can lie and say 
“OK, it’s on disk.” 
 
If machine doesn’t crash and data eventually makes it to disk, no one 
is the wiser 
 
What if machine crashes? You can only be upset if you thought the 
data was already on disk (you can’t be upset if machine crashes before 
the write, right?)   Don’t let external users believe the data is on 
disk before it really is  block writes to screen and network until the 
data is really on disk 
 
Program           disk            screen 
Commit A 
Print “A” 
Commit B 
Print “B”          
Commit C        
Print “C”  
                              A, B, C done 
                                            “ABC” 
 
 
 can write A, B, C together and sequentially to log (rather than 
writing each on a rotation) 

 
 
Example of general problem – output commit 
 
some actions cannot be undone (spit money out of ATM, unlaunch the 
missile, move the airplane flaps)  cannot roll back state  only take 
these actions once transaction is certain to commit 
 

 Here the trick is move output commit from program to user/external 
machines 
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6. Concurrency 
 
Transaction A       transaction B 
W1     
   W2 
   R1 
   R2 
W3 
Commit 
 
 

7. Concurrency: Reads 
Requirement: Need to ensure isolation – transaction 1 cannot see the 
result of transaction 2 until transaction 2 commits. 

7.1 Option 1: Per-transaction views 
 
 
 
 
 
 
 
 
 
 
Store uncommitted writes with transaction 
Store committed writes in shared cache (asynchronously write to 
disk…once they are safely on disk, mark cache entry as 
“clean/replacable”) 
 
 
Note for redo log 
 
 Uncommitted - committed, cached, dirty  committed 
cached, clean  committed uncached 
 
 

$A 

$ 

$B 
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7.2 Option 2: Two-phase locking 
What if two threads run same transaction at same time? 
 
 
 
Concurrency  use locks 
 

Begin transaction 
 lock x, y 
  x = x+1 
  y = y-1 
 Unlock x, y 
commit 

What if A grabs locks, modifies x, y, writes to log, unlocks, and right 
before committing, then B comes in, grabs lock, writes x, y, unlocks, 
does commit 
Then A crashes before commit 
 problem. B commits values for x, y that depend on A committing 
 
Solution: two-phase locking 
Phase 1: only allowed to acquire lock 
Phase 2: All unlocks happen at commit 

 
 

Thus, B can’t see any of A’s changes until A commits and releases 
locks 
 provides serializability 
 
serializability -- result of execution is equivalent to an execution 
where transactions are sequenced in some serial order and one 
transaction runs at a time in that order  
 
Also note – gives us a way to avoid deadlock 
What happens if you try to grab a lock and it is already held? 
(or what if you wait on a lock for > 1 second, or ….) 
 abort transaction! 
 avoids “no-revocation” condition of deadlock 
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Generalization: readers/writers locks 
 
 

8. Concurrency: Writes 
 
Requirement: durability -- once a transaction completes, its effects 
remain 
 
Issue: ordering on recovery. Suppose two concurrent transactions T1 
and T2 write to same location; T2 “wins” (is later) and is observed by 
T3; now we reboot, and during recovery T1 “wins”. E.g., log: 
 
   W2   W1   Commit1  Commit2 
 
 
Solution 1: Always make sure recovery writes happen in commit 
order 
 
Solution 2: Two-phase locking; still need to make sure recovery 
happens in commit order; but this guaranteed to also match write 
order in log so may be simpler 
 
e.g., 
 
     W2   Commit2   W1 Commit1 
 
 
 
 
 
 
 
 
 

*********************************   
Admin - 3 min 
*********************************   
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*********************************   
Lecture - 35 min 
*********************************   
 

9. Transactions in file systems 

9.1 write-ahead logging 
Almost all file systems built since 1985 use write-ahead logging 
(windows NT, solaris, OSF, Linux JFS, SGI XFS, etc) 
Idea: write all changes in a transaction log (update directory, allocate 
blocks, etc) before sending any changes to disk 
 “create file”, “delete file”, “move file” etc are transactions 
 
eliminates need to “fsck” after crash 
 
If crash 
 read log 
  if log isn’t committed, no change 
  if log is comitted, apply all changes to disk 
  if log is zero, then all updates have gotten to disk 
 
Advantage: 
 + reliability 
 + asynch write-behind (seeks) 
 DA: all data written twice ( often, only log metadata) 
 

9.2 Log-structured file system 
Idea: write data only once by having log be only copy on disk 
 as you modify disk blocks, just store them out on disk in the log. 
Put everything: data blocks, file headers, etc. on log 
 
If need to get data from disk, get it from the log 

• can store data blocks, indirect blocks, etc anywhere on disk, 
so no problem to put in log 

• put inodes in log, too 
   need some way to find them 

• imap is array of pointers to inodes 
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  inodes no longer in fixed location, but imap is in fixed location 
  (actually two fixed locations called “checkpoints”) 
 
  “apply changes to disk” now means update on-disk imap 

“replay log after crash” now means apply changes of comitted 
transactions to imap. 

 
 
Advantages 

• all writes are sequential! 
 
No seeks, except for reads, but 
• RAM getting bigger  caches getting bigger 

• in extreme case (infinite cache)  disk I/O only for writes 
(only for durability of data) 

 conclude, optimize for writes. LFS does that 
 
 
 
 
Cleaning 
Eventually, log wraps around – run out of room 
 have to garbage collect. 

Majority of files deleted within first 5 minutes, so go back over 
log, and compress pieces that are no longer in use 
 
As disk gets full, need to clean more frequently, so keep disk 
under-utilized 

 
Pros & cons 
+ write performance 
+ read performance (if write order predicts read order) 
 cleaning cost (off-line?) 
 bad if disk full, random updates to files 
 
 
 
SEE 
http://www.cs.utexas.edu/users/dahlin/Classes/GradOS/lectures/lf
s.pdf 
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10. Reliability 
 

Challenges (basic model): 
-- disk failure (lose one disk) 
-- sector corruption (lose a few sectors on a disk) 
 -- detected in HW or not 
 
Remember: manufacturer gives MTTF estimate but, your milage may 
vary 
-- correlated failures 
-- bathtub curve 
-- environmental challenges  
-- Google reports seeing about 2% of disks fail per year 
 
 
Key techniques 
(1) Transactions (see above) 
(2) End-to-end checksum a la ZFS 
-- Previously: rely on disk HW checksums 
-- Many recent new file systems include additional checksums (ZFS, 
google FS, HDFS, ...) 
(3) RAID: Redundancy 
 
 

11. RAIDS and reliability 
 
Data stored to disk is supposed to be permanent. Physical reality  -- 
disks fail  
 -- Today disks advertise ~1.4million hour MTTF 
 -- 1.4M hours/8760 hours/year = annualized failure rate of .6%  
 -- expect to lose ~.5-1% of your disks each year 
 -- some reports from large deployed systems see higher 
annualized failure rates (~2%) 
 
 Note MTTF 1.4M hours = 160 year MTTF does not mean disks 
will last 100+ years. This is failure rate during useful life (bathtub 
curve) 
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If you have 1 disk, this should make you nervous. You shouldn't 
ignore it. 
If you have 10 or 100 disks, you can't ignore it. 
 
 
Organization may have hundreds or thousands of disks 
Suppose you need to store more data than fits on a single disk? How 
should you arrange data across disks? 
 
Naive option: treat disk as huge pool of disk blocks so that: 
 disk 1 has blocks 1, k+1, 2k+1, …. 
 Disk 2 has blocks 2, k+2, … 
 … 
 
Benefits 

• load gets balanced automatically across disks 
• can transfer large files at aggregate BW of all disks 

 
Problem: what if one disk fails? 
Big problem: for k disks k times as likely to have a failed disk at any 
given time 
 
Availability v. reliability 
 
Availiability – never lose access to data; system should continue 
working even if some components are not working (liveness) 
Reliability – never lose data  (safety) 
 
(Battery runs out on my laptop makes storage unavailable but 
hopefully not unreliable) 
 
RAID 
 
RAID -- redundant array of inexpensive disks 
-- use redundancy to improve reliablity 
 
In RAID, dedicate one disk to hold parity for other disks in stripe 
 
 disk 1 has blocks 1, K+1, 2K+1, … 
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 disk 2 has blocks 2, K+2, 2K+2, … 
 … 
 parity disk has blocks parity(1…k), parity(K+1…2K)… 
 
If lose any disk, can recover data from other disks plus parity 
ex: 
 disk 1 has    1 0 0 1 
 disk 2 has    0 1 0 1 
 disk 3 has    1 0 0 0 
 parity has     0  1 0 0 
 
What if we lose disk 2? Its contents are parity of remainder! 
Thus can lose any disk, and data is still available 
 
Details: 

• disk failures are “fail-stop” – disks tell you when they fail 
• update – read-modify-write data and parity atomically 

• solution – write-ahead logging or log-structure 
 
Simple (naïve) analysis 
 
why does this work? 
 
Suppose MTTF = 100K hours (11.5 years) 
Department has 100 disks  100K/100 until first failure = 1000 hours 
= lose data every 41.66 days! 
 
Suppose MTTR = 10 hours and we arrange disks as 99 disks + 1 
parity 
QUESTION: 1% better? 2x better? 10x better? 
 
Assuming independent failures(*) – need to get unlucky and have a 
second failure before the first disk is fixed 
 
e.g., 41 days until the first failure happens, then race to fix disk before 
next one fails. Since I fix the disk in 10 hours and the next disk is 
expected to fail in 1000 hours, I win this race 99 out of 100 times 
 
 MTTDL = 100 * 1000 = 100K hours 
 

Preferred Customer
Comment:  
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ANSWER 100x better. 1% reduction in effective space gets 100x 
improvement in reliability! 
 
Of course, I can improve this further by  
(1) using more redundancy (e.g., 1 parity per 10 rather than 1 per 
100) 
 
Typical deployments – 1-2 parity per 1-10 disks; (e.g., 3 replicas of 
data in Google file system) 
 
MTTDL = MTTF^2_disk / (N * (G-1) * MTTR_disk) 
 
e.g., 100 disks in groups of 9 data + 1 parity 
 
100K^2 / (100 * 9 * 10) = 1.1M hours (>100 years) 
 

Intution: MTTF/N = time for first failure 
              MTTF/G-1 = time to second failure after first occurs 
             (MTTF/G-1)/MTTR_disk -- probability second  failure 
occurs before first disk repaired 

 
 (2) improving repair time  
“Hot swap” – immediate switch to new disk in seconds/minutes 
(possibly w/o operator intervention) 
 
Limited by time to read/write data – if dedicate 100% of disk BW to 
repair, 1TB/50MB/s = 20K seconds – 6 hours; more if reads are 
slowed down because of non-repair traffic; technology trends – this 
number is rising 
  
(a) Have enough redundancy to survive multi-hour MTTR 
(b) Declustering – spread repair load – instead of organizing 100 disks 

into 10 groups of 10, send each data item to 10 random disks out 
of 100 ; if a disk fails, send the repair traffic to a random disk 
(excluding the ones already used for that data)  each remaining 
disk supplies 1% of the repair reads and receives 1% of the repair 
writes  repair in minutes not hours 
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Less naive models  
 
The above equation is wildly optimistic. 100 disks in groups of 9+1 
 100 years? No way. 
 
NOTE: independent failure assumption is way too optimistic 
(1) “bathtub” lifetime – quoted MTTF only valid during intended 

service lifetime (e.g., first 3-5 years of services possibly not 
including burn-in) 

 
(2) environmental correlation – power surges, vibration, 

manufacturing defect, faulty controller or server, … 
 
Common configurations today: 
Mirrored: 2 identical disks (write to both, read from either) 
3-5 data + 1 parity 
3-way replication 
5-10 data + 2 parity 
 

 
 
 
Other "advanced" sources of failure 
  Operator error 
  Malicious operator 
  Malware: Virus, ransomware 
  Fire, flood, hurricane, … 
  Bankruptcy of outsourced storage provider 
  FBI raid on collocation center (!) 

http://blog.wired.com/27bstroke6/2009/04/data-centers-ra.html 
   
   
One solution: SafeStore – geographic, operator, organization, software 
diversity; restrict interface;  
 
http://www.cs.utexas.edu/users/dahlin/papers/SafeStore-
USENIX07.pdf 
 
 



CS 439: Systems II   Mike Dahlin 

 21 

*********************************   
Summary - 1 min 
*********************************    

Key idea: log 


