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Abstract

The functionality of packet processing applications is of-
ten partitioned into pipeline stages; these stages are al-
located a subset of the multiple processors available in
a packet processing system. The workload, and hence
the processing requirement, for each pipeline stage fluctu-
ates over time. Adapting processor allocations to pipeline
stages at run-time can improve robustness of the system
to traffic fluctuations, can reduce processor provisioning
requirement of the system, and can conserve energy. In
this paper, we present an on-line algorithm for adapting
processor allocations while ensuring that the additional
delay suffered by packets as a result of adaptation is deter-
ministically bounded. The resulting Processor Allocation
Algorithm (PAL) is simple, but it allocates only as many
processors to stages as needed to meet packet delay guar-
antees, accounts for system reconfiguration overheads,
and copes with the unpredictability of packet arrival pat-
terns. A key contribution of PAL is its generality; it cap-
tures the adaptation opportunities in the system as a finite
state automaton (FSA)—the methodology for constructing
the FSA can be applied to a variety of application require-
ments and system configurations. We demonstrate that for
a set of trace workloads PAL can reduce processor pro-
visioning level by 30-50%, reduce energy consumption by
60-70% while increasing the average packet processing
delay by less than 150µs. We describe our prototype im-
plementation for Intel’s IXP2400-based packet processing
system.

1 Introduction
Adapting processor allocations to pipeline stages of a
packet processing application at run-time can improve ro-
bustness of the system to traffic fluctuations, can reduce
processor provisioning requirement of the system, and can
conserve energy. In this paper, we design, implement,
and evaluate an adaptive processor allocation algorithm
for packet processing systems. In what follows, first we
discuss the background, the problem/opportunity, and the
challenges in designing an adaptive processor allocation
algorithm for packet processing systems. Then, we out-
line the contributions of this research.
Background Packet processing systems (PPS) are de-
signed to process network packets efficiently. Over the
past several years, the diversity and complexity of ap-
plications supported by PPS have increased dramatically.

Examples of applications supported by PPS include Vir-
tual Private Network (VPN), intrusion detection, content-
based load balancing, and protocol gateways. Most of
these applications are specified as graphs of functions and
the specific sequence of functions invoked for a packet
depends on the packet’s type (determined based on the
packet header and/or payload) [19, 21].

For most of these packet processing applications, the
time to process a packet is dominated by memory-access
latencies. Hence, an architecture containing a single,
high-performance processor is often not suitable for a
PPS. To mask memory access latencies, and thereby pro-
cess packets at high rates, most modern PPSs utilize mul-
tiple parallel processors. For instance, Intel’s IXP2800
network processor—a building block used in a wide-range
of PPSs—includes 16 RISC cores (referred to as micro-
engines) and an XScale controller.

To achieve high packet processing throughput in such
multi-processor environments, it is essential that the code
fragments used to process packets reside in instruction
caches. This is because, each packet processing applica-
tion can be thought of as a large loop that repeats for every
packet; to ensure high packet processing throughput, the
entire loop body must fit into the instruction cache. To-
day’s processors or cores within network processors, how-
ever, are configured with a very limited size instruction
store/caches (e.g., 4K instructions in Intel R©’s IXP2800
network processor); the limited instruction store is often
sufficient to hold code for a portion of the application,
but rarely enough to hold code for the entire application.
This leads to software designs in which the responsibility
for processing packets is partitioned into a set of pipeline
stages; further, the stages are mapped onto processors—
with each processor specialized to perform one task [1].
Partitioning applications into pipelined stages is also im-
portant for improving robustness of request-processing
systems [38].

The Problem/Opportunity Today, the allocation of pro-
cessors to pipeline stages of an application is done stati-
cally (at design-time). Consequently, to guarantee robust-
ness to fluctuations in the arrival rate for different types of
packets, packet processing systems often provision suffi-
cient number of processors to handle the expected maxi-
mum load for each pipeline stage. However, as illustrated
by Figure 1, the observed load fluctuates significantly over
time and at any instant is often substantially lower than the
maximum load [22, 25, 27, 29, 40].
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Figure 1: Packet arrivals per second over a day for the
Auckland trace [26]

In such settings, an adaptive run-time environment—
that can change the allocation of processors to pipeline
stages at run-time—can yield significant benefits. First,
the ability to match processor allocations to the processing
demands for each pipeline stage leads to system designs
that are robust to traffic fluctuations. An adaptive sys-
tem can allocate appropriate number of processors to each
stage even when the processing demands for a stage ex-
ceed design-time expectations, as long as the cumulative
demands do not exceed the provisioning level; further, this
simplifies the determination of the processor provision-
ing level for the entire system. Second, by multiplexing
processors among different types of packets, an adaptive
system can reduce the cumulative processor requirement
(or provisioning level), and thereby reduce system cost.
Finally, by reducing the power consumption of idle pro-
cessors (e.g., by turning off processors or running them
in low-power mode), an adaptive system can conserve en-
ergy.

The Challenges Although the properties of network
workloads and of packet processing hardware raise oppor-
tunities for adaptive processor allocations, they also raise
key challenges. First, because network traffic can fluc-
tuate at multiple time-scales, accurately predicting traf-
fic arrival patterns is difficult [25, 27, 29, 40] and inter-
vals of idleness or low load may often be short [22], so
it may be difficult to take advantage of periods of low
load. Second, allocating and releasing processors incurs
delay/overhead (generally of the order of a few hundred
microseconds [23]). If the system releases processors too
aggressively during idle periods, then because of the in-
herent delay in re-allocating processors, a burst of arriving
packets might suffer unacceptable delays or losses.

Our Contributions In this paper, we present an on-line
algorithm for adapting processor allocations while ensur-
ing that the additional delay suffered by packets as a re-
sult of adaptation is deterministically bounded. Our Pro-
cessor Allocation Algorithm (PAL) is simple, but it al-

locates only as many processors to stages as needed to
meet packet delay guarantees, accounts for system recon-
figuration overheads, and copes with the unpredictability
of packet arrival patterns. PAL, like active queue man-
agement algorithms [6, 9, 15], makes processor alloca-
tion/release decisions based only on the current queue
length; it does not rely on any predictions for future ar-
rival patterns beyond knowing the worst-case arrival rate.

• Given a current allocation of j processors for a stage
and a worst-case delay bound D, PAL allocates ad-
ditional processors only when the current allocation
is unable to process within D the sum of (a) all cur-
rently enqueued incoming packets and (b) the max-
imum number of packets that could arrive during a
processor’s allocation latency. Surprisingly, for real-
istic system configurations, a simple sufficient con-
dition to meet this general activation requirement is
to activate the j + 1st processor when the set of en-
queued packets first exceeds the number of packets
that j processors can process within D.

• Conversely, when the system has excess capacity,
PAL releases one or more processors when both (a)
the input queue becomes empty and (b) the minimum
time until the processors would be reactivated under
a worst-case arrival rate exceeds the latency for allo-
cating/releasing a processor.

A key contribution of PAL is its generality; it captures
the adaptation opportunities in the system as a finite state
automaton (FSA)—the methodology for constructing the
FSA can be applied to a variety of application require-
ments and system configurations.

There are four salient features of PAL. First, PAL of-
fers the flexibility to instantiate various policies for ea-
ger or lazy allocation and release of processors; this al-
lows PAL to tradeoff adaptation frequency/benefits with
the delay incurred by packets. Second, we show that
for acceptable values of the delay bound D, total proces-
sor requirement for PAL is within 10-30% of an ideal,
hypothetical setting that incurs no overhead for proces-
sor allocation/release. Third, PAL does not require pre-
diction of future packet arrival patterns. Given the vari-
ability of packet arrival rates in many network environ-
ments [25, 27, 29, 40], algorithms that do not depend on
on-line prediction are likely to be less complex and more
effective than those that do. Fourth, PAL deterministically
meets a configurable bound on packet processing delay.

We have evaluated PAL through simulations; further,
we have implemented a prototype adaptive processor al-
location framework for a packet processing system based
on Intel’s IXP2400 network processor. Using simulations,
we demonstrate that for a set of trace workloads PAL can
reduce processor provisioning level by 30-50%, reduce
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energy consumption by 60-70% while increasing the av-
erage packet processing delay by less than 150µs.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe our system model. In Sections 3, we
discuss our processor allocation algorithm. We describe
the results of our experimental evaluation in Section 4,
and discuss our prototype implementation in Section 5.
Related work is discussed in Section 6, and finally, Sec-
tion 7 summarizes our contributions.

2 System Model
We consider a packet processing system (PPS) with P
processors, and an application with S pipeline stages. At
any instant, a subset of the processors are allocated to each
pipeline stage. A packet arriving into the system is pro-
cessed by a subset of pipeline stages prior to departure.
Each pipeline stage is associated with a queue; packets are
queued into the stage’s queue until a processor becomes
available to service the packet (see Figure 2). We assume
that a packet queued for service at stage i can be served
by any of the processors allocated to stage i. Let the time
taken to service a packet at stage i be t i

pkt units; and each
stage service packets in the order of their arrival. On being
processed by a stage, the packet is queued either for pro-
cessing at the next processing stage or for transmission at
an outgoing link (once the packet has been processed by
all the required stages).
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Figure 2: System model. Ai, i ∈ [1,S ] denote the number
of processors allocated to pipeline stage i

Let the delay between when a packet is enqueued and
when its processing is complete by stage i be bounded
by Di. The arrival rate of packets into each queue may
fluctuate over time; hence, the allocation of processors to

Parameter Description

P Number of processors in the system
S Number of pipeline stages

Ri
arr Worst-case arrival rate for stage i

Ni
p Worst-case processor requirement for

stage i
t i
pkt Processing time per packet for stage i
tsw Switching delay (allocate/release pro-

cessor)
Di Delay guarantee for stage i

Table 1: System model parameters

pipeline stages changes over time. Let the maximum rate
of packet arrivals into queue for stage i be given by Ri

arr,
and let N i

p denote the maximum number of processors re-
quired to process the worst-case arrival rate Ri

arr within
the delay bound Di. Observe that for a non-adaptive sys-
tem, P = ∑S

i=1 Ni
p. An adaptive system can multiplex pro-

cessors among different pipeline stages; this facilitates a
system with provisioning level P < ∑S

i=1 Ni
p to provide de-

terministic delay bounds Di to each packet processed by
stage i. We assume that allocating and releasing a proces-
sor incurs a delay tsw. Table 1 summarizes these system
model parameters.

Throughout the paper, we consider a system provision-
ing level such that the total instantaneous processor de-
mands for all pipeline stages never exceeds the provi-
sioned capacity. This requirement is essential to provide
deterministic bounds on the delay experienced by packets
at each pipeline stage. Further, we only model the delay
incurred by packets while waiting for service by one of the
processors; we do not model delay incurred by packets in
the input or output ports.

3 Processor Allocation Algorithm

For each pipeline stage, at any instant, an adaptive system
should determine and allocate only as many processors as
needed to process packets before their processing dead-
lines. Adapting processor allocations dynamically has
three benefits. First, the ability to match processor allo-
cations to the processing demands for each pipeline stage
leads to system designs that are robust to traffic fluctua-
tions. An adaptive system can allocate appropriate num-
ber of processors to each stage even when the processing
demands for a stage exceeds design-time expectations, as
long as the cumulative demands do not exceed the provi-
sioning level; further, this simplifies the determination of
the processor provisioning level for the system. Second,
adaptation enables statistical multiplexing of processors
among pipeline stages, which, in turn, reduces the overall
processor provisioning requirement. Finally, by deactivat-
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Figure 3: The finite-state automaton for PAL. The quanti-
ties in each state denote the current processor allocation.

ing (or running in low-power mode) spare processors, the
adaptive system can reduce overall energy consumption.

Our Processor Allocation Algorithm (PAL) maintains
for each pipeline stage a finite state automaton (FSA) (see
Figure 3). Each state in the FSA for pipeline stage i repre-
sents a processor allocation level for stage i; state transi-
tions denote processor allocation and release events. State
transitions are triggered based on the length qi

len of the
queue for stage i.

When stage i is allocated j processors, PAL requests
allocation of an additional k j

a processors (by making a
transition from state j to j + k j

a in the FSA) when the
queue length for stage i exceeds a threshold Q j

th. Simi-
larly, when the queue is empty (qi

len = 0), then from any

state j, PAL can release k j
r ≤ ( j−nmin) processors, where

nmin is the minimum number of processors that must re-
main allocated to stage i. In what follows, we describe
construction of the FSA by deriving the values of Q j

th and

k j
a for all values of j, and the values of nmin and k j

r . Since
the construction is the same for all pipeline stages, we
present the FSA construction for a single pipeline stage.
Further, for brevity, we will eliminate any reference to a
specific stage (and drop superscript i from all symbols de-
fined in Table 1) from our discussion.

3.1 Processor Allocation
3.1.1 Q j

th: When to Allocate Processors?

PAL allocates one or more processors when the queue
length reaches a level where the delay incurred by pack-
ets can exceed the desired bound D. The rate at which
packets are serviced from the queue is a function of the
number of processors allocated to the stage. In particular,
since each processor can service a packet in tpkt time, the
service rate R j

dep for j processors is given by:

R j
dep =

j
tpkt

(1)

Let Q j
lim denote the maximum queue length that j

processors can process within the maximum permitted
packet-processing delay D. Note that if there are Q j

lim
packets in the queue and the pipeline stage is allocated

tSW

tSW

tSW

D − +
D

Time

qlen=Q

Packet p arrives

Initiate Processor
Allocation

lim
j

+ 1
Q

j
on

Processor Allocated

−

Figure 4: Allocation procedure: Timing diagram

j processors, then the total number of packets in the stage
is Q j

lim + j. Hence, Q j
lim is determined by

Q j
lim + j = D×R j

dep

⇒ Q j
lim = j ∗

(
D

tpkt
−1

)
(2)

Suppose the arrival of a packet p causes the queue
length to become Q j

lim +1 (and hence the total number of

packets in the stage to become Q j
lim + 1 + j). Then, with

only j allocated processors, the delay incurred by packet p
would exceed D. To ensure that packet p can be serviced
prior to its delay bound, one or more additional processors
must be allocated.

Let us assume that the system requests allocation of an
additional processor τ units of time prior to the arrival of
packet p (see Figure 4). τ > 0 represents a speculative sys-
tem that allocates additional processors in anticipation of
qlen exceeding Q j

lim; in contrast, τ ≤ 0 represents a reac-
tive system that allocates additional processors only after
qlen > Q j

lim.
Observe that a newly allocated processor can serve

packets only after tsw time units. Hence, for an interval
(tsw − τ) after the arrival of packet p, packets are serviced
with j processors (and hence, at the rate of j/tpkt ); after
that time, ( j +1) processors service packets at the rate of
( j + 1)/tpkt . Thus, packet p will meet its delay bound D
if and only if

Q j
lim +1+ j ≤ (tsw − τ)×

j
tpkt

+(D− tsw + τ)×
j +1
tpkt

This constraint requires

τ ≥ tpkt + tsw −D (3)

which lets us to the following conclusion.

Conclusion 1 For D ≥ tsw + tpkt , τ can be smaller than
or equal to 0. Hence, allocation of additional processors
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need to be triggered only after the queue length qlen >
Q j

lim, where j is the number of currently allocated proces-

sors. Hence, Q j
th = Q j

lim. Otherwise, if D < tsw + tpkt ,

then PAL must speculate the possibility of qlen > Q j
lim

and thereby trigger the allocation of additional proces-
sors when qlen > Q j

lim − τ × (Rarr − R j
dep). Hence, if

(tpkt + tsw −D) > 0, the Q j
th = Q j

lim − τ× (Rarr −R j
dep).

This is an important conclusion; it indicates that when
the delay bound D ≥ tpkt + tsw, PAL can be completely re-
active; it can observe the queue build up and react only
upon receiving a packet whose delay guarantee will be
violated. We expect that the condition D ≥ tpkt + tsw is
likely to be met by most realistic system configurations.
This is because, even for a non-adaptive system, the delay
bound D must be at least tpkt (the time required to pro-
cess a packet); increasing the delay bound further enables
a system to achieve the benefits of adaptive resource allo-
cation.

3.1.2 k j
a: How Many Processors to Allocate?

Once requested, a processor becomes available to service
packets only after a delay of tsw time units. Thus, the num-
ber of processors to be allocated is selected such that all
the packets that can arrive within time tsw (not just packet
p that triggered the allocation request) can be serviced
prior to their respective deadlines.

If j and k j
a, respectively, denote the number of cur-

rently allocated processors and the ones being requested,
then the above condition can be met if the queue length
at time when ( j + k j

a) processors are ready to serve pack-

ets does not exceed Q j+k j
a

th + 1. Note that the request for

additional k j
a processors is triggered when qlen = Q j

th +1.
During time interval tsw, packets can arrive into the stage
queue at a rate no greater than Rarr; further, with j al-
located processors, packet depart the queue at rate R j

dep.
Thus, the maximum increase in queue length is bounded
by (Rarr − R j

dep)× tsw. Thus, the delay bound for each
packet can be satisfied if:

(Q j+k j
a

th +1)− (Q j
th +1) ≥

(
Rarr −R j

dep

)
× tsw

Substituting the values for Q j+k j
a

th , Q j
th, and R j

dep from
Equation (1) and Conclusion (1), we get:

k j
a ×

(
D

tpkt
−1

)
+ τ×

(
k j

a

tpkt

)
≥

(
Rarr −

j
tpkt

)
× tsw

⇒ k j
a ≥

(Rarr × tpkt − j)× tsw

D+ τ− tpkt
(4)

This leads to the following conclusion.

Conclusion 2 When the queue length for a stage with j
allocated processors reaches its threshold (as defined in
Conclusion 1), the smallest number of processors k j

a that
must be allocated is given by:

k j
a = min

(⌈
(Rarr × tpkt − j)× tsw

D+ τ− tpkt

⌉
, Np − j

)
(5)

where Np is the total number of processors in the system.

We make the following observations.

• The value of k j
a shown in Conclusion 2 is a function

of j ( j ∈ [0,Np]), the number of currently allocated
processors. The smaller the value of j, the greater
is the value of k j

a, and vice versa. This relationship
allows the system to ramp-up quickly from a low-
utilization state (with very few allocated processors)
by allocating a larger number of processors first. The
number of processors allocated with each trigger de-
creases at higher levels of utilization. In the limit,
when j = Np, no additional processors can be allo-

cated; hence, k
Np
a = 0.

• Equation (3) defines a lower-bound on the value of τ
(in particular, τ ≥ tpkt + tsw −D). If τ is selected to
be equal to the lower-bound (i.e., τ = tpkt + tsw −D),
then Equation (5) reduces to:

k j
a = min

(
Rarr × tpkt − j, Np − j

)
(6)

Observe that packet processing systems are often
provisioned to meet the demands of the expected
maximum arrival rate Rarr. In such an appropriately
provisioned system, the number of processors Np is,
in fact, equal to Rarr × tpkt . In such a case, for all val-
ues of j, k j

a = Np− j. Thus, the FSA contains a direct
transition from every state to the state with Np allo-
cated processors; every trigger to increase processor
allocation will request all available processors.

Selecting τ > tpkt + tsw −D results in smaller values
of k j

a. The greater the value of τ, the smaller the value
of k j

a. Thus, k j
a values for a speculative system (τ > 0)

are smaller than those for a reactive system (τ ≤ 0);
further, even for a reactive system, selecting τ < 0
yields larger values of k j

a as compared the case when
τ = 0. Smaller values of k j

a are preferable; they al-
low PAL to gradually increase processor allocations
and thereby better utilize available processors across
different pipeline stages.

• If D + τ > (Rarr × tpkt × tsw + tpkt), then from Equa-

tion (5), for all values of j < Np, k j
a = 1; thus, pro-

cessors will be allocated one at a time. With this, the
number of reachable states in the FSA becomes equal
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Figure 5: Condition for release to be beneficial

to Np. The greater are the number of reachable states
in the FSA, the better is the opportunity for PAL to
align processor allocation to processing demand.

3.2 Processor Release
3.2.1 When to Release Processors?

Processors allocated to a stage should be released when
the processors are running at low-levels of utilization.
This would be the case when the packet processing capac-
ity allocated to a stage (and hence the maximum packet
service rate) exceeds the packet arrival rate for the stage
significantly. Instead of monitoring the processor utiliza-
tion levels continuously, PAL simply estimates the pos-
sibility of over-allocation by monitoring queue length. In
particular, PAL uses the condition qlen = 0 as a trigger to
release an appropriate number of processors.

3.2.2 k j
r : How Many Processors to Release?

To determine the number of processors that can be re-
leased, we first derive the minimum number of processors
nmin that must remain allocated to ensure that the delay
guarantee for any future packets is not violated.

To derive the value of nmin, we observe that releasing
a processor is beneficial only if a subsequent allocation
of processors to the stage is separated from the release
event by at least tsw (the time required to release/allocate
a processor)(Figure 5). Observe that any more proces-
sors than nmin would need to be allocated only τ units of
time prior to the instant when the queue length reaches
Qnmin

lim +1 (from its current value of 0). Given that packets
can arrive at the maximum rate Rarr and that packets are
serviced at rate Rnmin

dep with nmin allocated processors, the
earliest time at which additional processors may need to
be added is given by:

Trelease =
Qnmin

lim +1

Rarr −Rnmin
dep

− τ (7)

By requiring the Trelease ≥ tsw, we derive nmin as:

∀ j : nmin ≥
((tsw + τ)×Rarr −1)× tpkt

D− tpkt + tsw + τ
(8)

This leads to the following conclusion.

Conclusion 3 Once the queue becomes empty, an adap-
tive system can release all but nmin processors and still
ensure that the delay guarantee is met for all packets.
Hence, the number of processor that can be released from
state j is bounded by:

k j
r ≤ j−nmin (9)

We make the following observations.

• Substituting τ = tpkt + tsw −D in Equation (8), we
get:

nmin ≥
((tpkt +2× tsw −D)×Rarr −1)× tpkt

2× tsw
(10)

Thus, greater the delay bound D, the smaller the
value of nmin. In fact, if D ≥ tpkt + 2 × tsw, then
nmin = 0.

• If τ ≤−tsw, then the condition

Trelease =
Qnmin

lim +1

Rarr −Rnmin
dep

− τ ≥ tsw

is satisfied for all values of nmin, including nmin = 0.

We summarize these observations in the following con-
clusion.

Conclusion 4 If D ≥ tpkt + 2× tsw, then by selecting τ ≤
−tsw, one can design an adaptive system in which once
the queue becomes empty, the system can release all the
idle processors, while ensuring that the delay incurred by
each packet is bounded by D.

3.3 Discussion
Equation (3) defines a lower-bound on the value of τ, and
Conclusion (9) defines an upper-bound on k j

r , the number
of processors that can be released from state j. The design
of PAL supports flexibility in selecting τ and a method for
computing k j

r . In this section, we discuss the impact of
selecting different values of τ and k j

r on the efficacy of
PAL.
3.3.1 Selecting τ
From Equation (3), τ ≥ tpkt + tsw −D. Thus, if D < tpkt +
tsw, then τ > 0; hence, PAL operates in the speculative
mode (making worst-case estimates about packet arrival
rate). In this case, selecting the smallest possible value of
τ (equal to tpkt + tsw −D) is the most appropriate.

In contrast, if D ≥ tpkt + tsw, then tpkt + tsw −D ≤ 0.
Hence, PAL can be completely reactive; it can allocate
additional processors only after receiving a packet whose
deadline will be violated with the current set of allocated
processors. This case also offers flexibility in selecting a
value of τ in the range tpkt + tsw −D ≤ τ ≤ 0.

6



• An eager processor allocation policy can select τ =

0. Such a policy yields smaller values of k j
a (Equa-

tion (5)); this allows PAL to better align processor al-
locations with the processing demands. On the con-
trary, selecting τ = 0 ensure that nmin > 0; hence,
PAL must maintain a minimum allocation of nmin

processors to the pipeline stage even if the process-
ing demand is smaller.

• A lazy processor allocation policy can select any
value of τ in the range tpkt + tsw−D ≤ τ < 0. The ex-
treme case is one with τ = tpkt + tsw−D. In this case,
if D ≥ tpkt +2× tsw, then as per Conclusion 4, nmin =

0. However, as per Equation (6), ∀ j : k j
a = Np − j.

Since nmin = 0, this results in a two-state FSA – the
two states represent allocations of 0 and Np proces-
sors to the pipeline stage. As a result, PAL makes
frequent transitions between these two states; this
minimizes processor multiplexing opportunities (and
hence is not desirable).

A more desirable policy is one that allows nmin = 0,
and yet supports a multi-state FSA. For D > tpkt +
2× tsw, this can be achieved by selecting τ = −tsw.

3.3.2 Selecting k j
r

From Equation (9), 0 ≤ k j
r ≤ j − nmin. The choice of k j

r

defines the following two policies.

• An eager policy for releasing processors selects k j
r =

j − nmin. In particular, when qlen = 0, such a pol-
icy releases all but nmin processors. This policy is the
most aggressive in terms of releasing idle processors;
this facilitates statistical multiplexing of processors
among stages. However, it also introduces a signif-
icant number of allocation/release transitions in the
system (thereby adversely affecting the stability of
the system).

• A lazy policy for releasing processors releases pro-
cessors progressively so as to arrive at the right
level of processor allocation for each stage. A lazy
scheme can employ various sub-policies for select-
ing the value of k j

r . Some simple instances of such
sub-policies include decreasing the allocation by a
constant (additive-decrease) or by a constant factor
(multiplicative-decrease).

A little more involved policy is one that measures
the current arrival rate of packets and releases all but
the processors needed to match the arrival rate. In
particular, such a policy measures over a certain time
interval ∆ the arrival rate R̂arr(∆) of packets, and then
computes k j

r as follows:

k j
r = min

(
j−nmin, j−

⌈
R̂arr(∆)

1/tpkt

⌉)
(11)

where R̂arr(∆)
1/tpkt

= R̂arr(∆)× tpkt denotes the number of

processors required to match the packet arrival rate
at a stage. With such a policy, the action of releas-
ing processors is triggered when the queue is empty
(i.e., qlen = 0) and the number of required processors
reduces.

Observe that the lazy release policies introduce sev-
eral reachable intermediate states in the FSA. This allows
PAL to better match processor allocations to the require-
ments; further, it reduces the number of allocate/release
transitions performed by the system (and thereby leads to
a stable system design).

4 Experimental Evaluation
In this section, we first describe our experimental method-
ology, and then present results of our simulations.

4.1 Experimental Methodology

v4 
Forwarding

v6 
Forwarding

v4/v6
InteropIngress Egress

Decompression

Decompression

Compression

Compression

Figure 6: 3G wireless router architecture

Application Model: We conduct all our experiments us-
ing the model of a 3G wireless router— a canonical packet
processing application. Figure 6 shows the application
graph with different packet processing stages. In this ap-
plication, each incoming packet is sent to a link layer de-
multiplexor that identifies IPv4/IPv6 packets and deter-
mines whether or not the packet header is compressed.
Packets with compressed headers undergo an appropriate
decompression. The packets then go through appropri-
ate IP forwarding that determines the next hop for the
packet. The next hop address determines whether the
packet should be simply forwarded, compressed and for-
warded, or converted to the other version of the protocol.
Table 2 summarizes the t i

pkt values for each of these packet
processing stages; we do not model Ingress and Egress
stages for our analysis (since these stages often require
dedicated processors.
Traces: We analyze traces collected from various points
in the Internet. For brevity, we only discuss two traces
– a 6 hour subset of NLANR trace (AUCKLAND) con-
taining 20 million packets collected from a link connect-
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Stage t i
pkt (in µs)

Interop IPv4 to IPv6 135
Interop IPv6 to IPv4 32

IPv4 forward 55
IPv6 forward 55

IPv4/v6 compression 59
IPv4/v6 decompression 24

Table 2: A simple 3G wireless work model.

ing New Zealand to US [26], and an 8 minute long trace
with 30 million packets collected from the high-speed link
connecting University of North Carolina at Chapel Hill
(UNC) to its network service provider [31].

We use these traces to estimate fluctuations in the ar-
rival for each application stage as follows. Each of these
raw traces consists of two packet sequences—incoming
and outgoing. These two sequences represent packet ar-
rivals of two different types. For the 3G-wireless router,
all incoming packets are considered IPv4 packets, while
all outgoing packets are considered IPv6 packets. Fur-
ther, we assume that, with equal probability, all packets
of each arriving flow have a compressed or an uncom-
pressed header, all packets of each departing flow have a
compressed or an uncompressed header, and all packets
of each departing flow leave as is or are translated to the
other version of the protocol.
Provisioning: We provision the system with ∑S

i=1 Ni
p pro-

cessors, where N i
p (i ∈ [1,S ]) denotes the maximum pro-

cessor requirement for stage i. This provisioning level
guarantees that a non-adaptive system can also meet the
delay bounds for each packet. We determine N i

p as fol-
lows. First, we derive, through trace analysis, Ri

arr(D
i),

the maximum rate of packet arrivals over intervals of
length Di. Since a single processor can process packets
at the rate of 1/t i

pkt , Ni
p is derived as:

Ni
p =

⌈
Ri

arr(D
i)

1/t i
pkt

⌉
(12)

We make two observations. First, this approach for de-
riving processor provisioning level is conservative (and
hence, favors the non-adaptive system); it derives the pro-
visioning requirement for a particular trace. In practice,
processor provisioning is determined based on the re-
quirement to handle worst-case packet arrivals (perhaps
at the line rate), which could be substantially higher than
Ri

arr observed within a trace. Second, this definition of
provisioning requires a smaller number of processors for
the same workload with increasing delay bound D.

For our simulations, we assume that all stages have the
same delay bound. We use tsw = 200µs to allocate/release
a processor [23].

D: 500 Np: 7 nmin: 2
[0] 7 [1] 6 [2] 5 [3] 4 [4] 3 [5] 2 [6] 1 [7] 0
------------------------------------------------------
D: 1000 Np: 6 nmin: 0
[0] 3 [1] 3 [2] 2 [3] 2 [4] 2 [5] 1 [6] 0
------------------------------------------------------
D: 2000 Np: 4 nmin: 0
[0] 2 [1] 1 [2] 1 [3] 1 [4] 0

(a) Lazy-Alloc (Eager-Rel and Lazy-Rel)

D: 500 Np: 7 nmin: 4
[0] 4 [1] 4 [2] 3 [3] 3 [4] 2 [5] 2 [6] 1 [7] 0
------------------------------------------------------
D: 1000 Np: 6 nmin: 3
[0] 2 [1] 2 [2] 2 [3] 2 [4] 1 [5] 1 [6] 0
------------------------------------------------------
D: 2000 Np: 4 nmin: 2
[0] 1 [1] 1 [2] 1 [3] 1 [4] 0

(b) Eager-Alloc (Eager-Rel and Lazy-Rel)

Figure 7: FSA for PAL for the IPv4 forwarding stage.

4.2 Multiplexing Benefits
To evaluate the benefits of adapting processor alloca-
tions on the required level of provisioning, we consider
PAL with the following processor allocation and release
policies.

• We consider two allocation policies: (1) Eager-
Alloc with τ = max(tpkt + tsw −D,0); and (2) Lazy-
Alloc with τ = max(tpkt + tsw −D,−tsw).

• We consider two release policies: (1) Eager-Rel
with k j

r = ( j − nmin); and (2) Lazy-Rel with k j
r =

min
(

j−nmin, j−
⌈

R̂arr(∆)
1/tpkt

⌉)
(see Equation (11).

Figure 7 shows the automata for the IPv4 forwarding
stage for different values of D and different combinations
of PAL policies. The first line in each row shows the value
of D, the corresponding processor provisioning level, and
nmin. The second line in each row represents the FSA in
the format – [j] k j

a, where j is the number of currently allo-
cated processors, and k j

a is the number of processors that
are allocated when qlen > Q j

th. We make multiple obser-
vations from Figure 7. First, as D increases, the required
processor provisioning (Np) decreases. Second, as D in-
creases, both nmin and k j

a decrease. Third, nmin decreases
slower for Eager-Alloc, while it quickly reaches zero with
Lazy-Alloc. Fourth, since τLazy−Alloc ≤ τEager−Alloc for all

values of D, k j
a (for all j) for Eager-Alloc is never higher

than Lazy-Alloc. Fifth, k j
a reduces with increase in j. Ob-

serve that the FSAs are independent of whether we use
Eager-Rel or Lazy-Rel policies; these policies only con-
trol the number of reachable states in the FSA. When the
algorithm uses Eager-Rel, since k j

r = ( j − nmin), the set
of reachable states consists of only the states that can be
reached by a sequence of increases in processor alloca-
tions starting from state nmin. With Lazy-Rel, on the other
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hand, a state that is otherwise not reachable while increas-
ing processor allocation can also be reached while releas-
ing processors.
Benefits: Figure 8 plots the maximum number of proces-
sors allocated at any instant throughout the duration of
the trace as a function of D for: (1) a non-adaptive sys-
tem (with P = ∑S

i=1 Ni
p); (2) an ideal (albeit hypotheti-

cal) adaptive system for which tsw = 0; and (3) a realis-
tic system (with tsw = 200µs) with PAL along with the
four policy combinations. It shows that PAL utilizes 30-
50% fewer processors than the non-adaptive system; this
indicates that an adaptive system using PAL can reduce
the processor provisioning level by 30-50%. Figure 8
also demonstrates that at small values of D (D < 500µs),
PAL requires significantly greater level of provisioning as
compared to the ideal case (with tsw = 0); however, the
difference between the two cases becomes smaller than
10% for moderate to high values of D. This indicates that
at moderate to high values of D (D ≥ 600µs), the provi-
sioning required by PAL approaches that of an ideal adap-
tive system.

Figure 8 also illustrates that different variants of
PAL (with different allocation and release policies) be-
have differently at various values of D. Figure 8(a) shows
that PAL with Eager-Alloc uses significantly fewer pro-
cessors than PAL with Lazy-Alloc for most values of D.
This is because of two reasons. First, the FSA for the
Lazy-Alloc policy has higher values of k j

a. Second, with
Lazy-Alloc, once D ≥ 600µs, setting τ = −200µs yields
nmin = 0. At D = 600µs, the FSA for Lazy-Alloc-Eager-
Rel only contains two reachable states (0 and Np); Lazy-
Alloc-Lazy-Rel, on the other hand, adds several other
reachable states. Hence, Lazy-Alloc-Lazy-Rel performs
better than Lazy-Alloc-Eager-Rel. With increase in D, the
FSAs for all of these policies become multi-state; hence,
the difference between the policies reduces with D.

Figure 8(b) shows similar results for the AUCKLAND
trace. It also demonstrates that PAL with Eager-Alloc
performs well for all values of D (the lines for Eager-
Alloc with both Eager-Rel and Lazy-Rel policies over-
lap). It also shows the benefits of using Lazy-Rel pol-
icy over Eager-Rel (see the lines for Lazy-Alloc-Lazy-Rel
and Lazy-Alloc-Eager-Rel). It is noteworthy that because
the AUCKLAND trace is sparse (and hence contains large
intervals with very low packet arrival rates), the Lazy-
Alloc policy (that yields smaller values of nmin) performs
as well or better than the Eager-Alloc policy. For brevity,
in the rest of this section, we will only consider results for
the UNC trace.
Delay Properties: To study the delay properties of
PAL with different allocation/release policies, we mea-
sured the average delay seen by packets at the IPv4-v6
interop stage. Figure 9 plots the variation in this average
delay as a function of D. It shows that the average packet
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Figure 9: Comparison of delay seen by packets at the
IPv4-v6 interop stage when using different algorithm vari-
ants for the UNC trace.

delay observed with all policies is substantially lower than
the delay bound D (MAX-DELAY). The average delay is
worse for Lazy-Alloc-Eager-Rel than all other variants,
since this variant aggressively utilizes the delay guaran-
tee by eagerly releasing and lazily allocating processors.
Further, at D = 600µs, the average delay increases sig-
nificantly. This is because, at this value of D, nmin = 0;
hence, PAL with Eager-Rel policy releases all idle proces-
sors. PAL with the Eager-Alloc policy incurs very small
delays because (1) nmin is non-zero, and (2) processors are
allocated eagerly.

4.3 Energy Benefits
In this section, we derive the energy benefits resulting
from deactivating (or running in a low-power mode) spare
processors not allocated for any stage. We compare the
energy benefits realized by PAL with those obtained by
the ideal system (with tsw = 0).

To derive the energy benefits, observe that transitioning
a processor from deactivated (or low-power) state to an
activated state is equivalent to allocating a processor to a
stage; thus, the FSA for controlling processor activations
is the same as the one for processor allocations derived
earlier. The task of deactivating processors, however, is
somewhat different from releasing an idle processor be-
cause a processor should be deactivated only if doing so
saves energy. To formalize this condition, consider a pro-
cessor that consumes Pactive power when processing pack-
ets, and Pidle power while being idle. Let Psw and tsw,
respectively, denote the power consumed while switch-
ing the processor state from activated to deactivated (and
vice versa) as well as the time delay for such transitions.
For simplicity, let us assume that the processor consumes
no power in the deactivated state. In this case, the to-
tal amount of energy expended in transitioning ( j−nmin)

9
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Figure 8: Multiplexing benefits of different algorithm variants.
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Figure 10: Energy benefits of different algorithm variants.

processors from activated state to deactivated state and
back is given by: 2×Psw × tsw × ( j − nmin). In compar-
ison, by not deactivating ( j−nmin) processors, the system
would have expended (Tdeact + tsw)×Pidle×( j−nmin) en-
ergy, where Tdeact is the time duration for which a pro-
cessor remains deactivated. Thus, deactivating ( j−nmin)
processors conserves energy only if:

2×Psw × tsw × ( j−nmin) ≤ (Tdeact + tsw)×Pidle

×( j−nmin)

⇒ Tdeact ≥

(
2×

Psw

Pidle
−1

)
× tsw (13)

Using Equations (7) and (13), we derive a new bound for
nmin as:

∀ j : nmin ≥
(C×Rarr −1)× tpkt

D− tpkt +C
(14)

where C =

(
2×

Psw

Pidle
−1

)
× tsw + τ

Using this value of nmin, we now consider PAL with its
eager and lazy activation and deactivation policies.

System Parameters: For our experiments, we use the
value for Pactive

Pidle
and Psw

Pidle
as 1.3 (the ratio of active to

idle power for various IXP processors is between 1.2 and
1.3 [2]), and take tsw = 200µs. We also study the effects of
varying these parameters on the energy benefits of adap-
tation.

Metric: We compare the energy consumption of a system
with adaptive processor activations with a non-adaptive
system. In particular, for an adaptive algorithm A, we de-
fine the energy benefits over the non-adaptive system B as
1− EA

EB
, where EA and EB, respectively, denote the energy

consumed by the adaptive and the non-adaptive systems.
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Figure 11: Variation of power benefits with processor activation/deactivation delay and switching power for UNC.

Benefits: Figure 10 shows the energy benefits of
PAL with different activation/deactivation policies over a
non-adaptive system for different values of D. At small
values of D, PAL yields low benefits for all the variants.
This is because, at small values of D, nmin is large; hence,
PAL maintains most of the processors in the activated
state even though they are idle. However, with increase
in D, nmin and k j

a become small, and hence the benefits
increase.

Notice that in Figure 10(a), the benefits using Lazy-
Act-Eager-Deact drop significantly at D = 700µs and in-
crease again. This is because, at D = 700µs, nmin = 0
and the FSA contains only two states. Hence, every time
the queue becomes empty, PAL deactivates all the proces-
sors, and with the arrival of a new packet PAL re-activates
all processors. Since UNC is a dense trace, the system
thrashes by deactivating and activating processor back-
and-forth without saving much energy. In the case of
Eager-Act-Eager-Deact and Eager-Act-Lazy-Deact, nmin

never reaches zero since τ = 0. While these policies avoid
the thrashing behavior of Lazy-Act-Eager-Deact, they are
conservative in saving energy. The Lazy-Act-Lazy-Deact
avoids the thrashing behavior by lazily deactivating pro-
cessors, and yet achieves significant energy savings.

Figure 10(b) shows the energy benefits achieved be-
cause of processor activation/deactivation in a system pro-
visioned with only the processors required by PAL. The
basic behavior is the same as Figure 10(a); the magnitude
of the benefits, however, is lower (as can be expected).

Sensitivity to system parameters: Figure 11 shows the
effect of varying the processor switching overheads on en-
ergy benefits derived using PAL with the Lazy-Act-Lazy-
Deact policy. Figure 11(a) shows that as Psw

Pidle
and Pactive

Pidle
increase, the benefits reduce. Given that most of today’s
processors have the ratio between 1 to 3, the graph shows
that PAL can achieve significant benefits in systems with

a variety of processors.
Figure 11(b) shows the effect of varying the processor

activation and deactivation latency. It shows that as tsw

decreases, PAL can achieve significant benefits even for
small values of D. Given the increasing focus on energy-
aware system designs, we expect that the switching over-
heads will reduce over time. This result also indicates
that the energy benefits can be increased by using shal-
lower sleep states for processors. The shallower states in-
cur lower wakeup latency but consume a small amount of
energy. Our algorithm can be easily generalized to incor-
porate multiple sleep states; this generalization, however,
is beyond the scope of this paper.

5 Prototype

We have implemented PAL in the context of the Shangri-
La run-time system(RTS) [35]1. The goal of Shangri-La is
to create a programming environment for simplifying the
development and deployment of packet processing appli-
cations onto complex, multi-processor architectures. The
run-time system is a critical component of Shangri-La. In
what follows, we briefly describe our hardware platform,
and then outline the implementation of PAL in the context
of Shangri-La RTS.

5.1 Hardware Platform
Our setup contains a PC hosting the Radisys ENP-2611
board with the Intel R© 600MHz IXP2400 network proces-

sor. IXP2400 contains one XScale
TM

core and 8 micro-
engines. Each micro-engine has an instruction store to
hold 4K-40 bit instructions that are optimized for fast-path
packet processing. The XScale core runs an embedded
version of Linux [3], and is typically programmed to per-
form the control path functions such as stopping, starting

1http://www.cs.utexas.edu/users/vin/research/shangrila.shtml
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and loading code into the instruction store of the micro-
engines. The micro-engines, on the other hand, execute
fast-path packet processing functions.

5.2 The Shangri-La Run-Time System
The Shangri-La RTS provides mechanisms to load and ex-
ecute pipeline stages onto micro-engines, as well as ap-
propriate sensors for monitoring traffic fluctuations, sys-
tem performance, and energy consumption levels. The
adaptation engine within the RTS utilizes these mecha-
nisms and sensors to adapt processor allocations dynami-
cally.

To simplify the design of the adaptation engine, the
Shangri-La run-time system supports a resource abstrac-
tion layer (RAL) [35]. RAL provides an abstract inter-
face to the underlying hardware resources such as micro-
engines, memory modules, locks, hash/crypto units, etc.
RAL makes the design of adaptation engine, RTS, and
other higher level applications simple and portable. To
support adaptation capability, RAL exports the following
interfaces:

• proc_unit::stop() – for stopping a micro-engine;

• proc_unit::load() – for loading code into the
micro-engine instruction store;

• proc_unit::checkpoint() – for bringing a stage
and its data structures to a consistent state before
stopping a micro-engine;

• pkt_queue::get_length() – for getting the length
of the packet queue of a stage; and

• pkt_queue::get_num_pkts() – for determining
the number of packets received in a queue since its
creation.

The processing units and packet queues are identified us-
ing unique handles; during initialization, the RTS creates
these handles and passes them to the adaptation engine.
Information about the application—the stages, the corre-
sponding code, appropriate communication channels be-
tween stages—as well as system parameters such as t i

pkt
and tsw are provided by the user to the RTS at startup. The
adaptation engine loads each stage onto nmin processors,
and subsequently uses PAL to allocate and release proces-
sors dynamically.

6 Related Work

Recently, pipelining/staging has been used as a program-
ming paradigm for complex applications. [17, 18, 20, 21,
38]. Using this paradigm, applications are decomposed
into stages and stages are connected using event queues.
Staging has also been used for different goals. Welsh et

al. [38] use staging to build Internet services that are ro-
bust to overload conditions. Larus et al. [20] enhance
server performance by scheduling different stages of an
application to maximize instruction and data cache local-
ity. Click [21] is a software architecture that achieves
modularity and ease of configurability in packet pro-
cessing applications by defining them as a network of
packet processing functions (stages) connected via chan-
nels (queues). Harizopoulos et al. [17] make a case for
breaking the database system into stages to optimally ex-
ploit memory hierarchy and underlying multiprocessor
support, and make the system flexible and extensible.

Staged architectures deal with the problem of allocat-
ing processing resources to the stages in several ways.
StagedServer [20] uses a wavefront algorithm to allocate
processors to stages. Processors, in a predefined order, ex-
ecute each stage till all the work pending for the queue is
complete, and then proceed to next stage. The work talks
about defining thresholds that can help latency-sensitive
applications, however, no details are provided. SEDA [38]
employs a thread-pool controller that adds a thread to a
stage when the number of requests in the queue crosses
a specified threshold, and releases the thread when it is
idle for a certain specified reclaim interval. The controller
avoids adding too many threads to a particular stage, while
exploiting the parallelism across requests in each stage.

Our work focuses on the complementary problem of
determining the right thresholds and the reclaim inter-
vals as demand for stages change over time; we deter-
mine when and how many processing resources to add
and reclaim. This problem becomes non-trivial in the
packet processing domain that requires stringent perfor-
mance guarantees, have non-trivial overheads of reallo-
cating processing resources, and the workloads are un-
predictable at the time scale of operation. Over several
years, network traffic has been shown to be bursty at var-
ious time scales and is especially hard to predict at fine
time scales [25, 27, 29, 40].

Various proportionate fair scheduling algorithms [7,
16, 36] have been proposed to distribute processing re-
sources across competing tasks (e.g., threads). These
algorithms distribute resources among threads based on
their weights. Our work deals with the complementary
problem of determining the weights of services when the
demand for the services fluctuates over time. Steere et
al. [33] present a feedback-driven proportion allocator for
real-rate scheduling of threads to ensure their progress;
their approach is applicable to environments that do not
have hard deadlines, but do have throughput requirements.

Dynamic provisioning of resources has been studied
extensively in the context of web servers, clusters and
shared data centers [4, 5, 8, 11, 10, 13, 24, 32, 34]. We
only discuss a few of these here. Chandra et al. [8]
use a combination of online measurements, and predic-
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tion based on time-series analysis, and resource allocation
techniques for managing processing resources in host-
ing centers. Muse [11] provisions resources dynamically
across applications by continuously monitoring the load
and adjusting resources between competing services, so
as to maximize the utility of the system. Muse has sim-
ilar goals as ours in a different domain – reducing provi-
sioning and energy in hosting centers. The main differ-
ence is that instead of evaluating the impact of a policy
on application performance, we derive an adaptation al-
gorithm from application performance constraints (e.g., a
bound on packet processing delay). Urgaonkar et al. [34]
show that controlled over-booking of processing and net-
work resources in server hosting platforms can increase
their utilization dramatically while providing acceptable
performance guarantees to applications.

The problem of scheduling for conserving energy and
resources has been explored in various other domains like
multimedia servers [39], and mobile and embedded sys-
tems [12, 14, 28, 30, 37]. However, the problem has re-
ceived little focus in packet processing systems. In [22],
we show for various packet processing applications that
the inherent fluctuations in network traffic offer signifi-
cant opportunity for adapting processor allocations to re-
duce processor provisioning and to conserve energy. In
this paper, we present an on-line algorithm for realizing
these benefits.

7 Conclusion
In this paper, we present an on-line algorithm for adapt-
ing processor allocations in pipelined packet processing
systems, while ensuring that the additional delay suffered
by packets as a result of adaptation is deterministically
bounded. The resulting Processor Allocation Algorithm
(PAL) is simple, but it allocates only as many processors
to stages as needed to meet packet delay guarantees, ac-
counts for system reconfiguration overheads, and copes
with the unpredictability of packet arrival patterns. A key
contribution of PAL is its generality; it captures the adap-
tation opportunities in the system as a finite state automa-
ton (FSA)—the methodology for constructing the FSA
can be applied to a variety of application requirements and
system configurations. We demonstrate that for a set of
trace workloads PAL can reduce processor provisioning
level by 30-50%, reduce energy consumption by 60-70%
while increasing the average packet processing delay by
less than 150µs.
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