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Abstract

Consider a distributed network with nodes arranged in
a tree, and each node having a local value. We consider
the problem of aggregating values (e.g., summing values)
from all nodes to the requesting nodes in the presence of
writes. The goal is to minimize the total number of mes-
sages exchanged. The key challenges are to define a notion
of “acceptable” aggregate values, and to design algorithms
with good performance that are guaranteed to produce such
values. We formalize the acceptability of aggregate val-
ues in terms of certain consistency guarantees. We propose
a lease-based aggregation mechanism, and evaluate algo-
rithms based on this mechanism in terms of consistency and
performance. With regard to consistency, we adapt the def-
initions of strict and causal consistency to apply to the ag-
gregation problem. We show that any lease-based aggrega-
tion algorithm provides strict consistency in sequential ex-
ecutions, and causal consistency in concurrent executions.
With regard to performance, we propose an online lease-
based aggregation algorithm, and show that, for sequential
executions, the algorithm is constant competitive against
any offline algorithm that provides strict consistency. Our
online lease-based aggregation algorithm is presented in
the form of a fully distributed protocol, and the aforemen-
tioned consistency and performance results are formally es-
tablished with respect to this protocol.

1. Introduction

Information aggregation is a basic building block in
many large-scale distributed applications such as system
management [10, 22], service placement [9, 23], file lo-
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cation [5], grid resource monitoring [7], network monitor-
ing [13], and collecting readings from sensors [14]. Cer-
tain generic aggregation frameworks [7, 18, 24] proposed
for building such distributed applications allow scalable in-
formation aggregation by forming tree-like structures with
machines as nodes, and by using an aggregation function at
each node to summarize the information from the nodes in
the associated subtree.

Some of the existing aggregation frameworks use strate-
gies optimized for specific workloads. For example, in
MDS-2 [7], the information is aggregated only on reads,
and no aggregation is performed on writes. This kind of
strategy performs well for write-dominated workloads, but
suffers from unnecessary latency or imprecision on read-
dominated workloads. At the other extreme, Astrolabe [18]
employs a strategy in which, on a write at a node u in the
tree, each node v on the path from u to the root recomputes
the aggregate value for the subtree rooted at node v, and the
new aggregate values are propagated to all the nodes. This
kind of strategy performs well for read-dominated work-
loads, but consumes high bandwidth when applied to write-
dominated workloads. In general, the workload may vary
between these two extremes, and different nodes may ex-
hibit activity at different times. Therefore, a natural ques-
tion to ask is whether one can design an aggregation strategy
that is adaptive and works well for any workload.

SDIMS [24] proposes a hierarchical aggregation frame-
work with a flexible API that allows applications to control
the update propagation, and hence, the aggregation aggres-
siveness of the system. Though SDIMS exposes such flex-
ibility to applications, it requires applications to know the
read and write access patterns a priori to choose an appro-
priate strategy; see our discussion of related work for fur-
ther details. Thus, SDIMS leaves an open question of how
to adapt the aggregation strategy in an online manner as the
workload fluctuates.

In this work, we design an online aggregation algorithm,
and show that the total number of messages required to ex-
ecute a given set of requests is within a constant factor of
the minimum number of messages required to execute the
requests. We give the complete algorithm description in the



abstract protocol notation [11].

Broader Perspective. The ever-increasing complexity
of developing large-scale distributed applications motivates
a research agenda based on the identification of key dis-
tributed primitives, and the design of reusable modules for
such primitives. To promote reuse, these modules should
be “self-tuning”, that is, should provide near-optimal per-
formance under a wide range of operating conditions. As
indicated earlier, aggregation is useful in many applications.
In this work, we design a distributed protocol for aggrega-
tion that provides good performance guarantees under any
operating conditions. Our focus on tree networks is not lim-
iting, since many large-scale distributed applications tend to
be hierarchical (tree-like) in nature for scalability. If the net-
work is not a tree, one can use standard techniques to build
a spanning tree. For example, in SDIMS [24], nodes are
arranged in a distributed hash table (DHT), and trees em-
bedded in the DHT are used for aggregation; these trees are
automatically repaired in the face of failures. The present
work can be viewed as a case study within the broader re-
search agenda alluded to above. The techniques developed
here may find application in the design of self-tuning mod-
ules for other primitives.

Problem Formulation. We now present an informal de-
scription of the problem formulation; see Section 2 for a de-
tailed description. We consider a distributed network with
nodes arranged in an unrooted tree and each node having a
local value. We formulate the aggregation problem as the
problem of aggregating values (e.g., computing min, max,
sum, or average) from all the nodes to the requesting nodes
in the presence of writes. The goal is to minimize the total
number of messages exchanged.

The main challenges are to define acceptable aggregate
values in the presence of concurrent requests, and to design
an algorithm with good performance that produces accept-
able aggregate values. We define the acceptability of the
aggregate values in terms of certain consistency guarantees.
There is a spectrum of solutions that trade off between con-
sistency and performance. We introduce a mechanism that
uses the concept of leases for aggregation algorithms. Any
aggregation algorithm that uses this mechanism is called a
lease-based aggregation algorithm. The notion of a lease
used in our mechanism is a generalization of that used in
SDIMS [24].

Results. We evaluate lease-based aggregation algo-
rithms in terms of consistency and performance. In terms of
consistency, we adapt the notions of strict and causal con-
sistency, traditionally defined for distributed shared mem-
ory [21, Chapter 6], to apply to the aggregation prob-
lem. We show that any lease-based aggregation algorithm
provides strict consistency for sequential executions, and
causal consistency for concurrent executions.

In terms of performance, we analyze lease-based algo-

rithms in the framework of competitive analysis [20]. In
this framework, we compare the cost of an online algorithm
to that of an optimal offline algorithm. An online aggre-
gation algorithm executes each request without any knowl-
edge of future requests. On the other hand, an offline ag-
gregation algorithm has knowledge of all the requests in
advance. An online algorithm is c-competitive if, for any
request sequence o, the cost incurred by the online algo-
rithm in executing o is at most ¢ times that incurred by an
optimal offline algorithm [6].

As is typical in the competitive analysis of distributed
algorithms [2, 3], we focus on sequential executions. In
this paper we present an online lease-based aggregation
algorithm RWW which, for sequential executions, is %—
competitive against an optimal offline lease-based aggre-
gation algorithm. We use a potential function argument to
show this result. We also show that the result is tight by
providing a matching lower bound. Further, we show that,
for sequential executions, RWW is 5-competitive against an
optimal offline algorithm that provides strict consistency.

The three main contributions of this work are as follows.
First, we design an online aggregation algorithm and show
that our algorithm achieves a good competitive ratio for se-
quential executions. Second, we define the notion of causal
consistency for the aggregation problem. Third, we show
that our algorithm satisfies the definition of causal consis-
tency for concurrent executions.

An interesting highlight of the techniques is the design of
the aggregation algorithm that effectively reduces the anal-
ysis to reasoning about a pair of neighboring nodes. This
reduction allows us to formulate a linear program of small
size, independent of tree size, for the analysis.

Related Work. Various aggregation frameworks have
been proposed in the literature such as SDIMS [24], Astro-
labe [18], and MDS [7]. SDIMS is a hierarchical aggrega-
tion framework that utilizes DHT trees to aggregate values.
SDIMS provides a flexible API that allows applications to
decide how far the updates to the aggregate value due to
writes should be propagated. In particular, SDIMS supports
update-local, update-all, and update-up strategies. In the
update-local strategy, a write affects only the local value. In
the update-all strategy, on a write, the new aggregate value
is propagated to all the nodes. In the update-up strategy, on
a write, the new aggregate value is propagated to the root of
the hierarchy. Astrolabe is an information management sys-
tem that builds a single logical aggregation tree over a given
set of nodes. Astrolabe propagates all updates to the aggre-
gate value due to writes to all nodes, and hence, allows all
reads to be satisfied locally. MDS-2 also forms a spanning
tree over all the nodes. MDS-2 does not propagate updates
on the writes, and each request for an aggregate value re-
quires all nodes to be contacted.

There are some similarities between our lease-based ag-



gregation algorithm and prior caching work. Due to space
limitations, here we describe only the most relevant work.
In CUP [19], Roussopoulos and Baker propose a second-
chance algorithm for caching objects along the routing path.
The algorithm removes a cached object after two consecu-
tive updates are propagated to the remote locations due to
writes on that object at the source. The second-chance al-
gorithm has been evaluated experimentally, and shown to
provide good performance. In distributed file allocation [3],
Awerbuch et al. present a replication algorithm for arbitrary
networks. In their algorithm, on a read, the requested object
is replicated along the path from the destination to the re-
questing node. On a write, all copies are deleted except the
one at the writing node. Awerbuch et al. showed that their
distributed algorithm achieves a poly logarithmic competi-
tive ratio for the distributed caching problem.

The concept of time-based leases has been proposed in
the literature as a method of maintaining consistency be-
tween a cached copy and the source. This kind of leases
have been used in many distributed applications, including
file replication [12] and web caching [8].

Ahamad et al. [1] provide a formal definition of causal
consistency in the context of distributed message passing
system, where the focus is on reading a single value at a
time. In contrast, the present work is concerned with the
aggregation operation that effectively reads values from all
the nodes.

There have been several efforts to reduce aggregation
message complexity by allowing a degree of numerical er-
ror in the aggregate value (e.g., [4, 16]). However, to our
knowledge, this body of work does not address the com-
petitiveness in the aggregation algorithm, does not address
the issue of ordering semantics in concurrent executions.
Bawa et al. [4] define semantics for various scenarios such
as approximate aggregation in a faulty environment called
approximate single-site validity, and also design and exper-
imentally evaluate aggregation algorithms that provide such
semantics. Olston and Widom [16] consider one level hier-
archy and propose a new class of replication system TRAPP
that allows user to control the trade off between precision
(numerical error) and communication overhead.

Organization. Section 2 provides some basic defini-
tions, including a formal definition of the aggregation prob-
lem. Section 3 gives an informal description of our algo-
rithm and analysis. Section 4 defines the class of the lease-
based aggregation algorithms, and establishes certain prop-
erties of such algorithms. Section 5 presents our online
lease-based aggregation algorithm RWW, and establishes
bounds on the competitive ratio of RWW for sequential ex-
ecutions. Section 6 defines the notion of a causally consis-
tent aggregation algorithm, and establishes that any lease-
based algorithm, including RWW, is causally consistent.

Due to space limitations, this paper focuses on conveying

the main ideas underlying our results, and some proofs are
omitted. A complete version of our work, which includes
all proofs, is available online [17].

2. Preliminaries

Consider a finite set of nodes arranged in a tree net-
work 7' with reliable FIFO communication channels be-
tween neighboring nodes. We are also given an aggrega-
tion operator & that is commutative, associative, and has an
identity element 0. For convenience, we write, 21 . . . Bxy,
as ®(z1,...,xk). For the sake of concreteness, in this pa-
per we assume that the local value associated with each
node is a real value, and the domain of & is also real.

The aggregate value over a set of nodes is defined as
@ computed over the local values of all the nodes in the set.
That is, the aggregate value over a set of nodes {v1, ..., v}
is ®(vy.val, . .., vg.val), where v;.val is the local value of
the node v;. The global aggregate value is defined as the
aggregate value over the set of all the nodes in the tree 7.

A request is a tuple (node, op, arg, retval), where node
is the node at which the request is initiated, op is the type
of the request, either combine or write, arg is the argument
of the request, if any, and retval is the return value of the
request, if any. To execute a write request, an aggregation
algorithm takes the argument of the request and updates the
local value at the requesting node. To execute a combine
request, an aggregation algorithm returns a value. Note that
this definition admits the trivial algorithm that returns 0 on
any combine request. We define certain correctness crite-
ria for aggregation algorithms later in the paper. Roughly
speaking, the returned value on a combine request corre-
sponds to the global aggregate value.

The aggregation problem is to execute a given sequence
of requests with the goal of minimizing the total number
of messages exchanged among nodes. For any aggregation
algorithm .4 and any request sequence o, we define C'4(0)
as the total number of messages exchanged among nodes in
the execution o by .A. An online aggregation algorithm A is
c-competitive if for all request sequences ¢ and an optimal
offline aggregation algorithm B, C'4(c) < ¢- C(0).

We say that T is in a quiescent state if (1) there is no
pending request at any node, (2) there is no message in tran-
sit across any edge, and (3) no message is sent until the next
request is initiated.

In a sequential execution of a request, the request is ini-
tiated in a quiescent state and is completed when 7" reaches
another quiescent state. In a sequential execution of a re-
quest sequence o, every request ¢ in o is executed sequen-
tially, and no request can be initiated and executed while
another request is being executed. In a concurrent execu-
tion of a request sequence, a new request can be initiated
and executed while another request is being executed. We



refer to the aggregation problem in which the given request
sequence is executed sequentially as the sequential aggre-
gation problem.

Now we define an aggregation function f over a set of
real values or over a set of write requests. For a set A of
real values x1, ..., Tm, f(A) is defined as B (1, ..., Zm).
For a set A of write requests q1, . . ., gm, f (A) is defined as
f(A) = &(qi-arg, ..., qm-arg).

For any request sequence ¢ and any request ¢ in o, let
A(o, q) be the set of the most recent writes preceding ¢ in
o corresponding to each of the nodes in 7. (For one or
more node u in 7', if no write request at u precedes ¢ in o,
then |A(o, ¢)| may be less than the number of nodes in T'.)
We say that an aggregation algorithm provides strict consis-
tency in executing o if any combine request ¢ in o returns
f(A(o,q)) as the global aggregate value at g.node. This
definition of strict consistency for an aggregation algorithm
is a generalization of the traditional definition of strict con-
sistency for distributed shared memory systems; for further
details, see [21, Chapter 6]. An aggregation algorithm is de-
fined to be nice if the algorithm provides strict consistency
for sequential executions.

The set of all nodes in tree T is represented by nodes(T).
For any edge (u,v), removal of (u,v) yields two trees; we
define subtree(u,v) to be one of the trees that contains w.

For any request sequence o and any ordered pair of
neighboring nodes (u, v), we define o(u,v) as follows: (1)
o(u,v) is a subsequence of o; (2) for any write request g in
o such that g.node is in subtree(u,v), q is in o(u,v); and
(3) for any combine request g in ¢ such that ¢g.node is in
subtree(v,u), ¢ is in o (u,v).

3. Informal Overview

In this section we present an informal overview of our
algorithm and analysis.

Recall that on a combine request at a node u, u returns
a value. Roughly speaking, the value corresponds to the
global aggregate value. In order to do that, « contacts other
nodes and collects the local values from all other nodes. We
can reduce the number of messages by performing aggre-
gation at intermediate nodes, also referred to as in-network
aggregation.

However, for a combine-dominated workload, one may
wish to propagate an updated local value on a write request
in order to reduce the number of messages exchanged on
a subsequent combine. On the other hand, for a write-
dominated workload, such propagation tends to be waste-
ful. In order to facilitate adaptation of how many messages
to send on a combine request versus a write request, we pro-
pose a lease mechanism. Here, we illustrate our lease mech-
anism for just two nodes v and v connected by an edge, and
a scenario in which combine requests are initiated at v and

(a) b)

Figure 1. An example tree network.

write requests are initiated at u. (See Section 4 for the com-
plete description of the mechanism.)

If the lease from u to v is present, then on a write re-
quest at u, u propagates the new local value to v by sending
an update message. Hence, in the presence of this lease, a
combine request at v is executed locally. On the other hand,
if the lease from w to v is not present, then on a combine re-
quest at v, a probe message is sent from v to u. As a result,
a response message containing the local value at w is sent
from u to v. Further, in this case, a write request at v is ex-
ecuted locally. Note that in a combine-dominated scenario,
presence of the lease is beneficial. However, in a write-
dominated scenario, v may receive many updates while v is
not initiating a combine request. In that case, v can break
the lease by sending a release message to u.

In order to make the lease mechanism work for a tree
network in a desirable way, we enforce two lease invariants.
Consider the tree network in Figure 1 as an example. The
presence of a lease on an edge is denoted by a dotted line.
To illustrate the first invariant, consider a combine request
q at node w with leases as in Figure 1(a). During the exe-
cution of ¢, w sends messages and retrieves the local values
from all other nodes. If the lease from ¢ to u is present, then
u does not send any message to t. However, this would not
work if ¢ does not have leases from 7 and s. Our first invari-
ant ensures that the lease from ¢ to u is not set unless ¢ has
leases from all the other neighboring nodes. Our second in-
variant ensures that the lease from ¢ to « cannot be broken if
u has given a lease to any other neighboring node, say node
w in Figure 1(b).

Given this lease mechanism, an aggregation algorithm
can adapt how far an updated value should be propagated
on a write request by setting and breaking leases appro-
priately. We provide an online lease-based aggregation al-
gorithm RWW that sets and breaks leases dynamically in
a near optimal manner (see Section 5). Roughly, RWW
works as follows. For an edge (u,v), RWW sets the lease
from u to v during the execution of a combine request at
any node in subtree(v,u), and breaks the lease after two
consecutive write requests at any node in subtree(u, v). Us-
ing a potential function argument, we show that RWW is
%—competitive against any offline lease-based algorithm for
sequential executions. We also show that this bound is tight
by providing a matching lower bound. Further, we show
that RWW is 5-competitive against any offline algorithm



that provides strict consistency for sequential executions.

With respect to consistency guarantees, we show that
any lease-based aggregation algorithm provides strict con-
sistency for sequential executions. For concurrent execu-
tions, it is difficult to provide strict or sequential consis-
tency. Causal consistency is considered to be the next
weaker consistency model for the distributed shared mem-
ory environment [21, Chapter 6]. At first, it is not clear
how to generalize the causal consistency definitions for the
aggregation problem.

We define a notion of causal consistency for the aggre-
gation problem and show that any lease-based algorithm
provides causal consistency for concurrent executions (see
Section 6). First, for the purpose of analysis, we intro-
duce a new type of requests, called gather, to associate a
combine request with a set of write requests. This associ-
ation is analogous to the way of associating a read request
with a unique write request in analyzing distributed shared
memory [1, 15]. Second, we define causal ordering among
gather and write requests. Third, we extend the lease-based
mechanism by adding ghost variables and ghost actions. Fi-
nally, we use an invariant-style proof technique to show that
any lease-based algorithm provides causal consistency in
two steps. In the first step, we show that a ghost log main-
tained at each node, containing gather and write requests,
respects causal ordering among requests. In the second step,
we show that there is a one-to-one correspondence between
gather and combine requests, that is, for each gather request
there is a combine request and vice-versa, such that the re-
turn value of the combine request is same as the value of ag-
gregation function computed over the set of write requests
returned by the gather request.

4. Lease-Based Algorithms

In this section we present a mechanism that uses the con-
cept of leases. See Figure 2 for the formal description of this
mechanism; the underlined function calls represent stubs
for policy decisions of lease setting and breaking. Through-
out the remainder of this paper, any aggregation algorithm
that uses this mechanism and defines the policy functions is
said to be lease-based.

The status of the leases for an edge (u,v) is given by
two boolean variables u.taken[v] and u.granted[v]. Node
u believes that the lease from v to u is set if and only if
u.taken[v] holds. Also, u believes that the lease from u to v
is set if and only if u.granted[v] holds. The local value at
is stored in u.val. For each neighbor v; of u, u.aval[v;] rep-
resents the aggregate value computed over the set of nodes
in subtree(v;, u). The following kinds of messages are sent
by a lease-based algorithm: probe, response, update, and
release.

Informally, for any node u, a lease from a node u to

its neighboring node v works as follows. If u.granted[v]
holds then, on a write request at any node in subtree(u,v),
u propagates the new aggregate value to v by sending an
update message. To break the lease (that is, to falsify
u.granted[v]), a release() message is sent from v to u. On
the other hand, if w.granted[v] does not hold then, on a
combine request at any node in subtree(v,u), a probe()
message is sent from v to u. As a result, a response mes-
sage is sent from u to v.

Lemma 4.1 Consider a sequential execution of a request
sequence o by a lease-based algorithm and any two neigh-
boring nodes u and v.

1. Let a combine request q in o(u,v) be initiated in a
quiescent state Q). If u.granted[v] does not hold in
Q, then in execution of q, (i) a probe message is sent
from v to u; (ii) a response message is sent from u to
v; (iii) u.granted[v] can be set to true while send-
ing the response message from v to u;, and (iv) no
update or release messages are sent. Otherwise, if
u.granted[v] holds, then in execution of q, no mes-
sages are exchanged between u and v.

2. Let a write request q in o(u,v) be initiated in a quies-
cent state Q). If u.granted[v] does not hold in Q, then
in execution of q, no messages are exchanged between
w and v. Otherwise, if u.granted[v] holds in Q, then in
execution of q, (i) an update message is sent from u to
v, (ii) a release message from v to u can be sent; (iii)
on receiving the release message at u, u.granted[v] is
set to false; and (iv) no probe or response messages
are sent.

3. Let a write request q in o(v,u) be initiated in a qui-
escent state Q). If u.granted[v] holds in Q, then in
execution of q, a release message can be sent from
v to u, and on receiving the release message at u,
u.granted[v] is set to false.

4. In the execution of a combine request in o(v,u),
u.granted[v] does not change.

Proof. See [17]. |

For any node u, we define I7 (u), I2(u), and I5(u) as fol-
lows. (1) I1(u): For the most recent write request ¢ at u,
w.val = q.arg; (2) Iy(u): For any update or response mes-
sage m from any neighboring node v to u, m.x = f(A),
where A is the set of the most recent write requests at each
of the nodes in subtree(v,u); and (3) Is(u): For any qui-
escent state ) and any node v in w.tkn(), w.avallv] =
f(B)), where B is the set of the most recent write re-
quests at each of the nodes in subtree(v,u). Let I(u) be
I (u) A Iz(u) A I3(u). See [17] for the proof of the follow-
ing lemma.



node u

procedure sendprobes(node w)

var taken|[] : array[vy,...,vi] of boolean; T i prdo U ’
granted[] : array[vi,...,vy] of boolean; pndg := pndg U {w};
aval] : array[vy,...,vs] of real; wal : real; foreach v € nbrs() \ {tkn() U sntprobes() U {w}} do
uaw : set {int}; pndg : set {node}; upcnir : int; send probe() to v; od
snt[] : array[vi,...,vi] of set {node}; o
sntupdates : set {{node, int rcvid, int sntid}}; procedure forwardupdates(node w, int id)

foreach v € grntd() \ {w} do

init val := 0; uaw := 0; pndg := 0; upcntr := 0; send update(subval (v), id) to v; od

sntupdates := 0; Vv € nbrs(), taken[v] := false;

bggil:ted[v] 1= fatses avalle] := 05 ontle] = 0 procedure sendresponse(node w)
true — {combine} if (nbrs() \ {tkn() U{w}} = 0) —
oncombine(u); granted[w] := setlease(w); fi

foreach v € thn() do send response(subval(w), granted[w]) to w;

uaw[v] := 0; od

ifu ¢ pndg — boolean isgoodforrelease(node w)

if nbrs() \ thkn() =0 — return (grntd() \ {w} = 0);
return gval();
) procedure onrelease(node w, set S)
Dsréitrjp(')ro\bg;?qg‘i 0= Let id be the smallest id in S}
sntlu] := nbrsb \ tkn(); fi fi foreachv € tkn() \ {w} do

true — {write q} Let A be the set of tuples « in sntupdates
— . 1 such that a.node = v and a.sntid > id;
val 1= q.arg;

. Let (3 be a tuple in A
if grntd() # 0 — such that B.rcvid < a.rcvid forall ain A;

}gyj;afdeqﬁljét);s (u, id); fi Let S’ be the set of ids in waw[v] withids > B.rcvid;
,td); - the S
Orecv probe() from w — uaw [v] :== 8%
probercvd(w); if zsgoodforfelease(v) —
foreachv € tkn() \ {w} do releasepolicy(v); fi od
uaw[v] := 0; od forwardrelease();
if w pndg —
if n%rs() \ {thkn() U {w}} =0 — procedure forwardrelease()
sendresponse(w); fo're.ach v € tkn() do
Onbrs() \ {thn() U {w}} # 0 — if isgoodforrelease(v) —
sendprobes(w); if taken[v] A breaklease(v) —
snt[w] := nbrs() \ {tkn() U {w}}; i fi taken[v] := false;

send release(uaw[v]) to v;

O rcv response(z, flag) fromw — waw(o] — 0 fi od

responsercvd(flag, w);
aval[w] := z;
taken[w] := flag;
foreach v € pndg do
sntv] := snt[v] \ {w};
if sntjv] =0 —
pndg 1= pndg \ {v};
ifv=u—
return gval();
v Fu—
sendresponse(v); fi fi od
Orcv update(z, id) fromw —

int newid()
upentr := upcentr + 1;
return upcnir;

real gval()

x = val;
foreach v € nbrs() do
z := f(z, aval[v]); od

return x;

[ -

W =2 OO0 FAWN =0T — OOV WA W —

real subval(node w)

updatercvd(w); T = val:
aval[w] := z; I
? . foreach v € nbrs w} do

?Law[w] = waw|w] U id; © = f(z, (wal[v}()); (\)j 4
if grntd() \ {w} # 0 — return z;

nid = newid(); ’

sntupdates := sntupdates U {w, id, nid}; set nbrs()

forwardupdates(w, nid); return the set of neighboring nodes;
Ogrntd() \ {w} =0 — set tkn()

forwardrelease(); fi

O rev release(S) from w — return {v | v € nbrs() A taken[v] = true};

set grntd()

=

%F@tﬁalse_ return {v | v € nbrs() A granted[v] = true};
gnreleasg(u;is)- ’ set sntprobes()
ond )3 return {snt[v1] U --- U snt[vg]};

Figure 2. Mechanism for any lease-based algorithm. For the node v, {vy,...,v;} is the set of neigh-
boring nodes.



Lemma 4.2 Consider a sequential execution of a request
sequence o by a lease-based algorithm. For any node u,
I(u) is an invariant.

Using Lemma 4.2, we can show that the following
lemma holds (see [17] for the complete details).

Lemma 4.3 Any lease-based aggregation algorithm is
nice.

From Lemma 4.3 and the definition of a nice aggregation
algorithm, we have that any lease-based aggregation algo-
rithm provides strict consistency in a sequential execution.

S. Analysis for Sequential Executions

We define RWW as an online lease-based aggregation
algorithm that follows the policy decisions shown in Fig-
ure 3 for setting or breaking a lease. In this section we
show that RWW is g-competitive against an optimal offline
lease-based algorithm OPT for the sequential aggregation
problem (see Theorem 1). We also show that RWW is 5-
competitive against an optimal nice offline algorithm for the
sequential aggregation problem (see Theorem 2). Further,
we show that, for any lease-based aggregation algorithm A,
there exists a request sequence ¢ and an offline algorithm
such that, in a sequential execution of o, the cost of A is at
least % times that of the offline algorithm (see Theorem 3).

Informally, RWW works as follows. For any edge
(u,v), RWW sets the lease from u to v during the execu-
tion of a combine request in o(u,v), and breaks the lease
after two consecutive write requests in o (u, v).

For positive integers a and b, an online lease-based ag-
gregation algorithm A is in the class of (a, b)-algorithms if,
in a sequential execution of any request sequence o by A,
for any edge (u, v), A satisfies the following condition: (1)
if u.granted[v] is false, then it is set to true after a consec-
utive combine requests in o(u,v); and (2) if u.granted[v]
is true, then it is set to false after b consecutive write re-
quests in o(u,v). See [17] for the proof of the following
lemma.

Lemma 5.1 The algorithm RWW is a (1, 2)-algorithm.

For any ordered pair of neighboring nodes v and v, we
define type(u, v) messages as the following kinds of mes-
sages exchanged between u and v: (1) probe messages from
v to u; (2) response messages from u to v; (3) update mes-
sages from u to v; and (4) release messages from v to u.
For any lease-based algorithm .4 and request sequence o,
we define C4(0o,u,v), as the number of type(u, v) mes-
sages exchanged in the execution of o by .A. Note that the
total number of messages exchanged between v and v is the
sum of C 4 (o, u,v) and C4(o,v,u).

Figure 4. States and state transitions for any
pair of nodes (u,v) in executing requests
from o’(u,v) (defined in Lemma 5.2).

Consider a sequential execution of an arbitrary request
sequence 0 by RWW. For any quiescent state (), and for
any ordered pair of neighboring nodes (u, v), we define the
configuration of RWW, denoted Frww (u,v), as follows:
(1) if @ is the initial quiescent state, then Frww (u,v) is
0; (2) if the last completed request in o(u,v) is the first
write request in o (u,v), then Fryww (u, v) is 0; (3) if the
last completed request in o (u, v) is a combine request, then
Frww (u,v) is 2; (4) if the last two completed requests in
o(u,v) are a combine request followed by a write request,
then Frww (u, v) is 1; (5) if the last two completed requests
in o(u,v) are write requests, then Fryww (u, v) is 0.

For any quiescent state () and ordered pair of neigh-
boring nodes (u,v), we define the configuration of OPT
Fopr(u,v) to be 1 if u.granted[v] holds, 0 otherwise.

Lemma 5.2 Consider a sequential execution of a request
sequence 0 by RWW and OPT. For any two neighbor-
ing nodes u and v, Crww/(0o,u,v) is at most g times

COPT(aa u, U)'

Proof sketch. Once a request ¢ in ¢ is initiated in a quies-
cent state, without loss of generality, we assume that RWW
executes ¢, and then OPT executes q. We construct a new
request sequence o’ (u, v) from o (u, v) as follows: (1) insert
a noop request in the beginning and at the end of o (u,v);
and (2) insert a noop request between every pair of succes-
sive requests in o (u, v).

In the rest of the proof, first, for both RWW
and OPT, we argue that we can charge each of the
type(u, v) messages to a request in o’(u,v). Then, to
prove the lemma, we use potential function arguments
to show that Crww (0’ (u,v),u,v) is at most 2 times
Copr(o'(u,v),u,v).

For RWW, we can show that Crww(o,u,v) =
Crww (o (u,v),u,v). For RWW, for any request ¢ in



var [t : array[vi ...v,] of int;
granted : array|v; ...wvy]| of boolean;

procedure oncombine()
foreachv € tkn()do
it[v] := 2; od
procedure probercvd(node w)
foreachv € tkn() \ {w} do

it[v] := 2;0d
boolean setlease(node w)
lg[w] := true;

return true;

procedure responsercvd(boolean flag, node w)
if flag A (taken[w] = false) —
ltw] :=2; fi
procedure updatercvd(node w)
if (grntd() \ {w} = 0) A ltfw] > 0 —
lt[w] := lt[w] — 1; fi
procedure releasepolicy(node v)

It[v] := maz (0, it[v] — |uaw[v]]);
procedure releasercvd(node w)
lg[w] := false;

boolean breaklease(node w)
return(ltfw] = 0);

Figure 3. Policy decisions for RWW

o(u,v), we charge all the messages incurred in execut-
ing ¢ by RWW to the same request ¢ in o’(u,v). We
do not charge any message to a noop request in o’(u, v).
Hence, we have, Crww (0, u,v) = Crww (o’ (u,v),u,v).
For OPT, first, for any request ¢ in o(u, v), we charge all
type(u, v) messages incurred in executing ¢ by OPT to the
same request ¢ in o’ (u,v). Second, using Lemma 4.1, we
can show that any type(u, v) message incurred in the exe-
cution of o(v,u) can be charged to some noop request in
o' (u,v). Thus, for both RWW and OPT, we can charge
all type(u,v) messages to requests in o’(u,v). There-
fore, we can restrict our attention to messages associated
with executing requests in ¢’(u,v) in order to compare
CRWW(U7 u, ’U) and COPT (J, u, U).

For the ordered pair (u,v), in Figure 4, we show a state
diagram depicting possible changes in Frww (u,v) and
Fopr(u,v) in executing a request from o’(u,v). In the
state diagram, a state labeled S(x,y) represents a state of
the algorithms in which Fopr(u,v) is z and Frww (u, v)
is y. A combine (resp., write) request is represented by R
(resp., W). A release message sent during the execution
of a write request in o (v, u) is associated with a noop (de-
noted by N) request in this figure. Observe that the changes
in Frww (u, v) in executing a request are deterministic as
specified by the algorithm in Figure 3. On the other hand,
the changes in Fopr(u,v) in executing a request are not
known in advance. Hence, in cases with more than one pos-
sible changes in Fopr(u, v) in executing a request, the pos-
sibilities are depicted by non-deterministic state transitions.

We define a potential function ®(z, y) as a mapping from
a state S(z, y) to a positive real number. The amortized cost
of any transition is defined as the sum of the change in the
potential ® and the cost incurred by RWW in the transi-
tion. In order to show that RWW is constant competitive,
we write that the amortized cost of any transition is at most ¢
times the cost of OPT, where c is a constant factor. We are
able to solve these inequalities by formulating a linear pro-
gram with an objective function to minimize c. By solving
the linear program, we getc = 2, ®(0,0) = 0, ®(0,1) = 2,
$(0,2) =3, ®(1,0) = 2, &(1,1) = 2, and (1,2) = 3.

Hence, for any state transition due to the execution of

a request ¢ from o’(u, v), the amortized cost is at most %
times the cost of OPT in the execution of g. Recall that, in
the initial quiescent state, Fryww (4, v) and Fopr(u,v) are
0, and the potential for any state is nonnegative. Therefore,
in execution of ¢’(u, v), the total cost of RWW is at most
2 times that of OPT. That is, Crww (0, u, v) is at most 3
times Copr(0,u, v). O

Theorem 1 Algorithm RWW is %-competitive with respect
to any lease-based algorithm for the sequential aggregation
problem.

Proof. From Lemma 5.2, in a sequential execution of a re-
quest sequence o, for any two neighboring nodes u and v,
Crww (0, u,v) is at most 3 times Copr(o, u,v). By sym-
metry, Crww (0, v,u) is at most % times Copr(0,v,u).
Hence, the total number of messages exchanged between u
and v in execution of 0 by RWW is at most g times that of
OPT. Summing over all the pairs of neighboring nodes, we
find that Crww (o) is at most % times Copr(c). Hence,
the theorem follows. U

Theorem 2 Algorithm RWW is 5-competitive with respect
to any nice algorithm for the sequential aggregation prob-
lem.

Proof sketch. Let OPTy be an optimal nice algorithm for
the sequential aggregation problem. Consider any pair of
neighboring nodes (u,v). We compare the cost of RWW
and OPTy in executing request sequences o(u,v) and
o(v,u) separately.

First, consider the execution of requests in o (u,v). We
define an epoch as follows. The first epoch starts at the
beginning of the request sequence. An epoch ends with a
write to combine transition in o(u,v), and a new epoch
starts at the same instant. By the definition of a nice algo-
rithm, OPTx provides strict consistency for the sequential
execution problem. Hence, OPTy sends at least one mes-
sage in any epoch. We are able to show that the algorithm
RWW sends at most 5 messages in any epoch. Summing
over epochs, we find that the cost of RWW in executing
o(u,v) is at most 5 times that of OPTy. By symmetry, the



cost of RWW in executing o (v, ) is at most 5 times that of
OPTy. By summing over all the pair of neighboring nodes,
the desired result follows. (]

Theorem 3 For any lease-based algorithm A, there exists
a request sequence o and an offline algorithm such that the
cost A in executing o is at least % times that of the offline
algorithm.

Proof sketch. We give an adversarial request generating ar-
gument. Consider an example of a tree consisting of just
two nodes v and v such that there is an edge between u and
v. The adversarial request generating algorithm ADV is as
follows. The algorithm ADV generates a combine requests
at v such that there is a lease from u to v after the execu-
tion of the a-th request. And then, ADV generates b write
requests at u such that there is no lease from u to v after
the execution of the b-th request. Using potential function
arguments, we can show that, for a sufficiently long request
sequence o generated by ADV, the cost of A in executing
o is at least % times that of an optimal offline algorithm. [

6. Consistency in Concurrent Executions

In this section we generalize the traditional definition
of causal consistency [1] for the aggregation problem, and
show that any lease-based aggregation algorithm is causally
consistent. As mentioned earlier, prior work on causal con-
sistency (e.g., [1]) deals with read operations involving a
single value. In contrast, the combine operation addressed
in this paper aggregates values from all the nodes.

6.1. Definitions

Request. For the sake of convenience, in this section we
extend the definition of a request from Section 2 as follows.
A request q is a tuple (node, op, arg, retval, index), where
(1) node is the node where the request is initiated; (2) op is
the type of the request, combine, gather, or write; (3) arg
is the argument of the request (if any); (4) retval is the re-
turn value of the request (if any); and (5) indez is the num-
ber of requests that are generated at g.node and completed
before g is completed.

An aggregation algorithm executes write and combine
requests as described in Section 2. To execute a gather
request, an aggregation algorithm returns a set A of pairs of
the form (node, index) such that (1) for each node w in T,
there is a tuple (u, ) in A, where ¢ > —1; (2) for any tuple
(u,i) in A, if i > 0, then there is a write request ¢ such that
g.node = u and g.index = i; and (3) |A| is equal to the
number of nodes in 7.

Miscellaneous. For the sake of convenience, in this sec-
tion we extend the definition of function f from Section 2

as follows. In the extended definition, f can also take a set
of pairs A of the form (node, indez) as an argument, and
f(A) = f(B), where B is a set of write requests such that
for any tuple (u,%) in A with ¢ > 0, there is a write request
q in B with g.node = u and gq.index = 1.

A combine-write sequence (set) is a sequence (set) of
requests containing only combine and write requests. A
gather-write sequence (set) is a sequence (set) of requests
containing only gather and write requests. Let A be a set
of requests. Then, pruned(A,w) is a subset of A such that,
for any request ¢ in A, ¢ is in pruned(A,w) if and only if
q.op = write or q.node = u.

For any sequence of requests S and any request ¢ in S,
we define recentwrites(S, q) as a set of pairs such that the
size of recentwrites(S, q) is equal to the number of nodes
in T, and for any node w in T": (1) if ¢’ is the most recent
write request at u preceding ¢ in S, then (u,q’.index) is
in recentwrites(S, q); (2) if there is no write request at u
preceding ¢ in .S, then (u, —1) is in recentwrites(S, q).

Let A be a gather-write set, and let S be a sequence of
all the requests in A. Then, S is called a serialization of
A if and only if, for any gather request g in S, q.retval =
recentwrites(S, q).

For any two request sequences o and 7, o — 7 is defined
to be the subsequence of ¢ containing all the requests ¢ in
o such that g is not present in 7. For any two request se-
quences o and 7, o - T is defined to be the sequence obtained
by the concatenation of ¢ and 7.

Compatibility. Let ¢; be a combine or write request
and let g5 be a gather or write request. Then, ¢ and ¢- are
compatible if and only if (1) q;.op = write and g1 = q2;
or (2) qi.op = combine, qa.0p = gather, qi.retval =
f(ga.retval), and the node, arg, and index fields are equal
for ¢; and g2. A combine-write sequence o and a gather-
write sequence T are compatible if and only if (1) o and 7
are of equal length; and (2) for all indices 4, o(¢) and 7(7)
are compatible. Let A be a combine-write set and let B
be a gather-write set. Then, A and B are compatible if
and only if for any node w in T, there exists a sequence
S of all the requests in pruned(A,u), and a sequence S’
of all the requests in pruned(B,w) such that S and S’ are
compatible.

Causal Consistency. The execution history of an aggre-
gation algorithm is defined as the set of all requests exe-
cuted by the algorithm. We now define a notion of causal
order (~) between any pair of requests ¢; and ¢o in a given

gather-write execution history A. First, ¢; > qo if and
only if (1) q1.node = ¢2.node and q;.indexr < qs.index;
or (2) q; is a write request, g2 is a gather request, and g
returns (qi.node, q1.index) in gs.retval. Second, for any
ce ) i+l . .
positive integer ¢, 1 ~> q2 if and only if there exists a re-

quest ¢’ such that ¢; R q > qo. Finally, ¢; ~ g2 if and



only if there exists an 7 such that ¢, ~» ¢o.

A gather-write execution history A is causally consis-
tent if and only if, for any node u in 7', there exists a seri-
alization S of pruned(A,u) such that S respects the causal
order ~- over all the requests in pruned(A, u). A combine-
write execution history A is causally consistent if and only
if there exists a gather-write execution history B such that
A and B are compatible and B is causally consistent.

6.2. Analysis

For the sake of our analysis, we extend the lease-based
mechanism presented in Figure 2 by adding “ghost” actions.
For any node u, we maintain a ghost variable u.log, contain-
ing all the requests initiated at u. For any node u, u.wlog is
defined as a subsequence of u.log containing all the write
requests in u.log.

For each node u in 7T, we construct a gather-write
sequence u.gwlog from w.log as follows: (1) if w.log(7)
is a write request, then w.gwlog(i) = wu.log(i); (2) if
u.log(i) is a combine ¢, then u.gwlog(i) is a gather go
such that go.node = q1.node, gz.0p = gather, qz.index =
q1.index, and go.retval = recentwrites(u.log, q1).

For each node u in T', we construct u.log’ and u.gwlog’
from u.log and u.gwlog as follows. First, initialize u.log’ to
u.log, and u.gwlog’ to u.gwlog. Then, for each node v in T
except u, repeat the following steps: (1) u.log’ = u.log’ -
(v.wlog — w.log"); (2) u.gwlog’ = u.gwlog’ - (v.wlog —
u.gwlog’).

Theorem 4 follows from Lemmas 6.1 and 6.2. See [17]
for the complete proofs of the lemmas and the theorem.

Lemma 6.1 For any node u, u.qwlog’ respects the causal
ordering of requests in u.qwlog’.

Lemma 6.2 For any node u, u.log" and u.gwlog’ are com-
patible.

Theorem 4 The execution history of any lease-based algo-
rithm is causally consistent.
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