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Lecture sec2: Authentication 
  
********************************* 
Review  -- 1 min 
*********************************   
Security mindset 

n engineer v. security engineer 
o violate assumptions 
o Ken Thompson rootkit (machine is trustworthy) 
o Tenex passwords (interactions between subsystems; analog 

world side channels) 
o ATM bank->gas station (physical security) 

n Why do computer systems fail? 
n Broad principles 

o Robustness (Anderson) 
o Saltzer & Schroeder 

*********************************  
Outline - 1 min 
********************************** 
Authentication Basics 

• principles: authentication, authorization, enforcement 
• local authentication (passwords, etc.) 
• distributed authentication (crypto) 
• pitfalls: really hard to get right 
•  

 
*********************************   
Lecture - 1 min 
*********************************   

 
 

1. Authentication 
 
3 key components of security 
Authentication – identify principal performing an action 
Authorization – figure out who is allowed to do what 
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Enforcement – only allow authorized principals to perform specific 
actions 
 
Principal – an entity associated with a security identifier; an entity 
authorized to perform certain actions 
 
Authentication – an entity proves to a computer that it is particular 
principal 
 
Basic idea – computer believes principle knows secret 
 entity proves it knows secret 
à computer believes entity is principal   
 

1.1 Local authentication -- Passwords 
common approach – passwords  
 
advantage: convenient 
disadvantage: not too secure 
 
“Humans are incapable of securely storing high-quality cryptographic 
keys, and they have unacceptable speed and accuracy when 
performing cryptographic operations. (They are also large, expensive 
to maintain, difficult to manage, and they pollute the environment. It 
is astonishing that these devices continue to be manufactured and 
deployed. But they are sufficiently pervasive that we must design our 
protocols around their limitations.)” – Kaufman, Perlman, and 
Speciner “Private communication in a public world” 1995 
 
 
fundamental problem – Passwords are easy to guess 
 

passwords must be long and obscure 
 

paradox: short passwords are easy to crack; 
 long ones, people write down 
 

technology à need longer passwords 
 
Orig unix – 5 letter, lowercase password 
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 how long to crack (exhaustive search) 26^5 = 10M 
1975 – 10ms to check password à 1 day 
1992 – 0.001 ms to check password à 10 seconds 
2011 -- ?? 
 

Many people choose even simpler passwords 
e.g. english words – Shakespeare’s vocabulary 30K words 
e.g. all english words, fictional characters, place names, person 
names, astronomy names, english words backwards, replace i with 1/e 
with 3, … 
 

 
  

 
 
 
Implementation techniques to improve security 
 
(1) Enforce password quality 
 
e.g., >= 8 letters with mix of upper/lower case, number, special 
character 
70^8 à 5x10^14 (10^7 times better than 6 lower case (?)) 
 
On-line check at password creation time (e.g., Require “at least X 
characters, mix of upper/lower case, include at least one number, 
include at least one punctuation, no substring in dictionary, …”) 
 
[Can do on-line check to get rid of really bad passwords.  But if 
attacker is willing to spend 1 week cracking a password, do you want 
to wait a week before accepting a user password…] 
 
 
Off-line checking … 
 
BUT 
except: people still pick common patterns (e.g. 7 lower case letters + 1 
punctuation + 1 number) 
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(2) Don’t store passwords 

 
system must keep copy of secret to check against password. What if 
attacker gets access to this list of passwords? (design for robustness, 
right?) 
 
Encryption: transformation that is difficult to reverse without the right 
key 
 
 
solution: system stores only encrypted version, so OK even if 
someone reads the file! 
When you type password, system encrypts it; compares encrypted 
versions 
 
System believes principal knows secret 
à Store <principal> {Password}K 
 
Entity proves it knows secret 
à Input password. System generates {Password}K and compare 
against stored value. If they match, input must have been password. 
 
example: UNIX /etc/passwd file 
 passwd à one-way transform à encrypted password 
 
 
(3) Slow down guessing -- Interface 
 
Passwords vulnerable to exhaustive search 
 
Slow down rate of search 
e.g., 

n Add pause after incorrect attempt 
n Lock out account (or add really long delay) after k 

incorrect attempts 
 

o Slow down guessing – Internals 
 
Salt password file: 
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extend everyone’s password with a unique number (stored in 
password file) so can’t crack multiple passwords at a time (otherwise, 
takes 10sec to crack every account in the system; now have to do 1 at 
a time) 
 
e.g., store <userID> <salt> <{password + salt}K> 
 
(5) Think carefully about password reset protocol 
 
(6) Implementation details matter… 
-- e.g., tenex 
 

1.2 Limits of passwords 
These techniques help, and you should use them, but passwords 
remain vulnerable 
 
n people still manage to pick poor ones (though seems to be getting 

better (anecdotal evidence; I don’t have strong data) 
n people re-use passwords across sites 
n (some/enough) people give away passwords to “anyone” who asks 

o social engineering 
o phishing 

 

1.3 2-factor authentication 
Passwords limited by human capabilities 
 
2 factor authentication:  
Identify human by at least 2 of 
(1) Something you know (secret e.g., password) 
(2) Something you have (smart card, authentication token) 
(3) Something you are (biometrics – fingerprint, iris scan, picture, 

voice, …) 
  
Current state of the art – if you care about access control, you do 
something like this 
 
n e.g., password + key fob 
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login: <username> 
password: <password> 
secureID: <number> 
>  
 
(Internally, key fob has a cryptographic key – think of it as a really 
long password + a clock; every k seconds compute f(key, time) à 
if you supply the right number for the current 30-second interval 
(+/- 30 seconds) then you must have the key fob) 

Current state of art for authentication – 2 factor authentication  
 
Key idea: Stealing key fob OR guessing password not enough 
 
[Details: 
 
Human knows password. Computer stores {password, salt}K1 
Timer card and computer share secret key K2 and both have accurate 
clock and so know current time (30-second window). Card has a 
display window and displays {time}K2 
 
User enters <userID> <password>  <{time}K2> 
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Computer checks <password salt>K1  
Computer checks <{time}K2> 
] 
 
Other examples; 
 
n password + ssh login key (I know my password; I have my laptop 

that has my ssh key on it…) 
n smart card + pin to activate it 
n password + text message sent to my phone 
n password + cookie on my browser (old computer v. new computer 

login paths…) 
 
 

*********************************   
Admin 
*********************************   

2. Authorization in distributed systems 
Today, many/most services we rely on are supplied by remote 
machines (DNS, http, NFS, mail, ssh, …) 

2.1 How not to do distributed authentication I 
 
Consider authentication in distributed file system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

File server 

client 

adversary ReadAt(file,off
set, length, 
userID, 
clientID) 
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Adversary model 
Typical assumption – we don’t physically control the network so adversary 
can (a) see my packets, (b) change my packets, (c) insert new packets, (d) 
prevent my packets from being delivered 
 
In some environments, this is a pretty good model of the adversary (I walk 
into a coffee shop that provides free wi-fi – their wifi router has nearly 
complete control over my network.) In other environments, we hope the 
adversary would have to work hard to get this much control (e.g., someone 
sitting next to me in a coffee shop might have to download some scripts to 
watch all of my network traffic and might even have to write some code to 
stomp on my wireless packets and replace them with their own if they want 
to modify my connection; e.g., department network – they might have to buy 
a ladder, a screwdriver, some cat-5 cable tools, and a $100 programmable 
router box) 
 
Problems with the above protocol? Does it look familiar? 
 

2.2 How not to do distributed authentication II 
 
Consider remote login 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dept machine 

client 

adversary User: userID 
Password: password 
> ls 
> emacs foo.txt 
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Problems? Does it look familiar? 
 

2.3 Solution: encryption 
Two roles for encryption: 
a)  Authentication (+tamper resistance) 

Show that request was sent by someone that knows the secret w/o 
sending secret across the network 

b)  secrecy – I don’t want anyone to know this data (e.g. medical 
records, etc.) 

 

2.4 Network login 
example: telnet login 
 sends password across the network! 
 
 
 
  
 
 
 
solution: challenge/response 
 
 
 
 
 
 
 
 
 
 
Compute function on secret and challenge 
 
Common function: Cryptographic hash AKA 1-way hash 
(e.g., SHA-256) 
 
Cryptographic hash easiest to understand under random oracle model 

Local 
terminal 

Remote login 
terminal 

password 

badguy 

Local terminal 
Remote login 
terminal 

f(secret, 492348) 

badguy 

492348 

secret 

secret 

= 
f(secret, 492348) 
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Random oracle cryptographic hash 

n given any input, produce a truly random bit pattern of 
target length as output 

n same input produces same output 
 

properties h = H(x) 
• Produce a fixed length array of bits h  from variable-length input x 
• given h and H, difficult to generate an x ;  
• given x, H, and h, difficult to generate x’ s.t. h’ = H(x’) == h;  
• changing 1 bit of input “randomly” changes each bit of output 
• à for above example, Can’t learn secret from seeing network 

traffic; cannot predict  correct response to a future challenge based 
on responses to past challenges 

Example functions: MD5 (insecure), SHA-1 (borderline), SHA-256 
(pretty good; current best practice) 

 
NOTE: cheap to compute – 150MB/s SHA-1 on my 2GHz laptop 

(spring 2009) 
 

Secret: 
Typically, local terminal uses password to get secret 
• Could use Unix approach – secret = encrypt 0 with password 

o Problem: dictionary attack via network 
• Secret can be random string of 256 bits (much more random than 

password); encrypt secret with password and store on local 
terminal 

 
 
Good news: Adversary doesn’t learn my password 
Bad news: Adversary can eavesdrop on my session 
Bad news: Adversary can hijack my session (start sending what 
appear to be TCP packets from my session) and read or write any of 
my files! 
 
Note: Above challenge/response protocol is simpler than typically 
used for login – generally have a stronger goal – login and establish 
encrypted connection 
 

n not only do I need to send a token that proves I know  a 
secret, I want to establish the ability to actually send new 
information (commands, data) to server 
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2.5 Encryption primitives 
Cryptographic hash – see above 
Secret key (symmetric) encryption 
Public key (asymmetric) encryption 
 

2.5.1 Private key encryption 
encryption – transform on data that can easily be reversed given the 
correct key (and hard to reverse w/o key) 
 
private key – key is secret (aka symmetric key) 
 
(plaintext)^K à cipher text 
(cipher text)^K à plaintext 
 
from cipher text, can’t decode w/o key 
from plaintext, cipher text, can’t derive key 
 
Note, if A and B both know Kab, and A sends (X)^Kab, B just 
receives a random string of bits. How does B know which key to use? 
How does B know it got the right data? 

• Low level protocol for (X)^Kab assumed to  include sufficient redundancy for 
decrypter to know if it used a valid key on a valid message – magic number, 
checksum, cryptographic hash of message contents, ASCII text, … 

• Typically, messages include a hint that helps receiver know what key to use 
(e.g., “A claims to have sent this message”) Only a hint (if it is wrong, we might 
use wrong key and fail to decode the message (could try all of my keys) à 
impacts performance/liveness but not safety) 

 
How big a key is needed? 
 
56-bit DES key isn’t big enough (was it ever?) 
(DES – data encryption standard; federal standard 1976) 
-- Michael Wiener 1993 built a search machine (CMOS chips) 
 $1M à 3.5 hours 
 $10M à 21 minutes 
 Key idea – easy to parallelize/build hardware – no per-key IO. 
Just load each chip with “start key”, “encrypted message”, “plaintext 
message” an then GO 
 
-- 2009 – assume costs halve every 2 years (conservative?)  
 $5K à 3.5 hours 
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 $50K à 21 minutes 
 
[[in fact 2006: FPGA COPACOBANA breaks DES in 9 days at $10K 
hardware cost; 2007 and 2009 improvements get this down to a day 
http://www.sciengines.com/company/news-a-events/74-des-in-1-
day.html ]] 
 
 Worse: Don’t throw the machine away after cracking one key!  
 
 2006 Cost per key (assuming 10 year operational life)  
$10000/(1 key/10 days * 365 days/year * 10 years/machine) à $27 
per key 
 
 
How big is big enough? 
 

n adding 1 bit doubles search space. 2^128 is a big search 
space 

n Brute force not feasible for decades (even assuming 
2x/year);  

§ At some point key sizes get large enough that you 
start seeing claims like “if every atom in the 
universe were a computer capable of testing a 
billion keys per second, then it would take X 
billion years…” 

n Look for flaws in algorithm to restrict search space 
(“differential cryptography” “integral cryptography”, 
“back doors”, …) 

n AES-128 and AES-256 are current “best practice” and 
believed to be quite secure 

o Performance pretty good: AES-128 is 48MB/s on my 2008 
laptop; AES-256 is 35MB/s 

 

2.5.2 Public key encryption 
public key encryption is alternative to private key – separate 
authentication from secrecy 
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2.5.2.1 Definitions and basics 
 
Each key is a pair – K-public, K-private 
 
(text)^K-public = ciphertext 
(ciphertext)^K-private) = text 
 
(text)^K-private = ciphertext’ 
 NOTE: not same ciphertext as above! 
(ciphertext)^K-public) = text 
 
and 
(ciphertet)^K-public != text 
(ciphertext’)K-private != text 
 
and can’t derive K-public from K-private or vice versa 
 
Idea – K-private kept secret; K-public put in telephone directory 
 
For example: 
 (I’m mike)^K-private 

♦ everyone can read it, but only I can send it (authentication) 
 
 (Hi)^K-public 

♦ anyone can send it but only target can read it (secrecy) 
 
((I’m mike)^K-mike-private Hi!)^K-you-public 

♦ only mike can send it, only you can read it 
♦ QUESTION: Should this message convince you that “mike 

says hi?” 
♦ E.g., public key crypto is orders of magnitude slower than 

private key crypto, so often the goal of a public key protocol 
is to do a “key exchange” to establish a shared private key.  
Suppose you receive  
((I’m mike)^K-mike-private Use Kx)^Kyou-public 
Should you believe that Kx is a good key to use for 
communicating with mike? 

♦ Problem 1: Got the secrecy and authentication backwards – 
we know Kmike-private said “I’m mike” but we don’t know 



CS 439: Systems II  Professor Mike Dahlin 

 14 

that it said anything about Kx! 
Should have been:  
((Use Kx)^Kyou-public mike you)^Kmike_private 

♦ Problem 2: freshness 
♦ Problem 3: how do you know Kmike-public?  

 
You can build the above protocol using these as well.  
But can get rid of key server 
Instead, publish a dictionary of public keys 
If A wants to talk to B 
 A->B (I’m A (use Kab)^K-privateA) ^K-publicB 
 
Problem – how do you trust dictionary of public keys? 
Trusted authentication service S 
 (Dictionary)^K-privateS 
 
Kpublic-S is distributed by hand (or pre-installed on your computer – 
internet explorer, netscape) 
 
 
Performance is much worse than private key – RSA-1024 can do 170 
sign/sec (about 5ms per sign) and 3827 verify/sec (about .3ms/verify) 
on my 2008 laptop 
 
à Often use public key crypto to set up shared, secret keys and then 
can have longer conversation using symmetric/private key encryption 
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2.6 Encrypted session 
 
In distributed system, point is not just to prove “its me” but to issue 
some series of commands. 
 
The above protocol can prove it is me. But then what? 
 
 
 
 
 
 
 
 
 
 
What’s wrong? 

2.6.1 Example protocol (simplified) 
 
I know K^private-mike and K^public-server and server knows 
K^public-mike and K^private-server 
 
 
 
 
 
 
 
 
 
 

2.6.2 Issues 
3 problems with above protocol 
(1) Initialization – how do I know K_public_server and how does 

server know K_public_mike? 
a. Walk or pre-install list of all public keys on all machines 
b. Certificate Authority can bind names to keys (pre-install 

certificate authority key on machines) 

Local terminal 
Remote login 
terminal 

 

492348 

secret 

secret 

= 
f(secret, 492348) 

 

data 

Client 
Server 

K^priv-mike 
K^pub-server 

{{data}K^privServer}K^pubMike 

{ReadFile(…)}K^priv-mike}K^pub-serv 

K^pubike 
K^priv-server 
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{BIND Mike Dahlin K_public_mike}K_private_CA 
(2) Slow – public key operations slow 

a. Authentication: Sign hash of message not message 
{mike says [longwinded msg]}K_private_mike 
= 
mike says [longwinded msg] {H(mike says [longwinded 
msg])}K_private_mike 

b. Authentication + secrecy: Use public keys to set up 
symmetric secret key (much faster) [see below] 

(3) Freshness -- Vulnerable to replay attacks 
n attacker can resend old read request (for read, limited 

effect. What about command “buy 100 shares of IBM”?) 
n attacker can send old read reply (how does client match 

requests to replies?} 
n à Include timestamps or nonces in messages, expiration 

times in certificates 
 
 
 
 
 

2.6.3 Example protocol (realistic) 
 
 
(1) Exchange certificates 
 
Client->server: {CA, K_pub-mike, mike, expires}K_priv-CA 
Server->client: {CA, K_pub-server, server, expires} K_priv-CA 

 
(2) Exchange private key 
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2.7 Private key encryption 
 
As long as key stays secret, get both secrecy and authentication 
 
 
 
 
 
 
 
 
How do you get shared secret to both sender and receiver 
 Send over network? Not secret any more 
 Encrypt it? With what? 
 

2.7.1 Authentication server (example: kerberos) 
 

server client 
(ReadAt(…))^KsC 

(Data)KsC 

Client 
Server 

K^priv-mike 
K^pub-server 

{{REPLY sessionID reqId data}K^session 

{RequestSession mike client 
server time}K^priv-mike}K^pub-
serv K^pub-server 

K^priv-server 
K^session 

{SessionStart mike client server 
time K^session}K^priv-
serv}K^pub-mike 

{{REQUESTsessionID reqId READ file …}K^session 

{{REQUEST sessionID reqId Write  file …}K^session 

… 
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We can do something similar without public/private keys and 
certificate authority; do require trusted authentication server; 
 
 
Authentication server -- server keeps list of passwords, provides a 
way for two parties, A and B, to talk to one another (as long as they 
trust server) 
 
e.g., Kerberos (and varients) widely used (Microsoft, nfs, …) 
 
Notation: 
 Kxy is key for talking between x and y 
 (….)^K means encrypt message (…) with key K 
 
Results 
Each client machine still needs to know a key for communicating with 
authentication server But no longer need to know a key for each 
service 
 
This “master key” distributed out of band (e.g., sneaker-net or at 
machine installation time) 

n master key plays same role as certificate authority did in 
public-key crypto 

n  
 
Store master key Ksa  locally at A  encrypted with A’s password 
 à only A can get Kab  from S 
[[Same for Ksb, B]] 
 
 
Example: Needham Schroeder Protocol (precursor to Kerberos) 
Step 1: A->S: A, B, N_A            // N_A is a nonce 
Step 2:  S->A: {N_A, B, K_AB, {K_AB, A}K_BS}K_AS 
Step 3: A->B: {K_AB, A}K_BS 
Step 4: B->A: {N_B}K_AB 
Step 5: A->B: {N_B – 1}K_AB 
 
Step 1: A ask server for key to talk to B 
Step 2: Server sends key to A (encrypted with K_AS) and ticket that 
B can use to get key 
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à Now A believes it has the key 
Step 3: A send the ticket to B 
à Now B believes it has the key (?) 
Step 4 – 5: A and B handshake nonces to make sure they are both 
currently talking to each other (?) 
 
Claim: At end of protocol, A knows it is talking to B and vice versa 
 
 
Q: What’s the problem with this? 
A: Message 3 is not protected by nonces à no way for B to conclude 
that the K_AB it receives is the current key 
à Example attack: I am a disgruntled employee. Before I get fired, I 
run the first few steps of the protocol a bunch of times, gathering up a 
bunch of tickets {K_AB, A}K_BS for all of the servers B in our 
system (mail server, file server, database, …). à After I get fired, I 
can continue to log into all of the company’s servers 
 
 
Whoops. 
 
Needham and Schroeder are really smart. They were quite 
experienced and careful system builders. They had lots of smart 
colleages. This protocol got published and lots of attention from 
experts. Several years later, the flaw was discovered. 
 
[[We started security with “be afraid”; we end the same way…]] 
 
Conclude: Arm waving by whiteboard is not enough for 
authentication protocols 
 
Right answer: Formal analysis 

n Needham and Schroder were not happy that they could 
have missed a bug. à Burrows Abadi Needham (BAN) 
logic provides better, formal way to reason about these 
protocols. 

n Improvements since then by others with new logics 
n No time to teach BAN logic or successor formal analysis 

tools today (but not too hard – if I had a full day I 
would…) 
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n Basic intuition: 
§ {msg}K_x à I believe X said msg 
§ {msg nonce}K_x à I believe x believes msg 
§ x has authority over msg + above à I believe x 
§ [[step through belief progression in protocol] 

 
Additional answer: Informal analysis, prudent engineering 
Hint for reading crypto protocols 
(1) Ignore the “X à Y” part – a hint only; but you are assuming that 

adversary can forge headers, intercept communication, etc, so the 
meaning of a message can only depend on the contents not on who 
(claims to have) sent it 

(2) Interpret “{X}^Ky” as “y (the holder of key Ky) once said X” 
(then you need to decide if the message is fresh (y recently said X) 
and whether you believe X (y has authority over X) 

 
See Burrows, Abadi, Needham “A logic of authentication”  
http://www.cs.utexas.edu/users/dahlin/Classes/GradOS/papers/p18
-burrows.pdf 

(3) Always include everything needed to interpret message in 
message (don’t rely on “previous messages” in protocol b/c 
adversary might reorder them and/or use messages from previous 
round of protocol (e.g., above – suppose we get rid of “A” and “B” 
in ticket) 

 
 
 
 
Example: Kerberos (simplified) 
A asks server for key 
 Step 1: A à S: A B time  // Hi! I’d like key for AB 
 
Server gives back special “session” key encrypted in B’s key: 
 // S says to A “use Kab for communication between  

// A and B {A B Kab}^Ksb” 
 Step 2: S à A: {A B time Kab {A B time Kab}^Ksb}^Ksa  
 
A gives B the ticket 
 // S says to B “use Kab for communication between 
      // A and B” 
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 Step 3: A à B: {A B time Kab}^Ksb  
 
 
 
Details 
1)  Add in timestamp to limit how long a key will be used 
(to prevent a machine from replaying messages later) 
 
2)  want to minimize # of times password must be typed in, and 

minimize amount of time password stored on machine à  initially 
ask server for temp password, using real passwd for authentication 

 
AàS (give me temp secret) 
SàA (A use Ktemp-sa for next 8 hours)^Ksa 
 
Can now use Ktemp-sa in place of Ka above 

3. Authorization 
authorization – who can do what? 
 
Access control matrix: formalization of all permissions in the system 
 
 file1 file2 file3 … 
userA rw r -- 
userB -- rw -- 
userC rw rw rw 
 
potentially huge # users, objects à impractical to store all of these 
 
2 approaches 
1)  access control lists – store all permissions for all users with each 

object 
 still – might be lots of users! Unix approach - have each file 
store r, w, x for owner, group, world. More recent systems provide 
way of specifying groups of users and permissions for each group 
 
2)  capability list – each process stores all objects the process has 

permission to touch 
Lots of capability systems built in the past – idea out of favor 
today 
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Example – page tables – each process has list of pages it has 
access to (not each page has list of processes that are peritted to 
access it) 
 

4. Enforcement 
enforcer checks psswords, access control lists, etc 
 
Any bug in enforcer means: way for malicious user to gain ability to 
do anything! 
 
In UNIX, superuser has all powers of the kernel - can do anything. 
Because of coarse-grained access control, lots of stuff has to run as 
superuser in order to work. If a bug in any of thse programs, you’re 
hosed! 
 
Paradox: 
a)  make enforcer as small as possible 

  easier to make correct, but simple-minded protection model 
b)  fancy protection – only minimal privilege needed 

  hard to get right 
… 
 
 

*********************************   
Admin - 3 min 
*********************************   

•  
 

*********************************   
Lecture - 25 min 
********************************* 

5. State of the world in security 
ugly 
 
Authentication – encryption 
 but almost nobody encrypts 
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Authorization – access control 
 but many systems provide only coarse-grained access contrl 
(e.g. UNIX file – need to turn off protection to enable sharing) 
 
Enforcement – kernel mode 
 hard to write a million line program without bugs, and any bug 
is a potential security loophole 
 

6. Classes of security problems 

6.1 abuse of privilege 
if superuser is evil, we’re all in trouble 
 
no hope 
 

6.2 imposter 
break into system by pretending to be someone else 
 
example – if have open X windows connection over the network, can 
send message appearing to be keystrokes from window, but really is 
commands to allow imposter access 
 

6.3 trojan horse 
one army gives another a present of a wooden horse, army hidden 
inside 
  
trojan horse appears to be helpful, but really does something harmful 
 
e.g. “click here to download this plugin” 
 

6.4 Salami attack 
superman 3 (terrible movie) but happened in real life 
 
idea was to build up hunk one bit at a time – what do you do with 
partial pennies of interest? 
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Bank keeps it! This guy re-programmed it so that partial pennies 
would go into his account. Doesn’t seem like much, but if you are 
Bank of America, add up pretty quickly. 
 
This is part of why people are so worried about credit cards on 
internet. Today – steal credit card, charge $1000 – credit card 
company, merchant, owner notice 
Tomorrow – steal 1000000 credit cards, charge $1; no one notices 
 
 

6.5 Eavesdropping 
 
listener – tap into serial line on back of terminal, or onto ethernet. See 
everything typed in; almost everything goes over network 
unencrypted. For example, rlogin to remote machine à your 
password goes over the network unencrypted! 
 
… 

7. Examples 

7.1 Tenex – early ‘70s BBN 
Most popular systems at universitives before Unix 
 
Thought to be v. secure. To demonstrate it, created a team to try to 
find loopholes. Give them all source code and documentation (want 
code to be publicly available as in Unix). Give them a normal account 
 
in 48 hours, had every password in the system 
 
Here’s the code for the password check in the kernel: 
 
for(I = 0; I < 8; I++){ 
 if(userPasswd[I] != realPasswd[I] 
 go to error 
 
Looks innocuous – have to try all combinations – 256^8 
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But! Tenex also had virtual memory and it interacts badly with above 
code 
 
Key idea – force page fault at carefully designed times to reveal 
password 
 
Arrange first character in string to be last character in page, rest on 
next page. Arrange that the page with first character in memor, and 
rest on disk 
 a|aaaaaa 
 
Time how long password check takes 
 if fast – first character is wrong 
 if slow – first character is right; page fault; one of others was 
wrong 
 
so try all first characters until one is slow 
Then put first two characters in memory, rest on disk 
try all second characters until one is slow 
… 
 
 à takes 256 * 8 to crack password 
 
Fix is easy – don’t stop until you look at all characters 
But how do you figure that out inadvance? 
 
 
Timing bugs are REALLY hard to avoid!! 
 
 

7.2 internet worm 
 
1990 - broke into thousands of computers over internet 
 
Three attacks 
1.  dictionary lookup 
2.  sendmail 
--debug mode – if configured wrong, can let anyone log in 
3.  fingerd 
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 -- finger dahlin@cs 
 
Fingerd didn’t check for length of string, but only alocated a fixed 
size array for it on the stack. By passing a (carefully crafted) really 
long string, could overwrite stack, get the program to call arbitrary 
code! 
 
Go caught b/c idea was to launch attacks on other systems from 
whatever systems were broken into; so ended up breaking into sae 
machine multiple times, dragging down CPU so much that peopl 
noticed 
 
variant of problem – kernel checks system call parameters to prevent 
anyone from corrupting it by passing bad arguments 
 
so kernel code looks like: 
 check parameters 
 if OK 
  use arguments 
 
But, what if application is multithreaded? Can change contents of 
arguments after check but before use! 
 
 

7.3 Mitnick 
Two attacks: 
1)  misdirection: identify system mgrs machines, then loop, requesting 

TCP connections to those machies until no more connections are 
permitted à freeze machine 

 
2)  Imposter: forge packets to appear as if legit (e.g. replace source 

machine in packet header) but really from Mitnick 
 
 hijack open, idle rlogin connection. E.g. send packets as if user 
typed command to add mitnick to .rhosts file 
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7.4 Netscape follies 
1995-6 
 
Netscape wants to provide secure communication so you can send 
credi card number over internet 
 
3 problems 
1)  algorithm for picking session keys was predictable (used time of 

day). Brute force allows someone to break key in a few hours 
 
2)  netscape makes new version to fix #1; make available over internet 

(unencrypted). Modify netscape executable w/ 4-byte patch to 
make it always use specific key – so can insergt backdoor by 
mangling packets containiing executable as they fly by on internet 

 
In fact,  because of demand, had dozen mirror sites (including 
Berkeley, ..) to redistribute new version. So anyone with root access 
to any machine at Berkeley CS could insert backdoor to netscape 
 
3)  buggy helper applications 
As with fingerd attack – any bug in either netscape or in helper 
application (ghostview, mplay, …) can potentially be exploited by 
creating a web page that when viewd will insert a trojan horse 
 
 e.g. postscript is a full-featured language, including commands 
to write to disk!! So send a postscript file that says “write(dahlin, 
rhosts) 
 

7.5 Timing, environment 
Computer designers design to make sure that software interfaces are 
secure. But software runs on hardware in the real world… 
 

(a) smart card power supply analysis 
(b) Tempest – your monitor (and keyboard) is also a radio 

transmitter – relatively easy to build a device that can 
receive radio broadcast and display what your monitor is 
displaying from several feet away 
(High end attack: irradiate the subject machine at resonance 
frequency of keyboard cable à pick up keystrokes from 50-
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100yards. Some speculate this is why the USSR constantly 
beamed radar at the US embassy in Moscow for a while… ) 

(c) Traffic analysis – e.g., you encrypt your web traffic over 
network so know one knows what you are browsing. But 
they see 14321 bytes, pause, 29140 bytes, pause, 2341 
bytes, pause… Pretty quickly they can match what pages 
you are viewing to a suspect website with high confidence 

(d) … 
 
 

7.6 Thompson’s self-replicating program 
 
bury trojan horse in binaries, so no evidence in the source 
 
replicates itself to every UNIX system in the world and even to new 
Unix on new platforms. Almost invisible 
 
gave Ken thompson the ability to log into any Unix system I the world 
 
2 parts 
1)  make it possible (easy) 
2)  hide it (tricky) 
 
step 1: modify login.c 
 
A:  
 if (name == “ken”) 
  don’t check password 
  log in as root 
 
ida is: hide change so no one can see it 
 
step 2: modify C compiler 
 
instead of having code in login, put it in compiler: 
 B: 
 if see trigger, 
  insert A into input stream 
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Whenever the compiler sees a trigger /* gobbleygook */, 
puts A into input stream of the compiler 
 
Now, don’t need A in login.c, just need the trigger 
 
Need to get rid of problem in the compiler 
 
step 3: modify compiler to have 
 
 C:  
 if see trigger2 
  insert B + C into input stream 
 
this is where self-replicating code comes in! Question for reader: can 
you write a C program that has no inputs, and outputs itself? 
 
 
step 4: compile compiler with C present 

♦ now in binary for compiler 
 
 
step 5: replace code with trigger2 
 
Result is – al this stuff is only in binary for compiler. 
Inside the binary there is C; inside that code for B, inside that code for 
A. But source only needs trigger2 
 
Every time you recompile login.c, compiler inserts backdoor. 
Every time you recompile compiler, compiler re-inserts backdoor 
 
What happens when you port to a new machine? Need a compiler to 
generate new code; where does compiler run?  
 
On old machine – C compiler is written in C! So every time you go to 
a new machine, you infect the new compiler with the old one. 
 

8. Lessons 
1.  Hard to resecure after penetration 
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What do you need to do to remove the backdoor?  
Remove all the triggers?  
What if he left another trigger in the editor—if you ever see anyone 
removing the trigger, go back ad re-insert it! 
 
 
Re-write entire OS in assembler? Maybe the assembler is corupted! 
 
Toggle in everything from scrtch every time you log in? 
 
 
2.  Hard to detect when system has been penetrated. Easy to make 

system forget 
 
 
3.  Any system with bugs has loopholes (and every system has bugs) 
 
Summary: can’t stop loopholes; can’t tell if it has happened; can’t get 
rid of it. 
 
 
 
*********************************   

Summary - 1 min 
*********************************    
 

9. Major Topics 
1) Memory management & address spaces ; virtual memory/paging to disk 

 
Excellent example of “any problem can be solved with a level of indirection” --  virtual 
memory system allows you to interpose on each memory reference – translation, 
protection, relocation, paging, automatically growing stack, … 
 
A bunch of data structures  with funny names (base&bounds, paging, segmentation, 
combined, TLBs) but beyond the jargon – a few basic concepts, simple data structures (hash, 
tree, array, …) 
 
Cache replacement – power tool: identify ideal algorithm – even if not realizable in practice – (1) 
improve understanding/help design good algorithms, (2) basis for evaluation 
 

2) Threads:  state, creation, dispatching; synchronization 
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Basic mechanism: per thread state v. shared state 
Basic attitude: assume nothing about scheduler; have to design programs that are safe no 
matter what the scheduler does 
 
Power tool: monitors (locks and condition variables) provide a “cookbook” approach for 
writing safe multithreaded programs. Don’t cut corners 
 
Open question: liveness – deadlocks, etc. Global structure of program (as opposed to 
modular safety) 
 
 
Scheduling: shortest job first, round robin – specific policies not so important. Gain insight on 
trade-offs so you can develop your own.  
Power tools: (1) Know your goals, (2) Analyze optimal case 
 

3) File systems:  
disk seeks, file headers, directories, transactions 

 
Finding data on disk – again lots of jargon, but it comes down to arrays and trees and 
hash tables…  
2 step process 
name->ID/header 
header->blocks of file 
 
Reliability: transactions, undo/redo log 
Power tool: Transactions are definitely a power tool! 
 

4) Networks, distributed systems 
RPC: It’s simple… 
Issues 
Reliability: Lost messages, partitions, crashed machines 
à  retry, 2-phase commit (distributed transaction) 
Power tool: 2-phase commit 
 
Performance: Caching, replication 
Consistency/coherence across replicas – callbacks, polling, leases 
 
 

5) Security:  
attitude – robustness, big picture 

     access control, authentication, pitfalls 
 
 



CS 439: Systems II  Professor Mike Dahlin 

 32 

10.  OS as Illusionist 
Physical Reality Abstraction 
single CPU infinite # of CPUs (multiprogramming) 
interrupts cooperating sequential threads 
limited memory unlimited virtual memory 
no protection each address space has its own machine 
unreliable, fixed-size messages reliable, arbitrary messages and network 

services 
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11. Problem Areas 
1) Performance 

• abstractions like threads, RPC are not free 

• caching doesn’t work when there is little locality 

• predicting the future to do good resource mgmt 
 

2) Failures 
How do we build systems that continue to work when parts of the system break? 
 

3) Security 
Basic tradeoff between making computer system easy to use v. hard to misuse 
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