
CS 372: Operating Systems Mike Dahlin

 1 02/18/04

 Lecture #5: Independent and cooperating threads

Review -- 1 min

multi- threaded process

User-level v. kernel threads
Pre-emptive v. non-pre-emptive threads
Thread control block
Dispatch

Outline - 1 min

Finish discussion of thread creation + dispatch
Independent v. cooperating threads
Atomic operations

Preview - 1 min

Abstraction dilemma – want “independence” and “cooperation”

Lecture - 20 min

1. Multiprocessing v. Multiprogramming

CS 372: Operating Systems Mike Dahlin

 2 02/18/04

Dispatcher can choose to run each thread to completion
or
time-slice in big chunks
or
time-slice so that each thread executes only one instruction at a
time (simulating a multiprocessor where each CPU operates in
lockstep)
If the dispatcher can do any of the above – programs must work
under all cases, for all interleavings

So how can you know if your concurrent program works?
Whether all interleavings will work?

Option 1: enumerate and test all possibilities
Impossible!
Option 2: maintain invariants on program state; structure
program carefully to maintain these invariants

Admin - 3 min

Feedback on project 2
Project 3 available

A
B
C

Multiprocessing

 A B C

 A B C A B B
Multiprogramming

CS 372: Operating Systems Mike Dahlin

 3 02/18/04

Lecture - 33 min

2. Independent v. cooperating threads

2.1 Definitions
Independent threads – no shared state with other threads
• deterministic – input state determines result
• reproducible
• scheduling order doesn’t matter

cooperating threads – share state
• non-deterministic
• non-reproducible

Non-reproducibility and non-determinism means that bugs can be
intermittent. This makes debugging hard .

2.2 Why allow cooperating threads?
People cooperate; computers model people’s behavior, so at some
level they have to cooperate

1. Share resources/information

a) one computer, many users
b) one bank balance many tellers

2. Speedup
a) overlap I/O and computation
b) multiprocessors – chop up program into little pieces and

run them in parallel
3. Modularity

Chop up large problem into simpler pieces

for example – typesetting: ref | grn | tbl | eqn
| troff

CS 372: Operating Systems Mike Dahlin

 4 02/18/04

This makes the system easier to extend; you can write eqn
without changing troff

4. Fundamentally required – look at thread switch example above
– different threads share ready queue, scheduling data structures,
…

2.3 Some simple concurrent programs

Most of the time, threads are working on separate data, so
scheduling order doesn’t matter

Thread A Thread B
x = 1; y = 2;

What are the possible values for x:
x = 1; x = 2;

What are the possible values for x:
 initially: y = 12
x = y + 1; y = y * 2;

What are the possible values for x:
 initially x = 0
x = x + 1; x = x + 2;

2.4 Atomic operations
atomic operation – always runs to completion or not at all;
indivisible. Can’t be stopped in the middle.

On most machines, memory reference and assignment (load and
store) of words are atomic

Many instructions are not atomic. For example, on most 32-bit
architectures, double precision floating point store is not atomic.
It involves 2 separate memory operations.

2.5 A larger concurrent program example

CS 372: Operating Systems Mike Dahlin

 5 02/18/04

Two threads, A and B, compete with each other. One tries to
increment a shared counter, the other tries to decrement the
counter.
For this example, assume that memory load and memory store are
atomic, but incrementing and decrementing are not atomic

Thread A Thread B
I = 0; I = 0;
while(I < 10){ while(I > -10){
 I = I + 1; I = I - 1;
} }
print “A wins” print B wins

QUESTIONS
1) Who wins?
à could be either

2) Is it guaranteed that someone wins? Why or why not?

3) What if both threads have their own CPU, running in parallel at

exactly the same speed. Is it guaranteed that it goes on forever?

In fact, if they start at the same time, with a ½ an instruction
ahead, B will win quickly

4) Could this happen on a uniprocessor?

Yes! Unlikely, but if you depend on it not happening, it will
eventually happen, and your system will break and it will be very
difficult to figure out why.

Summary - 1 min

Thread programming – nondeterministic, irreproducible, intuition
not always a good guide

I repeat: it is impossible to enumerate and reason about all
possible interleavings!

CS 372: Operating Systems Mike Dahlin

 6 02/18/04

Key notions
Invariants – facts that must always hold true
atomic actions – the only thing you can trust

Next 2 weeks – learn how to structure program so that we can use
atomic actions to build higher level programs that have invariants about
which we can reason

