
High Throughput Byzantine Fault Tolerance

Ramakrishna Kotla and Mike Dahlin
The University of Texas at Austin
�kotla,dahlin�@cs.utexas.edu

Abstract
This paper argues for a simple change to Byzantine Fault
Tolerant (BFT) state machine replication libraries. Tra-
ditional BFT state machine replication techniques pro-
vide high availability and security but fail to provide high
throughput. This limitation stems from the fundamen-
tal assumption of generalized state machine replication
techniques that all replicas execute requests sequen-
tially in the same total order to ensure consistency across
replicas. We propose a high throughput Byzantine fault tol-
erant architecture that uses application-specific infor-
mation to identify and concurrently execute indepen-
dent requests. Our architecture thus provides a gen-
eral way to exploit application parallelism in order to
provide high throughput without compromising correct-
ness. Although this approach is extremely simple, it yields
dramatic practical benefits. When sufficient applica-
tion concurrency and hardware resources exist, CBASE,
our system prototype, provides orders of magnitude im-
provements in throughput over BASE, a traditional BFT
architecture. CBASE-FS, a Byzantine fault tolerant file sys-
tem that uses CBASE, achieves twice the throughput of
BASE-FS for the IOZone micro-benchmarks even in a con-
figuration with modest available hardware parallelism.

1. Introduction

With the growing prevalence of large-scale distributed
services and access-anywhere Internet services, there is in-
creasing need to build systems that provide high availabil-
ity to ensure uninterrupted service, high reliability to en-
sure correctness, high confidentiality against malicious at-
tacks [1] to steal data, and high throughput [22] to keep pace
with high system load.

Recent work on Byzantine fault tolerant (BFT) state ma-
chine systems has demonstrated that generalized state ma-
chine replication can be used to improve availability and
reliability [8, 17, 19] as well confidentiality [23]. Further-
more, this work suggests that the approach has important
practical benefits in that it adds low overhead [8, 19, 23],
can recover proactively from faults [9], can make use of ex-
isting off-the-shelf implementations to improve availability

This work was supported, in part, by the Texas Advanced Technol-
ogy Program. Dahlin was also supported by an IBM University Part-
nership Award and by a Sloan Research Fellowship.

and to reduce replication cost [19], and can minimize repli-
cation of the application-specific parts of the system [23].

However, current BFT state machine systems can fail to
provide high throughput. They use generalized state ma-
chine replication techniques that require all non-faulty repli-
cas to execute all requests sequentially in the same order,
completing execution of each request before beginning ex-
ecution of the next one. This sequential execution of re-
quests can severely limit the throughput of systems de-
signed to achieve high throughput via concurrency [22]. Un-
fortunately, this concurrency-dependent approach lies at the
core of many (if not most) large-scale network services such
as file systems, web servers, mail servers, and databases.
Furthermore, technology trends generally make it easier for
hardware architectures to scale throughput by increasing
the number of hardware resources (e.g., processors, hard-
ware threads, or disks) rather than increasing the speed of
individual hardware elements. Although current BFT sys-
tems like PBFT [8] and BASE [19] implement optimiza-
tions such as request batching in order to amortize their
replication overheads due to agreement overheads, sequen-
tial execution of requests still imposes a fundamental limi-
tation on application-level concurrency.

In this paper, we argue for a simple addition to the ex-
isting BFT state machine replication architectures that al-
lows throughput of the system to scale with application par-
allelism and available hardware resources. Our architecture
separates agreement from execution [23] and inserts a gen-
eral parallelizer module between them. The parallelizer uses
application-supplied rules to identify and issue concurrent
requests that can be executed in parallel without compro-
mising the correctness of the replicated service. Hence, the
throughput of the replicated system scales with the paral-
lelism exposed by the application and with available hard-
ware resources. More broadly, in our architecture replicas
execute requests according to a partial order that allows for
concurrency as opposed to the total order enforced by tradi-
tional BFT architectures.

We demonstrate the benefits of our architecture by
building and evaluating a prototype library for construct-
ing Byzantine fault-tolerant replicated services called
CBASE (Concurrent BASE). CBASE extends the BASE
system [19] which uses the traditional BFT state machine
replication architecture. We use a set of micro-benchmarks
to stress test our system and find that when sufficient appli-
cation concurrency and hardware resources exist, CBASE
provides orders of magnitude improvements in through-

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

put over the traditional BFT architecture. We also find
that for applications or hardware configurations that can
not take advantage of concurrency, CBASE adds lit-
tle overhead compared to the optimized BASE system.
As a case study, we implement CBASE-FS, a repli-
cated BFT file system, to quantify the benefits for a
real application. CBASE-FS achieves twice the through-
put of BASE-FS for the IOZone micro-benchmarks even
in a configuration with modest available hardware paral-
lelism. When we artificially simulate more hardware re-
sources, CBASE’s maximum write throughput scales
by over an order of magnitude compared to the tradi-
tional BFT architecture.

The main contribution of this study is a case for chang-
ing the standard architecture for BFT state machine repli-
cation to include a parallelizer module that can expose po-
tentially concurrent requests to enable parallel execution.
Based on this study, we conclude that this idea is appealing
for two reasons. First, it is simple. It requires only a small
change to the existing standard BFT replication architec-
ture. Second, it can provide large practical benefits. In par-
ticular, this simple change can improve the throughput of
some services by orders of magnitude, making it practical
to use BFT state machine replication for modern commer-
cial services that rely on concurrency for high throughput.

The main limitation of this approach is that safely exe-
cuting multiple requests in parallel fundamentally requires
application-specific knowledge of inter-request dependen-
cies. But, we do not believe this limitation undermines the
argument for adding a parallelizer model to BFT state ma-
chine replication libraries. In particular, our prototype paral-
lelizer implements a set of default rules that assume that all
requests depend on all other requests. Applications that are
satisfied with sequential execution can simply leave these
default rules in place, and applications that desire increased
throughput can override these rules to expose their concur-
rency to the replication library. Furthermore, designers of
such applications can take an iterative approach, first de-
veloping simple rules that expose some application concur-
rency and later developing more sophisticated rules that ex-
pose more concurrency if required for performance.

The rest of this paper proceeds as follows. Sections 2
and 3 outline our system model and review the standard ar-
chitecture for existing BFT state machine replication sys-
tems. Then Section 4 describes our proposed architecture
and Section 5 describes our prototype replication library,
CBASE. Section 6 discusses our experimental evaluation,
Section 7 discusses related work, and Section 8 summarizes
our conclusions.

2. System Model

Our system model comprises a set of standard assump-
tions for Byzantine fault tolerant state machine replication.

Execution Execution

REPLICAS

Agreement

Execution

Agreement AgreementAgreement

Execution

Clients
Fig. 1. Traditional BFT Architecture

For brevity, we just list them here. A more complete discus-
sion of these assumptions is available elsewhere [23]. We
assume an asynchronous distributed system where nodes
may operate at arbitrarily different speeds and where the
network may fail to deliver messages, delay them, corrupt
them, duplicate them, or deliver them out of order. The sys-
tem is safe under this asynchronous model, and it is live
under a bounded fair links [23] system model that does in-
clude a weak synchrony assumption that bounds worst-case
delivery time of a message that is sent infinitely often.

We assume a Byzantine fault model where faulty nodes
can behave arbitrarily. They can crash, lose data, alter data,
and send incorrect protocol messages. We assume a strong
adversary who can coordinate faulty nodes in arbitrarily bad
ways to disrupt the service. We assume the adversary to be
computationally limited and that it cannot subvert crypto-
graphic techniques. We assume that at most f nodes can
fail out of n replicas.

3. Background: BFT systems

BFT state machine replication based systems provide
high availability and reliability [8, 19] and high security
[23] but fail to provide high throughput. There is a large
body of research [8, 14, 15, 17, 19, 23] on replication tech-
niques to implement highly-available systems that tolerate
failures. Instead of using a single server to implement a ser-
vice, these techniques replicate the server and use a dis-
tributed algorithm to coordinate the replicas. The replicated
system provides the abstraction of a single service to the
clients and continues to provide correct service even when
some of the replicas fail.

Figure 1 illustrates a typical BFT state machine repli-
cation architecture. Clients issue requests to the replicated
service. Conceptually, replicas consist of two stages, an
agreement stage and an execution stage. In reality, these
two stages may be either tightly integrated on a single ma-
chine [8, 19] or implemented on different machines [23].
The agreement stage runs a distributed agreement protocol
to agree on the order of client requests and the execution
stage executes all of the requests in the same order.

Each execution node maintains a state machine that im-
plements the desired service. A state machine consists of
a set of state variables that encode the machine’s state and

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

Execution Execution Execution Execution

Parallelizer Parallelizer Parallelizer Parallelizer

Agreement Agreement AgreementAgreement

Clients

Fig. 2. High throughput BFT state machine replica-
tion architecture

a set of commands that transform its state. A state machine
takes one or more of the following actions to execute a com-
mand:

1. Read a subset of the state variables, called the read-set R.
2. Modify a subset of the state variables, called the write-set

W.
3. Produce some output O to the environment.
A command is non-deterministic if its write-set values or
output are not uniquely determined by its input and read-
set values; otherwise it is deterministic. A state machine is
called a deterministic state machine if all commands are de-
terministic. For safety, all non-faulty replicas starting from
the same state should produce the same set of outputs and
reach the same final state after executing the same set of
requests from clients. The following requirements [20] en-
sures safety of a replicated system:

Schnieder’s classical technique [20] for constructing de-
terministic replicated state machines ensure safety by en-
forcing : (1) Agreement – every non-faulty state machine
replica receives every request and (2) Order – every non-
faulty state machine replica processes the requests it re-
ceives in the same relative order.

Although this approach can provide high availability and
reliability, it can fail to provide high throughput because the
Order requirement does not allow replicas to execute re-
quests concurrently. In particular, unless strong assumptions
are made about the state machine’s internal implementation,
execution nodes must finish executing request i before exe-
cuting request i� 1. Otherwise, concurrency within a state
machine could introduce non-determinism into the system,
which could cause different replicas’ state to diverge.

4. High Throughput BFT State Machine
Replication

Figure 2 illustrates our high throughput state machine
replication architecture, where we maintain the separation
between the agreement and execution stages and introduce

a parallelizer between them. The parallelizer takes a totally
ordered set of requests from the agreement stage and uses
application-supplied rules to first identify independent re-
quests and then issue them concurrently to the execution
stage. A thread pool in the execution stage can then exe-
cute the requests in parallel to improve system throughput.

4.1. Relaxed Order and Parallelizer
The key idea of high throughput state machine repli-

cation is to relax Schneider’s Order [20] requirement on
state machine replication (defined above) to allow concur-
rent execution of independent requests without compromis-
ing safety.

We say that two requests are dependent if the write-set of
one has at least one state variable in common with the read-
set or write-set of the other. More formally, we define de-
pendence as follows: Request ri, with read-set Ri and write-
set Wi and request r j, with read-set is R j and write-set W j,
are dependent requests if any of the following conditions is
true (1) Wi�W j �� φ, (2) Wi�R j �� φ, or (3) Ri �W j �� φ.
We also define dependence to be transitive: if ri and r j are
dependent and r j and rk are dependent, then ri and rk are de-
pendent. Two requests ri and r j are said to be concurrent if
they are not dependent.

Given this notion of dependence, we refine Schneider’s
Order requirement for replicated state machine safety into
a Relaxed Order: every non-faulty state machine replica
processes any pair of dependent requests it receives sequen-
tially and in the same relative order.
Notice that under the Relaxed Order requirement, concur-
rent requests can be processed in parallel. Thus, with the
Relaxed Order requirement, all non-faulty replicas execute
requests in the same partial order as opposed to the tra-
ditional architecture where all correct replicas execute re-
quests in the same total order.

In the new architecture, the parallelizer uses application-
specific information to take advantage of the Relaxed Order
requirement. The parallelizer transforms a totally ordered
schedule of requests provided by the agreement protocol
into a partially ordered schedule based on application se-
mantics.

A sound parallelizer ensures the following partial or-
der property: for any two requests ri and r j such that ri and
r j are dependent and ri precedes r j in the total order es-
tablished by the agreement stage, then ri completes execu-
tion before r j begins execution. For fault tolerance, we also
assume that the parallelizer has a local decision property:
each replica’s parallelizer does dependence analysis locally
and does not exchange messages with other replicas. Hence,
given a correct agreement protocol, faulty replicas cannot
affect the partial order enforced at the correct replicas.

Notice that there are two properties that are not required
of a parallelizer. First, we do not require precision: a sound
parallelizer may enforce additional ordering constraints on

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

requests beyond those required by the partial order prop-
erty. This non-requirement is important because it allows
us to simplify the design of parallelizers for complex ap-
plications by building conservative parallelizers that can in-
troduce false dependencies between requests. For example,
in Section 5.3 we describe a simple NFS implementation
that uses a conservative analysis to identify some, but not
all, concurrent requests. Second, we do not require equal-
ity: different correct parallelizers may enforce different par-
tial orders as long as all correct parallelizers’ partial orders
are consistent with the order required by the partial order
property. One could, for example, implement multiple ver-
sions of the parallelizer for an application to prevent any one
implementation from being a single point of failure [21].

The properties of existing BFT state machine replication
systems and of a sound parallelizer with local decisions en-
sure the correctness of our architecture. Please refer to the
extended report [13] for a proof sketch of safety and live-
ness properties.
4.2. Advantages and Limitations

This state machine replication architecture has two po-
tential advantages. First, it can support high-throughput ap-
plications. If the workload contains independent requests
and the system has enough hardware resources, then inde-
pendent requests can be executed concurrently by the ex-
ecution stage to improve the throughput of a system. Sec-
ond, it is simple and flexible. In particular, to achieve high
throughput, we did not change any of the other compo-
nents in the system like client behavior, the agreement pro-
tocol, or the application. These components can therefore
be changed to suit the requirements of the replicated sys-
tem. For example, one can change the agreement protocol
and client side behavior to build a system that either toler-
ates Byzantine failures or fail-stop failures while achieving
high throughput without modifying the parallelizer.

The main limitation of a system using this architecture is
that the rules used by the parallelizer to identify dependent
requests require knowledge of the inner workings of each
application. In many ways, this knowledge is similar to that
required to build the abstraction layer used in BASE to mask
differences in different implementations of the same under-
lying application [19]. However, it may in general be diffi-
cult to know what internal state a given request affects or
to determine with certainty whether any given pair of re-
quests are dependent.

Fortunately, it is not necessary to completely understand
the inner workings of an application in order to define a
parallelizer for it. In particular, it is always permissible to
define conservative rules that include all true dependencies
but also include some false dependencies. System design-
ers may choose to follow an incremental approach by first
defining a set of simple but conservative rules to identify
“obvious” concurrent requests and then progressively refine

the rules if more parallelism is needed to meet performance
goals.

5. CBASE Prototype

The goal of our prototype is to demonstrate a general
way to extend state machine replication systems in order to
allow concurrent execution of requests for applications that
can identify dependencies among requests.

Our prototype, CBASE (Concurrent BASE) system ex-
tends the BASE [19] system to use the high throughput state
machine replication architecture described in the previous
section.

CBASE modifies BASE to cleanly separate the agree-
ment and execution stages� and introduces a parallelizer be-
tween these stages as shown in Figure 2. CBASE’s single
threaded agreement module uses BASE’s 3-phase atomic
multicast protocol to establish a total order on requests. The
parallelizer thus receives a series of requests from the agree-
ment module, and it uses an application-specific set of rules
to identify dependencies among requests and thereby estab-
lish a partial order across them. A pool of worker threads
each draws a request out of the parallelizer, executes it on
the application state machine, and informs the parallelizer
of request completion.

Internally, the parallelizer uses a dependency graph to
maintain a partial order across all pending requests; ver-
tices represent requests and directed edges represent de-
pendencies. The dependency graph forms a DAG as there
can be not be circular dependencies because dependent re-
quests are ordered in the order they are inserted and the
independent requests are not ordered. The parallelizer has
an application-independent scheduler that uses the DAG to
schedule the requests according to the partial order. The
worker threads in the execution stage receive requests that
are not dependent (vertices with no incoming edges) on in-
complete preceding requests from the parallelizer, execute
them concurrently, and remove a request from the DAG
when its execution completes.

The default behavior of the parallelizer is to treat all the
requests as dependent, in which case it behaves like the ex-
isting BASE system where the requests are executed se-
quentially. This default behavior can be used when the fi-
nite state machine is treated as a black box or where de-
pendencies across requests cannot easily be inferred. The
rules in the parallelizer can be incrementally refined by tak-
ing a conservative approach where the requests known to
touch different states can be treated as independent and all
the other requests can be treated as dependent. Similarly,
for backwards compatibility with existing state machines, if
a state machine is not thread safe we can just have a single

� Note, however, that our implementation does not allow the agreement
and execution modules to run on different sets of machines [23].

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

worker thread or implement a mutual exclusion lock around
the state machine.
5.1. Parallelizer interface

The parallelizer appears to the agreement and execu-
tion threads as a variation of a producer/consumer queue.
When a consumer thread asks for a request, the parallelizer
searches for a request that is not dependent of all incom-
plete preceding requests and returns one if found; otherwise
it blocks the consumer thread until a request becomes in-
dependent. The detailed description of parallelizer interface
used by agreement and execution stages is described in [13]
and we just list them here for brevity.
� Parallelizer.insert(): Called by the agreement stage to en-

queue a request when the request is committed in the
agreement stage.

� Parallelizer.next request(): Called by the execution stage
to fetch an independent request.

� Parallelizer.remove request(): Called by the execu-
tion stage after the execution of a request is completed to
delete request state in the parallelizer.

� Parallelizer.sync(): This interface supports replica state
checkpointing required by the BASE system [19]. The
agreement stage updates the next checkpoint sequence
number by calling this function as soon as the current
checkpoint is complete.

5.2. Dependence Analysis
The parallelizer’s goal is to determine if a new request

is dependent on any pending request using application-
specific rules. The parallelizer design must balance three
conflicting goals: (1) Generality – the parallelizer should
provide an interface that allows a broad range of appli-
cations to encode rules for detecting dependencies among
their requests; (2) Simplicity – the interface for specifying
these rules should be simple to reduce the effort and like-
lihood of error in dependency-rule specification; and (3)
Flexibility – the interface should allow specification of sim-
ple conservative dependency rules and progressive refine-
ment to more precise dependency rules that expose more
concurrency. Notice that our design is a compromise among
these design goals and that other algorithms for identifying
dependencies among requests could be explored in future
work.

When a new request r j calling function f j with argu-
ments a j arrives, the parallelizer compares it to each pend-
ing request ri calling function fi with arguments ai as fol-
lows. First, it checks for argument-independent dependen-
cies using an application-specific operator concurrency ma-
trix (OCM): if OCM� fi� f j � is true, the requests are depen-
dent. If not, then it checks to see if the arguments indi-
cate that there may be additional risk of dependencies us-
ing an argument analysis funtion (AAF) : if AAF�ai�a j�
is true, then it also checks for argument-dependent depen-
dencies and identifies a dependency between ri and r j if

Agreement Parallelizer
Worker

thread pool

Conc. Matrix

Wrapper

Conformance Unmodified

NFS

Replication Library

Agreement Parallelizer
Worker

thread pool

Conc. Matrix

Wrapper

Conformance Unmodified

NFS

Replication LibraryKernel NFS client

Application
Client

Relay

Replication
Library

REPLICA 1

REPLICA N

Fig. 3. CBASE-FS: High throughput Byzantine fault
tolerant NFS

OACM� fi� f j � (operator+argument concurrency matrix) is
true. Finally, if OCM� fi� f j � is false and either AAF�ai�a j� is
false or OACM� fi� f j � is false, then no dependency between
ri and r j exists. Please refer to [13] for a detailed descrip-
tion of dependence analysis.

This structure facilitates a 2-level analysis in which
the operator concurrency matrix OCM defines broad rules
where no argument analysis is attempted or needed and in
which the operator+argument concurrency matrix OACM
defines more precise rules that are invoked after an analy-
sis of the arguments indicates that two calls that sometimes
are independent may be in conflict due to their argu-
ments. The next subsection describes our NFS file system
prototype where we use the OACM to encode rules for func-
tions if the state they affect is easily identified from file han-
dles in their arguments and where we use the OCM to
handle other functions.

5.3. Example Service: NFS
We have implemented CBASE-FS, a Byzantine fault tol-

erant NFS [4] using CBASE as shown in Figure 3. Our im-
plementation builds on BASE-FS [19], which uses existing
implementations of NFS to implement each instance of the
replicated state machine. In particular, a client in CBASE-
FS mounts the replicated file system exported by the repli-
cas as a local NFS file system [16]. Unmodified applica-
tions access the file system using standard file system calls.
The local kernel sends NFS calls to the local user-level NFS
server, which acts as a wrapper for CBASE-FS by calling
the invoke procedure of the BASE replication library to re-
lay the request to the replicas. This procedure returns when
the wrapper receives f � 1 matching replies from different
replicas.

The agreement stage in CBASE establishes a total order
on requests and then sends each ordered request to the paral-
lelizer. The parallelizer updates the dependency graph using
NFS’s concurrency matrix as defined in section 5.3.1 when-

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

ever a request is enqueued. The worker threads in the exe-
cution stage dequeue independent requests and execute the
requests.

CBASE-FS uses BASE’s [19] abstraction layer (confor-
mance wrapper) to resolve non-determinism in NFS such as
file handle assignment or timestamp generation. Addition-
ally, CBASE introduces a new source of non-determinism
due to concurrent execution of NFS create operations to dif-
ferent files. The existing BASE conformance wrapper at dif-
ferent replicas could return different file handles based on
the order of execution of these requests. We fix this problem
by having a rule in the concurrency matrix to treat the re-
quests with create/delete operations as always dependent.†

5.3.1. Concurrency Matrix for NFS For NFS, we keep
the classification simple by just looking at the file han-
dles, and thus must have conservative rules for some of
the operations. Our argument analysis function (AAF) de-
fines two arguments as related if they include a common file
handle. We present the key rules that are used in defining
NFS’s argument-independent operator concurrency matrix
(OCM) and argument-dependent operator+argument con-
currency matrix (OACM) below. Refer to [12] for the com-
plete definitions of the concurrency matrices.
� getattr and null requests are read only requests and hence

are independent for both related and unrelated arguments.
� Reads to different files are independent whereas reads

to the same files are dependent. Reads modify the last-
accessed-time attribute of a file, so we do not concur-
rently execute read requests to the same file.

� Writes to different files are independent and writes to the
same file are dependent. Reads are dependent on writes
to the same file and vice-versa.

� All create and remove operations to the same file
or different files are dependent as they introduce
non-determinism if executed concurrently.

� Create/Rename/Remove operations are always treated as
dependent on Read/Write operations. Read/Write op-
erations carry the file handle of the file whereas cre-
ate/rename/remove requests carry the file handle of the
directory in which file is present and the filename of the
file to be deleted. As we just look at the file handle to
decide if two arguments are related or not, we cannot
execute the requests with create/rename/remove concur-
rently with read/write requests.
We give up some potential concurrency across requests

with these conservative rules. Looking at other fields in the
request apart from file handle and keeping additional state
about file handles could allow for more sophisticated and
accurate classification. There is a tradeoff between on one

† We speculate that additional concurrency could be exposed by includ-
ing constraints based on a request’s total-order sequence number to
the conformance wrapper’s file handle generation logic and the paral-
lelizer’s dependency logic.

hand the simplicity of the design and the time spent to clas-
sify requests versus on the other hand the amount of con-
currency realized by the parallelizer. This trade-off should
be explored in more detail in the future.

5.4. Additional Optimizations

CBASE supports some of the optimizations intro-
duced by PBFT [8] such as reduced communication,
request batching, read-only optimization in order to im-
prove throughput. However, CBASE does not support
tentative execution as it is shown in [7] that this op-
timization has little impact on throughput when used
along with request batching and that it adds complex-
ity to the code to keep uncommitted state in the system.

6. Evaluation

A high throughput BFT system should achieve two
goals: (1) when there is application parallelism and hard-
ware concurrency it should provide high throughput com-
pared to traditional BFT system, and (2) when there is no
parallelism in the application or when there are limited re-
sources it must have low overhead.

All experiments run with 4 replicas and the system tol-
erates one Byzantine fault. Replicas run on single processor
machines with 933 MHZ PIII processor and connected by
a 100 Mbit ethernet hub. All the machines have 256MB of
memory except for one that has 512MB of memory. The ex-
periments run on an isolated network. We use 5 client ma-
chines to load the system. Client machines are connected
to the network through the same ethernet hub as the repli-
cas. Two of the client machines have 933 MHZ PIII proces-
sor with 512MB of memory and the other three machines
have 450 MHZ PIII processor with 128KB of memory. All
machines run Redhat Linux 7.2.

6.1. Micro-Benchmark

The micro-benchmark compares the performance of
BASE and CBASE executing a simple, stateless ser-
vice - clients send null requests to which the server re-
ply with null results. We show that for our microbenchmark
CBASE imposes little additional latency or overhead com-
pared to BASE and that CBASE’s throughput scales
linearly with application parallelism and available hard-
ware resources.
6.1.1. Overhead Figure 4 compares the overhead of
BASE and CBASE by running the baseline bench-
mark configured with infinite application concurrency (no
shared state across requests) and minimal hardware de-
mand per request (each application request at the server
simply returns immediately). BASE is CPU-limited—a
small number of clients saturate the CPU, but BASE al-
lows throughput to reach a peak of about 15,000 requests
per second by employing agreement-stage batching [9],

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t(

O
pe

ra
tio

ns
 p

er
 s

ec
)

Number of clients

cbase
base

Fig. 4. Overhead of CBASE versus BASE

yielding a CPU overhead of less than 100 µs per re-
quest. CBASE runs with 16 execution threads and BASE
runs with 1 thread. All points in the graph are aver-
ages of 3 runs with variance of less than 15%. The CBASE
parallelizer treats all requests as independent, but lim-
ited hardware resources limit the benefits gained by
concurrency—requests run on a uniprocessor and re-
turn immediately. Figure 4 shows that the lines representing
CBASE and BASE closely follow each other illustrat-
ing that CBASE introduces little overhead when there is no
scope for concurrent execution of requests.
6.1.2. Scalability of throughput with application paral-
lelism and resources The throughput of a service depends
both on the parallelism present in the application and on
the hardware resources (e.g., processors, disks, bandwidth)
available to the system. In this set of experiments, we eval-
uate the scalability of throughput with varying application
parallelism and hardware resources.

First, we evaluate the ability to scale throughput with re-
sources. We simulate accesses to a varying array of parallel
disks by running the benchmark with the modification that
the code to process each request sleeps for 20ms before re-
turning a reply. The CBASE parallelizer assumes infinite
parallelism in the application and considers all requests to
be independent. We simulate varying “disk” resources by
configuring CBASE to run with varying numbers of exe-
cution threads. We note that BASE still runs with a single
thread since it never attempts to issue more than one re-
quest to the execution stage at a time. Figure 5(a) shows
that the throughput of BASE saturates at 50 ops/sec (as ex-
pected with 20ms service time for each operation) which
matches the throughput of CBASE running with 1 thread.
The throughput of CBASE increases with the number of
clients but eventually saturates because increasing the num-
ber of clients improves concurrency only if throughput is
limited by the available hardware resources. As the number
of “disks” (threads) increases, the throughput of CBASE in-
creases nearly linearly—128 “disks” reach a throughput of

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200

T
hr

ou
gh

pu
t (

O
pe

ra
tio

ns
 p

er
 s

ec
)

Number of clients

"cbase_1thread"
"cbase_2threads"
"cbase_8threads"

"cbase_16threads"
"cbase_64threads"

"cbase_128threads"
"base"

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

O
pe

ra
tio

ns
 p

er
 s

ec
)

Number of clients

cbase with parallelism=1
cbase with parallelism=5

cbase with parallelism=10
cbase with parallelism=20
cbase with parallelism=50

cbase with parallelism=100
cbase with parallelism=150

cbase with parallelism=inf
base

(b)

Fig. 5. Scalability of throughput

4700 requests/second.
Next, we evaluate the scalability of throughput with par-

allelism in the application. We run the same experiment as
above except that we fix the number of resources in this ex-
periment and vary parallelism in the application. We emu-
late 100 resources by fixing the number of CBASE execu-
tion threads to 100. We define the parallelism factor as the
number of requests that we allow to be executed concur-
rently, and simulate varying application parallelism by vary-
ing this parameter. The parallelizer randomly assigns each
incoming requests to one of parallelism factor buckets and
creates dependencies among all requests to the same bucket,
allowing only a fixed number of requests to be independent
at any point of time. Figure 5(b) shows that the throughput
of BASE saturates at 50 ops/sec and that CBASE matches
this performance when the application parallelism factor is
1. CBASE’s maximum throughput increases almost linearly
with increasing parallelism factor up to 100. The through-
put of CBASE does not improve beyond a parallelism fac-
tor of 100 because it is limited by the 100 simulated hard-
ware resources.

Notice that when application parallelism and hardware

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

 10

 20

 30

 40

 50

 60

 100000 1e+06 1e+07

R
es

po
ns

e
tim

e
(m

s)

Throughput (bytes/sec)

BASE-FS
CBASE-FS

NFS

(a)

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 10000 100000 1e+06 1e+07

R
es

po
ns

e
tim

e
(m

s)

Throughput (bytes/sec)

BASE-FS
CBASE-FS

NFS

(b)
Fig. 6. Throughput versus response time with 4KB
writes

resources are available, CBASE’s throughput can exceed
BASE’s by orders of magnitude.

6.2. NFS Micro-Benchmarks

In this subsection, we evaluate the performance of
CBASE-FS, a replicated NFS that uses CBASE. We com-
pare the performance of CBASE-FS with BASE-FS and
unreplicated NFS.

6.2.1. Local disk In this benchmark, each client writes
4KB of data to a different file in a directory exported by
the file system. We vary the number of concurrent clients
and measure the response time and throughput of the sys-
tem. As described in Section 4, requests to different files
are treated as independent requests by the CBASE paral-
lelizer. CBASE-FS runs with 16 threads and unreplicated
NFS runs with 16 daemon processes. In all file system in-
stances, NFS servers write asynchronously to the disk.

Overhead Figure 6(a) plots the response time versus
the throughput of CBASE-FS, BASE-FS, and unrepli-
cated NFS. CBASE-FS and BASE-FS closely follow each
other and their throughput saturates around 2.5MB/sec,

whereas the throughput of NFS saturates around 4MB/sec.
In this experiment, because servers run on a uniproces-
sor system and write asynchronously to the local disk there
is little or no benefit for concurrently executing the re-
quests because the threads write in the file buffer cache in
memory and rarely block. Hence we show that CBASE-FS
performs as well as BASE-FS and adds little or no over-
head when there is no scope in concurrency. The max-
imum throughput of BASE and CBASE is within a
factor of 2 compared to unreplicated NFS; the differ-
ence stems from the extra overhead of processing protocol
messages, additional cryptographic computations, and ex-
tra kernel crossings. For similar reasons, NFS also yields
less latency than BASE and CBASE.

Benefits of Pipelining with artificial delay In this experi-
ment we evaluate the performance when there is scope for
concurrent execution of requests. We simulate this scenario
by making BASE and CBASE servers sleep for 20 ms af-
ter writing to a file and before sending a reply to the client.
Figure 6(b) shows the response time plotted against the
throughput of BASE, CBASE and NFS. The throughput of
BASE saturates at about 90 KB/sec since it cannot execute
more than 1 request at a time. However, CBASE achieves its
maximum throughput of about 2MB/sec when there is suffi-
cient load on the system to run enough concurrent requests
to achieve this throughput, which is almost 20 times more
than that of the throughput of BASE. We did not modify the
NFS implementation to sleep for 20 ms so its performance
remains the same. This experiment shows that CBASE-FS
does orders of magnitude better than BASE-FS when there
is scope for concurrent execution of requests.

1 Disk/1 Client 2 Disks/2 Clients
0

50

100

150

200

250

T
h

ro
u

g
h

p
u

t
(K

B
/s

ec
) BASE

CBASE
NFS

Fig. 7. Throughput with multiple disks

Benefits of Pipelining with multiple disks In this experiment
we evaluate the performance benefits in the presence of
real hardware concurrency. We run the same benchmark as
above but with 3 server replicas running on machines with

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

two disks (IBM-PSG and Quantum Viking II). The single
disk experiment is run with single client which writes 4KB
of data to a different file on the same disk (IBM-PSG) for
1000 times. Experiment with 2 disks is run with two clients
each of which write 4KB of data to files on different disks.
All the servers are configured to write data synchronously to
disk. Figure 7 shows the throughput of BASE-FS, CBASE-
FS and unreplicated NFS, when run with single disk and
two disks. CBASE-FS and BASE-FS have similar perfor-
mance with a single disk but with two disks CBASE-FS
outperforms BASE by 72% by concurrently writing to both
disks. Unreplicated NFS outperforms both CBASE-FS by a
factor of 1.5 with a single disk and 2.5 with two disks which
is consistent with earlier results and for similar reasons.

6.2.2. Iozone micro-benchmark Iozone [2] provides var-
ious microbenchmarks to test the performance of com-
mercial file systems. We run the write and random mix
micro-benchmarks to test CBASE-FS and compare its per-
formance with BASE-FS. Rather than introduce artificial
delays as above, we introduce the opportunity for hard-
ware parallelism by configuring our system so that each
file server accesses data on a remote disk that it mounts
via NFS from a separate machine. Each IO request may
thus access the local CPU, network, remote CPU, and re-
mote disk, which affords the system an opportunity to ben-
efit from pipelining. We use the remote disk setup to eval-
uate the performance in these experiments . We run the Io-
zone micro-benchmarks in cluster-mode, where clients are
equally divided among 5 client machines and each client ac-
cesses a different file.

The write microbenchmark measures the performance of
writing 256KB of data to a new file. We configure the test
to have each client write to a different file to provide paral-
lelism across the requests to the file systems. We vary the
number of clients to vary the load on the system. Due to
space limitation, we omit the graph and summarize the re-
sults here. BASE saturates at about 160 KB/sec where as
CBASE saturates at about 320 KB/sec resulting in 100%
improvement in performance as we vary load. CBASE-FS
could not achieve more than a 2x improvement in per-
formance despite having more available application-level
parallelism because the system is limited by the remote
disk bandwidth. Unreplicated NFS achieves a maximum
throughput of 500KB/sec when the NFS server is running
on the remote disk machine.

The random mix microbenchmark measures the perfor-
mance of writing and reading files of size 256KB with ac-
cesses being made to random locations within each file.
We configured the test to have clients write to different
files to provide parallelism across requests, and we vary
the number of clients to vary the load on the system.
Due to space limitation, we omit the graph and summa-
rize results here. BASE’s throughput saturates at about

1MB/sec and CBASE’s at about 2MB/sec. File caching at
clients improves the throughput of both systems compared
to the previous experiment. Overall, CBASE-FS’s maxi-
mum throughput is 100% better than that of BASE-FS.

6.3. Macro-benchmarks

We evaluate the performance of CBASE-FS and BASE-
FS with two file system macro-benchmarks: Andrew [11]
and Postmark [3].

For the Andrew-100 benchmark—which sequen-
tially runs 100 copies of the Andrew benchmark which
provides little concurrency, and which is largely client-
CPU-limited—CBASE-FS and BASE-FS have essen-
tially identical performance with BASE outperforming
CBASE by 4%. We omit this graph for brevity.

B
A

S
E

C
B

A
S

E

Read

B
A

S
E

C
B

A
S

E

Write
1 client

B
A

S
E

C
B

A
S

E
Read

B
A

S
E

C
B

A
S

E

Write
2 clients

B
A

S
E

C
B

A
S

E

Write
4 clients

0

100

200

300

400

500

600

700

T
im

e
(s

ec
)

Transactions
Create/Delete

Fig. 8. Postmark benchmark

PostMark [3] is a benchmark to measure performance
of the Internet applications such as email, net news, e-
commerce, etc. It initially creates a pool of files and then
performs a specified number of transactions consisting of
creating or deleting a file and reading or appending a file.
We set file sizes to be between 1KB and 100KB. We run the
benchmark with 100 files for 500 transactions. In our read-
mostly experiment, we set the read bias at 9 so that trans-
actions are dominated by reads over appends. In our write-
mostly experiment, we set the read bias at 1 so that transac-
tions are dominated by writes compared to reads. CBASE-
FS and BASE-FS replicas write to the remote disk to evalu-
ate the benefits of concurrent execution when run with mul-
tiple postmark clients.

Figure 8 shows the performance of BASE-FS and
CBASE-FS when the experiment is run with varied num-
ber of Postmark clients. The performance of CBASE-FS
and BASE-FS are nearly identical when run with 1 client.
We also ran experiment with 2 and 4 postmark clients where
each client operates on a different set of files. CBASE-FS

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

is 20-25% faster than BASE-FS when run with multi-
ple clients. CBASE-FS could not realise as much im-
provement in performance as in microbenchmarks be-
cause it is limited by the single available hardware disk.

7. Related Work

There is a large body of research on replication tech-
niques to implement highly-available systems that tolerate
failures. To the best of our knowledge, this is the first study
that tries to improve throughput of a Byzantine fault toler-
ant system by providing a general way to use application
semantics to execute requests concurrently.

Schneider [20] introduces the idea of using application
semantics to reorder commutative requests in the state ma-
chine replication technique. Reordering requests can im-
prove average response time of a system but will not im-
prove throughput. We generalize this idea to use application
semantics to identify independent requests and concurrently
execute these requests to improve throughput of a system.

Byzantine fault tolerant state machine replication has
been extensively studied [6, 10, 17] and recent work has
shown that BFT systems can be implemented in practical
systems [8, 9]. Although optimizations from these systems
like request batching, reduced communication, and sym-
metric encryption improve throughput by reducing compu-
tation and network overhead, the throughput of these opti-
mizations does not overcome the fundamental limits of se-
quential execution of requests. Some of these systems do
support a tentative execution optimization to concurrently
execute read requests, but such a solution cannot handle
other type of requests. We provide a general strategy for
exploiting application-level and hardware-level parallelism
that can be applied to any of these systems.

Farsite [5] and Oceanstore [18] use PBFT [8] to pro-
vide byzantine fault tolerant services. These systems pro-
vide scalability by partitioning application state where each
partition can potentially be served by a different replica
group (directory group /primary replica group). However,
requests to a given group are sequentially executed which
can limit the throughput of the system.

8. Conclusion

This paper proposes a simple change to existing BFT
state machine replication architectures to improve the
throughput of a replicated system by separating agreement
from execution and by introducing an application-specific
parallelizer between these two stages. We build a sys-
tem prototype called CBASE using this technique and
demonstrate that it provides orders of magnitude improve-
ment in performance over existing systems provided there
is enough parallelism in the application and there are suffi-
cient hardware resources. Although our work is motivated

by and focussed on BFT state machine replication, the par-
tial order property can be exploited in the context of
traditional state machine replication based systems that tol-
erate fail-stop failures to improve throughput .
References

[1] http://www.cert.org.
[2] http://www.iozone.org.
[3] http://www.netapp.com/tech library/postmark.html.
[4] Nfs : Network file system protocol specification. Request for

Comments 1094, Network Working Group, ISI, Mar. 1987.
[5] A. Adya, W. Bolosky, M. Castro, R. Chaiken, G. Cermak,

J.Douceur, J. Howell, J. Lorch, M. Theimer, and R. Watten-
hofer. Farsite: Federated, available, and reliable storage for
an incompletely trusted environment. In 5th Symp on Oper-
ating Systems Design and Impl., 2002.

[6] R. Canetti and T. Rabin. Optimal Asynchronous Byzantine
Agreement. Technical Report 92-15, Dept. of Computer Sci-
ence, Hebrew University, 1992.

[7] M. Castro. Practical Byzantine Fault Tolerance. PhD thesis,
MIT, Jan. 2001.

[8] M. Castro and B. Liskov. Practical byzantine fault tolerance.
In 3rd Symp. on Operating Systems Design and Impl., Feb.
1999.

[9] M. Castro and B. Liskov. Proactive recovery in a Byzantine-
Fault-Tolerant system. In 4th Symp. on Operating Systems
Design and Impl., pages 273–288, 2000.

[10] J. Garay and Y. Moses. Fully Polynomial Byzantine Agree-
ment for n�3t Processors in t�1 Rounds. SIAM Journal of
Compouting, 27(1), 1998.

[11] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and Perfor-
mance in a Distributed File System. ACM Trans. on Com-
puter Systems, 6(1):51–81, Feb. 1988.

[12] R. Kotla. High throughput byzantine fault tolerant architec-
ture. Master’s thesis, The Univ. of Texas, Austin, Dec. 2003.

[13] R. Kotla and M. Dahlin. High throughput byzantine fault
tolerance. Technical Report UTCS-TR-03-58, The Univ. of
Texas, Austin, 2003.

[14] L. Lamport. Part time parliament. ACM Trans. on Computer
Systems, 16(2), May 1998.

[15] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira,
and M. Williams. Replication in the Harp File System.
In 13th ACM Symp. on Operating Systems Principles, Oct.
1991.

[16] D. Mazires. A toolkit for user-level file systems. In USENIX
Annual Technical Conference, pages 261–274, June 2001.

[17] M. Reiter. The Rampart toolkit for building high-integrity
services. In Dagstuhl Seminar on Dist. Sys., pages 99–110,
1994.

[18] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowicz. Pond: the oceanstore prototype. In 2nd
Usenix Conf on File and Storage Technologies, March 2003.

[19] R. Rodrigues, M. Castro, and B. Liskov. Base: Using ab-
straction to improve fault tolerance. In 18th ACM Symp. on
Operating Systems Principles, Oct. 2001.

[20] F. Schneider. Implementing Fault-tolerant Services Using
the State Machine Approach: A tutorial. Computing Sur-
veys, 22(3):299–319, Sept. 1990.

[21] U. Voges and L. Gmeiner. Software diversity in reacter pro-
tection systems: An experiment. In IFAC Workshop SAFE-
COMP79, May 1979.

[22] M. Welsh, D. Culler, and E. Brewer. SEDA: An architec-
ture for well-conditioned, scalable internet services. In 18th
ACM Symp. on Operating Systems Principles, pages 230–
243, 2001.

[23] J. Yin, J. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for byzan-
tine fault tolerant services. In 19th ACM Symp. on Operating
Systems Principles, Oct 2003.

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

	footer1:

