
Lecture #9: Monitors, Condition Variables, and Readers-Writers

Review -- 1 min

The big picture: threads, shared objects, synchronization variables
protecting the shared objects

2 synchronization actions
• lock
• scheduling constraint
Semaphore used for both

Example problem: bounded buffer

Implementing semaphores: turn off interrupts, test&set

Outline - 1 min

monitors
condition variables
Approach
example: readers-writers problem

Preview - 1 min

Finishing up synchronization
Other aspects of parallelism: deadlock, scheduling

Lecture - 20 min

1. Motivation for monitors

Semaphores a huge step up – just think of trying to do bounded
buffer problem with just loads and stores
 (busy waiting?)

3 problems with semaphores
Problem 1 – semaphores are dual purpose – mutex, scheduling
constraints
à hard to read code
à hard to get code right

Problem 2 -- Semaphores have “hidden” internal state
Problem 3 – careful interleaving of “synchronization” and “mutex”
semaphores

à waiting for a condition is independent of mutex locks (to examine
shared variables)
à either cleverly define condition to map exactly to semaphore
semantics (e.g., “12 buffers so initialize semaphore to 12” what if you
don’t know ahead of time how many buffers?) OR clever code
(interleaving mutex V() with check condition P()) OR both

idea of monitor – separate these concerns: use locks for mutex and
condition variables for scheduling constraints

philosophy – think about Join() example with producer/consumer.
Just one line of code to make it work with semaphores, but need to
think a bit to convince self it really works – relying on semaphore to
do both mutex (via atomicity) and condition. What happens when you
change the code later to, say, give different priorities to different
consumers?

2. Monitor definition
monitor – a lock and zero or more condition variables for managing
concurrent access to shared data

NOTE: Historically monitors were first a programming language
construct, where the monitor lock is automatically acquired on calling
any procedure in a C++ class. (Java does something like this – you
can specify that certain routines are synchronized) Book tends to
describe it this way.

But you don’t need this – monitors are also a set of programming
conventions that you should follow when doing thread programming
in C or C++ (or Modula c.f. Birrell): explicit calls to locks and
condition variables

I will teach the “manual” version of monitors (and require that you do
things manually on the projects) because I want to make sure it is
clear what is going on and why.

2.1 Lock
The lock provides mutual exclusion to the shared data

Lock::Acquire() -- wait until lock is free, then grab it
Lock::Release() – unlock; wake up anyone waiting in Acquire

Rules for using a lock

• Always acquire before accessing shared data structure
• Always release after finishing with shared data
• Lock is initially free

Simple example: a synchronized list

AddToQueue(){
 lock.Acquire(); // lock before using shared data
 put item on queue; // ok to access shared data
 lock.Release() // unlock after done w. shared data
}

RemoveFromQueue(){
 lock.Acquire(); // lock before using shared data
 if something on queue remove it
 lock.Release(); // unlock after done
 return item;
}

Aside:
If you have exceptions (as in Java), another variation is:
Foo(){
 try{
 lock.lock();
 …
 return item;
 }
 finally{
 lock.unlock();
 }

2.2 Condition variables
How do we change removeFromQueue to wait until something is on
the queue?

Logically, want to go to sleep inside of critical section, but if hold lock
when go to sleep, other threads won’t be able to get in to add things
to queue, to wake up sleeping thread

(Recall that for semaphores, we had essentially this problem and we
solved it by cleverly doing our "accounting" for synchronization before
we grabbed the lock for mutex. This type of subtle reasoning in
programs worries me.)

Key idea with condition variables: make it possible to go to sleep
inside critical section, by atomically releasing lock at same time we
go to sleep

Condition variable: a queue of threads waiting for something inside
a critical section

3 operations
Wait() – release lock; go to sleep; reaquire lock

♦ releasing lock and going to sleep are atomic
Signal() – wake up a waiter, if any
Broadcast() – wake up all waiters

RULE: must hold lock when doing condition variable operations

In lecture, I’ll follow convention: require lock as parameter to
condition variable operations. Get in the habit; other systems don’t
always require this

Some will tell you you can do signal outside of lock. IGNORE THEM.
This is only a (small) performance optimization, and it is likely to lead
you to write incorrect code.

A synchronized queue with condition variables

AddToQueue(){
 lock.Acquire();
 put item on queue;
 condition.signal(&lock);
 lock.Release();
}

RemoveFromQueue(){
 lock.Acquire();
 while nothing on queue{
 condition.wait(&lock); // release lock; go to sleep; require
 }
 remove item from queue;
 lock.Release();
 return item;
}

2.3 Mesa/Hansen v. Hoare monitors
Need to be careful about precise defn of signal and wait

Mesa/Hansen-style: (most real operating systems)
 Signaller keeps lock, processor

 Waiter simply put on ready queue, with no special priority.
 (In other words, waiter may have to wait to re-acquire lock)

Hoare-style: (most textbooks)
 Signaller gives up lock and CPU to waiter; waiter runs immediately
 Waiter gives up lock, processor back to signaller, when it exits
critical section or if it waits again

Code above for synchronized queuing happens to work with either
style, but for many programs it matters which you are using.

With Hoare-style, can change “while” in RemoveFromQueue to “if”
because the waiter only gets woken up if item on the list.
With Mesa-style, waiter may need to wait again after being woken up
b/c some other thread may have acquired the lock and removed the
item before the original waiting thread gets to the front of the ready
queue.

This means that as a general principle, you almost always need to
check the condition after the wait, with mesa-style monitors (e.g., use
a “while” instead of an “if”)

Admin – 3 min

Project 2 available

3. Programming strategy:
(See “Programming with threads” handout for more details)

Goal: Systematic (“cookbook”) way to write easy to read and understand and correct multi-
threaded programs

Fall 2001 midterm:

• Every program with incorrect semantic behavior violated at least one
rule

• >90% of programs that violated at least one rule were “obviously”
semantically incorrect (that is, I could see the bug within seconds of
looking at the program; there may have been additional bugs…)

o All that violate one rule are wrong – they are harder to read,
understand, maintain, …

o Since I’ve declared “violating rule is wrong”, huge reduction in
bugs in exams and projects

A. General approach

1. Decompose problem into objects

object oriented style of programming – encapsulate shared
state and synchronization variables inside of objects

Note:
(1) Shared objects are separate from threads
(2) Shared object encapsulates code, synchronization

variables, and state variables

Warning: most examples in the book are lazy and talk about “thread
1’s code” and “thread 2’s code”, etc. This is b/c most of the “classic”
problems were studied before OO programming was widespread,
and the textbooks have not caught up

Hint: don’t manipulate synchronization variables or shared state
variables in the code associated with a thread, do it with the code
associated with a shared object.

Each thread tends to have a “main” loop that accesses shared
objects but the thread object does not include locks or condition
variables in its state, and the thread’s main loop code does not
directly access locks or cv’s.

Locks and CVs are encapsulated in the shared objects.

Why?

(1) Locks are for synchronizing across multiple threads. Doesn’t
make sense for one thread to “own” a lock!

(2) Encapsulation – details of synchronization are internal details
of a shared object. Caller should not know about these details.

“Let the shared objects do the work.”

1A. Identify units of concurrency. Make each a thread with a
 go() method. Write down the actions a thread takes at a high
 level.

1b. Identify shared chunks of state. Make each shared thing an
object. Identify the methods on those objects – the high-level
actions made by threads on these objects.

 1C. Write down the high-level main loop of each thread.

Advice: stay high level here. Don't worry about synchronization
yet. Let the objects do the work for you.

Separate threads from objects. The code associated with a thread
should not access shared state directly (and so there should be no
access to locks/condition variables in the “main” procedure for the
thread.) Shared state and synchronization should be encapsulated in
shared objects.

Now, for each object:

2. Write down the synchronization constraints on the solution. Identify
the type of each constraint: mutual exclusion or scheduling

3. Create a lock or condition variable corresponding to each
constraint

4. Write the methods, using locks and condition variables for
coordination

B. Coding standards/style
These are required standards in class. See the handout for details!

1. Always do things the same way

2. Always use monitors (condition variables + locks)

Almost always more clear than semaphores + “always do things the
same way”

3. Always hold lock when operating on a condition variable

 You signal on a condition variable because you just got done
manipulating shared state. You proceed when some condition about
a shared state becomes true. Condition variables are useless
without shared state and shared state is useless without holding a
lock.

4. Always grab lock at beginning of procedure and release it right
 before return

• Simplifies reading your code (“always do things the same way”)

• If you find yourself wanting to release lock in middle of a procedure, 99% of time code

would be more clear if you split it into two procedures

5. Always use

while(predicateOnStateVariables(...) == true/false){
 condition->wait(&lock);

 }
 not

if(...){…

 (Where PredicateOnStateVariables(...) looks at the
state variables of the current object to decide if it is OK to proceed.)

 While works any time if does, and it works in situations when if
doesn't. By rule 1, you should do things the same way every time.

 If breaks modularity

 When you always use while, you are given incredible freedom
about where you put the signal()’s. In fact, signal() becomes a hint --
you can add more signals to a correct program in arbitrary places
and it remains a correct program!
à Can determine correctness of signal calls and wait calls locally

6. (Almost) never sleep()

Never use sleep() to wait for another thread to do something. The
correct way to wait for a condition to become true is to wait() on a
condition variable.

sleep() is only appropriate when there is a particular real-world
moment in time when you want to perform some action. If you catch
yourself writing {\tt while(some condition)\{sleep();\}}, treat this is a
big red flag that you are probably making a mistake.

I'm sure there are valid exceptions to all of the above rules, but
they are few and far between. And the benefit you get by
occasionally
breaking the rules is unlikely to make up for the cost in your effort,
extra debugging and maintenance cost, and loss of modularity.

C. Java rules

This year, we are using Java for the project. Java is a modern
language with supports for threads from day 1. This is mostly good
news. 2 issues:

(1) For production use: Support for some dangerous/undesirable
constructs/styles of programming

(2) For teaching: “too much” support for multi-threading à
someone can write code that invokes synchronization with our
without knowing what’s going on

à Coding standards for this class
(J1) Do not use synchronized blocks within method

This is a specific incarnation of rule (4) above “Always grab
locks at beginning and release at the end”

The following is forbidden:
Foo(){
 …
 synchronized(this){
 …
 }
 …
}

Instead, move the synchronized block into its own method.

(J2) Cleanly separate Threads from shared objects

Classes that define Threads (e.g., that extend Thread or
implement Runnable) should include per-thread state. They
should not include shared state. They should not include locks
or condition variables.

The model is threads operate on shared state (picture).

(J3) For this class the synchronized keyword is forbidden. Instead,
explicitly allocate and invoke locks and condition variables.

The purpose of this rule is to make it easier to teach and learn
how to think about synchronization.

Example (correct):

class Foo{
 SimpleLock lock;
 Condition c1;
 Condition c2;

 public Foo(){
 lock = new SimpleLock();
 c1 = lock.newCondition();
 c2 = lock.newCondition();
 …
 }

 public void doSomething(…){
 try{
 lock.lock();
 …
 while(…){
 c1.awaitUninterruptably();
 }
 …
 c2.signal();
 }
 finally{
 lock.unlock();
 }
 }
}

Example (acceptable):
class Foo{
 SimpleLock lock;
 Condition c1;
 Condition c2;

 public Foo(){
 lock = new SimpleLock();
 c1 = lock.newCondition();
 c2 = lock.newCondition();
 …
 }

 public void doSomething(…){
 lock.lock();
 …
 while(…){
 c1.awaitUninterruptably();
 }
 …
 c2.signal();
 lock.unlock();
 }
}

Example (forbidden for this class; often correct in real world):
class Foo{

 public Foo(){
 …
 }

 public synchronized void doSomething(…){
 …
 while(…){
 this.wait();
 }
 …
 this.signal();
 }

}

(Note that once you leave this class the above style can be used
when an object needs one lock and one condition variable; if you
need two condition variables, fall back on the manual version as in
this class.)

D. Example/Basic template:

(1,2) Always use condition variables for code you write.

Be able to understand code written in semaphores. But the
coding standard your manager (me) is enforcing for this
group is condition variables for synchronization

class Foo{

private:
// Synchronization variables
Lock mutex;

Cond condition1;
Cond condition2;
…
// State variables
…

public:
Foo::foo()
{
 /*

* (#4) Always, grab mutex at start of procedure, release at
* end (or at any return!!!). Reasoning: if there is a logical
* set of actions to do when you hold a mutex, that logical
* set of actions should be expressed as a procedure, right?
*/

 mutex->acquire(){
 Assert(invariants hold – shared variables in consistent state)
 …
 invariants may or may not hold; shared variables may be
 in inconsistent state

…
 // (#5)always “while” never “if”
 while(shared variables in some state){
 assert(invariants hold)
 // (#3) Always hold lock when operating on C.V.
 condition1->wait(&mutex)
 assert(invariants hold)
 }
…

 invariants may or may not hold; shared variables may be
 in inconsistent state
 …
 … // (#3) Always hold lock when operating on C.V.

…condition2->signal(&mutex);
…condition1->signal(&mutex);
…
Assert(invarients hold)

 }mutex->release()
}
}; // Class

Rule (#6) (Almost) never sleep()
Sleep(time) puts the current thread on a waiting queue at the timer – only
use it to wait until a specific time, not to wait for an event of a different sort
Hint: sleep should never be in a while(…){sleep}
Problems with using sleep:

1) no atomic release/reacquire lock
2) really inefficient (example – cascading sleeps in Aname)
3) not logical

Warning: on the project and on exams, improper use of sleep will be regarded
as strong evidence that you have no idea how to write multi-threaded programs
and will affect your grade accordingly.
(I make this a point of emphasis b/c this error is so common in past years and
easy to avoid.)

Summary - 1 min

Monitors represent the logic of the program. Wait if necessary, signal
if change something so waiter might need to wake up.

 mutex->lock
 while (need to wait)
 cv->wait();
 mutex->unlock

 mutex->lock
 do something so no need to wait
 cv->signal();
 mutex->unlock

