
CS 439: Systems II Professor Mike Dahlin

 1

Lecture sec2: Authentication

Review -- 1 min

Security mindset

n engineer v. security engineer
o violate assumptions
o Ken Thompson rootkit (machine is trustworthy)
o Tenex passwords (interactions between subsystems; analog

world side channels)
o ATM bank->gas station (physical security)

n Why do computer systems fail?
n Broad principles

o Robustness (Anderson)
o Saltzer & Schroeder

Outline - 1 min

Authentication Basics

• principles: authentication, authorization, enforcement
• local authentication (passwords, etc.)
• distributed authentication (crypto)
• pitfalls: really hard to get right
•

Lecture - 1 min

1. Authentication

3 key components of security
Authentication – identify principal performing an action
Authorization – figure out who is allowed to do what

CS 439: Systems II Professor Mike Dahlin

 2

Enforcement – only allow authorized principals to perform specific
actions

Principal – an entity associated with a security identifier; an entity
authorized to perform certain actions

Authentication – an entity proves to a computer that it is particular
principal

Basic idea – computer believes principle knows secret
 entity proves it knows secret
à computer believes entity is principal

1.1 Local authentication -- Passwords
common approach – passwords

advantage: convenient
disadvantage: not too secure

“Humans are incapable of securely storing high-quality cryptographic
keys, and they have unacceptable speed and accuracy when
performing cryptographic operations. (They are also large, expensive
to maintain, difficult to manage, and they pollute the environment. It
is astonishing that these devices continue to be manufactured and
deployed. But they are sufficiently pervasive that we must design our
protocols around their limitations.)” – Kaufman, Perlman, and
Speciner “Private communication in a public world” 1995

fundamental problem – Passwords are easy to guess

passwords must be long and obscure

paradox: short passwords are easy to crack;
 long ones, people write down

technology à need longer passwords

Orig unix – 5 letter, lowercase password

CS 439: Systems II Professor Mike Dahlin

 3

 how long to crack (exhaustive search) 26^5 = 10M
1975 – 10ms to check password à 1 day
1992 – 0.001 ms to check password à 10 seconds
2011 -- ??

Many people choose even simpler passwords
e.g. english words – Shakespeare’s vocabulary 30K words
e.g. all english words, fictional characters, place names, person
names, astronomy names, english words backwards, replace i with 1/e
with 3, …

Implementation techniques to improve security

(1) Enforce password quality

e.g., >= 8 letters with mix of upper/lower case, number, special
character
70^8 à 5x10^14 (10^7 times better than 6 lower case (?))

On-line check at password creation time (e.g., Require “at least X
characters, mix of upper/lower case, include at least one number,
include at least one punctuation, no substring in dictionary, …”)

[Can do on-line check to get rid of really bad passwords. But if
attacker is willing to spend 1 week cracking a password, do you want
to wait a week before accepting a user password…]

Off-line checking …

BUT
except: people still pick common patterns (e.g. 7 lower case letters + 1
punctuation + 1 number)

CS 439: Systems II Professor Mike Dahlin

 4

(2) Don’t store passwords

system must keep copy of secret to check against password. What if
attacker gets access to this list of passwords? (design for robustness,
right?)

Encryption: transformation that is difficult to reverse without the right
key

solution: system stores only encrypted version, so OK even if
someone reads the file!
When you type password, system encrypts it; compares encrypted
versions

System believes principal knows secret
à Store <principal> {Password}K

Entity proves it knows secret
à Input password. System generates {Password}K and compare
against stored value. If they match, input must have been password.

example: UNIX /etc/passwd file
 passwd à one-way transform à encrypted password

(3) Slow down guessing -- Interface

Passwords vulnerable to exhaustive search

Slow down rate of search
e.g.,

n Add pause after incorrect attempt
n Lock out account (or add really long delay) after k

incorrect attempts

o Slow down guessing – Internals

Salt password file:

CS 439: Systems II Professor Mike Dahlin

 5

extend everyone’s password with a unique number (stored in
password file) so can’t crack multiple passwords at a time (otherwise,
takes 10sec to crack every account in the system; now have to do 1 at
a time)

e.g., store <userID> <salt> <{password + salt}K>

(5) Think carefully about password reset protocol

(6) Implementation details matter…
-- e.g., tenex

1.2 Limits of passwords
These techniques help, and you should use them, but passwords
remain vulnerable

n people still manage to pick poor ones (though seems to be getting

better (anecdotal evidence; I don’t have strong data)
n people re-use passwords across sites
n (some/enough) people give away passwords to “anyone” who asks

o social engineering
o phishing

1.3 2-factor authentication
Passwords limited by human capabilities

2 factor authentication:
Identify human by at least 2 of
(1) Something you know (secret e.g., password)
(2) Something you have (smart card, authentication token)
(3) Something you are (biometrics – fingerprint, iris scan, picture,

voice, …)

Current state of the art – if you care about access control, you do
something like this

n e.g., password + key fob

CS 439: Systems II Professor Mike Dahlin

 6

login: <username>
password: <password>
secureID: <number>
>

(Internally, key fob has a cryptographic key – think of it as a really
long password + a clock; every k seconds compute f(key, time) à
if you supply the right number for the current 30-second interval
(+/- 30 seconds) then you must have the key fob)

Current state of art for authentication – 2 factor authentication

Key idea: Stealing key fob OR guessing password not enough

[Details:

Human knows password. Computer stores {password, salt}K1
Timer card and computer share secret key K2 and both have accurate
clock and so know current time (30-second window). Card has a
display window and displays {time}K2

User enters <userID> <password> <{time}K2>

CS 439: Systems II Professor Mike Dahlin

 7

Computer checks <password salt>K1
Computer checks <{time}K2>
]

Other examples;

n password + ssh login key (I know my password; I have my laptop

that has my ssh key on it…)
n smart card + pin to activate it
n password + text message sent to my phone
n password + cookie on my browser (old computer v. new computer

login paths…)

Admin

2. Authorization in distributed systems
Today, many/most services we rely on are supplied by remote
machines (DNS, http, NFS, mail, ssh, …)

2.1 How not to do distributed authentication I

Consider authentication in distributed file system

File server

client

adversary ReadAt(file,off
set, length,
userID,
clientID)

CS 439: Systems II Professor Mike Dahlin

 8

Adversary model
Typical assumption – we don’t physically control the network so adversary
can (a) see my packets, (b) change my packets, (c) insert new packets, (d)
prevent my packets from being delivered

In some environments, this is a pretty good model of the adversary (I walk
into a coffee shop that provides free wi-fi – their wifi router has nearly
complete control over my network.) In other environments, we hope the
adversary would have to work hard to get this much control (e.g., someone
sitting next to me in a coffee shop might have to download some scripts to
watch all of my network traffic and might even have to write some code to
stomp on my wireless packets and replace them with their own if they want
to modify my connection; e.g., department network – they might have to buy
a ladder, a screwdriver, some cat-5 cable tools, and a $100 programmable
router box)

Problems with the above protocol? Does it look familiar?

2.2 How not to do distributed authentication II

Consider remote login

Dept machine

client

adversary User: userID
Password: password
> ls
> emacs foo.txt

CS 439: Systems II Professor Mike Dahlin

 9

Problems? Does it look familiar?

2.3 Solution: encryption
Two roles for encryption:
a) Authentication (+tamper resistance)

Show that request was sent by someone that knows the secret w/o
sending secret across the network

b) secrecy – I don’t want anyone to know this data (e.g. medical
records, etc.)

2.4 Network login
example: telnet login
 sends password across the network!

solution: challenge/response

Compute function on secret and challenge

Common function: Cryptographic hash AKA 1-way hash
(e.g., SHA-256)

Cryptographic hash easiest to understand under random oracle model

Local
terminal

Remote login
terminal

password

badguy

Local terminal
Remote login
terminal

f(secret, 492348)

badguy

492348

secret

secret

=
f(secret, 492348)

CS 439: Systems II Professor Mike Dahlin

 10

Random oracle cryptographic hash

n given any input, produce a truly random bit pattern of
target length as output

n same input produces same output

properties h = H(x)
• Produce a fixed length array of bits h from variable-length input x
• given h and H, difficult to generate an x ;
• given x, H, and h, difficult to generate x’ s.t. h’ = H(x’) == h;
• changing 1 bit of input “randomly” changes each bit of output
• à for above example, Can’t learn secret from seeing network

traffic; cannot predict correct response to a future challenge based
on responses to past challenges

Example functions: MD5 (insecure), SHA-1 (borderline), SHA-256
(pretty good; current best practice)

NOTE: cheap to compute – 150MB/s SHA-1 on my 2GHz laptop

(spring 2009)

Secret:
Typically, local terminal uses password to get secret
• Could use Unix approach – secret = encrypt 0 with password

o Problem: dictionary attack via network
• Secret can be random string of 256 bits (much more random than

password); encrypt secret with password and store on local
terminal

Good news: Adversary doesn’t learn my password
Bad news: Adversary can eavesdrop on my session
Bad news: Adversary can hijack my session (start sending what
appear to be TCP packets from my session) and read or write any of
my files!

Note: Above challenge/response protocol is simpler than typically
used for login – generally have a stronger goal – login and establish
encrypted connection

n not only do I need to send a token that proves I know a
secret, I want to establish the ability to actually send new
information (commands, data) to server

CS 439: Systems II Professor Mike Dahlin

 11

2.5 Encryption primitives
Cryptographic hash – see above
Secret key (symmetric) encryption
Public key (asymmetric) encryption

2.5.1 Private key encryption
encryption – transform on data that can easily be reversed given the
correct key (and hard to reverse w/o key)

private key – key is secret (aka symmetric key)

(plaintext)^K à cipher text
(cipher text)^K à plaintext

from cipher text, can’t decode w/o key
from plaintext, cipher text, can’t derive key

Note, if A and B both know Kab, and A sends (X)^Kab, B just
receives a random string of bits. How does B know which key to use?
How does B know it got the right data?

• Low level protocol for (X)^Kab assumed to include sufficient redundancy for
decrypter to know if it used a valid key on a valid message – magic number,
checksum, cryptographic hash of message contents, ASCII text, …

• Typically, messages include a hint that helps receiver know what key to use
(e.g., “A claims to have sent this message”) Only a hint (if it is wrong, we might
use wrong key and fail to decode the message (could try all of my keys) à
impacts performance/liveness but not safety)

How big a key is needed?

56-bit DES key isn’t big enough (was it ever?)
(DES – data encryption standard; federal standard 1976)
-- Michael Wiener 1993 built a search machine (CMOS chips)
 $1M à 3.5 hours
 $10M à 21 minutes
 Key idea – easy to parallelize/build hardware – no per-key IO.
Just load each chip with “start key”, “encrypted message”, “plaintext
message” an then GO

-- 2009 – assume costs halve every 2 years (conservative?)
 $5K à 3.5 hours

CS 439: Systems II Professor Mike Dahlin

 12

 $50K à 21 minutes

[[in fact 2006: FPGA COPACOBANA breaks DES in 9 days at $10K
hardware cost; 2007 and 2009 improvements get this down to a day
http://www.sciengines.com/company/news-a-events/74-des-in-1-
day.html]]

 Worse: Don’t throw the machine away after cracking one key!

 2006 Cost per key (assuming 10 year operational life)
$10000/(1 key/10 days * 365 days/year * 10 years/machine) à $27
per key

How big is big enough?

n adding 1 bit doubles search space. 2^128 is a big search
space

n Brute force not feasible for decades (even assuming
2x/year);

§ At some point key sizes get large enough that you
start seeing claims like “if every atom in the
universe were a computer capable of testing a
billion keys per second, then it would take X
billion years…”

n Look for flaws in algorithm to restrict search space
(“differential cryptography” “integral cryptography”,
“back doors”, …)

n AES-128 and AES-256 are current “best practice” and
believed to be quite secure

o Performance pretty good: AES-128 is 48MB/s on my 2008
laptop; AES-256 is 35MB/s

2.5.2 Public key encryption
public key encryption is alternative to private key – separate
authentication from secrecy

CS 439: Systems II Professor Mike Dahlin

 13

2.5.2.1 Definitions and basics

Each key is a pair – K-public, K-private

(text)^K-public = ciphertext
(ciphertext)^K-private) = text

(text)^K-private = ciphertext’
 NOTE: not same ciphertext as above!
(ciphertext)^K-public) = text

and
(ciphertet)^K-public != text
(ciphertext’)K-private != text

and can’t derive K-public from K-private or vice versa

Idea – K-private kept secret; K-public put in telephone directory

For example:
 (I’m mike)^K-private

♦ everyone can read it, but only I can send it (authentication)

 (Hi)^K-public

♦ anyone can send it but only target can read it (secrecy)

((I’m mike)^K-mike-private Hi!)^K-you-public

♦ only mike can send it, only you can read it
♦ QUESTION: Should this message convince you that “mike

says hi?”
♦ E.g., public key crypto is orders of magnitude slower than

private key crypto, so often the goal of a public key protocol
is to do a “key exchange” to establish a shared private key.
Suppose you receive
((I’m mike)^K-mike-private Use Kx)^Kyou-public
Should you believe that Kx is a good key to use for
communicating with mike?

♦ Problem 1: Got the secrecy and authentication backwards –
we know Kmike-private said “I’m mike” but we don’t know

CS 439: Systems II Professor Mike Dahlin

 14

that it said anything about Kx!
Should have been:
((Use Kx)^Kyou-public mike you)^Kmike_private

♦ Problem 2: freshness
♦ Problem 3: how do you know Kmike-public?

You can build the above protocol using these as well.
But can get rid of key server
Instead, publish a dictionary of public keys
If A wants to talk to B
 A->B (I’m A (use Kab)^K-privateA) ^K-publicB

Problem – how do you trust dictionary of public keys?
Trusted authentication service S
 (Dictionary)^K-privateS

Kpublic-S is distributed by hand (or pre-installed on your computer –
internet explorer, netscape)

Performance is much worse than private key – RSA-1024 can do 170
sign/sec (about 5ms per sign) and 3827 verify/sec (about .3ms/verify)
on my 2008 laptop

à Often use public key crypto to set up shared, secret keys and then
can have longer conversation using symmetric/private key encryption

CS 439: Systems II Professor Mike Dahlin

 15

2.6 Encrypted session

In distributed system, point is not just to prove “its me” but to issue
some series of commands.

The above protocol can prove it is me. But then what?

What’s wrong?

2.6.1 Example protocol (simplified)

I know K^private-mike and K^public-server and server knows
K^public-mike and K^private-server

2.6.2 Issues
3 problems with above protocol
(1) Initialization – how do I know K_public_server and how does

server know K_public_mike?
a. Walk or pre-install list of all public keys on all machines
b. Certificate Authority can bind names to keys (pre-install

certificate authority key on machines)

Local terminal
Remote login
terminal

492348

secret

secret

=
f(secret, 492348)

data

Client
Server

K^priv-mike
K^pub-server

{{data}K^privServer}K^pubMike

{ReadFile(…)}K^priv-mike}K^pub-serv

K^pubike
K^priv-server

CS 439: Systems II Professor Mike Dahlin

 16

{BIND Mike Dahlin K_public_mike}K_private_CA
(2) Slow – public key operations slow

a. Authentication: Sign hash of message not message
{mike says [longwinded msg]}K_private_mike
=
mike says [longwinded msg] {H(mike says [longwinded
msg])}K_private_mike

b. Authentication + secrecy: Use public keys to set up
symmetric secret key (much faster) [see below]

(3) Freshness -- Vulnerable to replay attacks
n attacker can resend old read request (for read, limited

effect. What about command “buy 100 shares of IBM”?)
n attacker can send old read reply (how does client match

requests to replies?}
n à Include timestamps or nonces in messages, expiration

times in certificates

2.6.3 Example protocol (realistic)

(1) Exchange certificates

Client->server: {CA, K_pub-mike, mike, expires}K_priv-CA
Server->client: {CA, K_pub-server, server, expires} K_priv-CA

(2) Exchange private key

CS 439: Systems II Professor Mike Dahlin

 17

2.7 Private key encryption

As long as key stays secret, get both secrecy and authentication

How do you get shared secret to both sender and receiver
 Send over network? Not secret any more
 Encrypt it? With what?

2.7.1 Authentication server (example: kerberos)

server client
(ReadAt(…))^KsC

(Data)KsC

Client
Server

K^priv-mike
K^pub-server

{{REPLY sessionID reqId data}K^session

{RequestSession mike client
server time}K^priv-mike}K^pub-
serv K^pub-server

K^priv-server
K^session

{SessionStart mike client server
time K^session}K^priv-
serv}K^pub-mike

{{REQUESTsessionID reqId READ file …}K^session

{{REQUEST sessionID reqId Write file …}K^session

…

CS 439: Systems II Professor Mike Dahlin

 18

We can do something similar without public/private keys and
certificate authority; do require trusted authentication server;

Authentication server -- server keeps list of passwords, provides a
way for two parties, A and B, to talk to one another (as long as they
trust server)

e.g., Kerberos (and varients) widely used (Microsoft, nfs, …)

Notation:
 Kxy is key for talking between x and y
 (….)^K means encrypt message (…) with key K

Results
Each client machine still needs to know a key for communicating with
authentication server But no longer need to know a key for each
service

This “master key” distributed out of band (e.g., sneaker-net or at
machine installation time)

n master key plays same role as certificate authority did in
public-key crypto

n

Store master key Ksa locally at A encrypted with A’s password
 à only A can get Kab from S
[[Same for Ksb, B]]

Example: Needham Schroeder Protocol (precursor to Kerberos)
Step 1: A->S: A, B, N_A // N_A is a nonce
Step 2: S->A: {N_A, B, K_AB, {K_AB, A}K_BS}K_AS
Step 3: A->B: {K_AB, A}K_BS
Step 4: B->A: {N_B}K_AB
Step 5: A->B: {N_B – 1}K_AB

Step 1: A ask server for key to talk to B
Step 2: Server sends key to A (encrypted with K_AS) and ticket that
B can use to get key

CS 439: Systems II Professor Mike Dahlin

 19

à Now A believes it has the key
Step 3: A send the ticket to B
à Now B believes it has the key (?)
Step 4 – 5: A and B handshake nonces to make sure they are both
currently talking to each other (?)

Claim: At end of protocol, A knows it is talking to B and vice versa

Q: What’s the problem with this?
A: Message 3 is not protected by nonces à no way for B to conclude
that the K_AB it receives is the current key
à Example attack: I am a disgruntled employee. Before I get fired, I
run the first few steps of the protocol a bunch of times, gathering up a
bunch of tickets {K_AB, A}K_BS for all of the servers B in our
system (mail server, file server, database, …). à After I get fired, I
can continue to log into all of the company’s servers

Whoops.

Needham and Schroeder are really smart. They were quite
experienced and careful system builders. They had lots of smart
colleages. This protocol got published and lots of attention from
experts. Several years later, the flaw was discovered.

[[We started security with “be afraid”; we end the same way…]]

Conclude: Arm waving by whiteboard is not enough for
authentication protocols

Right answer: Formal analysis

n Needham and Schroder were not happy that they could
have missed a bug. à Burrows Abadi Needham (BAN)
logic provides better, formal way to reason about these
protocols.

n Improvements since then by others with new logics
n No time to teach BAN logic or successor formal analysis

tools today (but not too hard – if I had a full day I
would…)

CS 439: Systems II Professor Mike Dahlin

 20

n Basic intuition:
§ {msg}K_x à I believe X said msg
§ {msg nonce}K_x à I believe x believes msg
§ x has authority over msg + above à I believe x
§ [[step through belief progression in protocol]

Additional answer: Informal analysis, prudent engineering
Hint for reading crypto protocols
(1) Ignore the “X à Y” part – a hint only; but you are assuming that

adversary can forge headers, intercept communication, etc, so the
meaning of a message can only depend on the contents not on who
(claims to have) sent it

(2) Interpret “{X}^Ky” as “y (the holder of key Ky) once said X”
(then you need to decide if the message is fresh (y recently said X)
and whether you believe X (y has authority over X)

See Burrows, Abadi, Needham “A logic of authentication”
http://www.cs.utexas.edu/users/dahlin/Classes/GradOS/papers/p18
-burrows.pdf

(3) Always include everything needed to interpret message in
message (don’t rely on “previous messages” in protocol b/c
adversary might reorder them and/or use messages from previous
round of protocol (e.g., above – suppose we get rid of “A” and “B”
in ticket)

Example: Kerberos (simplified)
A asks server for key
 Step 1: A à S: A B time // Hi! I’d like key for AB

Server gives back special “session” key encrypted in B’s key:
 // S says to A “use Kab for communication between

// A and B {A B Kab}^Ksb”
 Step 2: S à A: {A B time Kab {A B time Kab}^Ksb}^Ksa

A gives B the ticket
 // S says to B “use Kab for communication between
 // A and B”

CS 439: Systems II Professor Mike Dahlin

 21

 Step 3: A à B: {A B time Kab}^Ksb

Details
1) Add in timestamp to limit how long a key will be used
(to prevent a machine from replaying messages later)

2) want to minimize # of times password must be typed in, and

minimize amount of time password stored on machine à initially
ask server for temp password, using real passwd for authentication

AàS (give me temp secret)
SàA (A use Ktemp-sa for next 8 hours)^Ksa

Can now use Ktemp-sa in place of Ka above

3. Authorization
authorization – who can do what?

Access control matrix: formalization of all permissions in the system

 file1 file2 file3 …
userA rw r --
userB -- rw --
userC rw rw rw

potentially huge # users, objects à impractical to store all of these

2 approaches
1) access control lists – store all permissions for all users with each

object
 still – might be lots of users! Unix approach - have each file
store r, w, x for owner, group, world. More recent systems provide
way of specifying groups of users and permissions for each group

2) capability list – each process stores all objects the process has

permission to touch
Lots of capability systems built in the past – idea out of favor
today

CS 439: Systems II Professor Mike Dahlin

 22

Example – page tables – each process has list of pages it has
access to (not each page has list of processes that are peritted to
access it)

4. Enforcement
enforcer checks psswords, access control lists, etc

Any bug in enforcer means: way for malicious user to gain ability to
do anything!

In UNIX, superuser has all powers of the kernel - can do anything.
Because of coarse-grained access control, lots of stuff has to run as
superuser in order to work. If a bug in any of thse programs, you’re
hosed!

Paradox:
a) make enforcer as small as possible

 easier to make correct, but simple-minded protection model
b) fancy protection – only minimal privilege needed

 hard to get right
…

Admin - 3 min

•

Lecture - 25 min

5. State of the world in security
ugly

Authentication – encryption
 but almost nobody encrypts

CS 439: Systems II Professor Mike Dahlin

 23

Authorization – access control
 but many systems provide only coarse-grained access contrl
(e.g. UNIX file – need to turn off protection to enable sharing)

Enforcement – kernel mode
 hard to write a million line program without bugs, and any bug
is a potential security loophole

6. Classes of security problems

6.1 abuse of privilege
if superuser is evil, we’re all in trouble

no hope

6.2 imposter
break into system by pretending to be someone else

example – if have open X windows connection over the network, can
send message appearing to be keystrokes from window, but really is
commands to allow imposter access

6.3 trojan horse
one army gives another a present of a wooden horse, army hidden
inside

trojan horse appears to be helpful, but really does something harmful

e.g. “click here to download this plugin”

6.4 Salami attack
superman 3 (terrible movie) but happened in real life

idea was to build up hunk one bit at a time – what do you do with
partial pennies of interest?

CS 439: Systems II Professor Mike Dahlin

 24

Bank keeps it! This guy re-programmed it so that partial pennies
would go into his account. Doesn’t seem like much, but if you are
Bank of America, add up pretty quickly.

This is part of why people are so worried about credit cards on
internet. Today – steal credit card, charge $1000 – credit card
company, merchant, owner notice
Tomorrow – steal 1000000 credit cards, charge $1; no one notices

6.5 Eavesdropping

listener – tap into serial line on back of terminal, or onto ethernet. See
everything typed in; almost everything goes over network
unencrypted. For example, rlogin to remote machine à your
password goes over the network unencrypted!

…

7. Examples

7.1 Tenex – early ‘70s BBN
Most popular systems at universitives before Unix

Thought to be v. secure. To demonstrate it, created a team to try to
find loopholes. Give them all source code and documentation (want
code to be publicly available as in Unix). Give them a normal account

in 48 hours, had every password in the system

Here’s the code for the password check in the kernel:

for(I = 0; I < 8; I++){
 if(userPasswd[I] != realPasswd[I]
 go to error

Looks innocuous – have to try all combinations – 256^8

CS 439: Systems II Professor Mike Dahlin

 25

But! Tenex also had virtual memory and it interacts badly with above
code

Key idea – force page fault at carefully designed times to reveal
password

Arrange first character in string to be last character in page, rest on
next page. Arrange that the page with first character in memor, and
rest on disk
 a|aaaaaa

Time how long password check takes
 if fast – first character is wrong
 if slow – first character is right; page fault; one of others was
wrong

so try all first characters until one is slow
Then put first two characters in memory, rest on disk
try all second characters until one is slow
…

 à takes 256 * 8 to crack password

Fix is easy – don’t stop until you look at all characters
But how do you figure that out inadvance?

Timing bugs are REALLY hard to avoid!!

7.2 internet worm

1990 - broke into thousands of computers over internet

Three attacks
1. dictionary lookup
2. sendmail
--debug mode – if configured wrong, can let anyone log in
3. fingerd

CS 439: Systems II Professor Mike Dahlin

 26

 -- finger dahlin@cs

Fingerd didn’t check for length of string, but only alocated a fixed
size array for it on the stack. By passing a (carefully crafted) really
long string, could overwrite stack, get the program to call arbitrary
code!

Go caught b/c idea was to launch attacks on other systems from
whatever systems were broken into; so ended up breaking into sae
machine multiple times, dragging down CPU so much that peopl
noticed

variant of problem – kernel checks system call parameters to prevent
anyone from corrupting it by passing bad arguments

so kernel code looks like:
 check parameters
 if OK
 use arguments

But, what if application is multithreaded? Can change contents of
arguments after check but before use!

7.3 Mitnick
Two attacks:
1) misdirection: identify system mgrs machines, then loop, requesting

TCP connections to those machies until no more connections are
permitted à freeze machine

2) Imposter: forge packets to appear as if legit (e.g. replace source

machine in packet header) but really from Mitnick

 hijack open, idle rlogin connection. E.g. send packets as if user
typed command to add mitnick to .rhosts file

CS 439: Systems II Professor Mike Dahlin

 27

7.4 Netscape follies
1995-6

Netscape wants to provide secure communication so you can send
credi card number over internet

3 problems
1) algorithm for picking session keys was predictable (used time of

day). Brute force allows someone to break key in a few hours

2) netscape makes new version to fix #1; make available over internet

(unencrypted). Modify netscape executable w/ 4-byte patch to
make it always use specific key – so can insergt backdoor by
mangling packets containiing executable as they fly by on internet

In fact, because of demand, had dozen mirror sites (including
Berkeley, ..) to redistribute new version. So anyone with root access
to any machine at Berkeley CS could insert backdoor to netscape

3) buggy helper applications
As with fingerd attack – any bug in either netscape or in helper
application (ghostview, mplay, …) can potentially be exploited by
creating a web page that when viewd will insert a trojan horse

 e.g. postscript is a full-featured language, including commands
to write to disk!! So send a postscript file that says “write(dahlin,
rhosts)

7.5 Timing, environment
Computer designers design to make sure that software interfaces are
secure. But software runs on hardware in the real world…

(a) smart card power supply analysis
(b) Tempest – your monitor (and keyboard) is also a radio

transmitter – relatively easy to build a device that can
receive radio broadcast and display what your monitor is
displaying from several feet away
(High end attack: irradiate the subject machine at resonance
frequency of keyboard cable à pick up keystrokes from 50-

CS 439: Systems II Professor Mike Dahlin

 28

100yards. Some speculate this is why the USSR constantly
beamed radar at the US embassy in Moscow for a while…)

(c) Traffic analysis – e.g., you encrypt your web traffic over
network so know one knows what you are browsing. But
they see 14321 bytes, pause, 29140 bytes, pause, 2341
bytes, pause… Pretty quickly they can match what pages
you are viewing to a suspect website with high confidence

(d) …

7.6 Thompson’s self-replicating program

bury trojan horse in binaries, so no evidence in the source

replicates itself to every UNIX system in the world and even to new
Unix on new platforms. Almost invisible

gave Ken thompson the ability to log into any Unix system I the world

2 parts
1) make it possible (easy)
2) hide it (tricky)

step 1: modify login.c

A:
 if (name == “ken”)
 don’t check password
 log in as root

ida is: hide change so no one can see it

step 2: modify C compiler

instead of having code in login, put it in compiler:
 B:
 if see trigger,
 insert A into input stream

CS 439: Systems II Professor Mike Dahlin

 29

Whenever the compiler sees a trigger /* gobbleygook */,
puts A into input stream of the compiler

Now, don’t need A in login.c, just need the trigger

Need to get rid of problem in the compiler

step 3: modify compiler to have

 C:
 if see trigger2
 insert B + C into input stream

this is where self-replicating code comes in! Question for reader: can
you write a C program that has no inputs, and outputs itself?

step 4: compile compiler with C present

♦ now in binary for compiler

step 5: replace code with trigger2

Result is – al this stuff is only in binary for compiler.
Inside the binary there is C; inside that code for B, inside that code for
A. But source only needs trigger2

Every time you recompile login.c, compiler inserts backdoor.
Every time you recompile compiler, compiler re-inserts backdoor

What happens when you port to a new machine? Need a compiler to
generate new code; where does compiler run?

On old machine – C compiler is written in C! So every time you go to
a new machine, you infect the new compiler with the old one.

8. Lessons
1. Hard to resecure after penetration

CS 439: Systems II Professor Mike Dahlin

 30

What do you need to do to remove the backdoor?
Remove all the triggers?
What if he left another trigger in the editor—if you ever see anyone
removing the trigger, go back ad re-insert it!

Re-write entire OS in assembler? Maybe the assembler is corupted!

Toggle in everything from scrtch every time you log in?

2. Hard to detect when system has been penetrated. Easy to make

system forget

3. Any system with bugs has loopholes (and every system has bugs)

Summary: can’t stop loopholes; can’t tell if it has happened; can’t get
rid of it.

Summary - 1 min

9. Major Topics
1) Memory management & address spaces ; virtual memory/paging to disk

Excellent example of “any problem can be solved with a level of indirection” -- virtual
memory system allows you to interpose on each memory reference – translation,
protection, relocation, paging, automatically growing stack, …

A bunch of data structures with funny names (base&bounds, paging, segmentation,
combined, TLBs) but beyond the jargon – a few basic concepts, simple data structures (hash,
tree, array, …)

Cache replacement – power tool: identify ideal algorithm – even if not realizable in practice – (1)
improve understanding/help design good algorithms, (2) basis for evaluation

2) Threads: state, creation, dispatching; synchronization

CS 439: Systems II Professor Mike Dahlin

 31

Basic mechanism: per thread state v. shared state
Basic attitude: assume nothing about scheduler; have to design programs that are safe no
matter what the scheduler does

Power tool: monitors (locks and condition variables) provide a “cookbook” approach for
writing safe multithreaded programs. Don’t cut corners

Open question: liveness – deadlocks, etc. Global structure of program (as opposed to
modular safety)

Scheduling: shortest job first, round robin – specific policies not so important. Gain insight on
trade-offs so you can develop your own.
Power tools: (1) Know your goals, (2) Analyze optimal case

3) File systems:
disk seeks, file headers, directories, transactions

Finding data on disk – again lots of jargon, but it comes down to arrays and trees and
hash tables…
2 step process
name->ID/header
header->blocks of file

Reliability: transactions, undo/redo log
Power tool: Transactions are definitely a power tool!

4) Networks, distributed systems
RPC: It’s simple…
Issues
Reliability: Lost messages, partitions, crashed machines
à retry, 2-phase commit (distributed transaction)
Power tool: 2-phase commit

Performance: Caching, replication
Consistency/coherence across replicas – callbacks, polling, leases

5) Security:
attitude – robustness, big picture

 access control, authentication, pitfalls

CS 439: Systems II Professor Mike Dahlin

 32

10. OS as Illusionist
Physical Reality Abstraction
single CPU infinite # of CPUs (multiprogramming)
interrupts cooperating sequential threads
limited memory unlimited virtual memory
no protection each address space has its own machine
unreliable, fixed-size messages reliable, arbitrary messages and network

services

CS 439: Systems II Professor Mike Dahlin

 33

11. Problem Areas
1) Performance

• abstractions like threads, RPC are not free

• caching doesn’t work when there is little locality

• predicting the future to do good resource mgmt

2) Failures
How do we build systems that continue to work when parts of the system break?

3) Security
Basic tradeoff between making computer system easy to use v. hard to misuse

Admin: Course evaluation
(1) Paper for javeetha
(2) Snafu: electronic for me

This year, an experiment
(1) Harder homeworks + HW discussion section
(2) Easier labs (related to (1))
(3) Lab discussion section (get rid of?)
(4) Changing name of class
(5) Topics – more networks, security, memory management

