
Energy-Efficient Packet Processing
Ravi Kokku Upendra B. Shevade Nishit S. Shah Mike Dahlin Harrick M. Vin

email: {rkoku, upendra, nishit, dahlin, vin}@cs.utexas.edu
University of Texas at Austin Technical Report # TR04-04.

Updated version of the report: http://www.cs.utexas.edu/users/rkoku/RESEARCH/energy-tech.pdf

Abstract

Packet processing systems (e.g., routers, virus scan-
ners, intrusion detectors, SSL accelerators, etc.) pro-
vision sufficient number of processors to handle the ex-
pected maximum workload. The observed load at any in-
stant, however, is often substantially lower; further, the
load fluctuates significantly over time. These properties
offer an opportunity to conserve energy (e.g., by deac-
tivating idle processors or running them in low-power
mode). In this paper, we present an on-line algorithm
for adapting the number of activated processors such that
(1) the total energy consumption of the system across a
packet trace is minimized and (2) the additional delay
suffered by packets as a result of adaptation is determin-
istically bounded. The resulting Power Management Al-
gorithm (PMA) is simple, but it accounts for system re-
configuration overheads, copes with the unpredictability
of packet arrival patterns, and consumes nearly the same
energy as an optimal off-line strategy. A conservative ver-
sion of the algorithm (CPMA), turns off processors less
aggressively than is optimal but still provides good en-
ergy savings while reducing the additional packet latency
introduced by power management. We demonstrate that
for a set of trace workloads both algorithms can reduce
the core power consumption by 60-70% while increasing
the average packet processing delay by less than 560µs
(PMA) and less than 170µs (CPMA).

1 Introduction

Design of energy-efficient networks is an emerging area
of research. In this paper, we focus on the specific sub-
problem of designing energy-efficient packet processing
systems (PPS). We demonstrate that our algorithm min-
imizes the total energy consumption of each packet pro-
cessing system while ensuring that the additional delay
suffered by packets as a result of adaptation is bounded.
In what follows, first we discuss the problem, the oppor-
tunity, and the challenges in designing energy-efficient
packet processing systems. Then, we outline the contri-
butions of this research.
The Problem The Internet infrastructure today includes
a wide-range of packet processing systems (e.g., routing,
firewall, VPN, IPv4/v6 gateway, intrusion detection, virus
scan, and load balancing) whose cumulative energy de-

mands are substantial [1, 5, 14, 15]. For instance, Gupta et
al. [14] show that the hubs, switches, and routers deployed
in the Internet during the year 2000 in the United States
consumed about 6 TW-h of energy costing about one bil-
lion dollars per year1 in operating expense or roughly the
output of one nuclear reactor unit; to deploy and operate
a similar Internet infrastructure in the rest of the world
would require over 100 TW-h of electricity.

The cumulative energy needs of the Internet infrastruc-
ture is expected to increase with (1) the growth of the
Internet (especially in developing countries); (2) the in-
creases in the diversity and complexity of applications
supported by PPS; and (3) the increases in the perfor-
mance levels supported by PPS. This trend is evident from
the increase in the power requirements of different gen-
erations of network processors: for example, Figure 1
summarizes the increasing power requirements of increas-
ingly capable members of the Intel’s IXP family of net-
work processors.

16
6M

H
z

20
0M

H
z

23
2M

H
z

IXP 1200

40
0M

H
z

60
0M

H
z

IXP 2400

1G
H

z

1.
4G

H
z

IXP 2800

0

5

10

15

20

25

30

P
ow

er
 (w

at
ts

)

Active
Idle

Figure 1: Power requirements of Intel’s IXP family of pro-
cessors.

The Opportunity Two trends facilitate the design of
energy-efficient packet processing systems. First, to
achieve robustness to traffic fluctuations, PPSs are often
provisioned with sufficient processing resources to han-
dle the expected maximum traffic load. However, as il-
lustrated by Figure 2, the observed load fluctuates sig-
nificantly over time and at any instant is often substan-
tially lower than the expected maximum load [17, 19, 24,
26, 32]. Second, for most modern packet processing ap-

1This amount does not even include the capital investment required
for installing cooling systems and Uninterruptible Power Supplies (UPS)
necessary for operating these systems, nor the operating expense for the
energy consumed by the cooling system.

1

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90

P
ac

ke
ts

 p
er

 s
ec

on
d

Time (in thousands of seconds)

Figure 2: Packet arrivals per second over a day for the
Auckland trace [23]

plications, the time to process a packet is dominated by
memory-access latencies. Hence, an architecture contain-
ing a single, high-performance processor is often not suit-
able for a PPS. To mask memory access latencies, and
thereby process packets at high rates, most modern PPSs
utilize multiple parallel processors. For instance, Intel’s
IXP2800 network processor—a building block used in a
wide-range of PPSs—includes 16 RISC cores (referred to
as microengines) and an XScale controller.

The existence of multiple processors in PPSs when cou-
pled with the fact that these systems often run at low lev-
els of average utilization indicates that significant number
of the available processors within a system can often be
deactivated or run in a low-power mode. Together, these
factors offer a significant opportunity to conserve energy.

The Challenges Although the properties of network
workloads and of packet processing hardware raise oppor-
tunities for energy management, they also raise key chal-
lenges. First, because network traffic can fluctuate at mul-
tiple time-scales, accurately predicting traffic arrival pat-
terns is difficult [19, 24, 26, 32] and intervals of idleness
or low load may often be short [17], so it may be difficult
to take advantage of periods of low load. Second, tran-
sitioning a processor from its activated to its deactivated
state (and vice versa) often (temporarily) increases its rate
of power consumption compared to leaving it activated
but idle. Hence, state transitions should be performed
only if a processor will remain deactivated long enough
to conserve energy despite this transition cost. Third,
switching a processor between its activated state and its
deactivated state incurs a delay (generally of the order of
a few hundred microseconds [18]). If the system deacti-
vates processors too aggressively during idle periods, then
because of the inherent delay in transitioning processors
to their activated state, a burst of arriving packets might
suffer unacceptable delays or losses.

Our Contributions In this paper, we present an on-line
algorithm for adapting the number of activated proces-

sors at run-time. The algorithm minimizes the number of
processors that are activated simultaneously and thereby
provably minimizes energy consumption, and it assumes
a worst-case packet arrival rate in order to deterministi-
cally bound the additional delay a packet can suffer as a
result of the system’s power management adaptations.

The key ideas in our PMA (Power Management Algo-
rithm) and CPMA (Conservative Power Management Al-
gorithm) are simple. In particular, like active queue man-
agement algorithms [2, 6, 11], our power management al-
gorithms make decisions based only on the current queue
length and do not need to predict future arrival patterns
beyond knowing the worst-case arrival rate.

• To increase the number of activated processors, given
a worst-case acceptable delay D, the PMA algorithm
activates the k +1st processor when k processors are
unable to process within D the sum of (a) all cur-
rently enqueued incoming packets and (b) the max-
imum number of packets that could arrive during a
processor’s activation latency. Surprisingly, for real-
istic system configurations, a simple sufficient con-
dition to meet this general activation requirement is
to activate the k + 1st processor when the set of en-
queued packets first exceeds the number of packets
that k processors can process within D.

• Conversely, when the system has excess capacity,
PMA deactivates one or more processors when both
(a) the input queue becomes empty and (b) the min-
imum time until the processors would be reactivated
under a worst-case arrival rate times the processor’s
power consumption in the activated state when idle
exceeds the energy consumed by transitioning from
activated to deactivated and back.

Whereas PMA aggressively exploits the processing delay
bound to minimize power, the CPMA variation is slightly
more conservative about deactivating processors and thus
reduces the average packet delay imposed by power man-
agement at a modest cost to energy efficiency.

Although PMA and CPMA are simple, they have three
significant advantages over existing systems. First, we
show that the algorithms minimize the total energy con-
sumption of the system over a packet trace. In particular,
we show that for acceptable values of the delay bound
D, PMA consumes the same amount of energy as an off-
line optimal algorithm that utilizes future knowledge of
packet arrival rates. Second, neither algorithm requires
prediction of future packet arrival patterns. Given the vari-
ability of packet arrival rates in many network environ-
ments [19, 24, 26, 32], algorithms that do not depend on
on-line prediction are likely to be less complex and more
effective than those that do. Third, both algorithms de-
terministically meet a configurable bound on packet pro-
cessing delay. This property stems directly from their

2

use of worst-case arrival rates rather than predicted arrival
rates. Using trace-based workloads, we demonstrate that
the algorithms work well in practice, reducing the core-
processing power consumption by 60-70% while increas-
ing the average packet processing delay for the different
traces by between 1µs and 550µs (PMA) and between 1µs
and 170µs (CPMA).

The rest of the paper is organized as follows. In Sec-
tion 2, we describe our system model and formulate the
problem of energy-efficient packet processing. In Sec-
tions 3 and 4, we discuss our power management algo-
rithms. We describe the results of our experimental evalu-
ation in Section 5. Related work is discussed in Section 6,
and finally, Section 7 summarizes our contributions.

2 System Model
To develop our energy conservation algorithm, we con-
sider a packet processing system (PPS) with Np proces-
sors. Each packet arriving into the system is stored in a
queue until a processor becomes available to service the
packet (see Figure 3). The arrival rate of packets into
the queue may fluctuate over time; the maximum rate of
packet arrivals into the queue is given by Rarr. We as-
sume that a packet can be served by any of the processors;
servicing a packet takes tpkt time units; and packets are
serviced in the order of their arrival.

qlen

Packets

Np

1

2

Figure 3: System model

Each processor in a PPS can be in either activated or
deactivated state. In the deactivated state, we assume
that the processor consumes no power.2 3 In the activated
state, the processor can be busy processing packets or be
idle; Pactive and Pidle, respectively, denote the power con-
sumption levels of a processor when it is busy and idle.

2Throughout this paper, we assume that in the the deactivated state,
processors are turned off and hence consume no power. The deactivated
processor state can also represent a deep-sleep state—that consume a
small amount of power—supported in many modern processors; it is
easy to generalize our model to such processors.

3Note that although for simplicity this paper focuses on a hardware
model where power adaptation involves transitioning between activated
and deactivated states, the PMA and CPMA algorithms are instantiations
of a more general family of algorithms that can exploit more sophisti-
cated hardware that provides frequency and voltage scaling configura-
tions. We describe this generalization in an extended technical report.

Parameter Description

Np number of processors in the system
Rarr Worst-case arrival rate
tpkt Processing time per packet

Pactive Active power (activated state)
Pidle Idle power (activated state)
tsw Switching delay (activated ↔ deacti-

vated)
Psw Switching power (activated ↔ deacti-

vated)
D Delay guarantee on packet processing

Table 1: System model parameters

1 2 3 4 5 6 7 8 9

Figure 4: The finite-state automaton for a PMA system.
The numbers in each state denote the number of activated
processors.

We assume that transitioning the processor from the ac-
tivated to the deactivated state or vice versa incurs a de-
lay tsw and consumes power Psw. Although reducing the
number of activated processors can save power, it may
increase the queuing delay suffered by packets. Our al-
gorithms bound the maximum delay D between when a
packet is enqueued and when its processing is complete.
Table 1 summarizes these system model parameters.

Observe that throughout our analysis, we only model
a single processing queue. A PPS may have multiple in-
put and output ports. Packets arriving on any of the input
ports are queued for processing; upon being serviced by a
processors, packets are queued for transmission at an ap-
propriate output queue. We do not model delay incurred
by packets in the input or output ports; we only model the
delay incurred by packets while waiting for service by one
of the processors.

3 Power Management Problem

Consider a packet processing system that is provisioned
with a sufficient number of processors to meet the de-
mands of the expected maximum load. To conserve en-
ergy, an adaptive system should maintain only as many
activated processors as needed to process arriving packets
before their processing deadlines.

Our power management algorithm (PMA) represents
a packet processing system as a finite state automaton
(FSA) (see Figure 4). Each state in the FSA represents
the number of activated processors in the system. Transi-

3

tions from one state to another are triggered based on the
length of the queue qlen.

When the system is in state j (i.e., with j activated pro-
cessors), the system makes a transition to state (j + k j

a)

(by activating an additional k j
a processors) when the queue

length exceeds a threshold Q j
on. Similarly, when the queue

is empty (qlen = 0), then from any state j, the system
makes a transition to state nmin by deactivating (j−nmin)
processors. In what follows, we describe construction of
the FSA by deriving the values of Q j

on and k j
a for all values

of j, and the value of nmin.

3.1 Calculating Q j
on: When to Activate Pro-

cessors?
We activate one or more processors when the queue grows
to a level such that the delay incurred by packets can ex-
ceed the desired bound. The rate at which packets are
serviced from the queue is a function of the number of
activated processors. In particular, since each processor
can service a packet in tpkt time, the service rate R j

dep of a
collection of j activated processors is given by:

R j
dep =

j
tpkt

(1)

Let Q j
lim denote the maximum queue length that j

processors can consume within the maximum permitted
packet-processing delay D. Note that if there are Q j

lim
packets in the queue and the system has j activated pro-
cessors, then the total number of packets in the system is
Q j

lim + j, so Q j
lim is determined by

Q j
lim + j = D×R j

dep

⇒ Q j
lim = j ∗

(
D

tpkt
−1

)
(2)

Suppose the arrival of packet p causes the queue length
to become Q j

lim +1 (and hence the total number of packets

in the system to become Q j
lim + 1 + j). Then, with only j

activated processors, the delay incurred by packet p would
exceed D. To ensure that packet p can be serviced prior to
its delay bound, one or more additional processors must
be activated. Let us assume that the system initiates the
activation of an additional processor τ units of time prior
to the arrival of this packet p (see Figure 5).

Observe that the newly activated processor will become
available for serving packets only after tsw time units.
Hence, for an interval (tsw − τ) after the arrival of packet
p, packets are serviced with j activated processors (and
hence, at the rate of j/tpkt); after that time, (j + 1) pro-
cessors service packets at the rate of (j +1)/tpkt . But, the
delay bound D for packet p will be met only if packet p

tSW

tSW

tSW

D − +
D

Time

qlen=Q

Packet p arrives

Initiate Processor
Activation

lim
j

+ 1
Q

j
on

Processor Activated

−

Figure 5: Activation procedure: Timing diagram

and all packets in front of p can be serviced within D units
of time from the arrival of packet p. In particular, packet
p will meet its delay bound D if and only if

Q j
lim +1+ j ≤ (tsw − τ)×

j
tpkt

+(D− tsw + τ)×
j +1
tpkt

This constraint requires

τ ≥ tpkt + tsw −D (3)

which lets us determine a general equation for Q j
on:

Q j
on = Q j

lim − τ(Rarr −R j
dep) (4)

The above two expressions lead to the following impor-
tant result:

Conclusion 1 For D ≥ tsw + tpkt , τ ≤ 0 and Q j
on may sim-

ply be set to Q j
on = Q j

lim, indicating that the system can
be completely reactive, adapting the number of activated
processors only when the queue length qlen > Q j

lim, where
j is the number of currently activated processors.

Conclusion 1 indicates that if the delay bound is greater
than (tpkt + tsw), then the system is required to activate ad-
ditional processors only after receiving a packet p whose
delay bound would be violated with the current set of ac-
tivated processors. In such systems, PMA therefore sets

Q j
on = Q j

lim

This result is important; it completely eliminates from
most power management systems any need for predict-
ing overload. Thus, when the delay bound D > tpkt + tsw,
the system simply observes the queue build up and reacts

4

only when it receives a packet whose delay guarantee will
be violated.4

The above condition is likely to be met by most realistic
system configurations. For any system, the delay bound
D must be at least tpkt (the time required to process a
packet). And given typical configuration switching delays
of a few hundred microseconds and given that increasing
a system’s processing delay bound D increases a system’s
opportunities for power savings, we would expect most
power-sensitive systems to operate with D � tsw + tpkt .
Note, however that Equations 3 and 4 remain valid even
if D < tsw + tpkt . In that case, Q j

on < Q j
lim and PMA still

begins activating processor j+1 sufficiently early to acco-
modate the worst-case packet arrival rate Rarr. Also note
that in that case, the values of Q j

on can still be calculated
statically based on tpkt , tsw, D, and Rarr; no run-time pre-
diction of arrival rates is needed.

3.2 Calculating k j
a: How Many Processors to

Activate?
Once the transition from deactivated to activated state is
initiated for a processor, it becomes available to service
packets only after a delay of tsw time units. Thus, the num-
ber of processors to be activated is selected such that all
the packets that can arrive within time tsw (not just packet
p that triggered the activation) can be serviced prior to
their respective deadlines (defined by the delay bound).

If j and k j
a, respectively, denote the number of currently

activated processors and the ones being transitioned to the
activated state, then the above condition can be met if the
queue length at time when (j + k j

a) processors are acti-

vated does not exceed Q j+k j
a

on + 1. Note that at the time
of initiating processor activations, the queue length was
Q j

on +1. During the transition interval of length tsw, pack-
ets can arrive into the system at a rate no greater than Rarr;
further, with j activated processors, packet depart the sys-
tem at rate R j

dep. Thus, the maximum increase in queue

length is bounded by (Rarr −R j
dep)× tsw. Thus, the delay

bound for each packet can be satisfied if:

(Q j+k j
a

on +1)− (Q j
on +1) ≥

(
Rarr −R j

dep

)
× tsw

Substituting the values for Q j+k j
a

on , Q j
on, and R j

dep from (1)
and (4), we get:

k j
a ×

(
D

tpkt
−1

)
+ τ×

(
k j

a

tpkt

)
≥

(
Rarr −

j
tpkt

)
× tsw

4In fact, if D > (tpkt + tsw), then τ can be negative, indicating that
the system can even wait for |τ| time units after the arrival of packet p
before activating a new processor. Note, however, that such additional
delay does not reduce the total amount of energy expended by the system
for a trace because it does not reduce the amount of time that processor
j +1 must work to ensure the system meets its packet delay bounds.

⇒ k j
a ≥

(Rarr × tpkt − j)× tsw

D+ τ− tpkt
(5)

This leads to the following conclusion.

Conclusion 2 If the current number of activated proces-
sors is j and the queue length reaches Q j

on, then the lower
bound on the number of processors k j

a that must be acti-
vated is given by:

k j
a =

⌈
(Rarr × tpkt − j)× tsw

D+ τ− tpkt

⌉
(6)

We make the following two observations.

• The value of k j
a shown in Conclusion 2 is a function

of j (j ∈ [0,Np]), the number of activated processors
prior to initiating the activation of new processors.
The smaller the value of j, the greater is the value of
k j

a, and vice versa. This relationship allows the sys-
tem to ramp-up quickly from a low-utilization state
(with very few activated processors) by activating a
larger number of processors with each activation trig-
ger. The number of processors activated with each
trigger decreases at higher levels of utilization.

• Packet processing systems are often provisioned to
meet the demands of the expected maximum arrival
rate Rarr. In such an appropriately provisioned sys-
tem, the number of processors Np is, in fact, equal to
Rarr ×tpkt . Thus, when j = Np (i.e., when all the pro-
cessors in the system are in the activated state), k j

a =
0. Further, in such a system, if D > Np×tsw +tpkt −τ,
then for all values of j, k j

a = 1, i.e., each activation
trigger will require the activation of exactly one ad-
ditional processor.

3.3 Processor Deactivation
When processing capacity exceeds demand, processors
should be deactivated to conserve energy.
3.3.1 When to Deactivate Processors?

When the queue of packets waiting to be serviced by a
processor is not empty, then all of the activated proces-
sors are busy (and hence are expending Pactive power while
serving packets). It is important to note that if the queue
contains n packets, then the total amount of energy ex-
pended to process the packets is given by: n×tpkt ×Pactive,
which is independent on the number of activated proces-
sors serving the packets. Thus, deactivating a processor
while the queue is not empty does not conserve energy.
Furthermore, deactivating processors before the queue is
empty increases the waiting time for the packets. These
observations lead us to the following conclusion.

Conclusion 3 Processors should be deactivated only
when the queue is empty.

5

Time

Tdeact

swtt sw

A C D

start
activation

start
deactivation

B

Figure 6: Condition to Save Power

3.3.2 How Many Processors to Deactivate?

Once the queue is empty, processors can be deactivated
to conserve energy. To determine the number of proces-
sors that can be deactivated, we first derive the minimum
number of processors that must remain activated beyond
which deactivating processors further may not yield any
reduction in energy consumption.

Let nmin be the minimum number of processors that
must remain activated in order to ensure that deactivat-
ing the remaining processors is profitable. To derive the
value of nmin, we observe that deactivating a processor
is beneficial only if doing so conserves energy. In par-
ticular, we will guarantee that if nmin processors remain
active, then the (nmin + 1)st processor will remain deacti-
vated long enough that its cost of transitioning to and from
the deactivated state (at an energy cost of 2.Psw.tsw is less
than the cost of remaining activated and idle, consuming
Pidle for that time.

Observe that any more processors than nmin would need
to be activated only τ units of time prior to the instant
when the queue length reaches Qnmin

lim +1 (from its current
value of 0). Given that packets can arrive at the maximum
rate Rarr and that packets are serviced at rate Rnmin

dep with
nmin activated processors, the minimum time processors
(other than the always-activated nmin processors) remain
deactivated is given by:

Tdeact =
Qnmin

lim +1

Rarr −Rnmin
dep

− τ (7)

Let j be the current number of activated processors.
Consider the sequence of events shown in Figure 6. The
total amount of energy expended in transitioning (j −
nmin) processors from activated state to deactivated state
and back is given by: 2×Psw × tsw × (j− nmin). In com-
parison, by not deactivating (j−nmin) processors, the sys-
tem would have expended (tdeact + tsw)×Pidle×(j−nmin)
energy, given that activated processor only expend Pidle

power while being idle. Thus, deactivating (j−nmin) pro-
cessors conserves energy only if:

2×Psw × tsw × (j−nmin) ≤ (Tdeact + tsw)×Pidle

×(j−nmin)

⇒ Tdeact ≥

(
2×

Psw

Pidle
−1

)
× tsw (8)

Using Equations 7 and 8, we get:

Qnmin
lim +1

Rarr −Rnmin
dep

− τ ≥

(
2×

Psw

Pidle
−1

)
× tsw (9)

(10)

which gives us an equation for nmin that is independent of
j

∀ j : nmin ≥
(C×Rarr −1)× tpkt

D− tpkt +C
(11)

where C =

(
2×

Psw

Pidle
−1

)
× tsw + τ

Using Equation 11, we derive the following conclusion.

Conclusion 4 Once the queue becomes empty, to con-
serve energy, an adaptive system should deactivate all but
nmin processors.

Observe from Equation 9 that if

τ ≤−

(
2×

Psw

Pidle
−1

)
× tsw (12)

then Equation 9 can be satisfied for all values of nmin, in-
cluding nmin = 0. Substituting this value of τ in Equa-
tion 3, we get:

D ≥ tpkt + tsw −

(
−

(
2×

Psw

Pidle
−1

)
× tsw

)

⇒ D ≥ tpkt +2×

(
Psw

Pidle

)
× tsw (13)

Thus, if D satisfies Equation 13, then nmin = 0. We sum-
marize this in the following conclusion.

Conclusion 5 If D satisfies Equation 13, then by select-
ing τ to satisfy Equation 12, one can design an adaptive
system in which once the queue becomes empty, the system
can deactivate all the idle processors. This maximizes the
conserved energy, while ensuring that the delay incurred
by packets is within bound D.

3.4 Analysis
In this section, we compare our power management algo-
rithm (PMA) to an optimal, off-line algorithm (referred
to as ORAC). By virtue of being an off-line algorithm,
at any time instant, ORAC adapts processor activations
based on exactly the observed traffic in the future. Thus,
ORAC activates processors only when needed; further, it

6

activates only as many processors as needed. Similarly,
when the packet trace contains sufficiently long idle dura-
tions, ORAC deactivates all of the processors. Now, let us
consider PMA.

• As we have argued in Section 3.1, if D ≥ tpkt + tsw,
then τ ≤ 0. Thus PMA is completely reactive; it acti-
vates a processor only after receiving a packet whose
delay guarantee can’t be honored with the current set
of activated processors. Hence, when D ≥ tpkt + tsw,
PMA will activate processors only when ORAC also
activates processors.

• On receiving an activation trigger in state j (with
j activated processors), however, PMA activates an
additional k j

a processors. The derivation of k j
a as-

sumes that the traffic could arrive at its maximum
rate Rarr. Thus, in comparison with ORAC, PMA
could activate at most (k j

a −1) additional processors,
and thereby incur (k j

a − 1)× tsw ×Psw energy over-
head for each activation trigger.

However, as we have argued in Section 3.2, if D >

Np × tsw + tpkt − τ, then for all values of j, k j
a = 1.

In this case, PMA will activate exactly one processor
for each activation trigger, and hence will match the
energy consumption of ORAC.

• Both PMA and ORAC deactivate processors only
when the queue becomes empty. However, unlike
ORAC, PMA deactivates all but nmin processors.
PMA maintains nmin activated processors because of
the assumption that a burst of packets can arrive at
any instant at the maximum arrival rate Rarr; hence,
deactivating them would not conserve any energy. If,
in fact, the packet trace contains long idle spans, then
ORAC would deactivate all of the processors. For
each such idle span, the energy consumed by PMA
is higher than ORAC by nmin ×Pidle × I, where I de-
notes the length of the idle span.

However, as we have demonstrated in Section 3.3, if
τ is selected such that τ≤−

(
2× Psw

Pidle
−1
)
×tsw, and

if D ≥ tpkt +2×
(

Psw
Pidle

)
× tsw, then nmin = 0. In such

a case, once the queue becomes empty, PMA would
deactivate all the idle processors, and thereby match
the energy consumption of ORAC.

From the above discussion, we derive the following con-
clusion.

Conclusion 6 If the delay bound D satisfies:

D ≥ Np × tsw + tpkt +

(
2×

Psw

Pidle
−1

)
× tsw

1 2 3 4 5 6 7 8 9

Figure 7: CPMA Automata

then our on-line power management algorithm consumes
the same amount of energy as an optimal off-line algo-
rithm.

4 Conservative PMA
In our power management algorithm (PMA) described in
Section 3, when the queue is empty, PMA deactivates
all but nmin processors. This policy aggressively exploits
the processing delay bound to minimize energy consump-
tion. This increases the average as well as the variance in
packet delay. In this section, we propose a variant of PMA
(which we refer to as Conservative PMA) that is slightly
more conservative about deactivating processors and thus
reduces the average packet delay at a modest cost to en-
ergy efficiency.

CPMA estimates the actual departure rate of packets
from the system as:

R̂dep =
npkt

∆
(14)

where npkt denotes the number of packets departed in time
∆, and ∆ is the time since the most recent processor activa-
tion. If j is current the number of activated processors in
the system, then the maximum rate for serving packets is
given by R j

dep = j/tpkt , where tpkt is the time to service a
single packet. Let k be the number of activated processors
in the state previous to j in the FSA.

CPMA then evaluates the following condition:

R̂dep ≤ Rk
dep

⇒
R̂dep

R j
dep

≤
k
j

(15)

When the queue is empty, only if Equation 15 holds,
CPMA deactivates processors. Further, unlike PMA
(which would deactivate all but nmin processors), CPMA
deactivates only (j − k) processors. The FSA resulting
from CPMA is shown in Figure 7.

5 Experimental Evaluation
We evaluate the energy benefits of PMA and CPMA over
a base system B – a non-adaptive system that keeps all
processors always activated. For reference, we also com-
pare with (1) ORAC — a system that uses perfect knowl-
edge of the future to predict processor allocations, and (2)
MAX — the maximum possible benefits when there are
no switching overheads.

7

Metric→ Duration Size Np Min on
↓Trace (in Million) Processors

UNC1 7 mins 10 27 5
UNC2 5 mins 10 27 5
UNC3 16 mins 30 27 5
UNC4 8 mins 30 17 5
NZIX1 6 hrs 23.4 6 2
NZIX2 6 hrs 26.9 4 2
Bell1 24 hrs 47.8 12 3
Bell2 24 hrs 51 12 3

AUCK 24 hrs 28.7 9 3

Table 2: Trace characteristics. Tmin is the minimum inter-
arrival time observed in the trace. Tpkt is calculated as-
suming that maxproc = 16.

Parameter Value

D 2 ms
tsw 200 µs
tpkt 200 µs
Psw
Pidle

1.3
Pactive
Pidle

1.3

Table 3: System Parameter Values for experiments.

5.1 Setup
Metric: We derive the metric of evaluation as follows:
For any of the algorithms (PMA, CPMA, ORAC and
MAX) represented by A, we define the energy bene-
fits over the base system B as 1 − EA

EB
, where EA =

Pactive × T A
active + Pidle × T A

idle + Psw × tsw × TransA, and
EB = Pactive × T B

active + Pidle × T B
idle. T A

state represents the
total time the system spent in a particular state (idle, ac-
tive or off) for a particular algorithm. Trans represents the
number of transitions between activated and deactivated
states.

Traces: We use both synthetic and real world traces to
evaluate the energy benefits of our algorithms. We con-
struct a synthetic STEP trace to compare the behavior of
PMA and CPMA. To construct the STEP trace, we first
increase the number of packets in each uniform sized in-
terval and then decrease it symmetrically, forming a se-
ries of rising and falling steps. We use several real-world
traces [23, 27] of various durations and varying density of
traffic, collected from various Internet locations. Columns
2 and 3 of Table 2 show the characteristics of these traces.

System Parameters: Table 3 shows the parameters we
pick for our experiments. We derive the value for Pactive

Pidle

and Psw
Pidle

as 1.3, using the ratio of active to idle power for
IXP 1200 from Figure 1. We pick tsw = 200µs [18] and

Trace PMA CPMA ORAC MAX

UNC1 73.60 73.32 77.30 77.68
UNC2 69.72 62.39 71.68 72.04
UNC3 69.65 62.78 71.62 71.98
UNC4 60.13 60.06 69.07 69.62
NZIX1 65.95 65.95 90.58 95.35
NZIX2 49.08 49.08 84.30 92.04
BELL1 66.48 66.48 97.30 98.80
BELL2 66.47 66.47 97.11 98.72
AUCK 55.43 55.43 97.73 99.04

Table 4: Comparison of percentage benefits obtained by
PMA with ORAC and MAX.

choose tpkt = 200µs extrapolating data from [17] to Intel
IXP 1200.
Provisioning: In order to make a fair comparison, we al-
low the base system to keep the same size of the queue
that our algorithms need. We provision the system with
enough number of processors such that the maximum
number of packets received in any interval D (the de-
lay guarantee) throughout the trace, can be kept in the
queue and processed within D. Note that this is a conser-
vative assumption – in reality, systems are typically over-
provisioned to handle the peak traffic arrival rates. We
use tpkt = 200µs for deriving the maximum processor re-
quirement. Column 4 shows the processor provisioning
required for each trace. Note that once we know all these
values, we can derive the minimum number of processors
(column 5) that are always kept on from Equation 11.

5.2 Results
In this section, we demonstrate the efficacy of our algo-
rithms. Throughout this section, we assume that τ = 0.
As we have argued earlier, selecting τ = 0 reduces the
energy-efficiency of PMA as compared to ORAC; using
τ < 0 would improve the observed benefits further. Our
choice of τ allows us to study the effect of varying de-
lay guarantee on energy benefits, and ensures simplicity
of the presentation.
Comparison to ORAC: Table 4 compares the benefits
achieved by PMA and CPMA to ORAC for different
traces. The table shows that PMA and CPMA achieve
substantial benefits as compared to ORAC. Recall that
while PMA keeps certain number of processors always
switched on, ORAC can turn off all processors in the sys-
tem. This explains the difference in benefits for the longer
duration NZIX and BELL traces — these traces require
no processors for significant periods of time.

Figure 8 shows the delay CDF of packets for differ-
ent traces using PMA. The figure shows that although the
maximum allowed delay is 2ms, most packets see signifi-
cantly smaller delays. In the case of UNC, the delays are

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

F
ra

ct
io

n
of

 p
ac

ke
ts

 <
 X

Packet Delay (in microseconds)

UNC1
UNC2
NZIX1
NZIX2
BELL1
BELL2
AUCK

Figure 8: CDF of the delays seen by packets when using
the two algorithms.

longer because the UNC traces have higher packet den-
sity that the others. The high packet density combined
with the aggressive deactivation of PMA (when the queue
reaches zero), causes the queue to build up frequently,
thus causing long packet delays.
Comparison between PMA and CPMA: Figure 9 high-
lights the difference between PMA and CPMA in terms
of the aggressiveness in saving energy. Figure 9(a) shows
the behavior of PMA (in terms of the queue length and the
number of processors activated) with time for the STEP
trace. The fluctuations in the graph illustrate the aggres-
siveness of PMA in deactivating processors every time the
queue length reaches zero. Figure 9(b) shows the behavior
of CPMA for the same trace. Recall that CPMA deacti-
vates a processor only when the utilization is low enough
that the processor is not necessary, hence reducing the
number of transitions.

Metric → Transitions per sec Avg Extra Delay (µs)
Trace ↓ PMA CPMA PMA CPMA

UNC1 90 79 178.09 168.27
UNC2 1654 7 548.66 31.27
UNC3 1684 27.57 552.52 44.48
UNC4 7.19 5.06 73.49 71.22
NZIX1 0.042 0.035 7.997 7.83
NZIX2 0.00083 0.00064 7.038 7.034
BELL1 0.0152 0.015 0.934 0.952
BELL2 0.0097 0.0096 1.177 1.192
AUCK 0.0003 0.0003 1.356 1.356

Table 5: Comparison of Aggressive and Conservative al-
gorithms in terms of transitions and average packet delay.

Table 5 compares the number of transitions and the av-
erage delay caused by PMA and CPMA for various traces.
The table shows that CPMA is better in reducing the num-
ber of transitions and average delay. The performance

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
ra

ct
io

n
of

 p
ac

ke
ts

 <
 X

Packet Delay (in microseconds)

PMA-UNC2
CPMA-UNC2
Non-Adaptive

Figure 10: CDF of the delays seen by packets when using
the two algorithms.

is significantly better for the busier traces (UNC). Fig-
ure 10 plots the CDF of the delay experienced by packets
with PMA and CPMA for the UNC2 trace and compares
them with the non-adaptive system. The graph illustrates
that while PMA delays 50% of the packets by more than
600µs, CPMA causes no delays to 70% of the packets.
Effect of Varying Delay Guarantee Figure 11 shows the
effect of changing the delay guarantee on energy benefits
and average packet delay for UNC1 trace using PMA. The
graph shows that by increasing the delay guarantee we see
increased benefits till D = 2ms. However, further increase
in delay guarantee does not increase the benefits signifi-
cantly. The average delay also increases with the increase
in delay guarantee. Observe here that around D = 1.5ms,
we get almost all the benefits, with almost no increase in
average delay.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000
 0

 1000

 2000

 3000

 4000

 5000

%
 B

en
ef

its

O
bs

er
ve

d
Q

ue
ui

ng
 D

el
ay

 (
in

 m
ic

ro
se

co
nd

s)

Delay Guarantee (in microseconds)

Benefits
Maximum Delay

Average Delay
t_pkt

Figure 11: Effect of changing delay guarantee on the ben-
efits for the UNC trace, average delay and maximum delay
observed.

Effect of switching overheads We study the effect of
varying switching delay (tsw) and switching power (Psw)
on energy benefits. Figure 12 shows that as the switching
delay and power increase, the benefits reduce and drop to

9

-30

0

30

60

90

0 0.5 1 1.5 2 2.5 3 3.5
0

10

20

30

40

Q
ue

ue
 L

en
gt

h
an

d
T

hr
es

ho
ld

s

N
um

be
r

of
 P

ro
ce

ss
or

s
S

w
itc

he
d-

on

Time (in seconds)

Qon
Queue Length
Processors On

-30

0

30

60

90

0 0.5 1 1.5 2 2.5 3 3.5
0

10

20

30

40

Q
ue

ue
 L

en
gt

h
an

d
T

hr
es

ho
ld

s

N
um

be
r

of
 P

ro
ce

ss
or

s
S

w
itc

he
d-

on

Time (in seconds)

Qon
Queue Length
Processors On

Figure 9: Comparison of PMA and CPMA in terms of variation of the threshold, the queue length and the number of
activated processors for the step trace. The figure clearly depicts the conservative behavior of CPMA when compared
to PMA.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

P
er

ce
nt

ag
e

E
ne

rg
y

B
en

ef
its

Switching Delay (in microseconds)

Psw/Pidle = 1
Psw/Pidle = 1.3

Psw/Pidle = 2
Psw/Pidle = 3

Figure 12: Variation of power benefits with switching de-
lay and switching power for the UNC trace.

zero. However, for today’s IXP processors [18], switch-
ing delay is around 200µs and from Figure 1, switching to
idle power ratio is about 1.3. From Figure 12, these val-
ues correspond to energy benefits of 70%. In future, the
switching overheads are only likely to reduce, given the
increasing focus on energy-aware system designs.

6 Related Work

Several recent studies have shown the benefits and op-
portunities of conserving energy in packet processing
systems, and argued for building energy-aware network-
ing devices and protocols [1, 5, 14, 15, 17]. Gupta et
al. [14] motivate that conserving energy reduces the op-
erational costs of packet processing systems, reduces the
environmental impact (e.g. heat dissipation and cooling-
induced noise) and also leads to the greater deployment
of the Internet. Bhagwat et al. [5] point out the need
for energy-efficient devices for their real-life networking
testbed – which operates on solar generated power. Kokku
et al. [17] show that the inherent fluctuations in network

traffic leave significant opportunity for an adaptive envi-
ronment to adapt processor allocations for conserving en-
ergy. Power efficiency in network processors has been a
topic of growing interest [12, 21, 22, 28].

The problem of scheduling resources for conserving
energy has been explored in various domains – wireless
and sensor networks [8, 13, 16, 31], mobile and embedded
systems [9, 25, 29], web servers [7, 10], and multimedia
servers [30]. Several recent works develop protocols and
policies for adaptive resource management to conserve
energy [4]. However, in packet processing systems like
routers, hubs and switches, the problem has received lit-
tle focus. Our work is motivated by the recent realization
of the need for system support for energy-conservation in
such systems [1, 5, 14, 15].

Managing energy in packet processing systems be-
comes challenging due to two factors (1) bursty network
traffic and lack of predictability, and (2) non-negligible
cost of adapting network resources at run-time. Over sev-
eral years, network traffic has been shown to be bursty at
various timescales and is especially hard to predict at fine
timescales [19, 24, 26, 32].

Dynamic power management in several systems is done
using predictive schemes and stochastic schemes. Pre-
dictive schemes use observation based-approaches like
exponential averaging [4, 20] of task arrival rate and
predict the resource requirements. With network traf-
fic, such schemes could be inaccurate and thereby ei-
ther waste resources or affect the performance guarantees
with no bounds. Stochastic schemes formulate energy-
conservation as a constrained optimization problem – they
minimize power consumption under the performance con-
straints [3, 4]. However, solving an optimization problem
at run-time may cause significant overhead.

Our algorithm uses Active Queue Management (AQM)
to determine processor requirements under bounded per-

10

formance impact. AQM [2, 6, 11] has been a popular tech-
nique for congestion control in the Internet. The AQM ab-
straction fits well for packet processing systems, and thus
makes the algorithm simple and low overhead to imple-
ment.

7 Conclusion
In this paper, we present an on-line algorithm for adapt-
ing the number of activated processors such that (1) the
total energy consumption of the system across a packet
trace is minimized and (2) the additional delay suffered
by packets as a result of adaptation is deterministically
bounded. The resulting Power Management Algorithm
(PMA) is simple, but it accounts for system reconfigura-
tion overheads, copes with the unpredictability of packet
arrival patterns, and consumes nearly the same energy as
an optimal off-line strategy. A conservative version of
the algorithm (CPMA), turns off processors less aggres-
sively than is optimal but still provides good energy sav-
ings while reducing the additional packet latency intro-
duced by power management. We demonstrate that for a
set of trace workloads both algorithms can reduce the core
power consumption by 60-70% while increasing the aver-
age packet processing delay by less than 560µs (PMA)
and less than 170µs (CPMA).

References
[1] International Energy Agency Workshop on The Future Impact of

Information and Communication Technologies on the Energy Sys-
tem, Paris, February 21-22, 2002.
www.worldenergyoutlook.org/weo/papers/ictfeb02.asp.

[2] S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin. REM: Active queue
management. IEEE Network, 15(3):48 – 53, May/June 2001.

[3] S. Baruah and J. Anderson. Energy-aware implementation of hard-
real-time systems upon multiprocessor platforms. In Proceedings
of the ICSA 16th International Conference on Parallel and Dis-
tributed Computing Systems., pages 430–435, 2002.

[4] L. Benini, A. Bogliolo, and G. D. Micheli. A Survey of Design
Techniques for System-Level Dynamic Power Management. IEEE
Transactions on Very Large Scale Systems, 2000.

[5] P. Bhagwat, B. Raman, and D. Sanghi. Turning 802.11 Inside-Out.
In Hotnets II, November 2003.

[6] W. chang Feng, K. G. Shin, D. D. Kandlur, and D. Saha. The
BLUE active queue management algorithms. IEEE/ACM Trans-
actions on Networking, 10(4):513–528, 2002.

[7] J. S. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle.
Managing Energy and Server Resources in Hosting Centers. In
Proceedings of the Eighteenth ACM Symposium on Operating Sys-
tems Principles (SOSP), October 2001.

[8] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. SPAN:
An Energy-Efficient Coordination Algorithm for Topology Main-
tenance in Ad Hoc Wireless Networks. In Mobile Computing and
Networking, pages 85–96, 2001.

[9] F. Douglis, P. Krishnan, and B. Bershad. Adaptive Disk Spin-
down Policies for Mobile Computers. In Proceedings of the 2nd
USENIX Symposium on Mobile and Location-Independent Com-
puting, 1995.

[10] M. Elnozahy, M. Kistler, and R. Rajamony. Energy Conserva-
tion Policies for Web Servers. In Proceedings of the 4th USENIX
Symposium on Internet Technologies and Systems (USITS), March
2003.

[11] S. Floyd and V. Jacobson. Random Early Detection Gateways for
Congestion Avoidance. IEEE/ACM Transactions on Networking,
1(4):397–413, 1993.

[12] M. A. Franklin and T. Wolf. Power Considerations in Network
Processor Design. In Proceedings of Second Network Processor
Workshop in conjunction with Ninth International Symposium on
High Performance Computer Architecture (HPCA-9), pages 10–
22, 2003.

[13] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin. Highly-
Resilient, Energy-Efficient Multipath Routing in Wireless Sensor
Networks. Mobile Computing and Communications Review, 4(5),
2001.

[14] M. Gupta and S. Singh. Greening of the Internet. In Proceedings
of the ACM SIGCOMM, August 2003.

[15] G. Held. Emerging Technology: The Price of Power Consumption.
Network Magazine, Sep 5, 2001.

[16] C. E. Jones, K. M. Sivalingam, P. Agrawal, and J.-C. Chen. A Sur-
vey of Energy Efficient Network Protocols for Wireless Networks.
Wireless Networks, 7(4):343–358, 2001.

[17] R. Kokku, T. Riche, A. Kunze, J. Mudigonda, J. Jason, and H. Vin.
A Case for Run-time Adaptation in Packet Processing Systems. In
Hotnets II, November 2003.

[18] M. E. Kounavis, A. T. Campbell, S. T. Chou, and J. Vicente.
Programming the Data Path in Network Processor-Based Routers.
Software Practice and Experience, Special Issue on Software for
Network Processors, 2004.

[19] W. Leland, M. Taqq, W. Willinger, and D. Wilson. On the self-
similar nature of Ethernet traffic. In Proceedings of the ACM SIG-
COMM, 1993.

[20] Y. Lu, E. Chung, T. Simunic, L. Benini, and G. Micheli. Quantita-
tive Comparison of Power Management Algorithms. In Proceed-
ings of Design Automation and Test in Europe., 2000.

[21] G. Memik and W. H. Mangione-Smith. Increasing Power Effi-
ciency of Multi-Core Network Processors through Data Filtering.
In Proceedings of the International Conference on Compilers, Ar-
chitecture, and Synthesis for Embedded Systems, pages 108–116.
ACM Press, 2002.

[22] G. Narlikar, A. Basu, and F. Zane. CoolCAMs: Power-Efficient
TCAMs for Forwarding Engines. In Proceedings of IEEE Infocom,
2003.

[23] NLANR Network Traffic Packet Header Traces.
http://pma.nlanr.net/Traces/.

[24] V. Paxson and S. Floyd. Wide area traffic: the failure of Poisson
modeling. IEEE/ACM Transactions on Networking, 3(3):226–244,
1995.

[25] P. Pillai and K. G. Shin. Real-time Dynamic Voltage Scaling
for Low-Power Embedded Operating Systems. In Proceedings of
the eighteenth ACM Symposium on Operating Systems Principles,
pages 89–102. ACM Press, 2001.

[26] Y. Qiao, J. Skicewicz, and P. Dinda. Multiscale Predictability of
Network Traffic. Technical report.

[27] F. D. Smith, F. H. Campos, K. Jeffay, and D. Ott. What TCP/IP
Protocol Headers Can Tell Us About the Web. In Proceedings of
ACM SIGMETRICS 2001/Performance 2001, June 2001.

[28] E. Spitznagel, D. Taylor, and J. Turner. Packet Classification Using
Extended TCAMs. In Proceedings of ICNP, 2003.

11

[29] M. Weiser, B. Welch, A. J. Demers, and S. Shenker. Scheduling
for Reduced CPU Energy. In Proceedings of USENIX Symposium
on Operating Systems Design and Implementation, pages 13–23,
1994.

[30] Q. Wu, M. Pedram, and Q. Qiu. Dynamic Power Management in
a Mobile Multimedia System with Guaranteed Quality-of-Service.
In Proceedings of the Design Automation Conference, pages 701–
707, 2001.

[31] W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient MAC
protocol for Wireless Sensor Networks. In Proceedings of the
IEEE INFOCOM., 2002.

[32] Z. Zhang, V. Ribeiro, S. Moon, and C. Diot. Small-Time Scaling
Behaviors of Internet Backbone Traffic: An Empirical Study. In
Proceedings of the IEEE INFOCOM., 2003.

12

