
CS 372: Operating Systems Mike Dahlin

 1 02/24/11

Lecture #3: CPU Scheduling

Review -- 1 min

Deadlock
♦ definition
♦ conditions for its occurrence
♦ solutions: breaking deadlocks, avoiding deadlocks
♦ efficiency v. complexity
Other hard (liveness) problems

 priority inversion
 starvation
 denial of service

Outline - 1 min

CPU Scheduling
• goals
• algorithms and evaluation

Goal of lecture:
We will discuss a range of options. There are many more out there.
The important thing is not to memorize the scheduling algorithms I describe.
The important thing is to develop strategy for analyzing scheduling
algorithms in general.

Preview - 1 min

File systems

CS 372: Operating Systems Mike Dahlin

 2 02/24/11

Lecture - 20 min

1. Scheduling problem definition
Threads = concurrency abstraction
Last several weeks: what threads are, how to build them, how to use
them

3 main states: ready, running, waiting
 Running: TCB on CPU
 Waiting: TCB on a lock, semaphore, or condition variable queue
 Ready: TCB on ready queue

Operating system can choose when to stop running one and when to
start the next ready one. OS can choose which ready thread to start
(ready “queue” doesn’t have to be FIFO)

Key principle of OS design: separate mechanism from policy
Mechanism – how to do something
Policy – what to do, when to do it

CS 372: Operating Systems Mike Dahlin

 3 02/24/11

In this case, design our context switch mechanism and
synchronization methodology allow OS to switch from any thread to
any other one at any time (system will behave correctly)

Thread/process scheduling policy decides when to switch in order to
meet performance goals

1.1 Pre-emptive v. non-preemptive
Non-preemptive – once a process starts, it is allowed to run until it
finishes (or gives up CPU by calling “yield()” or wait())
 simple and efficient to implement
 creates problems (what are they? How to solve?)
Pre-emptive – process switched between “ready” and “running” state
 timer can cause context switch
 more sophisticated and powerful
 less efficient (more context switches)

2. Scheduling policy goals

Step 1 in choosing a good policy is deciding on your goals:
Today case study: balance 3 goals

1. Minimize response time – elapsed time to do an operation or job
Response time is what user sees – elapsed time to
• echo a keystroke in editor
• compile a program
• run a large scientific problem

Response time = average (process end time – process start time)

NOTE: THIS DEFINITION DIFFERS FROM THE ONE IN
THE BOOK!

2. Maximize throughput - operations (or jobs) per second

CPU utilization = time CPU is doing useful work/total elapsed
time

Two parts to max throughput

CS 372: Operating Systems Mike Dahlin

 4 02/24/11

a) minimize overhead
context switch overhead – the time two switch between
threads
(handle interrupt, copy state, flush/reload caches, …)
Note: b/c of context switch overhead, increasing frequency of
context switches may reduce throughput

b) efficient use of system resources (not only CPU, but also

disk, memory, etc)

3. Fair – share CPU among users in some equitable way

What does fairness mean?

Fairness is interpreted in context of priorities -- if user says job A is
more important than job B, is it fair to give job A more resources than
B? (Yes.)

Minimal definition of fairness: freedom from starvation
Starvation – indefinite blocking
Starvation free -- system guarantees that if a job j is ready,
eventually it will run (regardless of workload/what new jobs arrive)

Fairness v. minimize response time –fairness is sometimes a tradeoff
against average response time. You can get sometimes get better
average response time by making system less fair

Note:
1) First step in evaluating policy is to pick goals
2) Goals can be in conflict (challenge in picking policy is evaluating

trade-offs among goals for a workload)
3) Today look at 3 goals, but other goals exist:
QUESTION: Other goals?

 real time

CS 372: Operating Systems Mike Dahlin

 5 02/24/11

 predictable
 …

See vin’s notes, book for more details for policies evaluation of
different algorithms under these goals.

3. Scheduling doesn't matter (usually)

[at least not for response time, throughput. Ignore following for
priority...]

load v. response time curve
(A little bit of queing theory)

r = 1/(1-u) (exponential arrivals)

-->
When load low, scheduling doesn't matter
When load high, scheduling doesn't matter
When load medium, scheduling matters (but if load, hardware,
application change, scheduling stops mattering)
...
[also, for later discussion, when requests are small, equally important,
and similar size, scheduling doesn't m atter]

--> lots of servers do FIFO and are done...

What does matter?

4. Overload control

Servers often have highly variable load
-- 4:1 typical
-- flash crowd (e.g., UT emergency response server)
-- ebay auction last few minutes
-- ticketmaster -- high-profile event goes on sale...

CS 372: Operating Systems Mike Dahlin

 6 02/24/11

May be impossible (or frightfully expensive) to provision system to
eliminate possiblity of overload

overload often happens when service matters most!

--> Must design servers to control overload

Can't solve problem with scheduling.

Solution 1: reduce work
-- Distasteful answer, but sometimes necessary
-- e.g., server with FIFO queue of work; make queue finite size

Examples:
-- reject requests (ugh, but simple)
-- do less work per request
 -- e.g., switch from 720p to 480i video feed, serve static
version of CNN front page rather than dynamically-generated (give up
advertising revenue to survive crisis, slow down how frequenlty
auction prices updated, ...)

 e.g., ebay
http://www.cs.cornell.edu/courses/cs5410/2008fa/Slides/eBay.pdf

-- Turn off other services
 -- e.g., mail server provides access to mailboxes, but queues
outgoing and incoming mail

NOTE: "Reduce work" can require careful design
e.g., de facto way to limit load is to let network accept queue fill, but
that is horrible for users
e.g., stage 5 drops work when server overloaded --> lots of work but
nothing gets done

[MDD: TBD: look at receiver livelock paper?]

CS 372: Operating Systems Mike Dahlin

 7 02/24/11

Solution 2: increase resources

"Cloud" *may* allow services to grow/shrink as demands change
--> cost proportional to resources used v. cost proportional to peak

[hope is that cloud is big enough with diverse enough demands that
the subset of services with high demand can get the resources they
need]

jury is out on this...

5. Scheduling policies
How to evaluate policies?

5.1 FIFO
different names for same thing
FCFS – first come first serve
FIFO – first in first out
Run until done

In early systems, FIFO meant, one program keeps CPU until it is
completely finished. With strict uniprogramming, if have to wait for
I/O, keep processor

Later, FIFO means: keep CPU until thread blocks (goes to a “waiting”
queue)
 I’ll assume this

QUESTION: Response time, throughput, fairness
FIFO pros&cons
+ simple
+ no starvation
+ few context switches
- short jobs get stuck behind long jobs

EXAMPLE

CS 372: Operating Systems Mike Dahlin

 8 02/24/11

5.2 Round Robin

Solution? Add timer, and preempt CPU from long-running jobs.

Just about every real OS does something of this flavor.

Round robin – after time slice, move thread to back of the queue

Response time v throughput

5.2.1 How do you choose the time slice?

1) what if too big?
Response time suffers

2) what if too small?
Throughput suffers. Spend all of your time context switching; none
getting real work done

In practice – need to balance these two. Typical time slice today is
between 10-100 milliseconds; typical context switch is .1-1ms, so
roughly 1% of time is time-slice overhead

5.2.2 Comparison between FIFO and Round Robin

QUESTION: Assuming zero-cost context switch overhead, is RR
always better than FIFO?

No. Counterexample: 10 jobs, each takes 100 seconds of CPU time.
Round robin time slice of 1 second.
All start at same time

 Job Completion Time

CS 372: Operating Systems Mike Dahlin

 9 02/24/11

Job # FIFO RR
1 100 991
2 200 992
3 300 993
…
9 900 999
10 1000 1000

Round robin runs one second from each job, before going back to
first. So each job accumulates 99 seconds of CPU time before any
finish.

Both round robin and FIFO finish at the same time, but average
response time is much worse under RR than under FIFO

QUESTION: Response time, throughput, fairness

Thus, RR pros&cons
+ Fairness: In some sense it is fair – each job gets equal shot at CPU
o Throughput: shorter time slices increase overhead
 make time slice large compared to context switch overhead
Response time:
+ better for short jobs (and not too bad for long) when jobs are mixed
length
- poor when jobs are same length (and longer than time slice)

5.3 STCF/SRTCF

STCF: shortest time to completion first. Run whatever job has the
least amount of stuff to do

CS 372: Operating Systems Mike Dahlin

 10 02/24/11

SRTCF – shortest remaining time to completion first
Preemptive version of STCF – if job arrives that has a shorter time to
completion than the remaining time on the current job, immediately
preempt CPU to give to new job

Idea is to get short jobs out of the system
Big effect on short jobs, small effect on large jobs.
Result – better average response time

Example: copier machine

In fact, STCF/SRTCF are the best you can possibly do, at minimizing
average response time (STCF among non-preemptive policies,
SRTCF among preemptive policies).
Can prove they are optimal.

Intuition: start with a STCF schedule. Swap any two jobs – A,
B -- on the schedule. Any job before A_orig or after B_orig will
complete at same time. A will now finish when B would have
finished. But B will finish later than A would have finished
(and all jobs between A and B will finish later than they would
have finished.)

Since SRTCF is always at least as good as STCF, focus on SRTCF.

5.3.1 Comparison of SRTCF with FIFO and RR
What if all jobs are same length?
 SRTCF becomes the same as FIFO (in other words, FIFO is as
good as you can do if all jobs are the same length)

What if jobs have varying length?
SRTCF (and round robin) are better than FIFO – short jobs don’t get
stuck behind long jobs

Example to illustrate SRTCF:

3 jobs
A, B: both CPU bound, run for a week
C: I/O bound, loop

CS 372: Operating Systems Mike Dahlin

 11 02/24/11

 1ms of CPU
 10ms of disk I/O

By itself, C uses 90% of disk
By itself, A or B uses 100% of CPU

What happens if try to share system between A, B, and C?

With FIFO:
 once A or B gets in, keep CPU for 2 weeks

With Round Robin (100ms time slice)

 only get 5% disk utilization

With round robin (1ms time slice)

Get nearly 90% disk utilization; almost as good as C alone, but don’t
slow A or B by that much; they still get 90% of CPU

With SRTCF: no needless preemptions (run C as soon as possible; run
either A or B to completion)

c

a b

C
a

Cabababab……cababababab…..

CA CA CA

C’s I/O

CS 372: Operating Systems Mike Dahlin

 12 02/24/11

QUESTION: when do A and B finish under RR (1ms) and SRTCF?

QUESTION: Response time, throughput, fairness

STRCF pros&cons
+ Response time: optimal (average response time)
+ Throughput: low overhead
- Fairness: can we get starvation?
A downside to SRTCF is that it can lead to starvation – lots of short
jobs can keep long jobs from ever making progress

What is the biggest limitation?

 - hard to predict the future!!

5.3.2 Knowledge of the future

Problem STCF/SRTCF require knowledge of the future

How do you know how long a program will run for?

Some systems - ask the user.
When you submit a job, you have to say how long it will take

(QUESTION: Running STRCF – what do you tell the system???)

To stop cheating: if your job takes more than what you said, system
kills your job. Start all over.

CS 372: Operating Systems Mike Dahlin

 13 02/24/11

Generally can’t really know how long things will take, but can use
SRTCF as a yardstick – for measuring other policies. It is optimal, so
can’t do any better than that!

(Good way to do CS development – figure out what the right answer
is, then figure out how to approximate it)

5.4 Multilevel Feedback

Central idea in CS (occurs in lots of places) – use past to predict
future. If program was I/O bound in the past, likely to be in the future

If computer behavior were random, history won’t help
Or if past behavior is opposite of current behavior

Most of the time, though, program behavior is regular
How to exploit this?
If past behavior predicts future behavior, then favor jobs that have
been using CPU the least amount of time to approximate SRTCF!

Adaptive policies – change policy based on past behavior.
Used in CPU scheduling, virtual memory, in file system …

Multilevel feedback queues (first used in CTSS, example of an
adaptive policy for CPU scheduling): multiple queues, each with
different priority. OS does round robin at each priority level – run
highest priority jobs first, once those finish second highest, etc
--round-robin time slices increase exponentially at lower priority

Queue Prioiry Time slice
 XXXXXO 1 1
 XXXXXO 2 2
 XXXXXO 3 4
 XXXXXO 4 8

Adjust each job’s priority as follows (details vary)
1. Job starts in highest priority queue
2. if timeout expires, drop one level

CS 372: Operating Systems Mike Dahlin

 14 02/24/11

3. if timeout doesn’t expire, push up 1 level (or back to top)

QUESTION: Response time, throughput, fairness

Results approximate SRTCF: CPU bound jobs drop like a rock while
short running I/O bound jobs stay near top

Multilevel feedback queues (like SRTCF) still unfair – long running
jobs may never get the CPU
 QUESTION: How to solve?

Countermeasure: user action that can foil intent of the OS designer
For multilevel feedback – countermeasure would be to put in
meaningless I/O to keep job’s priority high.
Of course, if everyone did this, wouldn’t work

5.5 Lottery scheduling

What should we do about fairness? Since SRTCF is optimal and
unfair, any increase in fairness (e.g. giving long jobs a fraction of the
CPU even when there are shorter jobs to run) will hurt average
response time.

How do we implement fairness?

Could give each queue a fraction of the CPU, but this isn’t always fair
– what if 1 long-running job and 100 short runing jobs?

Could adjust priority: increase priority of jobs as they don’t get
service. This is what UNIX does

Problem – this is ad hoc - at what rate should you increase priorities?
And, as system gets overloaded, no job gets CPU time, so everyone
increases in priority (shorter time slices; less efficient just when

CS 372: Operating Systems Mike Dahlin

 15 02/24/11

system is busiest); also, interactive jobs suffer – both short and long
jobs have high priority

Recent research (~1995-1997) – proportional share schedulers –
allow scheduler to specify what fraction of resources go to each thread
 Proportional share schedulers emphasize fairness as main goal

Several schedulers exist: start-time fair queuing (invented by Vin and
students here at UT) is the best, stride scheduling is OK. But, I’ll
explain a simple one (that is not as good as SFQ or stride)

lottery scheduling - give every job some number of lottery tickets,
and on each time slice, randomly pick a winning ticket
On average, cpu time is proportional to number of tickets to each job

How will lottery scheduling behave wrt latency?
Can we improve lottery scheduling to approximate multi-level
feedback/SRTF?

How do you assign tickets?
To approximate SRTF, short running jobs get more, long running get
fewer.
To avoid starvation, every job gets at least one ticket. (so everyone
makes progress)

Advantages over strict priority scheduling:
behaves gracefully as load changes – adding or deleting a job affects
all jobs proportionally, independent of how many ticket each job has

For example, if short job gets 10 tickets and long gets 1 each then

#short/#long %CPU per short %Cpu per long
1/1 91% 9%
0/2 NA 50%
2/0 50% N/A
10/1 10% 1%
1/10 50% 5%

CS 372: Operating Systems Mike Dahlin

 16 02/24/11

6. A little queuing theory

Question: when should you buy a faster computer?
One approach – buy when it will pay for itself in improved response
time

Queuing theory allows you to predict how response time will change
as a function of hypothetical chnges in # users, speed of CPU, speed
of disk, etc

Might think you shouldn’t buy a faster X when X has spare capacity
(utilization of X < 100%), but for most systems, response time goes to
infinity as utilization goes to 100%

How does response time vary with # users?

Worst case: all users submit jobs at same time. Thus response time
gets linearly worse as add extra users, linearly better as computer gets
faster

Best case: each user submits job after previous one completes.
As increase #users, no impact on response time (until system
completely utilized)

What if we assume users submit jobs randomly and they take random
amounts of time. Possible to show mathematically:

 response time = service time / (1-utilization)

fine print – exponential distribution

Implications:

(1) If a load is bursty it will have worse avg response
time than if it is even

(2) When load is low, scheduling may not matter
(3) When low is high, scheduling may not matter

• (Actually – when overloaded can’t serve all
requests, so instead of “scheduling” the
problem is deciding which requests to service

CS 372: Operating Systems Mike Dahlin

 17 02/24/11

and which requests to drop; this choice often
does matter)

(4) When scheduling matters, increasing capacity a bit
may be a better way to solve problem than clever
scheduling

Summary - 1 min

3 meta-lessons in system design
1) Separate mechanism from policy

In this case: thread mechanism should allow context switch at any
time we can use any policy we want

2) Know your goals
Often, when you are talking about policy you are doing so b/c
there is some sort of trade-off of one goal against another.
Explicitly write down what your goals are, which is most
important, …

Today talked about response time (and throughput and fairness).
Different algorithms when worrying about real time.

3) Compare against optimal (even if you don’t know how to build
optimal for real system)

• Provides reference to compare against (don’t waste your
time if you are already at 99% of optimal)

• Provides insight used to understand other algorithms (“under
what circumstances will I not be optimal?”)

In this case: SRTF is optimal
 we can design algorithms that approximate it
 we know: impossible to be both optimal and fair

