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ABSTRACT state) spanning tens of thousands of nodes.

This paper addresses a central challenge in PRISM, a | Nfé€ techniques are vital for a monitoring system's
large-scale distributed monitoring system: coping withScalability: (1)hierarchical aggregatiorj17, 20, 38, 40]

the uncertainties and ambiguities introduced by networi@!lows @ node to access detailed views of nearby informa-
and node failures. In particular, in a large scale monitor-ion and summary views of global information, @jth-

ing system, such failures interact badly with techniquedn€tic filtering[19-21, 25, 34, 45] caches recent reports
needed for scalability like hierarchy, arithmetic filtegin ~ 2nd Only transmits new information if it differs by some
and temporal batching. For example, if a monitoring sub-"Umeric threshold (e.gz: 10%) from the cached report,
tree is silent over an interval, it is difficult to distinghis thUS trading a bounded small approximation error for a
between two cases: (a) the subtree has sent no updatgignificantload reduction, and (8mporal batchingl19,
because the inputs have not significantly changed or (b§1» 29, 34, 38] combines multiple updates that arrive near
the inputs have significantly changed but the subtree i9N€ @nother in time into a single network message. Each

unable to transmit its report. As a result, reported resultQf these techniques can reduce monitoring overheads by
can be arbitrarily far from their true values. an order of magnitude or more [19, 20, 25, 40].

To address this challenge PRISM introdudkstwork As important as these techniques are for reducing load,
Imprecision(NI), a new metric to characterize accuracy they interact badly with network and node failures: a
despite node failures, network disruptions, and SyStenrpjonnon_ng system_that uses any of these scalability tech-
reconfigurations. PRISM leverages NI to flag potentially Midues risks reporting highly inaccurate results.

inaccurate results, allowing applications to differetetia e First, when a monitoring system uses arithmetic fil-
between known-correct and likely-erroneous results as tering, if a subtree or node is silent over an interval,

well as to correct distorted results by applying several the system must distinguish two cases: (a) the sub-
redundancy techniques. Evaluation of our PRISM proto- tree or node has sent no updates because the inputs
type shows that NI effectively flags inaccurate query re-  have not significantly changed from the cached val-
sults while incurring low overheads, and we find that us- ues or (b) the inputs have significantly changed but

ing NI to automatically select the best results can reduce the subtree or node is unable to transmit its report.
the inaccuracy in a PRISM-based monitoring service by

nearly a factor of five e Second, under temporal batching there are windows

oftime in which a short disruption can block a large
batch of updates (e.g., when a disruption delays

1. INTRODUCTION transmission of the combined update), resulting in
This paper describes how PRISMsesNetwork Im- large inaccuracies due to staleness in a monitoring
precision(NI) to enable scalable monitoring. The key system’s reports.

idea of NI is that because no system can guarantee to al- Third, in a hierarchical monitoring system, the im-

ways provide the “right” answer [12, 32], it instead must pact of failures is made worse by taenplification
report the extent to which a calculation could have been effect[24]: if a non-leaf node fails, then the en-
disrupted by node and network problems. Intuitively, NI tire subtree rooted at that node can be affected. For
represents a “stability flag” indicating whether the under- example, failure of a level-3 node in a degree-8 ag-

lying network is stable or not. . gregation tree can interrupt updates from 583 (
Scalable system monitoring and distributed stream pro-  |aaf node sensors.

cessing are fundamental abstractions for large-scale net- S .
worked systems. They serve as basic building blocks fof hese effects can be significant. For example, in one
applications such as network monitoring and manageD€twork monitoring application, we observed that more
ment [6, 16, 20, 41], financial applications [2], resourcethar_‘ half of all reports differed from the ground truth at
scheduling [17, 40], efficient multicast [38], sensor net-the inputs by more than 60%. .

works [17, 40], resource management [40], and band- To address this challenge, PRISM introdubteswork
width provisioning [8] that may scale to thousands or!mprecision(NI), a new metric for characterizing the in-

millions of dynamic attributes (e.g., per-flow or per-olijec consistency in query results due to network instability.
In particular, given that no system can guarantee to al-

!PRecision-Integrated Scalable Monitoring ways provide the “right” answer [12, 32], NI attaches an




assessment of the current network state with each query 37 73 Virtual Nodes (Interal Aggregation Points) | 5
result. Then, a query result with low NI is highly likely f
to reflect reality, but an answer with a high value of NI 1800 o0 L2

indicates a low system confidence in that query result— f\ T\

the network is unstable, hence the result should not be 70 g, 70 120}
tusted R A R e
We design, implement, and evaluate PRISM, which 3 000 4100 2010 9110 001 1101 011 111
makes use of arithmetic filtering, temporal batching, and Physical Nodes (Leaf Sensors)
hierarchy for scalability, and which leverages NI to ef-
fectively safeguard accuracy by, for example, (1) infer-Figure 1: The aggregation tree for key 000 in an eight
ring an approximate confidence interval for the numbemode system. Also shown are the aggregate values for
of sensor inputs contributing to a query result, (2) differ-a simple SUM() aggregation function.
entiating between correct and erroneous results based on
their NI, or (3) correcting distorted results by applying
redundancy techniques and then using NI to automati
cally select the best results.
A key challenge is implementing NI efficiently. Be-
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tion 2 provides background on the scalable DHT-based
aggregation technologies and approximation techniques

. ; : . that underlie PRISM. Section 3 describes the NI abstrac-
cause a given failure has different effects on different a9%ion and explains how different applications use NI. Sec-

gregation trees embedqled in our scalable .D.HT [40], th'%ion 4 presents how to scalably compute the NI metrics.
N_I reported with an attribute must b_e Spe.c'f'.c to that al-gection 5 presents the case-study applications that we
tribute’s tree. Unfortunately, deteptmg missing u_pdatesou“d to drive the development and evaluation of PRISM.
due to failures, delays, and reconfigurations requires freSection 6 presents the experimental evaluation of our sys-

quent active prpbmg O.f p_aths within atree. As a e tem. Finally, Section 7 discusses related work, and Sec-
sult, naive probing can limit the scalability of the system, 0 's concludes

subverting the benefits of arithmetic filtering and tem-

poral batching. Therefore, to provide a topology-aware

implementation of NI that scales to tens of thousand- BACKGROUND AND PROBLEM

of nodes and millions of attributes, PRISM introduces a PRISM achieves scalability by combining three well-
noveldual-tree prefix aggregatioconstruct that exploits  known techniques: DHT-based hierarchical aggregation,
symmetry in its DHT-based aggregation topology to re-arithmetic filtering, and temporal batching. In this sec-
duce the per-node overhead of tracking theistinct NI tion, we briefly describe these techniques, define the guar-
values relevant ta aggregation trees in annode DHT  antees PRISM must enforce, and illustrate the challenges
from O(n) to O(logn) messages per unit time. For a to meeting these guarantees in a large-scale system. Ad-
1024-node system, dual tree prefix aggregation reducetditional details of PRISM’s implementation of these three
the per node cost of tracking NI from a prohibitive 100 concepts are available elsewhere [19, 20, 40].

messages per second to about 5 messages per secondp i1 hased hierarchical aggregation PRISM's aggre-

_ The mostimportant benefit of Nl is the ability to quan- o410 apstraction defines a tree spanning all nodes in the
tify and improve confidence in the accuracy of OUIPUISsystem. As Figure 1 illustrates, each physical node in

by addressing network instability and the amplificationne system is a leaf and each subtree represents a logical
effect: we observe_ that for monitoring systems that I9-group of node& An internal non-leaf node, which we
nore NI, half of their reports can differ from the truth by -, 3 virtual node is simulated by one or more physi-

more than 60%. Conversely, by using NI metrics to au-c| nodes at the leaves of the subtree rooted at the virtual

tomatically select the best of four redundant aggregation, 4o

results, we can reduce the observed worst-case inaccu- prigm leverages DHTSs [28-30, 35, 46] to construct a

racy _by nearly a factor of five. _ , forest of aggregation trees and maps different attributes
This paper makes four contributions. First, we preseniy, gigterent trees [4, 10, 28, 31, 40] for scalability anddoa

Network Imprecision, a new consistency metric thatbalancing. DHT systems assign a long (e.g., 160 bits),

characterizes the impact of network instability on aggre+anqom ID to each node and define a routing algorithm

gate query resultg. Second, we provide asca}lable impl% send a request for kely to a noderoot;, such that
mentation of NI via dual-tree prefix aggregation. Third, 1o nion of paths from all nodes forms a tETtree,

our evaluation demonstrates that Nl is vital for enabling,; ted at the nodeot,,. By aggregating an attribute with

scalable aggregation: a system that ignores NI can oftepe, 1. = hash(attribute) along the aggregation tree corre-
silently report arbitrarily incorrect results. Finally,ew

demonstrate how different applications can leverage NFNote that logical groups can correspond to administratore d

to detect distorted results and take corrective action.  mains (e.g., department or university) or groups of nodéisimi

; ; ; ~adomain (e.g., &8 subnet with14 hosts on a LAN in the CS
The rest of this paper is organized as follows. Sec department) [15,40].
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Figure 2: Dynamically-constructed aggregation hier-

archies raise two challenges for guaranteeing the ac-  Figure 3: Arithmetic filtering makes it difficult to de-
curacy of reported results: the failure amplification  termine if a subtree’s silence is because the subtree
effectand double countingcaused by reconfiguration.  has nothing to report or is unreachable.

sponding toDHTtree,, different attributes are load bal-
anced across different trees. Studies suggest that this ap-
proach can provide aggregation that scales to large num-
bers of nodes and attributes [4, 10, 28, 31, 40].

Unfortunately, as Figure 2 illustrates, hierarchical ag-
gregation imperils correctness in two ways. First, a fail-
ure of a single node or network path can prevent updates
from a large collection of leaves from reaching the root,
amplifying the effect of the failure [24]. Second, node
and network failures can trigger DHT reconfigurations
that move a subtree from one attachment point to another, 7
causing the subtree’s inputs to be double-counted by the,
aggregation function for some period of time.

Leaf Sensor S
eriodic Updat
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Arithmetic Imprecision (Al). Arithmetic imprecision
bounds the difference between the reported aggregate v

and the true value. In PRISM, each aggregation functio ) .
and allows internal nodes to combine updates from

reports a rang€V,,in, Vinaz } in which the true aggre- ©. .
gate value, computed by applying that aggregation funcdifferent subtrees before transmitting them further.

tion across the inputs, lies [19].

Allowing such arithmetic imprecision enables numerict
filtering: a subtree need not transmit an update unless th
update drives the aggregation value outside the range It g Figure 4 illustrates, Tl allows PRISM to use tem-
last reported to its parent. Numerous systems have f°“”80ra| batching: a set of updates at a leaf sensor are con-
that small amounts of arithmetic imprecision can greatly

densed into a periodic report or a set of updates that ar-
reduce ovgrheads [19-21,25,34,38,45], and PRISM alFive at an internal node over a time interval are combined
lows the size of the range to be set and enforced on

. . . g Before being sent further up the tree [19].
per-attribute basis to enable adaptive precision-overhea Of course, an attribute’s Tl guarantee can only be en-
trage?ffs [20].| Ei 3 il thmetic fi sured if there is good pathfrom the leaf to the root.
Uniortunately as Figure 3 illustrates, ?‘F” metic fil- 5 good path is a path whose processing and network
tering raises a challenge for correctness: '_f a subtree 'Bropagation times fall within some pre-specified delay
silent, itis d|ff|<_:ult for the system to distinguish between budget [19]. Note that node/network failures/delays can
two cases. Either the sub'gree_ _has sent no updates bgz oo 5 path to no longer be good thereby preventing
cause the inputs have not 5|gn|f|cant_ly c_hanged from they, system from meeting its Tl guarantees. Furthermore,
cached values or the inputs have _s!gnlﬂcantly changegyhen o system batches a large group of updates together,
but the subtree is unable to transmit its report. a short network or node failure can cause a large error.
Temporal Imprecision (T1). Temporal imprecision boundd-or example, suppose a system is enforcing TI=60s for
the delay from when an event/update occurs until it is re-an attribute, and suppose that an aggregation node near
ported. In PRISM, each attribute has a Tl bound, andhe root has collected 59 seconds worth of updates from

ﬁwre 4: Temporal batching allows leaf sensors to
ondense a series of updates into a periodic report

0 meet this bound, the system must ensure that updates
ropagate from the leaves to the root in the allotted time.



its descendents but then loses its connection to the rodhat results reflect most inputs and are likely to be useful.

node for a few seconds. That short disruption can causBor exampleN,;; = 100, Nycqchapie = 99, andNg,, =0

the system to violate its Tl guarantees for a large numbeimplies that the query result accounts for all but one node

of updates spread across a large number of nodes. and hence is highly likely to be accur&teConversely,
query answers with high values 6f,;; — N,.cqchabie OF

3. NIABSTRACTION AND APPLICATION Ny, suggest that the network is unstable; hence the re-

In this section we describe the NI abstraction that charSults should not be trusted. For exampleYif.achabic =

acterizes the consistency of aggregate query results. We2 @ndVa., = 20, the query result may be missing inputs
first present the NI metrics that measure the stability of /O™ 70% nodes and further may double-countinputs of
the system in Section 3.1 and then use a simple exampR0% nodes.

in Section 3.2 to illustrate how these NI metrics char-

acterize the potential inaccuracy introduced by netvvork3'2 Example

disruptions. Section 3.3 then illustrates how this infor- Here, we present how these three metrics provide the
mation characterizing the stability of the system can beNI abstraction using a simple example.

used by applications to improve their accuracy. All of the Consider the aggregation tree computing a SUM ag-
discussions in this section assume that NI is provided bygregate across 5 physical nodes in Figure 5(a); Figures 5(b)
an oracle; in Section 4, we describe how to compute thée) illustrate how the NI metrics track the tree’s changing

NI metrics accurately and efficiently. topology because of failures and reconfigurations. For
. simplicity, we compute a SUM aggregate under an Al
3.1 NlImetrics filtering budget of zero (i.e., update propagation is sup-

The NI abstraction is driven by two fundamental prop- pressed if and only if the value of an attribute has not
erties of any large-scale monitoring system. First, nochanged), and we assume a TI guarante@ bf,,,;; =
monitoring system can guarantee to always provide peri0 seconds (i.e., the system attempts to guarantee a max-
fect consistency in a dynamic environment[12,32]. Thusimum staleness of 10 seconds.) Finally, to avoid spu-
NI can at best flag incorrect results as untrustworthy. Secrious garbage collection/reconstruction of per-attbut
ond, large distributed systems may never be 100% stablstate, PRISM configures the underlying DHT to recon-
therefore simply flagging results as “right” or “wrong” figure topology if a path is down for a long (e.g., 10-
does not suffice. Instead, NI should provide a scale taninute) timeout, and internal nodes retain inputs from
characterize how stable the network is during the comiheir children cached as soft state for slightly longer than
putation of a query result. This information gives appli- that amount of time.
cations the flexibility to choose the desired query result Initially, (a) the system is stable; the root reports the
consistency by setting NI thresholds appropriately basedorrect aggregate value of 25 wiffl,;; = N,-cachabie =

on application requirements. 5 andNg4,, = 0 implying that all nodes’ recentinputs are
To quantify system stability, NI provides three met- reflected in the aggregate result with no double-counting.
rics: Noit, Nyeachables aNANgyp. Then, (b) the input value changes from 7 to 6 at a leaf

. : . node, but before sending that update, the node gets dis-

e N, is an estimate of the total number of nodes in . .
the system. connepted from its p_arent.. Bepause of sqft state caching,

the failed node’s old input s still reflected in the SUM ag-

e N, .achabic 1S @ lower bound on the number of nodes gregate, but recent changes at that sensor are not; the root
whoserecentinput values are guaranteed to be re-reports 25 but the correct answer is 24. As (b) shows, NI
flected in the query result. Recency is defined byexposes this inconsistency to the application by chang-
the Tl guarantees the system provides for the ating Nycachabie t0 4 Within T'I3;,,;; = 10 seconds of the
tribute. For example, if the Tl is 60 seconds, thendisruption, indicating that the reported result is based on
Naii — Nyeachabie 1S the number of inputs whose stale information from at most one node.
values may be stale by more than 60 seconds. Next, we show how NI exposes the failure amplifica-

. tion effect. In (c), a single node failure disconnects the

® Naup provides an upper bound on the number of o ytire subtree rooted at that node. NI reveals this ma-
nodes whose input contr|but|or_1 to a result may bejor disruption by reducingV, cachasie to 2 since only two

doubly-counted. Double-counting can occur whenjeaf nodes retain a good path to the root. The root still

reconfiguration of an aggregation tree’s topology renorts 25 but the correct answer (i.e., what an oracle
causes a leaf node or a subtree rooted at an inter-

nal node to switch to a new parent while its old stpe accuracy is dependent on the aggregate function exg., fo
parent retains the node’s or subtree’s input as soffyax, the one missed input might be the maximum. NI pro-
state until a timeout. vides a mechanism for reporting disruptions and applioatio
. . . determine an appropriate policy for coping with differesi-|
These three metrics characterize the consistency of a qUeRY of disruption based on application requirements. $éver
result: Nycqchabie ClOSe toN,; and a lowNg,, indicates  such policies are discussed in Section 3.3.
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Figure 5: The evolution of Ny.cqchabie, Naii, and Ny, as nodes fail and the system reconfigures. The values in
the center of each circle represent the value of an example $Uaggregate. The vertical blue bars show the
virtual nodes corresponding to a given physical node at theelaf.

would compute using the live sensors’ values as inputspf techniques for coping with network and node disrup-

is 18. By using NI, the application learns that failures tions. We first describe four standard techniques we have
are affecting the result since only 2 out of 5 nodes arémplemented: (1) flag incorrect answers, (2) choose the
reachable. Thus, this report cannot be trusted; the applbest of several answers, (3) on-demand reaggregation when
cation can either discard it or take corrective actions suclthe reported answer is unacceptable, and (4) probing to

as those discussed in Section 3.3.

determine the numerical contribution of duplicate or stale

We now show how NI exposes the effects of overlayinputs. We then briefly sketch other ways applications
reconfiguration. After a timeout (d), the affected leaf can make use of NI.

nodes detect the failure and switch to a new parent; NI
exposes this change by increasiNg.,cqp 10 4. But
since the nodes’ old values may still be cached, NI in-
creasesVy,, to 2 implying that two nodes’ inputs are
doubly-counted in the root’s answer of 34.

Finally, we show how NI highlights when the system
has restabilized. In (e), the system again reaches a stable
state—the soft state expires,,,, falls to zero,Ny; be-
comes equal tdV,.¢qcrapie Of 4, and the root reports the
correct aggregate value of 18.

3.3 Using NI

PRISM’s formulation of NI explicitly separates the ba-
sic mechanism for detecting and quantifying NI from
the policy of how to minimize the result inaccuracy
caused by failures and reconfigurations. This separa-
tion is needed because the impact of omitted updates
(WhenN,cqchavie < Naig) or duplicated updates (when
Naup > 0) depends on the topology of the aggregation
tree (e.g., a leaf node failure may have less impact than
an internal node failure), the nature of the aggregation
function (e.g., some aggregation functions are insensi-
tive to duplicates [7]), the variability of the sensor input
(e.g., when inputs change slowly, using a cached update
for longer than desired may have a modest impact), and
application requirements (e.g., some applications may
prize availability over correctness and live with best ef-
fort answers while others may prefer not to act when the
accuracy of information is suspect.) Therefore, PRISM
reportsNeii, Nreachabie, @NdNgy,, and allows applica-
tions to evaluate the significance of disruptions and to
take application-appropriate actions to manage this im-
pact.

The simple mechanism of providing these three NI
metrics is nonetheless powerful—it supports a broad range

e Filtering or flagging unacceptably uncertain

answers—PRISM's first standard technique is to
manage the trade-off between consistency and
availability [12] by sacrificing availability: appli-
cations report an exception rather than returning
an answer when NI exceeds a threshold. Alterna-
tively, applications can be configured to maximize
availability by always returning an answer based on
the best available information but flagging that an-
swer’s quality as high (e.gN I, < 1%, where
NI,y = MAX[Nathmachabze J;[Vdup])i medium

N, ! a
(e.9.,NI;,; < 10%), or low (e.g.NIltlot > 10%).

e Redundant aggregatierPRISM can aggregate an

attribute usingk different keys so that one of the
keys is likely to find a route around the disruption.
Since each key is aggregated using a different tree,
each has a different NI associated with it, and the
application chooses the result associated with the
key that has the smallest NI.

In PRISM’s DHT-based aggregation topology, most
nodes in an aggregation tree are near the leaf level.
Therefore, a small increase insignificantly re-
duces the probability that a given failure affects a
node near the root level in all trees. In particu-
lar, if there aref independent failures in afilevel
d-ary aggregation tree, the expected number of dis-
connected nodes i+ (¢ + 1) but the standard de-
viation is high:f*dg. In comparison, by aggregat-
ing an attribute along a (small) constant number of
trees, then with high probability, the expected num-
ber of disconnected nodes due to all failures occur-
ring at level< i (i << ¢;i = 0 is leaf level) has a
meanf « (i + 1) but a smaller standard deviation



fxdz. Eg. fort=2,d=16,f=10,i = 1, ag-
gregating an attribute along = 4 trees decreases
deviation from 160 for a single tree to 40; detailed
proofs are in the technical report [19]. Later in Sec-
tion 6.2, we show that by aggregating an attribute
up k = 4 paths and using NI to choose best the an-
swer, we can reduce inaccuracy by nearly a factor
of five.

On-demand reaggregatiengivena signal that cur-
rent results may be affected by significant disrup-
tions, PRISM allows applications to trigger a full
on-demand reaggregation to gather current reports
(without Al caching or Tl buffering) from all avail-
able inputs. In particular, if an application receives
an answer with unacceptably higfy,,, or Na; —
Nieachable, it iSSUES a “probe” to force all nodes in
the aggregation tree to discard their cached data for
the attribute and to recompute the result using the
current value at all reachable leaf inputs.

DetermineV,, or Vitgie—wWhen Ny, or Ny —
N cachable 1S high, an application knows that many
inputs may be double counted or stale. An appli-
cation can gain additional information about how
the network disruption affects a specific attribute
by computingVy., or Ve for that attribute Vg,

e Duplicate-insensitive aggregatiensome systems

can be designed with duplicate-insensitive aggre-
gation functions where nodes can transmit multi-
ple copies of aggregate values along different paths
to guard against failures without affecting the final
result. For example, MAX is inherently duplicate-
insensitive [21], and duplicate-insensitive approxi-
mations of some other functions exist [7, 22, 24].

Increasing reported H-short bursts of reduced

N cachable Mean that an aggregated value may not
reflect some recent updates. Rather than report a
result with low staleness but a high NI (e.§/.];.:

> 20%), the system can report an older result with
alow NI (e.g.,N I;,: < 1%) but explicitly increase
the Tl staleness bound.

Statistical Data Analysis-systems can combine
application-level redundancy and statistical infer-
ence to estimate the missing values, as well as es-
timating the process parameters for the model gen-
erating those values. E.g., Bayesian inference [33]
has been used in a 1-level tree to estimate missing
sensor inputs and model parameters in an environ-
mental sensor network.

These examples are illustrative but not comprehensive.

is the aggregate function applied to all inputs thatArmed with information about the likely quality of a given
indicate that they may also be counted in anothe@NSWer, applications can take a wide range of approaches

subtree; for example in Figure 5(d).,, is 9 from
the two nodes on the left that have taken new par-

to protect themselves from network disruptions.

ents before they are certain that their old parents4. COMPUTING NI METRICS

soft state has been reclaimed. Similaffq;. is In this section we describe how PRISM computes the
the aggregate function applied across cached valuegiree NI metrics. It is important to note that whereas Al
from unreachable children; in Figure 5(€):..c IS and Tl are specified and enforced on a per-attribute basis,
16, indicating that 16/25 of the sum value comesN]| is maintained by the system for each aggregation tree
from nodes that are currently unreachable. and shared across all attributes mapped to a tree. This

Since per-attributé/s,,, and Vi;a. provide more —arrangement amprti_zes the COSt.O.f maintaining NI.
information than the NI metrics, which merely char- ~ Although monitoring connectivity to nodes to com-
acterize the state of the topology without referencePute the NI metricsVau, Nreachabie, 8NdNau, appears

to the aggregation functions or their values, it is traightforward—the metrics are all conceptually aggre-
natural to ask: Why not always providé,, and ~ gatesacross the state of the system—in practice two chal-
Viaie @and dispense with the NI metrics entirely? Ien_ges arise. Fl_rst, the system must cope v_wth reconfigu-
As we will show in Section 4, the NI metrics can ration of dynamically constructed aggregation trees; oth-
be computed efficiently. Conversely, the attribute-€erwise the aggregate NI values might include reports of
specificV,,, andVi;.;. metrics must be computed disconnected subtrees as well as double count the con-
and actively maintained on a per-attribute basis, makibution of rejoined subtrees. Second, the system must
ing them too expensive for indiscriminant use. Givegcale to large numbers of nodes despite (a) the need for
the range of techniques that can make use of thé@ctive probing to measure liveness between each parent-
much cheaper NI metrics, PRISM provides them aschild pair and (b) the need to compute distinct NI values

a general mechanism but allows applications thafor each of the large number of distinct aggregation trees
require (and are willing to pay for) the more de- in the underlying DHT forest; otherwise the system will

tailed Vz,,,, andViza¢. information to do so. incur excessive monitoring overhead as we show in Sec-
tion 4.3.
For other monitoring applications, it may be useful to  In the rest of this section, we first provide a simple al-
apply other domain-specific or application-specific tech-gorithm for computingV,;; and N,.cqchapie fOr a single,
nigues. Examples include static tree. Then, in Section 4.2 we explain how PRISM



computesVy,, to account for dynamically changing ag-  To avoid having to calculate a multitude 8%.cqchabie
gregation topologies. Later, in Section 4.3 we describevalues for different TI bounds, PRISM modifies its tem-
how to scale the approach to a large number of distincporal batching protocol to ensure that each attribute’s

trees constructed by PRISM’s DHT framework. promised Tl bound is met for all nodes counted as reach-
. . able. In particular, when a node receives updates from

4.1 Single tree, static topology a child marked unreachable, it knows those updates may
This section considers calculating,;; andN,.cqchabie be late and may have missed their propagation window.
for a single, static-topology aggregation tree. It therefore marks such updates as NODELAY. When a

Ny is simply a count of all nodes in the system, whichnode receives a NODELAY update, it processes it im-
serves as a baseline for evaluatiNig.qchabie aNANgyp. mediately and propagates the result with the NODELAY
N,y is easily computed using PRISM'’s aggregation ab-flag so that temporal batching is temporarily suspended
straction. Each leaf node inserts 1 to thig; aggregate, for that attribute. This modification may send extra mes-
which has SUM as its aggregation function. Note thatsages in the (hopefully) uncommon case of a link perfor-
even if a node becomes disconnected from the DHT, itsnance failure and recovery, but it ensures that the cur-
contribution to theV,;; aggregate remains cached as softrent N,....napie Value counts nodes that are meeting all
state by its ancestors for a long timedhit.ciarepead- of their Tl contracts.

TaeclareDead 1S S€L t0 be longer than the timeout used
to trigger topology changes by the underlying DHT so4.2 Dynamic topology
that a node whose parent becomes unreachable will have g5¢h virtual node in PRISM caches state from its chil-

time to connect to a new parent before being removedren so that when a new input from one child comes in, it
from the N, count. _ can use local information to compute new values to pass
Nreachable fOr @ subtree is a count of the number of yp - This information is soft state—a parent discards it
leaves that have good pathto the root of the subtree, it 3 child is unreachable for a long time. But because
where a good path is a path whose processing and nefeconstructing this state is expensive (there may be tens
work propagationtimes currently fall within the system’s of thousands of attributes for aggregation functions like
smallest supported Tl bour¥d/,,,,. The differencéVa;  “where is the nearest copy of file foo” [36]), PRISM uses
— Nreachabie thus represents the number of nodes whosgong timeouts {eciare pead ~ 10 minutes) to avoid spu-
inputs may fail to meet _the_system’s tightest supportedioys garbage collection.
staleness bound; we will discuss what happens for at- As a result, when a subtree chooses a new parent, that
tributes with Tl bounds larger thahl,,;, momentarily.  syptree’s inputs may still be stored by a former parent
Nodes comput&V,.cachabie in tWO steps: and thus may be counted multiple times in the aggregate
as shown in Figure 5(d)N4., exposes this inaccuracy
y bounding the number of leaves whose inputs might
e included multiple times in the aggregate query re-
sult. Note that PRISM allows a user to define duplicate-
2. Aggressive pruningn contrast with the default be- insensitive aggregation functions where possible [7, 24].
havior of retaining aggregate values of children asHowever, to support a broader range of aggregation func-
soft state for up tlyeciarenead, Nreachasie Must  tions, PRISM computed ., for each aggregation tree.
immediately change if the connection to a subtree The basic aggregation function fof;.,, is simple: if
is no longer a good path. Therefore, each internaR subtree root spannirigleaf nodes switches to a new
node periodically probes each of its children. If a parent, that subtree root inserts the vatiato the Ny,
child ¢ is not responsive, the node removes subtregdggregate, which has SUM as its aggregation function.
¢'s contribution from theN,..chane aggregate and —Later, when the node is certain that sufficient time has
immediately sends the new value up towards theelapsed to ensure that its old parent has removed its soft
root of the N, cqchabie aggregation tree. state, it updates its input d¥4,,;, to O.
Our Ng,,, implementation must deal with two issues.
Temporal batching. If for an attribute the Tl bound is  First, for correctness, we must maintain the invariant that
relaxed toT' I+, > T1I,nin, PRISM uses the extra time Vaup boundsthe number of nodes whose inputs are double-
TIaser — Tlmin to batch updates for reducing load. To counted despite failures and network delays. Second, for
implement temporal batching, PRISM defines a narrowd®0d performance, we must minimize the scope of dis-
window of time during which a node must propagate up-"uptions when a tree reconfigures.
dates to its parents; the details appear in an extended .
technical report [19]. However, an attribute’s subtre¢ tha 4-2-1  Lease aggregation

1. Basic aggregationPRISM creates a SUM aggre-
gate and each leaf inserts local value of 1. The roo
of the tree then gets a count of all nodes.

was unreachable over the 1d3t,,;,- could have been un- For correctness, PRISM ensures th€i,, always
lucky and missed its window even though it is currently bounds the number of nodes with double-counted inputs
reachable. despite network disruptions and delays (as opposed to



(® t_havelLease = min_c (t_havelLease|c])
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t_havelease[n2] =t_send +*(d grantLease

LEASE_RENE (T=max_drift))

d_grantLease
@ t_recv

(® d_grantLease = t_havelLease —t_recv
t_grantLease = max(t_grantLease, t_havelLease)

Figure 6: Protocol for a parent to renew a lease on the
right to retain a child’s contribution to an aggregate.

attribute = f(A.H) attribute = f(A..D)

H H
H fails H fails

(iii) (iv)
(a) Impact of leaf failure without early expiration

attribute = f(A-H) attribute = f(A..G)

H
H fails

(b) Impact of leaf failure with early expiration

Figure 7: Recalculation of aggregate function across
values A, B, ..., H after the node with input H fails (a)
without and (b) with early expiration.

tends the lease by a duratidp,qntreaqse, but the child
interprets th@ly, ontr.cqse iNterval starting front,....,, the
time it received the renewal request, while the parent in-
terprets the interval starting from.,q. As a result, a
lease always expires at a parent before expiring at any de-
scendent regardless of the skew between their clocks [42].
A node that roots &-leaf subtree that switches to a
new parent then contributésto N g, until ¢y antLease
after which it may reset its contribution @¥4,, to 0
because its former parent is guaranteed to have cleared
from its soft state all inputs from that node.

4.2.2 Early expiration

For good performance, PRISM usearly expiration
to minimize the scope of disruption when a tree’s topol-
ogy reconfigures. In particular, the lease aggregation
mechanism ensures the invariant that leases near the root
of a tree are shorter than leases near the leaves. As a
result, a naive implementation that removes cached soft
state exactly when a lease expires would exhibit the per-
verse behavior illustrated in Figure 7(a): each node from
the root to the parent of a failed node will successively
expire its problematic child’s state, recalculate its ag-
gregates without that child, update its parent, renew its
parent’s lease, and then repeatedly receive and propagate
updated aggregates from its child as the process ripples
down the tree. Not only is that process expensive, but
it may significantly and unnecessarily perturb values re-
ported at the root for all attributes by removing and re-
adding large subtrees of inputs. For example, in Figure 7-
ii, the leaf failure at node H temporarily removes inputs
E, F, and G from the aggregate. Furthermore, note that
the example in Figure 7 is a common case: in a randomly
constructed tree, the vast majority of nodes are near the
leaves. Failing to address this problem would transform
the common-case of leaf failures into significant disrup-
tions and bring into play the amplification effect.

Early expiration avoids this unwarranted disruption as
Figure 7(b) illustrates. A node at levebf the tree dis-
cards the state of an unresponsive subtreex(Levels

just providing a best-effort estimate). This guarantee is %) * deariy Defore its lease expires. Once the node has

achieved through the use of a novease aggregation

removed the problematic child’s inputs from the aggre-

algorithm that extends the concept of leases [13] to hierdates values it has reported to its parent, the node can

archical aggregation.
Figure 6 details the protocol used when a negdeip-

renew leases to its parent that are no longer limited by
the ever-shortening lease held on the problematic child.

dates a lease on the inputs from a set of descendanfss the figure illustrates, this technique minimizes dis-
rooted atn,. The algorithm makes use of local clocks ruption by allowing a node near the trouble spot to prune
atn; andny, but it is not sensitive to skew and toler- the tree, update its ancestors, and resume granting long

ates a maximum drift rate ofiax 4, ¢+ (€.9., 5%). In this
protocol, a node maintair$,yccqse, the latest time for
which it holds leases for all descendants, 838t 1case

leasedeforeany ancestor acts.

4.3 Scaling to large systems

the latest time for which it has granted a lease to its an- Scaling NI is a challenge. To scale attribute moni-
cestors. The key to the protocol is that the leases grantetring to large numbers of nodes and attributes, PRISM
by a node are limited by the shortest lease held from angonstructs a forest of trees using an underlying DHT and
descendant. then uses different aggregation trees for different atteib
Note that to cope with clock skew, the chitld ex-  [40]. As Figure 8 illustrates, a failure affects different
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Figure 9: Plaxton tree topology is an approximate
butterfly network. The bold connections illustrate
how a virtual node 00* uses the dual tree prefix ag-
gregation abstraction to aggregate values from a tree
below it and distribute the results up a tree above it.

Figure 8: The failure of a physical node has different
effects on different aggregations depending on which
virtual nodes are mapped to the failed physical node.
The numbers next to virtual nodes show the value of
Nieachable fOr each subtree after the failure of physi-
cal node 001, which acts as a leaf for one tree but as a
level-2 subtree root for another. As Figure 9 illustrates, this DHT construction forms
an approximate butterfly network. For a degretee,

trees differently. The figure shows 2 aggregation treedh® y|rtual nople at Ievglhas an id that matches the keys
corresponding to keys 000 and 111 for a 8-node systenjlat it routes inlog d x i bits. Itis the root of exactly one
In this system, the failure of the physical node with keytree’ and its ch|I<_jren are gpprox[matedwwtual hodes
001 removes only a leaf node from the tree 111 but dis-that match_keys og d * .(’ — 1) bits. It hasd parents,
connects a 2-level subtree from the tree 000 highlighting@ch of which matches different subsets of keyisgni+
the amplification effect. Therefore, quantifying the effec (i +1) bits. But notice that for each of these parents, this

of failures will require calculating NI metrics for each of tree ﬁggregart]es Ian(thS I;rd]rne same subk';rees. .
then distinct global trees in an-node system. Making Whereas the standard aggregation abstraction computes

matters worse, as Section 4.1 explained, maintaining thgfunctlon across a set of subtrees and propagatesit to one

NI metrics requires frequent active probing along eacHarent, aJIua_I tree prefix aggregatiocomputes an aggre- .
edge in each tree. gation function across a set of subtrees and propagates it

As a result of these factors, the straightforward algo-0 &/l parents As Figure 9 illustrates, each node in a dual
rithm for maintaining NI metrics separately for each tree €€ Prefix aggregationis the root of two trees: an aggre-

is not tenable: the DHT forest of degreed aggregation gation tree below that computes an aggregation function

trees withn phvsical nodes and each tree havitgLd across a set of leaves and a distribution tree above that
e phy ?@%/d propagates the result of this computation to a collection

edges{ > 1), has©(n?) edges that must be monitored; of enclosing aggregates that depend on this sub-tree for
such monitoring would requir®(n) messages per node jnpyt,

every probe intervaly(= 10s in PRISM prototype). To  For example in Figure 9, consider the level 2 virtual
put this in perspective, considerna1024-node system pgode 00* mapped to node 000. This NOAA'S.achabie

with d=16-ary trees (i.e., a DHT with 4-bit correction count of 4 represents the total number of leaves included
per hop). The straightforward algorithm then has eachp, that virtual node’s subtree. This node aggregates this
node sending over roughly 100 probes per second. As theingle N, ., pae count from its descendants and prop-
system grows, the situation deteriorates rapidly—a 16Kxgates this value to both of its level-3 parents, 000 and
node system requires each node to send roughly 160801. For simplicity, the figure shows a binary tree; by

probes per second. _ _default PRISM corrects 4 bits per hop adwil6, so each
Our solution, described below, reduces active moni-syptree is common to 16 parents.

toring work to ©(dlog,n) probes per node per sec-

onds. The 1024-node system in the example would res  CASE-STUDY APPLICATIONS

quire each node to send about 5 probes per second; the

16K-node system would require each node to send about e have developed a prototype of the PRISM mon-

7 probes per second. itoring system on top of FreePastry [30]. To guide the
system development and to drive the performance eval-
4.3.1 Dual tree prefix aggregation uation, we have also built three case-study applications

To make it practical to maintain the NI values, we take USing PRISM: (1) a distributed heavy hitter detection ser-
advantage of the underlying structure of our Plaxton-tree¥iC®, (2) @ distributed monitoring service for Internet-
based DHT [28] to reuse common subcalculations acrosgcale systems, and (3) a distributed bot detector service.
different aggregation trees using a nodehl tree prefix  Distributed Heavy Hitter detection (DHH). Our first
aggregatiorabstraction. application is identifying heavy hitters in a distributed



system—for example, the top 10 IPs that account for a 1
significant fraction of total incoming traffic in the last 10
minutes [8, 20]. The key challenge for this distributed
query is scalability for aggregating per-flow statistics fo
tens of thousands to millions of concurrent flows in real-
time. For example, a subset of the Abilene [1] traces used
in our experiments include 80 thousand flows that send
about25 million updates per hour.

To scalably compute the global heavy hitters list, we
chain two aggregations where the results from the first
feed into the second. First, PRISM calculates the to-
tal incoming traffic for each destination address from all 000 T T 0 150 200 250 300
nodes in the system using SUM as the aggregation func- TI (seconds)
tion and hash(HH-Step1, destIP) as the key. For exam-
ple, tuple (H = hash(HH-Step1, 128.82.121.7), 700 KB) Figure 10: Load vs. Al and Tl for DHH application.
atthe root of the aggregation tré¢g indicates that a total
of 700 KB of data was received for 128.82.121.7 across
all vantage points during the last time window. In the alarms (false positives) or miss any inputs (false nega-
second step, we feed these aggregated total bandwidtf¥es).
for each destination IP into a SELECT-TOP-10 aggre-
gation with key hash(HH-Step2, TOP-10) to identify the 6. EXPERIMENTAL EVALUATION

TOP-10 heavy hitters among all flows. Our experiments focus on investigating the consistency-
PrMon. The second case-study application is PrMon,availability trade-offs that NI exposes, and quantifying

a distributed monitoring service that is representative othe overhead in computing the NI metrics. Overall, our
monitoring Internet-scale systems such as PlanetLab [27dvaluation shows that PRISM is an effective substrate for
and Grid systems [37] that provide platforms for devel-accurate scalable monitoring: the NI metrics both suc-
oping, deploying, and hosting global-scale services. Foeessfully characterize system state and reduce measure-
instance, to manage a wide array of user services runment inaccuracy while incurring a small communication
ning on the PlanetLab testbed, the system administrasverhead.

tors need a global view of the system to identify prob- We run our experiments in controlled environments
lematic services (slices in PlanetLab terminology) e.g.(clusters of 100 Emulab [39] or 20 department Condor
if any slice is consuming more than 10GB of memory machines), and PlanetLab [27] up to 96 nodes.

across all nodes on which it is running. Similarly, users . ]

require system state information to query for “lightly- 6.1  Scalability benefits

loaded” nodes for deploying new experiments or to track  First, we quantify the scalability benefits from PRISM’s
the resource consumption of their running experiments. combination of hierarchical aggregation, arithmetic fil-
To provide such information in a scalable way and intering, and temporal batching for the DHH application.
real-time, PRISM computes the per-slice aggregates foyve use multiple netflow traces obtained from the Abi-
each resource attribute (e.g., CPU, MEM, etc.) along dif{ene [1] Internet2 backbone network. Figure 10 shows
ferent aggregation trees. This aggregate usage of eaghe precision-performance results running DHH on 400
slice across all PlanetLab nodes for a given resource ahodes mapped to 100 physical Emulab machines; the to-
tribute (e.g., CPU) is theninputto a per-resource SELECHg| monitoring load is normalized relative to the load for
TOP-100 aggregate (e.g., SELECT-TOP-100, CPU) toa| of 0 and TI of 10 seconds. Note that Al and Tl each
compute the list of top-100 slices in terms of consump-reduce monitoring overheads by nearly an order of mag-
tion of the resource. nitude. We examine the PrMon and the PrBot applica-
PrBot. The final monitoring application is PrBot, a dis- tions in the extended technical report and observe similar
tributed bot detector service to keep track of which nodesesults [19].
are contacting a large number of other nodes. In this ap- . . .
plication, a leaf sensor at each node maintains a sketch [8-2 NIz Exposing disruption
data structure to count the number of distinct elementsin In this section, we analyze the effectiveness of NI met-
the set of destination IP addresses to which that node hagcs in reflecting network state and filtering inaccurate re-
sent a packet. The sketch outputs a cardinality estimatports.
of this set which is fed into PRISM as (PrBot, Sensor-ld, We first illustrate how NI metrics reflect network state
set-size) to compute a top-100 list of nodes that might bdor a small scale controlled experiment. In Figure 11,
used as bots. In the presence of failures, our aim is tave run a 20 node experiment on the departmental Con-
accurately compute this list so as not to raise any falselor cluster where we kill a single nodetat 815 seconds

0.1 ¢

0.01 |

Al=0 —»—
Al=1% —&—
Al=10% —a—
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Total # messages (normalized)
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Figure 11: NI metrics under induced system churn —  Figure 13: CDF for reported answers filtered for dif-

single node failure at 815 seconds into the experimen- ferent NI thresholds and k& = 1.
tal run.

100 show heavy load, unexpected delays, and relatively fre-

o0 | " Nreachable quent reboots (especially prior to deadlines!), we expect
these nodes to exhibit more NI than in a typical dis-

801 tributed environment, which makes them a convenient

70 stress test of our system.

60

Figure 12 shows how NI reflects network state for a
85-node PrMon experiment on PlanetLab for an 18-hour
run. We observe that even without any induced fail-
ures, there are short-term instabilities in values replorte
bY Nyeachavies Nau, @and Ny, due to missing/delayed
ping reply messages foV¥,.c.chanie and lease expirations
triggered by DHT reconfigurations f@¥,,,. During the
c 2 4 6 8 10 12 14 16 18 course of the run, 5 of the 85 nodes became unrespon-

Time (hours) sive; hence the finaV, cqchabie and N,y values stabilize
at 80.

50
40
30
20
10

Value

Figure 12: NI metrics reflecting PlanetLab state (85
nodes). 6.3 Coping with disruption

Next we quantify the risks of reporting global aggre-
into the run and observe the variation of reported NI met-gate results without incorporating NI. We run a 1 hour
rics for an attribute with TI of 60 seconds. This failure PrMon experimenton 94 PlanetLab nodes for an attribute
causes theV, ..chanie Value to fall from 20 to 15 within  computing a SUM aggregate with Al = 0 and Tl = 10
40 seconds after the node failure. The dropVin.chabie seconds. Here we present the results for the SUM ag-
indicates that any result calculated in this interval mightgregate since it is common in our three case-study and
only include correct values from 15 nodes. After aboutseveral other applications; the results for other standard
240 seconds, the underlying DHT declares the missingggregation functions (e.g., MAX, MIN, AVG, etc.) are
node to be dead and reconfigures the topology. Corredescribed in an extended technical report [19]. Figure 13
spondingly, theN,,,,, value goes from 0 to 4 at about ~ shows the CDF of reported answers showing the devia-
= 1060 seconds when the disconnected nodes join neWon in reports with respect to an oracle that has instan-
parents and start reporting the¥f,,,, value. TheN,; taneous access to all inputs; we simulate this oracle via
value remains stable from 20 until about t=1600 second$ff-line processing of input logs. The different lines in
to reflect the lond eciare Deaqd timeout from the failure  the graph correspond to the reported answers filtered for
att = 815 seconds before the system declares unreachlifferent NI thresholds. For simplicity, we condense NI
able nodes to be dead. Finally, thg,,,, value falls back to a single parameter MANY a1 = NWC’W“S, vad“’)] We
to 0 and bothV,;; andN,.cqchanie Stabilize at 19 (nodes) observe that NI effectively reflects the stab|lI|ty of net-
denoting that the system is back to a stable state. work state: when Nk 5%, 80% answers have less than

For subsequent experiments, we focus on NI's effec20% deviation from the true value. Conversely, for moni-
tiveness during periods of instability. In particular, we toring systems that ignore NI (ti obliviousline), half
run experiments on PlanetLab nodes. Because these nodétheir reports differ from the truth by more than 60%.
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Figure 14: CDF of NI values for different k. Figure 16: NI monitoring overhead for dual-tree pre-
100 fix aggregation compared to computing NI per aggre-
gation tree; x-axis is on a log scale.
80 . .
. in any 8-ary tree are near the leaves, sampling several
§ trees rapidly increases the probability that at least one
g ©0 tree avoids encountering many near-root failures. We
© provide an analytic model formalizing this intuition in
w0 our technical report [19].
O
20 K=1 —— 6.4 NI scalability
K = 2 . . - .
ﬁzi - Finally, we quantify the monitoring overhead of track-

0 ‘ ‘ ‘ ‘ ing Nl via (1) each aggregation tree and (2) dual-tree pre-
0 0.2 0.4 0.6 0.8 1 . . ;
NI fix aggregation. Figure 16 shows the average per-node
) _ i message cost for NI monitoring varying network size
Figure 15: CDF of NI values for & duplicate keys. from 16 to 1024 nodes. We observe that the overhead
. _ _ L i using per aggregation tree scales linearly with the net-
As discussed in Section 3.3, applications can filter resultg, ok size whereas it scales logarithmically using dual-
using different NI thresholds and take an appropriate acgge prefix aggregation.
tion to correct distorted results. Note that the above experiment constructsqaitees
In Figure 14 we explore the effectiveness of the reduny, the DHT forest ofn nodes assuming that the number
dant aggregation approach discussed in Section 3.3 i.€uf atiributes is at least the number of nodegHowever,
usingk redundant trees to compute an attribute SUM and, sy stems that aggregate fewer attributes, it is importan
then using NI to identify the highest-quality result. Fig- +5 know which of the above two techniques for tracking
ure 14 shows the CDF of results with respect to the deviay| is more efficient. Figure 17 shows both the aver-
tion from an oracle as we vafyfrom 1 to 4. When devi- 546 and the maximum message cost across all nodes in a
ation is less than 10% (sr_nall NI), retrieving results from 1900-node experiment for both per-tree NI aggregation
the root of one aggregation trek £ 1) suffices. How- 4.4 qual-tree prefix aggregation. We observe that the
ever, for large deviation, fetching the reports from only ook _even point for the average load is 44 trees (4.4%)

one aggregation tree can introduce deviation as high agje the break-even point for the maximum load is only
100% whereas choosing the result from the most stablg irees (0.8%).

of 4 trees reduces the deviation to at most 22% thereby
reducing the worst-case inaccuracy by nearly a factor o
5. Note that PRISM enables a trade-off: for a givenf7' RELATED WORK
bandwidth budget, a system may be able to use small The idea of flagging results when the state of a dis-
increases in arithmetic filtering and temporal batching totributed system is disrupted by node or network failures
increase: and thereby greatly reduce NI. has been used in tackling other distributed systems prob-
Filtering answers during periods of high churn exposedems. For example, our idea of NI is analogous to that
a fundamental consistency versus availability trade@f.[1 of failure detectors [5] for fault-tolerant distributedssy
Figure 15 shows how varying allows us to increase tems. Freedman et al. propose link-attestation groups
monitoring load to improve this tradeoff. Asincreases, abstraction in [11] that uses an application specific no-
the fraction of time during which NI is low increases. tion of reliability and correctness, so as to map which
The intuition is that because the vast majority of nhodegpairs of nodes consider each other reliable. Their system,
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1000 : : systems studied in the literature are still subject to non-
E e o o zero network-induced inaccuracy due to efforts to bal-
3 Dual-Tree Prefix Max load ance transmission overhead with loss rates, insufficient
2 100 + Dual-Tree Prefix Avg load . .
o redundancy in a topology to meet desired path redun-
% / dancy, or correlated network losses across multiple links.
3 0 These issues may be more severe in our environment
5 than in wireless sensor networks targeted by MDI ap-
Z proaches because the dominant loss model may differ
g 1} (e.g., link congestion and DHT reconfigurations in our
é //x environmentversus distance-sensitive loss probabdity f
< the wireless sensors) and because the transmission cost
017 10 100 1000 model differs (for some wireless networks, transmission
Number of trees to multiple destinations can be accomplished with a sin-
Figure 17: Comparing NI tracking overhead by vary-  gle broadcast.)
ing the number of trees (attributes) for (a) per-tree The MDI aggregation techniques are also complemen-

aggregation VS. (b) dual-tree prefix aggregation in a tary in that PRISM’s infrastructure prOVideS NI informa-
1000-node system. The figure shows both the AVG tion that is common across attributes while the MDI ap-

load and the MAX load, along with the break-even ~ Proach modifies the computation of individual attributes.

points. As Section 3.3 discussed, NI provides a basis for inte-

grating a broad range of techniques for coping with net-
designed for groups on the scale of tens of nodes, mOn\rll'vioLkeei:(z:rz’asensdv'\\//rlzlna(?;)graer?iuor:emz}[/iobnefﬁnucstieof#I;Zﬁhk;e
itors the nodes and system and exposes such attestatiofy! gareg

graph to the applications. Bawa et. al [3] survey previousrecast to be order- and duplicate-insensitive and (b) the

work on measuring the validity of query results in faulty Zﬁtﬁ Zttﬁt\;\a'ltltlar']sglzog:t)étsheF?J)::Li?igvgglii Zsir:%tra:gsr?slte
networks. Their “single-site validity” semantic is equiv- P ' ! prom

alent to PRISM'SN,.,..pau Metric. Completenesil4] additional work is required to extend MDI approach to

defined as the percentage of network hosts whose da%oundmg the approximation error while still minimizing

contributed to the final query result, is similar to the ratio ne(t:vg(;lr;sl?:r?cwigsl Eli(r)]r? T:)gléingt%' died in the context of
of Nycachabie @Nd Nyy;. Relative Error [7, 43] between y 9

the reported and the “true” result at any instant can Onlynon-aggregatmgflle systems and databases. Yu etal. [45]

be computed by an oracle with a perfect view of the dy_propose three metrics—Numeric_:aI Error, Order Error, a’?d
namic network Staleness—to capture the consistency spectrum in a dis-

Several aggregation systems have worked to addrestgbmed replicated system where any node can perform

the failure amplification effect. To mask failures, TAG [Zlfead or write operiatlons.. Numerical error is similar to

. : | and Staleness is similar to Tl. Payton et. al [26]
proposes (1) reusing previously cached values and (ZArO osed a query processing model for one-shot. non-
dividing the aggregate value into fractions equal to th P query p SIng ’
number of parents and then sending each fraction to gggreggte queriesin moblle.ad hoc and sensor networks.
distinct parent. This approach only reduces the varianc If:ogi?;:trirr]](t:y flggragggr?algor; h%ve;;/t?(;hlz flSJtr;cri;]':l;ané
but not the expected value of the aggregate value at th y : P'€, aggreg y

L T arge-scale with many concurrent writers which implies
root. SAAR uses multiple interior-node-disjoint trees to that it is not feasible to resolve CAP dilemma [12] by

LZ%ZC;;E%S'Z??;IS;;?S ?Ofﬂilﬁée;gﬁgaSci;hias'i%dIzezsblocking reads during periods when a writer may be dis-
T T T tonnected. So we emphasize availability by providing

24] for fault-tolerant aggregation. e . " .

Recent proposals [3, 7,22, 24, 44] have combined mul5:ond|t|onal conS|stency._op_eratlons_always comp_lete but
. . . . . o results are annotated with information about their qual-
tipath routing with order- and duplicate-insensitive datai
structures to tolerate faults in sensor network aggrega-y'
tion. The key idea is to use probabilistic counting [9]
to approximately count the number of distinct element58' CONCLUSIONS
in a multi-set. PRISM takes a complementary approach:
whereas multipath duplicate-insensitive (MDI) aggrega-
tion seeks to reduce the effects of network disruption,
PRISM’s NI metric seeks to quantify the network dis-
ruptions that do occur. In particular, although MDI ag-
gregation can, in principle, reduce network-induced in- We have presented Network Imprecision, a new metric
accuracy to any desired target if losses are independenf characterizing network state that quantifies the consis-

and sufficient redundant transmissions are made [24], theency of aggregate query results in a dynamic large-scale

If a man will begin with certainties, he shall
end in doubts: but if he will be content to be-
gin with doubts, he shall end in certainties.
—Sir Francis Bacon
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monitoring system. Without NI guarantees, large scalg24] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Andersoro&js
network monitoring systems may provide misleading re-
ports because query result outputs by such systems mays)

be arbitrarily wrong.

Incorporating NI in the PRISM

monitoring framework qualitatively improves its output [26]
by exposing cases when approximation bounds on query
results can not be trusted.
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