CS 372: Operating Systems Mike Dahlin

Lecture #5: Independent and cooperating threads

ERE R R EEEEEEEEEEEEEEEEEEEEEEEEEES

Review --1min

EEEEE SRR R LSS ST EEEEEEEEEEEEEEE ST

multi-threaded process

User-level v. kernel threads
Pre-emptive v. non-pre-emptive threads
Thread control block

Dispach

EEEEEE R LR LSS EEEEEEEEEEEEEEEEEES

Qutline- 1 min

dkkkkkkhkhkhhkhkhhhhkhkhhkhkk Lo o

Finish discussion of thread creation + dispatch
Independent v. cooperating threads
Atomic operations

khkkkkkkkhkkkhkhkhhkhhhhhhhrrhkhkhkkkdrhxx

Preview - 1 min

EEE SRR S SR EE LSS EEEEEEEEEEEEEEE ST

Abstraction dilemma— want “independence” and “cooperation”

PR RS RS E SR E LRSS SR EEEEEEEEEEEEEEEEE]
Lecture- 20 min

EEE RS SRR R LSS ST EEEEEEEEEEEEE S ST

1. Multiprocessing v. Multiprogramming

1 02/18/04

CS 372: Operating Systems Mike Dahlin
A —») .
B — P Multiprocessing
c —p
A B C
Multiprogramming

A B C A B B

————>—>—>—>

Dispatcher can choose to run each thread to completion

or

time-slicein big chunks

or

time-dlice so that each thread executes only oneinstruction at a
time (simulating a multiprocessor where each CPU operatesin
lockstep)

If the dispatcher can do any of the above — programs must work
under all cases, for all interleavings

So how can you know if your concurrent program works?
Whether all interleavings will work?

Option 1: enumerate and test all possibilities
Impossiblel

Option 2: maintain INvVariants on program state; structure
program carefully to maintain these invariants

khkkkkkhkhkhkhhhhhkhhkhhhdhhhhhhkhrrrrdx

Admin-3min

khkkkkhkhkhkhkhhhhkdkhkhkhkhhhhhhrhhhhrkhdk

Feedback on project 2
Project 3 available

2 02/18/04

CS 372: Operating Systems Mike Dahlin

khkkkkkkhkhkhkkhkhhhhhhhhhhhrhkhkhkhkrrxx

Lecture- 33 min

EEEEEE R LR LSS SRS EEEEEEEEEE RS ST

2. Independent v. cooperating threads

2.1 Definitions

Independent threads _ no shared state with other threads
deterministic — input state determines result

reproducible
scheduling order doesn’t matter

cooper ating threads _ ghare state
non-deterministic
non-reproducible

Non-reproducibility and non-determinism means that bugs can be
intermittent. This makes debugging hard.

2.2 Why allow cooperating threads?

People cooperate; computers model people’'s behavior, so at some
level they have to cooperate

1. Share resources/information
a) one compute, many users
b) one bank balance many tellers
2. Speedup
a) overlap I/0 and computation
b) multiprocessors — chop up program into little pieces and
run them in parallel
3. Modularity
Chop up large problem into simpler pieces

for example —typesetting: Fe€f | grn | tbl | eqgn
| troff

3 02/18/04

CS 372: Operating Systems Mike Dahlin

This makes the system easier to extend; you can write egn
without changing troff
4. Fundamentally required — look at thread switch example above
— different threads share ready queue, scheduling data structures,

2.3 Some simple concurrent programs

Most of the time, threads are working on separate data, so
scheduling order doesn’t matter

Thread A Thread B
Xx=1; y =2

What are the possible values for x:
x=1 X=2,

What are the possible values for x:

initially: y = 12
x:y+1; y:y* 2;
What are the possible values for x:

initially x =0
X=X+1 X=X+2;

2.4 Atomic operations

atomic operation_ glways runs to completion or not at all;
indivisible. Can't be stopped in the middle.

On most machines, memory reference and assignment (load and
store) of Words are atomic

Many instructions are not atomic. For example, on most 32-bit
architectures, double precision floating point store is not atomic.
It involves 2 separate memory operations.

2.5 Alarger concurrent program example

4 02/18/04

CS 372: Operating Systems Mike Dahlin CS 372: Operating Systems Mike Dahlin

Two threads, A and B, compete with each other. One tries to Key notions
increment a shared counter, the other tries to decrement the Invariants — facts that must always hold true
counter. atomic actions — the only thing you can trust
For this example, assume that memory load and memory store are
atomic, but incrementing and decrementing are NOt atomic Next 2 weeks — learn how to structure program so that we can use
atomic actions to build higher level programs that have invariants about
Thread A Thread B which we can reason
1=0; 1=0;
while(l < 10){ while(l > -10){
I=1+1,; I=1-1;
print “A wins” print B wins
QUESTIONS
1) Who wins?

= could be either
2) Isit guaranteed that someone wins? Why or why not?

3) What if both threads have their own CPU, running in parallel at
exactly the same speed. |sit guaranteed that it goes on forever?

In fact, if they start at the same time, with a2 an instruction
ahead, B will win quickly

4) Could this happen on a uniprocessor?

Yes! Unlikely, but if you depend on it N0t happening, it will
eventually happen, and your system will break and it will be very
difficult to figure out why.

EEE RS SRR R LSS ST EEEEEEEEEEEEE S SRS

Summary - 1 min

khkkkkhkkhkhhkhkkhkhkhhhkhhkhkhkkdxkk xk,*x%
Thread programming — nondeterministic, irreproducible, intuition
not always a good guide

| repeat: it isimpossible to enumerate and reason about all
possible interleavings!

5 02/18/04 6 02/18/04

