
Byzantine Fault-Tolerant Confidentiality

Jian Yin Arun Venkataramani Jean-Phillipe Martin Lorenzo Alvisi Mike Dahlin

1 Introduction

As the world becomes increasingly interconnected, more and
more important services such as business transactions are de-
ployed as access anywhere services – services that are ac-
cessible by remote devices through the Internet and mobile
networks. Such services often must access confidential data
to provide service. For example, an online bank service must
access a user’s checking account to process an online trans-
fer request. In such a scenario, guarantees of availability,
integrity, and confidentiality are essential. By availability,
we mean that services must provide service 24/7 without in-
terruption. By integrity, we mean that services must process
clients’ requests correctly. By confidentiality, we mean that
services must restrict who sees what data.

Unfortunately, software for providing access anywhere ser-
vices may contain bugs, and hackers may exploit these bugs
to disrupt service or steal confidential data. One solution is
to eliminate bugs by using better software engineering prac-
tice or formal methods [12]. However, the complexity of real
world systems and application software makes it difficult to
produce bug-free implementations with existing techniques.

A promising approach is to use redundancy to harden ser-
vices against bugs. A traditional Byzantine fault-tolerant
(BFT) system runs different implementations of the same
service on several replicas and ensures that correct computa-
tion is performed by enough correct replicas to mask incor-
rect replicas [1, 2, 4, 14, 15, 16, 17]. Recent research has
shown that BFT systems can be practical for several impor-
tant services as they can be implemented with low overheads
compared to the unreplicated services [3].

However, although traditional BFT systems improve avail-
ability and integrity through redundancy, existing BFT ar-
chitectures make such systems more prone to compromising
confidentiality. In a traditional BFT system, replicas send all
replies directly to clients. Thus, if a hacker manages to com-
promise one of the replicas, he can steal confidential data.
Moreover, in traditional BFT systems, there is a fundamen-
tal tradeoff between increasing availability and integrity on
one hand and strengthening confidentiality on the other. BFT
systems use several replicas to provide availability, based on
the reasoning that the replicas are different and it is there-
fore unlikely that they all fail simultaneously. However, be-
cause it is sufficient for an attacker to compromise a single

replica, this approach also increases the chance that at least
one replica contains an exploitable bug, allowing the attacker
to gain access to the confidential data that the service uses.

This paper discuss how to use redundancy to simultaneously
improve availability, integrity, and confidentiality. We pro-
pose an architecture for such a system - Confidential BFT
(CBFT). In CBFT, service replicas connect to a “privacy
firewall” and can send messages to the outside world only
through it. The firewall runs a majority voting algorithm just
like the clients of a traditional BFT system and filters out
faulty messages that may contain confidential data.

This approach has several advantages, stemming from the
fact that the privacy firewall is a separate component from
the replicated service. The first advantage is simply the gen-
erality of the approach: since virtually all replicated services
can be modelled as a replicated state machine, the privacy
firewall can protect almost any replicated service that exists
today. Second, once built, a privacy firewall can very easily
be used for a variety of replicated services, with only minor
modification to the service (or none at all). Thus, CBFT’s
privacy firewall can be adapted to legacy applications, pro-
viding them with confidentiality after the fact. The third ad-
vantage is that the effort spent into building the privacy fire-
wall can be amortized over several replicated services: once
the privacy firewall is built, it can easily be duplicated to pro-
tect additional services. This versatility makes it imaginable
that companies would build privacy firewalls and then sell
turnkey solutions.

The firewall system has to be correct to provide confidential-
ity. Even though the firewall is simple, building a formally
verified bug-free firewall may not be feasible. However, re-
dundancy can be used to improve the robustness of the fire-
wall. Such a firewall system consists of a group of nodes that
are interconnected such that any path from a service replica
to the outside world is longer than a threshold,

�
. Thus, any

communication from any service replica to the outside world
must go through at lease one correct node as long as there
are fewer than

�����
faulty firewall nodes. Moreover, a cor-

rect node in a firewall chain can independently ensure that
a unique sequence of replies results from a sequence of re-
quests just as if this sequence of requests were processed by
a single correct server. Thus, faulty machines are prevented
from using steganography to leak confidential data.

In summary, this paper investigates how to build available,
high-integrity, and confidential access anywhere services by

1

using redundancy and outlines the architecture of one imple-
mentation of such an architecture, CBFT.

2 Related Work

There is much previous work on how to use redundancy to
tolerate Byzantine faults. This work falls into three cate-
gories: i) using client voting to improve availability and in-
tegrity without considering confidentiality, ii) using secret
sharing to improve confidentiality for a limited class of ser-
vices that do not manipulate confidential data, and iii) mak-
ing a trade-off and giving the servers enough data to enable
some level of processing with the understanding that they do
not have enough data for a leak to be damaging.

Redundancy techniques to improve availability and integrity
without considering confidentiality have been extensively
studied. Typically in such systems, all service replicas send
replies to clients, and voting takes place at clients. There is a
significant body of work on BFT quorum systems [1, 14, 15]
in which a group of service replicas use intersection proper-
ties of quorum sets to guarantee that clients retrieve values
of variables written previously. Byzantine fault tolerance for
arbitrary services captured by state machines have been stud-
ied in both theoretical and practical settings. [2, 3, 4, 16, 17]
In particular, Castro and Liskov [3, 4, 16] have shown that
BFT systems can be practical because i) The throughput and
latency of several BFT services implemented by them are
comparable to unreplicated service [3] and ii) Multiple im-
plementations of the same legacy services by different ven-
dors can be used to achieve failure independence of repli-
cas. [16]

There are also several studies [6, 7, 8, 10, 13, 19, 20] on shar-
ing secrets among several service replicas that prevent fewer
than some threshold number of service replicas from com-
promising secrecy. However, hiding the unencrypted value
of confidential data from servers effectively prevents servers
from manipulating confidential data. Thus, such techniques
can only be applied to a limited class of services in which
the servers only retrieve, use, or transmit opaque data such
as storage systems, file systems, distributed certification au-
thority, and message transmissions.

The third approach consists in distributing enough data to the
servers to allow some processing, but not enough to make
leaks damaging. This approach is known as Fragmented
Data Processing [11]. This approach is practical but the level
of granularity of the fragmentation must be chosen carefully
for each implementation.

Other related work [5] relies on detection to react to fail-
ures. This is different from our approach where we do not
use any oracle to detect faulty machines; however we can of
course detect faulty machines once their deviate from correct
behavior in their communication with other machines.

CS

BFT

F

F

BFT

C

R P

R

R

P

P=P+I

R P

P’=P+I

(a) (b) (c)

C

R’=R

C I

Figure 1: Fault-tolerance models

Our work is similar in spirit to the Ballot Monitors in
SITAR [18]. The ballot monitors are designed to perform a
majority voting between several replicas in order to identify
faulty servers and return a correct reply. Our contribution is
to show how such a system can be built since SITAR publi-
cations do not discuss any implementation details at the time
of this writing. More importantly, privacy firewall are ex-
plicitely designed to handle confidentiality. This constraint
is not part of the design of SITAR, which instead concen-
trates on availability. We argue that focusing on combining
confidentiality with availability, as we do, is of more value.

3 A CBFT system

The traditional state machine approach for implementing
Byzantine fault-tolerant services delegates the responsibility
of combining the outputs of the ensemble of state machine
replicas to the client. To quote Schneider [17], “the voter -
a part of the client - is faulty exactly when the client is, so
the fact that an incorrect output is read by the client due to
a faulty voter is irrelevant.” Though such a model is appro-
priate for services deployed locally, it fails to address con-
fidentiality for access anywhere services. In particular, if a
hacker manages to compromise one replica in such a system,
the system has no mechanisms to prevent the compromised
replicas from sending confidential data back to the hacker.

As shown in Figure 1(b), traditional approaches to tolerate
Byzantine faults in replicas attempt to emulate the abstract
notion of a single correct server as in (a). Here � is a request
sent by the client and � the response the client receives, and

�
�

the set of responses filtered by the voting component �
to eliminate incorrect information � received by � from a
faulty replicas in the BFT. � can be used by a malicious
replica as a channel to transmit confidential data. The ob-
vious solution is to move the voter, � , away from clients
into the service providers’ domain as shown in in (c). Un-
fortunately, this is challenging since � is a potential point

2

of vulnerability for availability, integrity, and confidentiality.
In particular, Schneider’s “fault sharing” argument above no
longer applies – faults in the voter � can hurt availability and
integrity of correct clients. Furthermore, a fault in the voter
can reintroduce a covert channel that allows the information

� to escape to clients.

One solution is to appeal to software engineering and formal
methods to construct a perfect voter. Another approach is
to use redundancy to construct a highly reliable voter out of
imperfect components.

To understand the interplay of redundancy and confidential-
ity, our goal is to design a voting component that acts as a
“firewall” to filter responses. This component is suscepti-
ble to Byzantine faults, but we group them to build a system
that protects confidentiality without compromising availabil-
ity. This is a hard problem, especially in the face of sophis-
ticated attacks that could compromise confidential informa-
tion by delaying certain replies, omitting requests, spoofing
requests not generated by clients, etc.

In order to tolerate faults in the voter, the voter itself must
be replicated, otherwise a single failure – of the voter – can
prevent the system from producing the correct output or pro-
tecting confidentiality. This additional level of replication
threatens to mire one recursively in the original problem. In
our firewall system, we solve this problem by i) ensuring
that every response from the server replica set is verified by
at least one correct voter and ii) ensuring that each voter can
independently verify the correctness of any reply.

To provide intuition, we first describe a simplified firewall
that filters some incorrect information I, but is vulnerable
to poor availability and in-band signaling that can leak
confidential data. We then outline how to address these
limitations. The system consists of two components as
illustrated in Figure 2(a):

a) A backend BFT consisting of set of replicated servers �
to tolerate � Byzantine faults.
b) A firewall network � , organized as a chain of

� � �
ma-

chines, at most
�

of which are faulty.
Voters can communicate directly only with their neighbors.
Only

���
at the bottom of the chain can communicate directly

with clients, and the topmost machine
���

alone can commu-
nicate with the server replicas.

Clients send encrypted, signed requests to
� �

. Each machine
in the chain forwards the request up the chain towards

� �
which broadcasts it to all servers in � . Servers in � are
expected to respond with encrypted, signed replies to

� �
.

On receiving � � � identical replies with verifiable correct
signatures for a given request,

� �
forwards the reply and

the set of � � � signatures to the machine just below it in
the chain. Each correct firewall thereafter independently
verifies the � � � signatures and forwards them further down

(b)

. . .

. . .

. . .

v+1

BFT

Client

f+1f+1

(a)

BFT

Client

f_s

f_c

Figure 2: Confidential BFT

the chain, until finally
���

sends them to the client. If any
firewall other than

���
detects that the replies do not match, it

discards the reply and triggers a fault-detection alarm.

P1: Since every response is verified by
� � �

ma-
chines in the firewall (at least one of which is correct) before
reaching the client, the client only receives correct replies.

The system described above, though simple has the
following drawbacks:
1. The system has no availability guarantee. Even if one of
the machines in the firewall is compromised, it could drop
requests or replies.
2. A faulty firewall machine might leak confidential infor-
mation by altering the the membership of the set of correct
signatures vouching for a reply.
3. A faulty firewall machine might leak confidential in-
formation by inserting, omitting, or reordering requests or
replies.
4. The system is susceptible to timing attacks, i.e., the
malicious servers and/or the machines in the firewall could
use the delay in sending responses to encode confidential
information.

Availability of the system can be improved simply by
augmenting the firewall with multiple independent chains
each

� � �
in length as shown in Fig. 2(b). Assuming at

most
�

faulty machines, at most
� � �

such chains are
sufficient to guarantee 100% availability. Since P1 still
holds, the client can choose any reply that it receives. In
general if � machines are susceptible to crash failures, it is
a straightforward graph-theoretical problem to prove that
a minimum of � � � �
	 ��� � ��	 machines are necessary to
protect confidentiality and ensure availability.

The second problem can be easily rectified by using thresh-
old signatures [9] with a threshold of � � � . Each of the
replicas sends its reply along with its partial signature to

�
�
.

3

� �
waits for � � � matching replies, combines them to form

one just one message and one signature, and forwards them
down the chain. Each machine now independently verifies
the reply before sending it further down.

One solution to (3) is for each firewall machine to ensure
that it transmits replies in exactly the order that it receives
requests. If there exists at least one correct firewall � � on a
data path, then clients or firewall machines nearer to clients
than � � can gain no confidential information from request
ordering, insertion, or omission.

Timing attacks are difficult to tackle in a airtight manner
without affecting the performance of the system. Timing at-
tacks can be countered in two ways: i) we can reduce the
ability of faulty nodes to affect latency, for example by hav-
ing correct nodes insert delays deliberately, ii) we can exam-
ine unusual latency fluctuations at some machines to detect
possible intrusion and recover proactively.

With the above additions, it can be shown that the CBFT sys-
tem emulates the single correct server abstraction as depicted
in Fig. 1. We show the equivalence in a single chain firewall
by considering a sequence of requests seen at the first cor-
rect machine from the bottom in a chain and by showing that
it produces the unique sequence of replies that the abstract
single correct server would generate. By restricting the flex-
ibility of the information sent out by a correct machine in
the firewall we remove the means for malicious machines
to hide confidential information therein, thereby preventing
steganography. It is straightforward to extend the argument
to multiple chains.

4 The CBFT Protocol

The protocol is presented in the figure below. The protocol
starts at the client (Figure 3), where the query is simply for-
warded to all the bottom firewall machines. The firewalls
(Figure 4) take note of the order of that request (by storing
an ordered list of the hash of the requests) and forward the
request up the chain until the top privacy firewall machine.
This machine (Figure 5) then calls Castro and Liskov’s BFT
protocol [3] with the query. That protocol implements a
replicated state machine.

The top firewall (instead of the client) then receives all the
answers and performs the filtering, as per BFT’s specifica-
tion. Note that at this point any divergent answer indicates a
faulty server. The protocol for the bottom firewalls is iden-
tical to that of the middle firewalls, with the difference that
they send their answers back to the requesting client.

�������	� =Execute(
��

���������

)

1. let
�

be a nunce.

2. send (QUERY,
��
����������

,n) to all bottom firewalls.

3. wait until receive an answer � �������	������� ����� , signed by the service’s key S,
where � is a hash of the query.

4. return �������	� .

Figure 3: CBFT protocol, executed at the clients

Query(
��

��������� � �) (from below)

1. add Hash(
��

��������� � �) to the end of the query queue

2. forward (QUERY,
��
����������

,n) to the firewall machine above us

Reply(� �
������������� � ���"! (from above)

1. if the signature # does not match the service key, drop that message.

2. add the message to the �$� ����%&�"' list.

3. While � of some message (in the �$� ����%&�"' list matches the value stored at
the head of the query queue then

4. forward)&(+*-,-.0/ � � �������	������� � ���"! to the firewall underneath us.

5. remove the head of the query queue.

Figure 4: CBFT protocol, executed by middle firewalls

Query(
��

��������� � �) (from below) // requests are executed in sequence

1. execute the BFT protocol with
��

��������� � � .

2. wait until receive an answer (�
�����	�"� � �1� #) from 2 servers such that com-
bining the partial signatures � # yields a message � �������	��� � ��� with a valid
signature from the service key.

3. send (REPLY, � �������	��� � ���) to the firewall machine underneath us.

Figure 5: CBFT protocol, executed by the top firewalls

5 Conclusion

In this abstract we argue that availability, integrity, and con-
fidentiality are essential for access anywhere services and
that traditional assumptions behind Byzantine Fault Tolerant
state machine replication do not protect confidentiality when
clients are not trusted. A Confidential BFT system (CBFT)
differs from traditional BFT systems in that it increases con-
fidentiality guarantees instead of reducing them, while main-
taining the availability and integrity guarantees provided by
the redundancy. The approach we propose in this paper is
very general because it applies to any state machine. We
are currently in the process of implementing a prototype of
CBFT to evaluate its performance.

References

[1] R. Bazzi. Synchronous Byzantine quorum systems. In Pro-
ceedings of the 16th Annual ACM Symposium on Principles
of Distributed Computing (PODC ’97), August 1997.

[2] G. Bracha and S. Toueg. Asynchronous consensus and broad-
cast protocols. In Journal of the Association for Computing
Machinery, October 1995.

4

[3] M. Castro and B. Liskov. Practical Byzantine fault tolerance.
In Proceedings of the Third Symposium on Operating Systems
Design and Implementation, February 1999.

[4] M. Castro and B. Liskov. Proactive recovery in a Byzantine-
fault-tolerant system. In Proceedings of the 4th Symposium
on Operating Systems Design and Implementation, October
2000.

[5] M. Cukier, J. Lyons, P. Pandey, H. V. Ramasamy, W. H.
Sanders, P. Pal, F. Webber, R. Schantz, J. Loyall, R. Watro,
M. Atighetchi, and J. Gossett. Intrusion tolerance approaches
in ITUA. In The 2001 International Conference on Depend-
able Systems and Networks, Goeteborg, Sweden, pages B–64
to B–65, July 2001.

[6] Y. Deswarte, L. Blain, and J. Fabre. Intrusion tolerance in
distributed computing systems. In Proc. Symp. on Research
in Security and Privacy, pages 110–121, Oakland, CA, USA,
1991. IEEE Computer Society Press.

[7] M. Franklin and R. N. Wright. Secure communication in min-
imal connectivity models. In Advances in Cryptology – EU-
ROCRYPT ’98, pages 346–360, 1998.

[8] M. Franklin and M. Yung. Secure hypergraphs: Privacy from
partial broadcast (extended abstract). In Proceedings of the
Twenty-Seventh Annual ACM Symposium on the Theory of
Computing, pages 36–44, 29 May–1 June 1995.

[9] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust
threshold DSS signatures. In Theory and Application of Cryp-
tographic Techniques, number Theory, pages 354–371, 1996.

[10] R. Gennaro, T. Rabin, S. Jarecki, and H. Krawczyk. Robust
and efficient sharing of RSA functions. Journal of Cryptol-
ogy, 13(2):273–300, Spring 2000.

[11] B. Randell J-C. Fabre. An object-oriented view of fragmented
data processing for fault and intrusion tolerance in distributed
systems. In Second European Symposium on Research in
Computer Security (ESORICS 92), pages 193–208, 1992.

[12] M. Kaufmann, P. Manolios, and J. Strother Moore. Computer-
Aided Reasoning: An Approach. Kluwer Academic Publish-
ers, June 2000.

[13] J. Kubiatowicz, D. Bindel, P. Eaton, Y. Chen, D. Geels,
R. Gummadi, S. Rhea, W. Weimer, C. Wells, H. Weather-
spoon, and B. Zhao. OceanStore: An architecture for global-
scale persistent storage. ACM SIGPLAN Notices, 35(11):190–
201, November 2000.

[14] D. Malkhi and M. Reiter. Byzantine quorum systems. In
Distributed Computing, 1998.

[15] D. Malkhi, M. Reiter, and A. Wool. The load and availability
of Byzantine quorum systems. In SIAM Journal on Comput-
ing, December 2000.

[16] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using ab-
straction to improve fault tolerance. In Proceedings of the
18th ACM Symposium on Operating Systems Principles, 2001
October.

[17] F. Schneider. Implementing Fault-tolerant Services Using the
State Machine Approach: A tutorial. Computing Surveys,
22(3):299–319, September 1990.

[18] R. Wang, F. Wang, and G. T. Byrd. SITAR: A scalable in-
trusion tolerance architecture for distributed server. In IEEE
2nd SMC Information Assurance Workshop, West Point, New
York, 2001.

[19] T. Wu, M. Malkin, and D. Boneh. Building intrusion-tolerant
applications. In Proceedings of the 8th USENIX Security
Symposium (SECURITY-99), pages 79–92, Berkely, CA, Au-
gust 23–26 1999. Usenix Association.

[20] L. Zhou, F. Schneider, and R. Renesse. COCA: A secure dis-
tributed on-line certification authority. In Technical Report
TR2000-1828, Computer Science Department, Cornell Uni-
vesity, 2000.

5

