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Abstract

This paper presents SafeStore, a distributed storage
system designed to maintain long-term data durabil-
ity despite conventional hardware and software faults,
environmental disruptions, and administrative failures
caused by human error or malice. The architecture
of SafeStore is based onfault isolation, which Safe-
Store applies aggressively along administrative, physi-
cal, and temporal dimensions by spreading data across
autonomous storage service providers (SSPs). However,
current storage interfaces provided by SSPs are not de-
signed for high end-to-end durability. In this paper,
we propose a new storage system architecture that (1)
spreads data efficiently across autonomous SSPs using
informed hierarchical erasure codingthat, for a given
replication cost, provides several additional 9’s of dura-
bility over what can be achieved with existing black-box
SSP interfaces, (2) performs an efficient end-to-end au-
dit of SSPs to detect data loss that, for a 20% cost in-
crease, improves data durability by two 9’s by reducing
MTTR, and (3) offers durable storage with cost, per-
formance, and availability competitive with traditional
storage systems. We instantiate and evaluate these ideas
by building a SafeStore-based file system with an NFS-
like interface.

1 Introduction

The design of storage systems that provide data dura-
bility on the time scale of decades is an increasingly
important challenge as more valuable information is
stored digitally [10, 31, 60]. For example, data from the
National Archives and Records Administration indicate
that 93% of companies go bankrupt within a year if they
lose their data center in some disaster [5], and a grow-
ing number of government laws [8, 22] mandate multi-
year periods of data retention for many types of infor-
mation [12, 51].

Against a backdrop in which over 34% of companies
fail to test their tape backups [6] and over 40% of in-

dividuals do not back up their data at all [29], multi-
decade scale durable storage raises two technical chal-
lenges. First, there exist a broad range of threats to data
durability including media failures [52, 63, 70], software
bugs [53, 71], malware [18, 66], user error [51, 62], ad-
ministrator error [40, 49], organizational failures [24,
28], malicious insiders [27, 32], and natural disasters on
the scale of buildings [7] or geographic regions [11].
Requiring robustness on the scale of decades magnifies
them all: threats that could otherwise be considered neg-
ligible must now be addressed. Second, such a system
has to be practical with cost, performance, and availabil-
ity competitive with traditional systems.

Storage outsourcing is emerging as a popular ap-
proach to address some of these challenges [42]. By
entrusting storage management to a Storage Service
Provider (SSP), where “economies of scale” can min-
imize hardware and administrative costs, individual
users and small to medium-sized businesses seek cost-
effective professional system management and peace
of mind vis-a-vis both conventional media failures and
catastrophic events.

Unfortunately, relying on an SSP is no panacea for
long-term data integrity. SSPs face the same list of hard
problems outlined above and as a result even brand-
name ones [9, 14] can still lose data. To make mat-
ters worse, clients often become aware of such losses
only after it is too late. This opaqueness is a symp-
tom of a fundamental problem: SSPs are separate ad-
ministrative entities and the internal details of their op-
eration may not be known by data owners. While most
SSPs may be highly competent and follow best practices
punctiliously, some may not. By entrusting their data to
back-box SSPs, data owners may free themselves from
the daily worries of storage management, but they also
relinquish ultimate control over the fate of their data.
In short, while SSPs are an economically attractive re-
sponse to the costs and complexity of long-term data
storage, they do not offer their clients any end-to-end
guarantees on data durability, which we define as the
probability that a specific data object will not be lost or



corrupted over a given time period.
To achieve high durability, SafeStore applies aggres-

sively the principle offault isolation without compro-
mising practicality in terms of cost, performance, and
availability.

Aggressive isolation for durability. SafeStore stores
data redundantly across multiple SSPs and leverages
diversity across SSPs to prevent permanent data loss
caused by isolated administrator errors, software bugs,
insider attacks, bankruptcy, or natural catastrophes.
With respect to data stored at each SSP, SafeStore em-
ploys a “trust but verify” approach: it does not interfere
with the policies used within each SSP to maintain data
integrity, but it provides anaudit interface so that data
owner retain end-to-end control over data integrity. The
audit mechanism can quickly detect data loss and trigger
data recovery from redundant storage before additional
faults result in unrecoverable loss. Finally, to guard data
stored at SSPs against faults at the data owner site (e.g.
operator errors, software bugs, and malware attacks),
SafeStore restricts the interface to provide temporal iso-
lation between clients and SSPs so that the latter export
the abstraction of write-once-read-many storage.

Making aggressive isolation practical. SafeStore in-
troduces an efficient storage interface to reduce network
bandwidth and storage cost using aninformed hierar-
chical erasure codingscheme, that, when applied across
and within SSPs, can achieve near-optimal durability.
SafeStore SSPs expose redundant encoding options to
allow the system to efficiently divide storage redundan-
cies across and within SSPs. Additionally, SafeStore
limits the cost of implementing its “trust but verify” pol-
icy through an audit protocol that shifts most of the pro-
cessing to the audited SSPs and encourages them proac-
tively measure and report any data loss they experience.
Dishonest SSPs are quickly caught with high probabil-
ity and at little cost to the auditor using probabilistic spot
checks. Finally, to reduce the bandwidth, performance,
and availability costs of implementing geographic and
administrative isolation, SafeStore implements a two-
level storage architecture where a local server (possibly
running on the client machine) is used as a soft-state
cache, and if the local server crashes, SafeStore limits
down-time by quickly recovering the critical meta data
from the remote SSPs while the actual data is being re-
covered in the background.

Contributions. The contribution of this paper is a
highly durable storage architecture that uses a new repli-
cation interface to distribute data efficiently across di-
verse set of SSPs and an effective audit protocol to check

data integrity. We demonstrate that this approach can
provide high durability in a way that is practical and
economically viable with cost, availability, and perfor-
mance competitive with traditional systems. We demon-
strate these ideas by building and evaluating SSFS, an
NFS-based SafeStore storage system. Overall, we show
that SafeStore provides an economical alternative to re-
alize multi-decade scale durable storage for individuals
and small-to-medium sized businesses with limited re-
sources. Note that although we focus our attention on
outsourced SSPs, the SafeStore architecture could also
be applied internally by large enterprises that maintain
multiple isolated data centers.

2 Architecture and Design Principles

The main goal of SafeStore is to provide extremely
durable storage over many years or decades.

2.1 Threat model

Over such long time periods, even relatively rare events
can affect data durability, so we must consider broad
range of threats along multiple dimensions—physical,
administrative, and software.

Physical faults:Physical faults causing data loss in-
clude disk media faults [35, 70], theft [23], fire [7], and
wider geographical catastrophes [11]. These faults can
result in data loss at a single node or spanning multiple
nodes at a site or in a region.

Administrative and client-side faults:Accidental
misconfiguration by system administrators [40, 49], de-
liberate insider sabotage [27, 32], or business failures
leading to bankruptcy [24] can lead to data corruption
or loss. Clients can also delete data accidentally by, for
example, executing “rm -r *”. Administrator and client
faults can be particularly devastating because they can
affect replicas across otherwise isolated subsystems. For
instance [27], a system administrator not only deleted
data but also stole the only backup tape after he was
fired, resulting in financial damages in excess of $10
million and layoff of 80 employees.

Software faults:Software bugs [53, 71] in file sys-
tems, viruses [18], worms [66], and Trojan horses can
delete or corrupt data. A vivid example of threats due to
malware is the recent phenomenon of ransomware [20]
where an attacker encrypts a user’s data and withholds
the encryption key until a ransom is paid.

Of course, any of the listed faults may occur rarely.
But at the scale of decades, it becomes risky to assume
that no rare events will occur. It is important to note that
some of these failures [7, 52, 63] are often correlated re-
sulting in simultaneous data loss at multiple nodes while
others [53] are more likely to occur independently.
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Fig. 1: SafeStore architecture

Replication mechanisms optimized for one or the
other type of failure may not be optimal in this setting
where both failure types can happen.
Limitations of existing practice. Most existing ap-
proaches to data storage face two problems that are par-
ticularly acute in our target environments of individuals
and small/medium businesses: (1) they depend too heav-
ily on the operator or (2) they provide insufficient fault
isolation in at least some dimensions.

For example, traditional removable-media-based-
systems (e.g., tape, DVD-R) systems are labor inten-
sive, which hurts durability in the target environments
because users frequently fail to back their data up, fail
to transport media off-site, or commit errors in the
backup/restore process [25]. The relatively high risk of
robot and media failures [3] and slow mean time to re-
cover [45] are also limitations.

Similarly, although on-site disk-based [4, 16] backup
systems speed backup/recovery, use reliable media com-
pared to tapes, and even isolate client failures by main-
taining multiple versions of data, they are vulnerable to
physical site, administrative, and software failures.

Finally, network storage service providers (SSPs) [1,
2, 15, 21] are a promising alternative as they provide ge-
ographical and administrative isolation from users and
they ride the technology trend of falling network and
hardware costs to reduce the data-owner’s effort. But
they are still vulnerable to administrative failures at
the service providers [9], organizational failures (e.g.,
bankruptcy [24, 42]), and operator errors [28]. They thus
fail to fully meet the challenges of a durable storage sys-
tem. We do, however, make use of SSPs as a component
of SafeStore.

2.2 SafeStore architecture

As shown in Figure 1, SafeStore uses the following de-
sign principles to provide high durability by tolerating
the broad range of threats outlined above while keeping
the architecture practical, with cost, performance, and
availability competitive with traditional systems.

Efficiency via 2-level architecture. SafeStore uses a
two-level architecture in which the data owner’slocal

server ( ©1 in Figure 1) acts as a cache and write buffer
while durable storage is provided by multiple remote
storage service providersSSPs©2. The local server could
be running on the client’s machine or a different ma-
chine. This division of labor has two consequences.
First, performance, availability, and network cost are
improved because most accesses are served locally; we
show this is crucial in Section 3. Second, management
cost is improved because the requirements on the local
system are limited (local storage is soft state, so local
failures have limited consequences) and critical man-
agement challenges are shifted to the SSPs, which can
have excellent economies of scale for managing large
data storage systems [1, 26, 42].

Aggressive isolation for durability. We apply the
principle of aggressive isolation in order to protect data
from the broad range of threats described above.

• Autonomous SSPs:SafeStore stores data redundantly
across multiple autonomous SSPs (©2 in Figure 1). Di-
verse SSPs are chosen to minimize the likelihood of
common-mode failures across SSPs. For example,
SSPs can be external commercial service providers [1,
2, 15, 21], that are geographically distributed, run by
different companies, and based on different software
stacks. Although we focus onout-sourcedSSPs, large
organizations can use our architecture within-sourced
storage across autonomous entities within their orga-
nization (e.g., different campuses in a university sys-
tem.)

• Audit: Aggressive isolation alone is not enough to
provide high durability as data fragment failures ac-
cumulate over time. On the contrary, aggressive iso-
lation can adversely affect data durability because the
data owner has little ability to enforce or monitor the
SSPs’ internal design or operation to ensure that SSPs
follow best practices. We provide an end-to-end au-
dit interface (©3 in Figure 1) to detect data loss and
thereby bound mean time to recover (MTTR), which
in turn increases mean time to data loss (MTTDL).
In Section 4 we describe our audit interface and show
how audits limit the damage that poorly-run SSPs can
inflict on overall durability.



• Restricted interface:SafeStore must minimize the
likelihood that erroneous operation of one subsystem
compromises the integrity of another [47]. In partic-
ular, because SSPs all interact with the local server,
we must restrict that interface. For example, we must
protect against careless users, malicious insiders, or
devious malware at the clients or local server that mis-
takenly delete or modify data. SafeStore’s restricted
SSP interface©4 provides temporal isolation via the
abstraction of versioned write-once-read-many stor-
age so that a future error cannot damage existing data.

Making isolation practical. Although durability is
our primary goal, the architecture must still be econom-
ically viable.
• Efficient data replication:The SafeStore architecture

defines a new interface that allows the local server
to realize near-optimal durability usinginformed hi-
erarchical erasure codingmechanism, where SSPs
expose internal redundancy. Our interface does not
restrict SSP’s autonomy in choosing internal stor-
age organization (replication mechanism, redundancy
level, hardware platform, software stack, administra-
tive policies, geographic location, etc.) Section 3
shows that our new interface and replication mech-
anism provides orders of magnitude better durability
than oblivious hierarchical encodingbased systems
using existing black-box based interfaces [1, 2, 21].

• Efficient audit mechanism:To make audits of SSPs
practical, we use a novel audit protocol that, like real
world financial audits, uses self-reporting whereby
auditor offloads most of the audit work to the audi-
tee (SSP) in order to reduce the overall system re-
sources required for audits. However, our audit takes
the form of a challenge-response protocol with oc-
casional spot-checks that ensure that an auditee that
generates improper responses is quickly discovered
and that such a discovery is associated with a cryp-
tographic proof of misbehavior [30].

• Other optimizations:We use several optimizations to
reduce overhead and downtime in order to make sys-
tem practical and economically viable. First, we use a
fast recovery mechanism to quickly recover from data
loss at a local server where the local server comes on-
line as soon as the meta-data is recovered from re-
mote SSPs even while data recovery is going on in
the background. Second, we use block level version-
ing to reduce storage and network overhead involved
in maintaining multiple versions of files.

2.3 Economic viability

In this section, we consider the economic viability of
our storage system architecture in two different settings,
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Fig. 2: Comparison of SafeStore cost v. accesses to remote
storage (as a percentage of straw-man Standalone local stor-
age) varies.

outsourced storage using commercial SSPs and feder-
ated storage using in-house but autonomous SSPs, and
calibrate the costs by comparing with a less-durable lo-
cal storage system.

We consider three components to storage cost: hard-
ware resources, administration, and—for outsourced
storage—profit. Table 1 summarizes our basic assump-
tions for a straw-manStandalonelocal storage system
and for the local owner and SSP parts of a SafeStore
system. In column B, we estimate the raw hardware and
administrative costs that might be paid by an in-house
SSP. We base our storage hardware costs on estimated
full-system 5-year total cost of ownership (TCO) costs
in 2006 for large-scale internet services such as Inter-
net Archive [26]. Note that using the same storage cost
for a large-scale, specialized SSP and for smaller data
owners and Standalone systems is conservative in that
it may overstate the relative additional cost of adding
SSPs. For network resources, we base our costs on pub-
lished rates in 2006 [17]. For administrative costs, we
use Gray’s estimate that highly efficient internet services
require about 1 administrator to manage 100TB while
smaller enterprises are typically closer to one adminis-
trator per 10TB but can range from one per 1TB to 1
per 100TB [50] (Gray notes, “But the real cost of stor-
age is management” [50]). Note that we assume that by
transforming local storage into a soft-state cache, Safe-
Store simplifies local storage administration. We there-
fore estimate local hardware and administrative costs at
1 admin per 100TB.

In Figure 2, the storage cost of in-house SSP includes
SafeStore’s hardware (cpu, storage, network) and ad-
ministrative costs. We also plot the straw-man local
storage system with 1, 10, or 100 TB per administrator.
The outsourced SSP lines show SafeStore costs assum-
ing SSPs prices include a profit by using Amazon’s S3



Standalone SafeStore In-house SafeStore SSP (Cost+Profit)

Storage $30/TB/month [26] $30/TB/month [26] $150/TB/month [1]
Network NA $200/TB [17] $200/TB [1]
Admin 1 admin/[1,10,100]TB ([inefficient,typical,optimized])[50] 1 admin/100TB [50] Included [1]

Table 1: System cost assumptions. Note that aStandalonesystem makes no provision for isolated backup and is used forcost
comparison only.
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storage service pricing. Three points stand out. First,
additional replication to SSPs increases cost (as inter-
SSP data encoding, as discussed in section 3, is raised
from (3,2) to (3,1)), and the network cost rises rapidly
as the remote access rate increases. These factors mo-
tivate SafeStore’s architectural decisions to (1) use ef-
ficient encoding and (2) minimize network traffic with
a large local cache that fully replicates all stored state.
Second, when SSPs are able to exploit economies of
scale to reduce administrative costs below those of their
customers, SafeStore can reduce overall system costs
even when compared to a less-durable Standalone local-
storage-only system. Third, even for customers with
highly-optimized administrative costs, as long as most
requests are filtered by the local cache, SafeStore im-
poses relatively modest additional costs that may be ac-
ceptable if it succeeds in improving durability.

The rest of the paper is organized as follows. First,
in Section 3 we present and and evaluate our novelin-
formed hierarchical erasure codingmechanism. In Sec-
tion 4, we address SafeStore’s audit protocol. Later, in
Section 5 we describe the SafeStore interfaces and im-
plementation. We evaluate the prototype in Section 6.
Finally, we present the related work in Section 7.

3 Data replication interface

This section describes a new replication interface to
achieve near-optimal data durability while limiting the
internal details exposed by SSPs, controlling replication
cost, and maximizing fault isolation.

As shown in Figure 3, SafeStore uses hierarchical en-
coding comprising inter-SSP and intra-SSP redundancy:
First, it stores data redundantly across different SSPs,
and then each SSP internally replicates data entrusted to

it as it sees fit. Hierarchical encoding is the natural way
to replicate data in our setting as it tries to maximize
fault-isolation across SSPs while allowing SSP’s auton-
omy in choosing an appropriate internal data replication
mechanism. Different replication mechanisms such as
erasure coding [57], RAID [35], or full replication can
be used to store data redundantly at inter-SSP and intra-
SSP levels (any replication mechanism can be viewed as
some form of (k,l) encoding [68] from durability per-
spective, where l out of k encoded fragments are re-
quired to reconstruct data). However, it requires proper
balance between inter-SSP and intra-SSP redundancies
to maximize end-end durability for a fixed storage over-
head. For example, consider a system willing to pay an
overall 6x redundancy cost using 3 SSPs with 8 nodes
each. If, for example, each SSP only provides the option
of (8,2) intra-SSP encoding, then we can use at most
(3,2) inter-SSP encoding. This combination gives gives
4 9’s less durability for the same overhead compared to
a system that uses (3,1) encoding at the inter-SSP level
and (8,4) encoding at the intra-SSP level at all the SSPs.

3.1 Model

The overall storage overhead to store a data object is
(n0/m0 + n1/m1 + ...nk−1/mk−1)/l , when a data object
is hierarchically encoded (as shown in Figure 3) us-
ing (k, l) erasure coding acrossk SSPs, and SSPs 0
throughk− 1 internally use erasure codings(n0,m0),
(n1,m1),....(nk−1,mk−1), respectively. We assume that
the number of SSPs(k) is fixed and a data object is (pos-
sibly redundantly) stored at all SSPs. We do not allow
varying k as it requires additional internal information
about various SSPs (MTTF of nodes, number of nodes,
etc.) which may not be available in order to choose op-
timal set of k nodes. Instead, we tackle the problem of
finding optimal distribution of inter-SSP and intra-SSP
redundancies for a fixed k. The end-to-end data dura-
bility can be estimated as a function of these variables
using a simple analytical model, detailed in Appendix A
of our extended report [46], that considers two classes
of faults. Node faults(e.g. physical faults like sector
failures, disk crashes, etc.) occur within an SSP and
affect just one fragment of an encoded object stored at
the SSP.SSP faults(e.g., administrator errors, organi-
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Fig. 4: (a) Durability with Black-box interface with fixed intra-SSP redundancy (b) Informed hierarchical encoding (c)Informed
hierarchical encoding with non-uniform distribution

zational failures, geographical failures, etc.) are instead
simultaneous or near-simultaneous failures that take out
all fragments across which an object is stored within an
SSP. To illustrate the approach, we consider a baseline
system consisting of 3 SSPs with 8 nodes each. We use a
baseline MTTDL of 10 years due to invidual node faults
and 100 years for SSP failures and assume both are in-
dependent and identically distributed. We use MTTR of
data of 2 days (e.g. to detect and replace a faulty disk)
for node faults and 10 days for SSP failures. We use the
probability of data loss of an object during a 10 year pe-
riod to characterize durability because expressing end-
to-end durability as MTTDL can be misleading [35] (al-
though MTTDL can be easily computed from the prob-
ability of data loss as shown in Appendix A. Later, we
change the distribution of nodes across SSPs, MTTDL
and MTTR of node failures within SSPs, to model di-
verse SSPs. The conclusions that we draw here are gen-
eral and not specific to this setup; we find similar trends
when we change the total number of nodes, as well as
MTTDL and MTTR of correlatedSSP faults.

3.2 Informed hierarchical encoding

A client can maximize end-to-end durability if it can
control both intra-SSP and inter-SSP redundancies.
However, current black-box storage interfaces exported
by commercial outsourced SSPs [1, 2, 21] do not allow
clients to change intra-SSP redundancies. With such a
black-box interface, clients performoblivious hierarchi-
cal encodingas they control only inter-SSP redundancy.
Figure 4(a) plots the optimal durability achieved by an
idealsystem that has full control of inter-SSP and intra-
SSP redundancy and a system usingoblivious hierarchi-
cal encoding. The latter system has 3 lines for differ-
ent fixed intra-SSP redundancies of 1, 2, and 4, where
each line has 3 points for each of the 3 different inter-
SSP encodings((3,1), (3,2) and (3,3)) that a client can
choose with such a black-box interface. Two conclu-
sions emerge. First, for a given storage overhead, the

probability of data loss of anidealsystem is often orders
of magnitude lower than a system usingoblivious hier-
archical encoding, which therefore is several 9’s short
of optimal durability. Second, a system usingoblivious
hierarchical encodingoften requires 2x-4x more storage
thanideal to achieve the same durability.

To improve on this situation, SafeStore describes an
interface that allows clients to realize near-optimal dura-
bility using informed hierarchical encodingby exercis-
ing additional control on intra-SSP redundancies. With
this interface, each SSP exposes the set of redundancy
factors that it is willing to support. For example, an SSP
with 4 internal nodes can expose redundancy factors of
1 (no redundancy), 1.33, 2, and 4 corresponding, respec-
tively, to the (4,4), (4,3), (4,2) and (4,1) encodings used
internally.

Our approach to achieve near-optimal end-to-end
durability is motivated by the stair-like shape of the
curve tracking the durability ofideal as a function of
storage overhead (Figure 4(a)). For a fixed storage over-
head, there is a tradeoff between inter-SSP and intra-SSP
redundancies, as a given overheadO can be expressed
as 1/l × (r0 + r1 + ..rk−1), when(k, l) encoding is used
acrossk SSPs in the system with intra-SSP redundan-
cies ofr0 to rk−1 (wherer i = ni/mi). Figure 4(a) shows
that durability increases dramatically (moving down one
step in the figure) when inter-SSP redundancy increases,
but does not improve appreciably when additional stor-
age is used to increase intra-SSP redundancy beyond a
threshold that is close to but greater than 1. This obser-
vation is backed by mathematical analysis as explained
in observation 1 of Appendix A.

Hence, we propose a heuristic biased in favor of
spending storage to maximize inter-SSP redundancy as
follows:
• First, for a given numberk of SSPs, we maximize the

inter-SSP redundancy factor by minimizingl . In par-
ticular, for each SSPi, we choose the minimum re-
dundancy factorr ′i >1 exposed byi, and we compute



l asl = ⌊(r ′0 + r ′1 + ...r ′k−1)/O⌋.

• Next, we distribute the remaining overhead (O−1/l×
(r ′0 + r ′1 + ..r ′k−1)) among the SSPs to minimize the
standard deviation of the intra-SSP redundancy fac-
tors r i that are ultimately used by the different SSPs.
We minimize standard deviation by initializing it to
the lowest possible value (0%) and then distribute
overhead across all intra-SSP redundancies so that the
deviation is within the value and new intra-SSP re-
dundancies are allowed by SSPs. If we do not find a
possible set of allowable intra-SSP redundancies then
we relax standard deviation constraint by increasing
it gradually and follow the above step until we find an
allowable set of intra-SSP redundancies.

The first rule is used to maximize inter-SSP redundancy
and the second rule is to ensure that intra-SSP redun-
dancies are uniformly distributed across SSPs. We try
to distribute redundancy uniformly across all SSPs oth-
erwise SSPs with small or no redundancy tend to loose
objects faster and require expensive inter-SSP recovery
to recover from such failures.
Figure 4(b) shows that this new approach, which we
call informed hierarchical coding, achieves near opti-
mal durability in a setting where three SSPs have the
same number of nodes (8 each) and the same MTTDL
and MTTR for internal node failures. These assump-
tions, however, may not hold in practice, as different
SSPs are likely to have a different number of nodes,
with different MTTDLs and MTTRs. Figure 4(c) shows
the result of an experiment in which SSPs have a differ-
ent number of nodes—and, therefore, expose different
sets of redundancy factors. We still use 24 nodes, but
we distribute them non-uniformly (14, 7, 3) across the
SSPs: informed hierarchical encoding continues to pro-
vide near-optimal durability. This continues to be true
even when there is a skew in MTTDL and MTTR (due to
node failures) across SSPs. For instance, Figure 5 uses
the same non-uniform node distribution of Figure 4(c),
but the (MTTDL, MTTR) values for node failures now
differ across SSPs—they are, respectively, (10 years, 2
days), (5 years, 3 days), and (3 years, 5 days). Note that,
by assigning the worst (MTTDL, MTTR) for node fail-
ures to the SSP with least number of nodes, we are con-
sidering a worst-case scenario for informed hierarchical
encoding.

These results are not surprising in light of our dis-
cussion of Figure 4(a): durability depends mainly on
maximizing inter-SSP redundancy and it is only slightly
affected by the internal data management of individ-
ual SSPs. In Appendix D we study the sensitivity of
informed hierarchical encoding to changes in the total

number of nodes used to store data across all SSPs and
in MTTDL and MTTR for SSP failures: they all confirm
the conclusion that a simple interface that allows SSPs
to expose the redundancy factors they support is all it is
needed to achieve, through our simple informed hierar-
chical encoding mechanism, near optimal durability.

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1  10

P
ro

ba
bi

lit
y 

of
 d

at
a 

lo
ss

 in
 1

0 
Y

ea
rs

Storage overhead

Informed

Ideal

Fig. 5: Durability with different MTTDL and MTTR for node
failures across SSPs

SSPs can provide such an interface as part of their
SLA (service level agreement) and charge clients based
on the redundancy factor they choose when they store a
data object. The interface is designed to limit the amount
of detail that an SSP must expose about the internal
organization. For example, an SSP with 1000 servers
each with 10 disks might only expose redundancy op-
tions (1.0, 1.1, 1.5, 2.0, 4.0, 10.0), revealing little about
its architecture. Note that the proposed interface could
allow a dishonest SSP to cheat the client by using less
redundancy than advertised. The impact of such false
advertising is limited by two factors: First, as observed
above, our design is relatively insensitive to variations in
intra-SSP redundancy. Second, the end to end audit pro-
tocol described in the next section limits the worst-case
damage any SSP can inflict.

4 Audit
We need an effective audit mechanism to quickly detect
data losses at SSPs so that data can be recovered be-
fore multiple component failures resulting in unrecover-
able loss. An SSPshouldsafeguard the data entrusted to
it by following best practices like monitoring hardware
health [65], spreading coded data across drives and con-
trollers [35] or geographically distributed data centers,
periodically scanning and correcting latent errors [64],
and quickly notifying a data owner of any lost data so
that the owner can restore the data from other SSPs and
maintain a desired replication level. However, the prin-
ciple of isolation argues against blindly assuming SSPs
are flawless system designers and operators for two rea-
sons. First, SSPs are separate administrative entities,



and their internal details of operation may not be veri-
fiable by data owners. Second, given the imperfections
of software [18, 53, 71], operators [40, 49], and hard-
ware [35, 70], even name-brand SSPs may encounter
unexpected issues and silently lose customer data [9,
14]. Auditing SSP data storage embodies the end-to-
end principle (in almost exactly the form it was first
described) [61], and frequent auditing ensures a short
Mean Time To Detect (MTTD) data loss, which helps
limit worst-case Mean Time To Recover (MTTR). It is
important to reduce MTTR in order to increase MTTDL
as a good replication mechanism alone cannot improve
MTTDL over a long time-duration spanning decades.

The technical challenge to auditing is to provide an
end-to-end guarantee on data integrity while minimiz-
ing cost. These goals rule out simply reading stored data
across the network as too expensive (see Figure 2) and,
similarly, just retrieving a hash of the data as not pro-
viding an end-to-end guarantee (the SSP may be storing
the hash not the data.). Furthermore, the audit proto-
col must work with data erasure-coded across SSPs, so
a simple scheme that sends a challenge to multiple iden-
tical replicas and then compare the responses such as
those in LOCKSS [47] and Samsara [37] do not work.
We must therefore devise an inexpensive audit protocol
despite the fact that no two replicas store the same data.

To reduce audit cost, SafeStore’s audit protocol bor-
rows a strategy from real-world audits: we push most
of the work onto the auditee and ask the auditor to
spot check the auditee’s reports. Our reliance on self-
reporting by SSPs drives two aspects of the protocol
design. First, the protocol is believed to beshortcut
free–audit responses from SSPs are guaranteed to em-
body end-to-end checks on data storage– under the as-
sumption that collision resistant modification detection
codes [48] exist. Second, the protocol isexternally ver-
ifiable andnon-repudiable—falsified SSP audit replies
are quickly detected (with high probability) and deliber-
ate falsifications can be proven to any third party1.

4.1 Audit protocol

The audit protocol proceeds in three phases: (1) data
storage, (2) routine audit, and (3) spot check. Note that
the auditor may be co-located with or separate from the
owner. For example, audit may be outsourced to an ex-
ternal auditor when data owners are offline for extended
periods. To authorize SSPs to respond to auditor re-
quests, the owner signs a certificate granting audit rights

1We assume that provably deliberate falsification can be punished
via contractual or other out-of-band means [54], but details are outside
the scope of this paper.

to the auditor’s public key, and all requests from the au-
ditor are authenticated against such a certificate (these
authentication handshakes are omitted in the description
below.) We describe the high level protocol here and
detail it in Appendix B.

Data storage. When an object is stored at an SSP, the
SSP signs and returns to the data owner areceiptthat in-
cludes the object ID, cryptographic hash of the data, and
storage expiration time. The data owner in turn verifies
that the signed hash matches the data it sent and that the
receipt is not malformed with an incorrect id or expira-
tion time. If the data and hash fail to match, the owner
retries sending the write message (data could have been
corrupted in the transmission); repeated failures indicate
a malfunctioning SSP and generate a notification to the
data owner. As we detail in Section 5, SSPs do not pro-
vide a delete interface, so the expiration time indicates
when the SSP will garbage collect the data. The data
owner collects such valid receipts, encodes them, and
spreads them across SSPs for durable storage.
Routine audit. The auditor sends to an SSP a list of
object IDs and a random challenge. The SSP com-
putes a cryptographic hash on both the challenge and
the data. The SSP sends a signed message to the au-
ditor that includes the object IDs, the current time, the
challenge, and the hash computed on the challenge and
the data (H(challenge+dataob jId)). The auditor buffers
the challenge responses if the messages are well-formed,
where a message is considered to be well-formed if none
of the following conditions are true: the signature does
not match the message, the response with an unaccept-
ably stale timestamp, the response with the wrong chal-
lenge, or the response indicates error code (e.g., he SSP
detected data is corrupt via internal checks or the data
has expired). If the auditor does not receive any response
from the SSP or if it receives a malformed message, the
auditor notifies the data owner, and the data owner re-
constructs the data via cached state or other SSPs and
stores the lost fragment again. Of course, the owner may
choose to switch SSPs before restoring the data and/or
may extract penalties under their service level agreement
(SLA) with the SSP, but such decisions are outside the
scope of the protocol.

We conjecture that the audit response is shortcut free:
an SSP must possess object’s data to compute the correct
hash. An honest SSP verifies the data integrity against
the challenge-free hash stored at the creation time be-
fore sending a well-formed challenge response. If the
integrity check fails (data is lost or corrupted) it sends
the error code for lost data to the auditor. However, a
dishonestSSP can choose to send a syntactically well-



 30

 25

 20

 15

 10

 5

 1

 1  10  100  1000

M
T

T
D

 d
at

a 
lo

ss
 (

da
ys

)

Cost (% H/W Cost)

Remote auditor α=100%

Local auditor α=1%,10%,100%

Remote auditor α=1%

Remote auditor α=10%

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1  10

P
ro

ba
bi

lit
y 

of
 d

at
a 

lo
ss

 in
 1

0 
Y

ea
rs

Maximum available storage overhead

MTTD (10 days)

MTTD (20 days)

MTTD (2 days)

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 1e-07  1e-06  1e-05  1e-04  0.001  0.01  0.1  1

P
ro

ba
bi

lit
y 

of
 d

at
a 

lo
ss

 in
 1

0 
Y

ea
rs

Percentage data loss at a dishonest SSP

Remote auditor - 20% audit cost

Local auditor - 20% audit cost

Oracle auditor

No audit 

(a) (b) (c)

Fig. 6: (a) Time to detect SSP data loss via audit with varyingamounts of resources dedicated to audit overhead assuming honest
SSPs. (b) Durability with varying MTTD. (c) Impact on overall durability with a dishonest SSP. The audit cost model for hardware,
storage, and network bandwidth are described in [46].

formed audit response with bogus hash value when the
data is corrupted or lost. Note that the auditor just
buffers well-formed messages and does not verify the
integrity of the data objects covered by the audit in this
phase. Yet, routine audits serve two key purposes. First,
when performed against honest SSPs, they provide end-
to-end guarantees about the integrity of the data objects
covered by the audit. Second, they force dishonest SSPs
to produce a signed, non-repudiable statement about the
integrity of the data objects covered by the audit.
Spot check. In each round, after it receives audit re-
sponses in the routine audit phase, the auditor randomly
selectsα% of the objects to be spot checked. The auditor
then retrieves each object’s data (via the owner’s cache,
via the SSP, or via other SSPs) and verifies that the cryp-
tographic hash of the challenge and data matches the
challenge response sent by the SSP in the routine au-
dit phase. If there is a mismatch, the auditor informs the
data owner about the mismatch and provides the signed
audit response sent by the SSP. The data owner then
can create an externally-verifiable proof of misbehavior
(POM) [46] against the SSP: the receipt, the audit re-
sponse, and the object’s data. In particular, the receipt
is a signed statement with a hash of the data; the au-
dit reply a signed claim to be storing the data and that
a hash across a challenge and the data has a particular
value; and the data allows anyone to verify that the re-
ceipt and audit reply refer to that data but that the chal-
lenge computation was incorrect. Note that SafeStore
local server encrypts all data before storing it to SSPs,
so this proof may be presented to third parties without
leaking the plaintext object contents. Also, note that our
protocol works with erasure coding as the auditor can
reconstruct the data to be spot checked using redundant
data stored at other SSPs.

4.2 Durability and cost
In this section we examine how the low-cost audit proto-
col limits the damage from faulty SSPs. The SafeStore

protocol specifies that SSPs notify data owners imme-
diately of any data loss that the SSP cannot internally
recover so that the owner can restore the desired replica-
tion level using redundant data. Figures 4 and 5 illustrate
the durability of our system when the SSPs follow the re-
quirement and immediately report failures. As explained
below, Figure 6-(a) and (b) show that SafeStore still pro-
vides excellent data durability with low audit cost, if a
data owner is unlucky and selects apassiveSSP that vio-
lates the immediate-notify requirement and waits for an
audit of an object to report that it is missing. Figure 6-(c)
shows that if a data owner is really unlucky and selects
adishonestSSP that first loses some of the owner’s data
and then lies when audited to try to conceal that fact, the
owner’s data is still very likely to emerge unscathed. We
evaluate our audit protocol with 1TB of data stored re-
dundantly across three SSPs with inter-SSP encoding of
(3,1) (Appendix D has results for (3,2) encoding).

First, assume that SSPs arepassiveand wait for an
audit to check data integrity. Because the protocol uses
relatively cheap processing at the SSP to reduce data
transfers across the wide area network, it is able to scan
through the system’s data relatively frequently without
raising system costs too much. Figure 6-(a) plots the
mean time to detect data loss (MTTD) at apassiveSSP
as a function of the cost of hardware resources (storage,
network, and cpu) dedicated to auditing, expressed as
a percentage of the cost of the system’s total hardware
resources as detailed in the caption. We also vary the
fraction of objects that are spot checked in each audit
round (α) for both the cases with local (co-located with
the data owner) and remote (separated over WAN) au-
ditors. We reach following conclusions: (1) As we in-
crease the audit budget we can audit more frequently and
the time to detect data loss falls rapidly. (2) audit costs
with local and remote auditors is almost the same when
α is less than 1%. (3) The audit cost with local audi-
tor does not vary much with increasingα (as there is no



additional network overhead in retrieving data from the
local data owner) whereas the audit cost for the remote
auditor increases with increasingα (due to additional
network overhead in retrieving data over the WAN). (4)
Overall, if a system dedicates 20% of resources to audit-
ing, we can detect a lost data block within a week (with
a local or a remote auditor withα = 1%).

Given this information, Figure 6-(b) shows the mod-
est impact on overall data durability of increasing the
time to detect and correct such failures when we assume
that all SSPs arepassiveand SafeStore relies on audit-
ing rather than immediate self reporting to trigger data
recovery.

Now consider the possibility of an SSP trying to
brazen its way through an audit of data it has lost us-
ing a made-up value purporting to be the hash of the
challenge and data. The BAR model [30] argues for rea-
soning about systems spanning multiple administrative
domains by assuming that most entities are rational and
will act to maximize their utility and that a small num-
ber may be Byzantine and may act arbitrarily.he audit
protocol encourages rational SSPs that lose data to re-
spond to audits honestly. In particular, we prove in Ap-
pendix C that under reasonable assumptions about the
penalty for an honest failure versus the penalty for gen-
erating a proof of misbehavior (POM), a rational SSP
will maximize its utility [30] by faithfully executing the
audit protocol as specified.

But suppose that through misconfiguration, malfunc-
tion, or malice, a node first loses data and then issues
dishonestaudit replies that claim that the node is storing
a set of objects that it does not have. The spot check
protocol ensures that if a node is missing even a small
fraction of the objects, such cheating is quickly discov-
ered with high probability. Furthermore, as that fraction
increases, the time to detect falls rapidly. The intuition
is simple: the probability of detecting a dishonest SSP
in k audits is given by

pk = 1− (1− p)k

wherep is the probability of detection in an audit, which
is given by

p =
∑m

i=1

(n
i

)(N−n
m−i

)

(N
m

) ,(if n≥ m)

p =
∑n

i=1

(m
i

)(N−m
n−i

)

(N
n

) ,(if n < m)

where N is the total number of data blocks stored at an
SSP, n is the number of blocks that are corrupted or lost
and m is the number of blocks that are spot checked,
α=(m/N)× 100.

WriteReceiptwrite (ID oid, byte data[], int64 size,
int32 type, int64 expire);

ReadReplyread(ID oid, int64 size, int32 type)
AttrReplyget attr (ID oid);
TTLReceiptextend expire(ID oid, int64 expire);

Table 2: SSP storage interface

Figure 6-(c) shows the overall impact on durability if
a node that has lost a fraction of objects maximizes the
time to detect these failures by generatingdishonestau-
dit replies. We fix the audit budget at 20% and measure
the durability of SafeStore with local auditor (withα at
100%) as well as remote auditor (withα at 1%). We also
plot the durability withoracle detectorwhich detects the
data loss immediately and triggers recovery. Note that
theoracle detectorline shows worse durability than the
lines in Figure 6-(b) because (b) shows durability for a
randomly selected 10-year period while (c) shows dura-
bility for a 10-year period that begins when one SSP has
already lost data. Without auditing (no audit), there is
significant risk of data loss reducing durability by three
9’s compared tooracle detector. Using our audit proto-
col with remote auditor, the figure shows that a cheating
SSP can introduce a non-negligible probability of small-
scale data loss because it takes multiple audit rounds to
detect the loss as it spot checks only 1% of data blocks.
But that the probability of data loss falls quickly and
comes closer tooracle detectorline (with in one 9 of
durability) as the amount of data at risk rises. Finally,
with a local auditor, data loss is detected in one audit
round independent of data loss percentage at the dishon-
est SSPs as a local auditor can spot check all the data. In
the presence of dishonest SSPs, our audit protocol im-
proves durability of our system by two 9’s over a system
with no audit at an additional audit cost of just 20%. The
overall durability of our system improves with increas-
ing audit budget and approaches theoracle detectorline
as described in Appendix D.

5 SSFS

We implement SSFS, a file system that embodies the
SafeStore architecture and protocol. In this section, we
first describe the SSP interface and our SSFS SSP im-
plementation. Then, we describe SSFS’s local server.

5.1 SSP

As Figure 1 shows, for long-term data retention SSFS
local servers store data redundantly across administra-
tively autonomous SSPs using erasure coding or full
replication. SafeStore SSPs provide a simple yet care-
fully defined object store interface to local servers as
shown in Table 2.



Two aspects of this interface are important. First, it
provides non-repudiable receipts for writes and expira-
tion extensions in order to support our spot-check-based
audit protocol. Second, it providestemporal isolationto
limit the data owner’s ability to change data that is cur-
rently stored [47]. In particular, the SafeStore SSP pro-
tocol (1) gives each object an absolute expiration time
and (2) allows a data owner to extend but not reduce an
object’s lifetime.

The temporal isolation guarantee is as follows: if an
SSP is storing a desired set of data at timet, an owner
can ensure that the current version is accessible until any
desired time in the future even if the local server suffers
an arbitrary failure.

This interface supports what we expect to be a typ-
ical usage pattern in which an owner creates a ladder
of backups at increasing granularity [62]. Suppose the
owner wishes to maintain yearly backups for each year
in the past 10 years, monthly backups for each month
of the current year, weekly backups for the last four
weeks, and daily backups for the last week. Using the
local server’s snapshot facility (see Section 5.2), on the
last day of the year, the local serverwrites all current
blocks that are not yet at the SSP with an expiration
date 10-years into the future and also iterates across the
most recent version of all remaining blocks and sends
extendexpirerequests with an expiration date 10-years
into the future. Similarly, on the last day of each month,
the local server writes all new blocks and extends the
most recent version of all blocks; notice that blocks not
modified during the current year may already have ex-
piration times beyond the 1-year target, but these exten-
sions will not reduce this time. Similarly, on the last day
of each week, the local server writes new blocks and
extends deadlines of the current version of blocks for
a month. And every night, the local server writes new
blocks and extends deadlines of the current version of all
blocks for a week. Of course, SSPs ignoreextendexpire
requests that would shorten an object’s expiration time.

SSP implementation. We have constructed a proto-
type SSFS SSP that supports all of the features described
in this paper including the interface for servers and the
interface for auditors. Internally, each SSP spreads data
across a set nodes using erasure coding with a redun-
dancy level specified for each data owner’s account at
account creation time.

For compatibility with legacy SSPs, we also imple-
ment a simplified SSP interface that allows data owners
to store data to Amazon’s S3 [1], which provides a sim-
ple non-versioned read/write/delete interface and which
does not support our optimized audit protocol.

Issues. There are three outstanding issues in our cur-
rent implementation. We believe all are manageable.
First, the approach relies on prompt failure/intrusion de-
tection: the shorter the period of time between when
a fault mistakenly deletes/modifies an object and the
owner realizes that she would prefer an older version,
the more current backup that will be available. For sim-
ple failures (e.g., total disk failure), it will be easy for a
data owner to quickly notice a problem. For more com-
plex failures (e.g., malware that randomly modifies one
bit in one file per day), detecting the problem is more
difficult. We do not advance the state of the art in intru-
sion detection or fault detection, but we encourage data
owners to make use of available tools [58, 65].

Second, in practice, it is likely that SSPs will provide
some protocol for deleting data early. We assume that
any such out-of-band early-delete mechanism is care-
fully designed to maximize resistance to erroneous dele-
tion by the data owner. For concreteness, we assume that
the payment stream for SSP services is well protected by
the data owner and that our SSP will delete data 90 days
after payment is stopped. So, a data owner can delete un-
wanted data by creating a new account, copying a subset
of data from the old account to the new account, and then
stopping payment on the old account. More sophisti-
cated variations (e.g., using threshold-key cryptography
to allow a quorum of independent administrators to sign
off on a delete request) are possible.

Third, SSFS is vulnerable to resource consumption
attacks: although an attacker who controls an owner’s
local server cannot reduce the integrity of data stored at
SSPs, the attacker can send large amounts of long-lived
garbage data and/or extend expirations farther than de-
sired for large amounts of the owner’s data stored at the
SSP. We conjecture that SSPs would typically employ a
quota system to bound resource consumption to within
some budget along with an out-of-band early delete
mechanism such as described in the previous paragraph
to recover from any resulting denial of service attack.

5.2 Local Server

Clients interact with SSFS through a local server. The
SSFS local server is a user level file system that exports
the NFS 2.0 interface to its clients. The local server
serves requests from local storage to improve the cost,
performance, and availability of the system. Remote
storage is used to store data durably to guard against lo-
cal failures. The local server encrypts (using SHA1 and
1024 bit Rabin key signature) and encodes [57] (if data
is not fully replicated) all data before sending it to re-
mote SSPs, and it transparently fetches, decodes and de-
crypts data from remote storage if it is not present in the



local cache. Our implementation thus supports policies
that reduce local space demands by garbage collecting
cold objects, but exploring such policies is future work;
our prototype local server simply stores local copies of
all objects.

All local server state except the encryption key and
list of SSPs is soft state: given these items, the local
server can recover the full filesystem. We assume both
are stored out of band (e.g., the owner burns them to a
CD at installation time and stores the CD in a safety de-
posit box). A more convenient (and thus more robust in
terms of data durability) but lower-security alternative is
to remember the list of SSPs and to encrypt the key with
a password, erasure code it, and store the key fragments
in well-known object IDs at the SSPs.

Snapshots: In addition to the standard NFS calls,
the SSFS local server provides a snapshot interface [16]
that supports file versioning for achieving temporal iso-
lation to tolerate client or administrator failures. A snap-
shot stores a copy in the local cache and also redun-
dantly stores encrypted, erasure-coded data across mul-
tiple SSPs using the remote storage interface.

Local storage is structured carefully to reduce stor-
age and performance overheads for maintaining multi-
ple versions of files. SSFS uses block-level version-
ing [16, 55] to reduce storage overhead by storing only
modified blocks in the older versions when a file is mod-
ified. For each old version, SSFS maintains ablock mask
andsizein a meta-data file for the older version. Then,
reads of the current version see no overhead, and reads
of the older version are satisfied by starting with the old
version and then fetching data blocks not present in the
old version from later versions by sequentially checking
the later versions until the block is found [55]. And as an
obvious extension for the common case of files modified
by appends: on an append, SSFS needs only to store the
old size (and not the block mask) as all blocks are stored
in later versions.

Other optimizations: SSFS uses a fast recovery
optimization to recover quickly from remote storage
when local data is lost due to local server failures (disk
crashes, fire, etc.) The SSFS local server recovers
quickly by coming online as soon as all metadata in-
formation (directories, inodes, and old-version informa-
tion) is recovered and then fetching file data to fill the
local cache in the background. If a missing block is
requested before it is recovered, it is fetched immedi-
ately on demand from the SSPs. Additionally, local stor-
age acts as a write-back cache where updates are propa-
gated to remote SSPs asynchronously so that client per-
formance is not affected by updates to remote storage.

6 Evaluation
To evaluate the practicality of the SafeStore architec-
ture, we evaluate our SSFS prototype via microbench-
marks selected to stress test three aspects of the design.
First, we examine performance overheads, then we look
at storage space overheads, and finally we evaluate re-
covery performance.

In our base setup, client, local server, and remote SSP
servers run on different machines that are connected by a
100 Mbit isolated network. For several experiments we
modify the network to synthetically model WAN behav-
ior. All of our machines use 933MHZ Intel Pentium III
processors with 256 MB RAM and run Linux version
2.4.7. We use (3,2) erasure coding or full replication
((3,1) encoding) to redundantly store backup data across
SSPs.

6.1 Performance

Figure 7 compares the performance of SSFS and a stan-
dard NFS server using the IOZONE [13] microbench-
mark. In this experiment, we measure the overhead of
SSFS’s bookkeeping to maintain version information,
but we do not take filesystem snapshots and hence no
data is sent to the remote SSPs. Figure 7(a),(b), and
(c) illustrates throughput for reads, throughput for syn-
chronous and asynchronous writes, and throughput ver-
sus latency for SSFS and stand alone NFS. In all cases,
SSFS’s throughput is within 12% of NFS.

Figure 8(a) examines the cost of snapshots. Note
SSFS sends snapshots to SSPs asynchronously, but we
have not lowered the priority of these background trans-
fers, so snapshot transfers can interfere with demand
requests. To evaluate this effect, we add snapshots to
the Postmark [19] benchmark, which models email/e-
commerce workloads. The benchmark initially creates
a pool of files and then performs a specified number of
transactions consisting of creating, deleting, reading, or
appending a file. We set file sizes to be between 100B
and 100KB and run 50000 transactions. To maximize
the stress on SSFS, we set the Postmark parameters to
maximize the fraction of append and create operations.
Then, we modify the benchmark to take frequent snap-
shots: we tell the server to create a new snapshot after
every 500 transactions. As shown in the Figure 8(a),
when no snapshots are taken SSFS takes 13% more time
than NFS due to overhead involved in maintaining mul-
tiple versions. Turning on frequent snapshots increases
the response time of SSFS (SSFS-snap in Figure 8(a)) by
40% due to additional overhead due to signing and trans-
mitting updates to SSPs. Finally, we vary network laten-
cies to SSPs to study the impact of WAN latencies on
performance when SSPs are geographically distributed
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over the Internet by introducing artificial delay (of 40
ms) at the SSP server. As shown in the Figure 8(a),
SSFS-WAN response time increases by less than an ad-
ditional 5%.

6.2 Storage overhead

Here, we evaluate the effectiveness of SSFS’s mecha-
nisms for limiting replication overhead. SSFS mini-
mizes storage overheads by using a versioning system
that stores the difference between versions of a file rather
than complete copies [55]. We compare the storage
overhead of SSFS’s versioning file system and compare
it with NFS storage that just keeps a copy of the lat-
est version and also a naive versioning NFS file system
(NFS-FR) that makes a complete copy of the file before
generating a new version. Figure 8(b) plots the storage
consumed by local storage (SSFS-LS) and storage at one
remote server (SSFS-RS) when we use a (3,1) encoding.
To expose the overheads of the versioning system, the
microbenchmark is simple: we append 10KB to a file
after every file system snapshot. SSFS’s local storage
takes a negligible amount of additional space compared
to non-versioned NFS storage. Remote storage pays a
somewhat higher overhead due to duplicate data storage
when appends do not fall on block boundaries and due
to additional metadata (integrity hashes, the signed write

request, expiry time of the file, etc.)
We also ran an experiment with the (3,2) encoding

at remote servers using Postmark benchmark with vary-
ing snapshot frequencies and observed similar results.
We omit these graphs for brevity. The above experi-
ments examine the case when the old and new versions
of data have much in common and test whether SSFS
can exploit such situations with low overhead. There is,
of course, no free lunch: if there is little in common be-
tween a user’s current data and old data, the system must
store both. Like SafeStore, Glacier uses a expire-then-
garbage collect approach to avoid inadvertent file dele-
tion, and their experience over several months of opera-
tion is that the space overheads are reasonable [41]. We
plan to confirm these results in a SafeStore context by
evaluating space overhead using the long-duration Har-
vard traces [38].

6.3 Recovery

We now evaluate SSFS recovery time and compare per-
formance with and without SSFS’s fast recovery opti-
mization that allows the local server to resume operation
as soon as it has recovered file system metadata and to
recover the rest of the system’s data in the background.

We also plot recovery time of SSFS from local stor-
age due to reboots of the local server. Figure 8(c) plots



recovery time as the number of 1KB files in the system
varies when the data is recovered from remote SSPs. We
see that local recovery is faster than the other two as it
recovers from the local disk and it outperforms the other
two by more than an order of magnitude for moderate
number of files in the system. We also observe that re-
mote recovery with optimization outperforms remote re-
covery without optimization by about 50% even with as
few as 10 files. Note that recovery time is high even
with the optimization as SSFS recovers all the metadata
( which involves reading from remote SSPs, verifying
the metadata integrity, decoding data from redundant
fragments, and finally decrypting the metadata) before
it starts serving the client requests. As part of our fu-
ture work, we intend to reduce the recovery time signifi-
cantly by bringing the system up immediately while the
metadata is fetched in the background like the existing
optimization for data.

7 Related work
Several recent studies [31, 60] have identified the chal-
lenges involved in building durable storage system for
multi-year timescales.

Flat erasure codingacross nodes [33, 36, 41, 69] does
not require detailed predictions of which sets of nodes
are likely to suffer correlated failures because it tolerates
any combinations of failures up to a maximum number
of nodes. However, flat encoding does not exploit the
opportunity to reduce replication costs when the system
can be structured to make some failure combinations
more likely than others. An alternative approach is to
usefull replication across sites that are not expected to
fail together [44, 47], but this can be expensive.

SafeStore is architected to increase the likelihood that
failures will be restricted to specific groups of nodes,
and it efficiently deploys storage within and across SSPs
to address such failures. Myriad [34] also argues for
a 2-level (cross-site, within-site) coding strategy, but
SafeStore’s architecture departs from Myriad in keep-
ing SSPs at arms-length from data owners by carefully
restricting the SSP interface and by including provisions
for efficient end-to-end auditing of black-box SSPs.

SafeStore is most similar in spirit to OceanStore [43]
in that we erasure code indelible, versioned data across
independent SSPs. But in pursuit of a more aggressive
“nomadic data” vision, OceanStore augments this ap-
proach with a sophisticated overlay-based infrastructure
for replication of location-independent objects that may
be accessed concurrently from various locations in the
network [56]. We gain considerable simplicity by using
a local soft-state server through which all user requests
pass and by focusing on storing data on a relatively small

set of specific, relatively conventional SSPs. We also
gain assurance in the workings of our SSPs through our
audit protocol.

Versioning file systems [16, 51, 59, 62, 67] provide
temporal isolation to tolerate client failures by keeping
multiple versions of files. We make use of this technique
but couple it with efficient, isolated, audited storage to
address a broader threat model.

We argue that highly durable storage systems should
audit data periodically to ensure data integrity and to
limit worst-case MTTR. Zero-knowledge-based audit
mechanisms [39, 48] are either network intensive or
CPU intensive as their main purpose is to audit data
without leaking any information about the data. Safe-
Store avoids the need for such expensive approaches by
encrypting data before storing it. We are then able to
offload audit duties to SSPs and probabilistically spot
check their results. LOCKSS [47] and Samsara [37] au-
dit data in P2P storage systems but assume that peers
store full replicas so that they can easily verify if peers
store identical data. SafeStore supports erasure coding
to reduce costs, so our audit mechanism does not require
SSPs to have fully replicated copies of data.

8 Conclusion
Achieving robust data storage on the scale of decades
forces us to reexamine storage architectures: a broad
range of threats that could be neglected over shorter
timescales must now be considered. SafeStore aggres-
sively applies the principle offault isolationalong ad-
ministrative, physical, and temporal dimensions. Anal-
ysis indicates that SafeStore can provide highly robust
storage and evaluation of an NFS prototype suggests that
the approach is practical.
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A Durability analysis
Here, we describe the analytical models for analyzing durability of hi-
erarchical encoding, flat erasure coding, and full replication. Consider
a system with n nodes spread acrossk groups (SSPs) withn1, n2,..nk
nodes respectively present in groups 1,2,...k. All nodes ina groupni

fail in a correlated fashion with probabilitypc due to a correlated fail-
ure events (fire, administrator failure) at an SSP. Also, a node fails
independently with a failure probabilitypu due to uncorrelated fail-
ure events (disk failures) at an SSP. In order to analyze durability over
some time duration, we first evaluate the durability of data in an epoch
and then aggregate it over multiple epochs spanning the duration as
in [68]. Given this failure model, durability of hierarchical encoding,
flat erasure coding, and full replication is described below

Overhead : Storage overhead of the system is

= 1/l × (n0/m0 +n1/m1 + ...+nk−1/lk−1)

= 1/l × (r0 + r1 + ...+ rk−1)

where r0, r1, ....rk−1 are the intra-SSP redundancies used by
SSPs 0,1,...k-1. The inter-SSP redundancy isk/l when (k,l) en-
coding is used to store data redundantly across SSPs.

Hierarchical encoding: Hierarchical encoding of data with (k,l)
erasure coding across SSPs and with (ni , mi ) encoding within an
SSP group i is given by

Random variable :Xi

Xi = 0, if < mi nodes are up in SSP i

= 1, if ≥ mi nodes are up in SSP i

Pr(Xi = 1) = (1− pc)×
ni

∑
j=mi

(

ni

j

)

(1− pu)
j pni− j

u ,

Durability of data in an epoch,De = Pr(
k

∑
i=1

Xi ≥ l)

Durability: Overall durability of data (using any replication mecha-
nism) for a time duration T is given by

Durability of data in time duration T,D

= 1-prob(data loss in time t≤ T)

= De
T/e

where e is the epoch length andDe is the durability of a given
replication mechanism in an epoch.
We set epoch length to MTTR min(MTTRu,MTTRc), where
MTTRu andMTTRc are mean time to receoveries from uncor-
related node failure with in SSP and correlated SSP failures. We
assume that failures in an epoch are not repaired before the end
of epoch in computingDe. The failures are assumed to be re-
paired before the start of next epoch (as we assume each epoch
instance as a fresh Bernoulli trial while computing overalldura-
bility D as shown above). Given this epoch length, we can com-
putepu andpc from MTTDL [31] due to ucorrelatednode fail-
ure (MTTDLu) and correlatedSSP failure(MTTDLc) events as

pu = MTTRu/MTTDLu

pc = MTTRc/MTTDLc

Observation 1: The overall durability does not improve much
by additional intra-SSP redundancies beyond a certain mini-
mum value whenpu << 1− pu. For most practical values of
MTTDLu (due to node failureof more than few years) and
MTTRu, pu << 1− pu. For example,pu/(1− pu) < 0.0002



for MTTDL due to node failure is 5 years and MTTR of 1 day.
It is explained as follows

Pr(Xi = 1) = (1− pc)×
ni

∑
j=mi

(

ni

j

)

(1− pu)
j pni− j

u ,

= (1− pc)× (1− pu)
ni × (1+

ni−mi

∑
j=1

(

ni

j

)

(pu/(1− pu))
j ),

≈ (1− pc)× (1− pu)
ni × (1+

α

∑
j=1

(

ni

j

)

(pu/(1− pu))
j ),

= (1− pc)×
ni

∑
j=α

(

ni

j

)

(1− pu)
j pni− j

u ,

whereα depends onni and pu/(1− pu), such that (α + 1) ¿¿
(ni −1)× pu/(1− pu)). For example,α ≈ ni −1, for ni (tens of
nodes),MTTDLu andMTTRu values of 5 years and 1 day. This
implies that overall durability does not improve much beyond
intra-SSP redundancy ofni/(ni −1).

Mean time to data loss (MTTDL): Durability of data in terms of
MTTDL is given by

MTTDL =
∞

∑
i=0

iDe
i(1−De) = De/(1−De)

whereDe is the durability of a given replication mechanism in
an epoch.

B Audit protocol
1. Data storage:

O : Data owner SSP,SSP’ : Storage service providers
O→ SSP: {ob jId,H(dataob jId ),expire}O,dataob jId
SSP→ O : {ob jId,H(dataob jId ),expire}SSP
O→ SSP′ : SSPid ,{ob jId,H(dataob jId ),expire}SSP

2. Routine audit:

A→ SSP: chal, listO f Ob jects
SSP→ A : {ob jId,chal,time,H(chal +dataob jId)}SSP

3. Spot check:

A→ O|SSP|SSP′ : list2O f Ob jects
O|SSP|SSP′ → A : dataob jId

POM = receiptandauditReplyare well-formed

and signed bySSP

ob jId = receiptob jId = auditReplyob jId

∧receiptexpires> auditReplytime

∧receiptH(ob jId) = auditReplyH(ob jId)

∧chal = auditReplychal

∧H(chal+data) 6= auditReplyH(chal+data)

C Audit analysis
Here we show that a rational [30] SSP (1) attempts to store data reli-
ably and (2) responds to audit requests honestly assuming anSLA that
specifies appropriate penalties relative to the underlyingcost of storing
data.

Definitions:

bserve Benefit for storing and
serving object until it ex-
pires

cstore Cost to store and serve ob-
ject until it expires
(including cost of serving
audit requests)

paudit Probability that object will
be audited before it expires

pspot Probability that an audit
reply will be spot-checked

penaltyh Penalty forhonest failure
of audit (see Section 4

penaltyd Penalty fordishonest fail-
ureof audit

• bserve > cstore∧ cstore < min(pauditpenaltyh, pauditpspotpenaltyd)
=⇒ A rational SSP attempts to store an object until it expires.

• penaltyh < pspotpenaltyd =⇒ A rational SSP that does not have
the data needed to reply to an audit request replies with anhonest
failure rather than with a audit reply that could be used to generate
a proof of misbehavior.

Example. These requirements are met by a system withc < $1
(reasonable if all objects are broken into 1GB or smaller pieces and
stored with expiration times of less than a year),b= 2c, paudit = 90%,
pspot = 1%, penaltyh = $5, andpenaltyd = $1000.

D Additional experiments
D.1 Informed hierarchical encoding

Here, we run additional experiments to study the sensitivity of our re-
sults to MTTDL and MTTR ofcorrelated failuresand total number
of nodes in the syste. As shown in Figure 9, the conclusions made
in section 3 continues to hold when MTTDL due tocorrelated fail-
ures is changed to 10 years from 100 years while MTTR is changes
from 10 days to 5 days asinformed hierarchical encodingcontinues
to follow the optimal. Figure 9(b) shows that our conclusions are true
even when we increase the number of nodes and also when they are
non-uniformly distributed.

D.2 Audit

Here, we run additional experiments to evaluate our audit protocol as
described in section 4. Figure 10(a) plots mean time to detect data loss
(MTTD) at a passiveSSP when (3,2) encoding is used to store 1TB
of data redundantly across 3 SSPs. MTTD falls rapidly with increas-
ing audit budget similar to the system that uses (3,1) as shown in the
Figure 6(a) of section 4. However, for a fixed MTTD, (3,2) encoding
incurs higher audit cost per byte stored compared to (3,1) because of
increased overhead due to reduced block size from 4KB (with (3,1)) to
2KB (with (3,2)). Figure 10 illustrates the overall impact on durability
in the presence ofdishonestSSPs with varying audit budgets. With
20% audit budget, we outperform a system with no audit by two 9’s
in the presence ofdishonestSSPs. As we increase our system’s audit
budget from 20% to 100%, durability of our system approachesthat of
a system withoracle detector.
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Fig. 9: Informed hierarchical encoding (a) With MTTDL ofcorrelated failuresset to 10 years with MTTR of 5 days, (b) With 69
total nodes distributed uniformly across 3 SSPs, (c) With 69nodes distributed non-uniformly across 3 SSPs as (10,20,39)
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