Online Hierarchical Cooperative Caching

Xiaozhou Lil? C. Greg Plaxton!? Mitul Tiwari'»3 Arun Venkataramani'»

February 6, 2004

Abstract

We address a hierarchical generalization of the well-known disk paging problem. In the hierarchical co-
operative caching problem, a set of n machines residing in an ultrametric space cooperate with one another to
satisfy a sequence of read requests to a collection of (read-only) files. A seminal result in the area of com-
petitive analysis states that LRU (the widely-used deterministic online paging algorithm based on the “least
recently used” eviction policy) is constant-competitive if it is given a constant-factor blowup in capacity over
the offline algorithm. Does such a deterministic constant-competitive algorithm (with a constant-factor blowup
in the machine capacities) exist for the hierarchical cooperative caching problem? The main contribution of the
present paper is to answer this question in the negative. More specifically, we establish an Q(loglogn) lower
bound on the competitive ratio of any online hierarchical cooperative caching algorithm with capacity blowup
O((logn)'~*), where ¢ denotes an arbitrarily small positive constant. It is interesting to note that the offline
algorithms associated with our lower bound argument do not replicate files. Accordingly, our lower bound also
holds for the variant of the hierarchical cooperative caching problem in which replication is not permitted.

!Department of Computer Science, University of Texas at Austin, 1 University Station C0500, Austin, Texas 78712-0233. Email:
{xli,plaxton,mitult,arun} @ cs.utexas.edu.

2Supported by NSF Grant CCR-0310970.

3Supported by NSF Grant ANI-0326001.

“Supported by Texas Advanced Technology Project 003658-0503-2003 and by IBM.

1 Introduction

The traditional caching problem, which has been extensively studied, is as follows. Given a cache and a sequence
of requests for files, a system has to satisfy the requests one by one. If the file f being requested is in the cache,
then no cost is incurred; otherwise a retrieval cost is incurred to place f in the cache. If need be, some files,
determined by an online caching algorithm that does not know the future request sequence, are evicted to make
room for f. The objective is to minimize the total retrieval cost by wisely choosing which files to evict. The cost
of the online algorithm is compared against that of an optimal offline algorithm (OPT) that has full knowledge of
the request sequence. Following Sleator and Tarjan [11], we call an online algorithm c-competitive if its cost is at
most ¢ times that of OPT for any request sequence. It is well-known that an optimal offline strategy is to evict the
file that will be requested furthest in the future.

The caching problem is also known as paging if the files have uniform size and retrieval cost. In their seminal
paper, Sleator and Tarjan [11] have shown that LRU (Least-Recently-Used) and several other deterministic paging
algorithms are k/(k — h + 1)-competitive, where k is the cache space used by LRU and h is that used by OPT.
They have also shown that k/(k — h + 1) is the best possible among all deterministic algorithms. We call k/h the
capacity blowup of LRU. For files of nonuniform size and retrieval cost, Young [14] has proposed the LANDLORD
algorithm and shown that LANDLORD is k/(k — h + 1)-competitive. As stated in [14], the focus of LANDLORD
“is on simple local caching strategies, rather than distributed strategies in which caches cooperate to cache pages
across a network”.

In cooperative caching [6], a set of caches cooperate in serving requests for each other and in making caching
decisions. The benefits of cooperative caching have been supported by several studies. For example, the Harvest
cache [5] introduce the notion of a hierarchical arrangments of caches. Harvest uses the Internet Cache Proto-
col [13] to support discovery and retrieval of documents from other caches. The Harvest project later became the
public domain Squid cache system [12]. Adaptive Web Caching [15] builds a mesh of overlapping multicast trees;
the popular files are pulled down towards their users from their origin server. In local-area network environments,
the xFS system [1] utilizes cooperative caches to obtain a serverless file system.

A cooperative caching scheme can be roughly divided into three components: placement, which determines where
to place copies of files, search, which directs each request to an appropriate copy of the requested file, and consis-
tency, which maintains the desired level of consistency among the various copies of an file. In this paper, we study
the placement problem, and we assume that a separate mechanism enables a cache to locate a nearest copy of an
file, free of cost, and we assume that files are read-only (i.e., copies of an file are always consistent). We focus on
a class of networks called hierarchical networks, the precise definition of which is given in Section 2.

Our notion of a hierarchical network is constant-factor related to the notion of hierarchically well-separted tree
metrics, as introduced by Bartal [3]. Refining earlier results by Bartal [3], Fakcharoenphol et al. [7] have shown
that any metric space can be approximated by well-separated tree metrics with a logarithmic distortion. Hence,
many results for tree metrics imply corresponding results for arbitrary metric spaces with an additional logarithmic
factor.

If the access frequency of each file at each cache is known in advance, Korupolu et al. [10] have provided both
exact and approximation algorithms that minimize the average retrieval cost. In practice, such access frequencies
are often unknown or are too expensive to track. Since LRU and LANDLORD provide constant competitiveness
for a single cache, it is natural to ask whether there exists a deterministic constant-competitive algorithm (with
constant capacity blowup) for the hierarchical cooperative caching problem.

In this paper, we answer this question in the negative. We show that Q(loglogn) is a lower bound on the com-
petitive ratio of any deterministic online algorithm with capacity blowup O((logn)!~¢), where n is the number
of caches in the hierarchy and ¢ is an arbitrarily small positive constant. In particular, we construct a hierarchy
with a sufficiently large depth and show that an adversary can generate an arbitrarily long request sequence such

that the online algorithm incurs a cost Q(log log n) times that of the adversary. Interestingly, the offline algorithms
associated with our lower bound argument do not replicate files. It follows that our lower bound also holds for the
constrained file migration problem (which does not allow replication) restricted to ultrametric spaces.

On the other hand, if an online algorithm is given a sufficiently large capacity blowup, then constant competitive-
ness can be easily achieved. Appendix A shows a simple result that, given (1 + ¢’)d capacity blowup, where d
is the depth of the hierarchy and ¢’ an arbitrarily small positive constant, a simple LRU-like online algorithm is
constant-competitive. Note that in terms of d, our lower bound result yields that if the capacity blow up is O(d*~¢),
then the competitive ratio is Q(log d). Hence, our results imply that there is a very small range of values of the
capacity blowup that separates the regions where constant competitivenss is achievable and unachievable.

Drawing an analogy to traditional caching, where LRU and LANDLORD provide constant competitiveness, we
may think that a constant-competitive algorithm exists for HCC , being perhaps a hierarchical variant of LRU or
LANDLORD. In fact, we began our investigation by searching for such an algorithm. Since the HCC problem
generalizes the paging problem, we cannot hope to achieve constant competiveness without at least a constant
capacity blowup. (In this regard, we remark that the results of [10] are incomparable as they do not require a
capacity blowup.)

Several paging problems (e.g., distributed paging, file migration, and file allocation) have been considered in the lit-
erature, some of which are related to the HCC problem. (See, e.g., the survey paper by Bartal [4] for the definitions
of these problems.) In particular, the HCC problem can be formulated as the read-only version of the distributed
paging problem on ultrametrics. And the HCC problem without replication is a special case of the constrained file
migration problem where accessing and migrating a file has the same cost. Most existing work on these problems
focuses on upper bound results, and lower bound results only apply to algorithms without a capacity blowup. For
example, for the distributed paging problem, Awerbuch et al. [2] have shown that, given polylog(n, A) capacity
blowup, there exists deterministic polylog(n, A)-competitive algorithms on general networks, where A is the nor-
malized diameter of the network. For the constrained file migration problem, Bartal [3] has given a deterministic
upper bound of 2(m), where m is the total size of the caches, and a randomized lower bound of £2(log m) in some
network topology, and an O(logm log? n) randomized upper bound for arbitrary network topologies. Using the
recent result of Fakcharoenphol et al. [7], the last upper bound can be improved to O(log m logn).

The rest of this paper is organized as follows. Section 2 gives the preliminaries of the problem. Section 3 presents
the main result of our paper, a lowerbound for constant capacity blowup. Section 5 provides some concluding
remarks. Appendix A presents an upperbound for sufficiently large capacity blowup.

2 Preliminaries

In this section we formally define the hierarchical cooperative caching (HCC) problem. We are given a fixed tuple
(0,11, distance, size, capacity, miss_penalty), where ¥ is a set of files, II is a set of caches, distance: II x II —
R, size: ¥ — N, capacity: II — N, and miss_penalty: ¥ — R. We assume that the function distance is an
ultrametric (defined below) over II. We assume that for any file f in ¥, miss_penalty(f) is at least as large as
diameter(IT), where for any set of caches U, diameter(U) denotes the maximum of distance(u,v) over all caches
uand v in U.

2.1 Ultrametrics and Hierarchical Networks

A distance function d : II x IT — R is defined to be a metric if and only if d is nonnegative, symmetric, satisfies
the triangle inequality, and d(u,v) = 0 if and only if v = v. An ultrametric satisfies an additional requirement:
d(u,v) < max(d(u,w),d(v, w)).

A more intuitive characterization of distance being an ultrametric is that the caches in II form a "hierarchical
network”, or simply, a "hierarchy” defined as follows. A cache is trivially a hierarchy. A set of caches is a
hierarchy if and only if the caches form the leaves of a tree with minimum degree 2 whose nodes are labeled as
follows: the leaves of the tree are labeled with the value 0 and interior nodes are labeled with positive values that
strictly increase along any path from a leaf to the root, and the distance between any pair of caches v and v is
given by the label on the least common ancestor of u and v. Thus, every hierarchy is associated with a tree that is
a subtree of the tree associated with II.

If a hierarchy « contains a hierarchy (3, then « is called an ancestor of 3 and 3 a descendant of a. If o is an ancestor
of B and o # (3, then « is called a proper ancestor of 3 and 3 a proper descendant of «. If « is the smallest proper
ancestor of 3, then « is called the parent of 8 and 3 the child of a. Each hierarchy is associated with a depth
which is a non-negative integer. The hierarchy II has a depth of 0 and the depth of every other hierarchy is defined
to be one more than the depth of its parent. The definitions of ancestor, descendant, parent, and depth thus match
the standard meaning of these terms when used to describe the roots of the trees with which the hierarchies are
associated.

2.2 The Hierarchical Cooperative Caching Problem

The goal of a hierarchical cooperative caching algorithm is to minimize the total cost incurred in the movement
of files to serve an a priori unknown sequence of requests while respecting capacity constraints at each cache. To
facilitate a formal definition of the problem, we introduce additional definitions below.

A copy is a pair (u, f) where u is a cache and f is a file. A set of copies is called a placement. If (u, f) belongs
to a placement P, we say that a copy of f is placed at w in P. A placement P is b-feasible if, for each cache u,
Z(u, fep size(f) < b- capacity(u). A 1-feasible placement is simply referred to as a feasible placement.

Given a placement P, upon a request for a file f at a cache u, an algorithm must perform the operation serve (P, u, f)
that incurs an access cost cost (P, u, f) to serve the request. If P places at least one copy of f in any of the caches,
then cost(P, u, f) is defined as size(f)- distance(u, v), where v is the closest cache at which a copy of f is placed;
otherwise cost (P, u, f) is defined as miss_penalty(f). After serving a request, an algorithm may modify its place-
ment through an arbitrarily long sequence of any of the following operations. The operation fetch(P, u, f) modi-
fies P to PU{(u, f)} and incurs a cost cost(P, u, f). The operation discard(P, u, f) modifies P to P —{(u, f)}
and does not incur any cost. Given a capacity blowup of b, the goal of a hierarchical cooperative caching algorithm

is to maintain a b-feasible placement such that the total cost of movement of files involved in serving requests and
performing fetch operations is minimized.

3 The Lower Bound

In this section, we show that, given any constant capacity blowup b, the competitive ratio of any online HCC
algorithm is Q(log d), where d is the depth of the hierarchy. We prove this lower bound by showing the existence
of a suitable hierarchy, a set of files, a request sequence, and a feasible offline HCC algorithm that incurs an
Q(log d) factor lower cost for that request sequence than any online b-feasible HCC algorithm. This result easily
extends to analyzing how the lower bound on the competitive ratio varies as a function of nonconstant capacity
blowups up to the depth of the hierarchy. In particular, with a capacity blowup of d'~¢ for a fixed ¢ > 0, the
competitive ratio of any online HCC algorithm is still 2(log d).

We present an adversary-style exposition of the framework to prove the lower bound. Let ALG denote a b-feasible
online HCC algorithm and ADV an adversarial offline feasible HCC algorithm. ALG chooses a fixed value for
the capacity blowup b, and ADV subsequently chooses an instance of an HCC problem, a six-tuple as introduced

in Section 2, as follows. The hierarchy II consists of n unit-sized caches that form the leaves of a regular k-ary
tree with depth d = 4bk. Thus, for a given choice of k, n is determined by the relation n = k***. The set of
files ¥ consists of ©7 unit-sized files. The diameter of each hierarchy at depth 4bk — 1 is 1, and the diameter of
every non-trivial hierarchy is at least A times the diameter of any child. For any file f, miss_penalty(f) is at least
A - diameter(II). Given an instance of an HCC problem as described, in section 3.1, we give a program that takes
ALG as an input and generates a request sequence and a family of offline HCC algorithms each of which incurs a
factor 2(log d) less cost than ALG. We use the name ADV to refer to one algorithm in this family.

At ahigh level, ALG’s lack of future knowledge empowers ADV to play a game analogous to a shell game'. In this
game, ADV maintains a compact placement of files tailored for the request sequence that ADV generates, while
ALG is forced to guess ADV’s placement and incurs relocation costs if it guesses incorrectly. When ALG finally
zeroes in on ADV’s placement, ADV switches its placement around, incurring a small fraction of the relocation
cost that ALG has already expended, and repeats the game.

As an example, consider a simple two-level hierarchy consisting of equal-sized departments in a university. Some
files are of university-wide interest, say A, while the rest are department-specific. The capacity constraints are set
up in such a way that a department can either cache files of its interest or of the university’s, but not both sets
simultaneously. ADV stores all the files in A in an idle department, i.e., one with no access activity. On the other
hand, ALG has to guess the identity of the idle department. If ALG guesses incorrectly, ADV creates requests
that force ALG to move files in A to a different department. The best strategy for ALG is to evenly distribute files
in A across all departments that have not yet been exposed as non-idle. Unfortunately, even with this strategy ALG
ends up incurring a significantly higher cost than ALG. Of course, in this simplistic case, ALG can circumvent its
predicament simply by a two-fold blowup in capacity and the algorithm described in the previous section. The rest
of the paper brings to light the following main ideas: (i) a formalization of the shell-game-like adverserial strategy,
(ii) extension of this strategy for hierarchies of nonconstant depth, and (iii) the applicability of the hierarchical
strategy even to scenarios in which all files are distinct and replicated copies are not permitted in the system.

3.1 Definitions

We introduce additional definitions to describe the adversarial program below. The program is presented in an
object-oriented style, where a hierarchy is represented as a class with fields and methods that ADV uses to generate
requests and update its own placement based on ALG’s actions. In the rest of this section we use the term hierarchy
to mean both a set of caches separated by an ultrametric distance function and an instance of the class hierarchy.

The function g(i, j) is defined as k4% - (i1 + %) The set of =1 files ¥ is arbitrarily divided into 4bk + 1

exclusive sets, S, S1, ..., Sapk, such that |Syp| = 1 and |S;| = k%=1 for 0 < i < 4bk. A hierarchy has two
fields called primary and secondary that are reals used by ADV to keep track of ALG’s actions. A hierarchy has
the methods listed in Table 3.1.

In the adversary’s program given below, perch is a global variable that records the current hierarchy where ADV
generates requests. Initially, perch is set to II. The program proceeds in rounds where the end of a round and the
beginning of the next is marked by the generation of a request. Each round is an iteration of the loop in main(),
i.e., execution of steps 3 and 4. Based on ALG’s adjustment of its placement in step 3 of request(), ADV adjusts
perch through the methods heavy_ancestor() and weak _descendant() in step 3. The former moves perch to an
ancestor while the latter moves it to a descendant. We refer to the “tentative” values of perch, i.e., the value of this
during the execution of the methods heavy_ancestor() and weak _descendant() as the current hierarchy.

At any time, ADV maintains a marking placement defined as follows. Hierarchies are marked as idle or non-idle.
The top-level hierarchy is marked non-idle. Every non-trivial hierarchy at depth ¢ that is not marked idle has

!Thimblerig played especially with three walnut shells.

Method ‘ Return value

parent() | the parent hierarchy
depth() | the depth of the hierarchy
capacity() | the sum of capacity(u) over all descendant caches u
leftmost() | the leftmost descendant cache
children() | the set of child hierarchies
placed() | the set of (distinct) files placed in any descendant cache
load() | the number of files f in placed() such that f € S; for i < depth()
missing() | the set of files f such that f € S; and f ¢ placed(), where ¢ = depth()
pristine() | the number of children with primary = 0.
activation() | g(i,7), where i = depth() and r = parent().pristine().
reactivation() | g(i, k)
deactivation() | g(i,2k)
heavy_ancestor() | defined below
weak_descendant() | defined below
request() | defined below
reset() | defined below

Table 1: Methods of the class hierarchy

exactly one child that is marked idle; this idle child places all files in .S;. Every cache places the file in Syp,. We
note that ADV is an offline HCC algorithm whose existence follows from the properties of the program as we
show in Section 4. Till then, we defer the specification of the exact sequence of placements that ADV maintains.

The overall strategy of ADV is as follows. First, it ensures that ALG places a copy of every file in S; in the current
hierarchy at depth ¢, or creates a request to enforce placement of a missing copy. If ALG places a copy of all
files in S; in the current hierarchy, ADV moves the current hierarchy to a child in which ALG places a sufficient
fraction of the load, i.e., files in Sy U ... U S;_1 that are placed in the current hierarchy. The selection of ADV
either ensures that this child is not the idle child in ADV’s placement, or that ADV changes to a different marking
placement, identical to the previous one up to the selection of the idle child of the current hierarchy, by invoking
reset(). The descend continues in this manner until it reaches a hierarchy all of whose capacity is used up by ALG
to accomodate its load (from above). At this point, the current hierarchy cannot place any files in S; allowing ADV
to create a request for a missing file. The strategy described so far is embodied the method weak _descendant ().
However, it may happen that in order to satisfy requests for missing files, ALG moves some of its load out of the
current hierarchy through fetch operations. If the load on the current hierarchy decreases below its deactivation
threshold, ADV moves the current hierarchy, via heavy_ancestor(), to the nearest ancestor whose load is at least
as high as its deactivation threshold. In the process, ADV also invokes reset() on the children of each hierarchy it
ascended from. Thereafter, it starts the descend phase until it reaches a hierarchy with a missing file.

The fields primary and secondary of a hierarchy are mainly used for accounting for costs incurred by ALG.
However, primary is also used to preserve the invariant that ADV only descends to a non-idle child. Whenever
ADYV descends from the current hierarchy « to a child 8 with primary = 0, 5.primary is set to a non-zero value.
If ADV ascends to a’s parent, the primary field of all children of « is set to 0 through an invocation of a.reset().
Changing the primary field of a child from 0 to a non-zero value corresponds to ADV revealing that that is not
the idle child of the current hierarchy in ADV’s placement. When k£ — 1 of a’s children have nonzero primary
fields and ADV is poised to descend to the idle child of o, ALG has zeroed in on the identity of the idle child. At
this point, ADV invokes a.reset() and again moves to a placement where any of the children of « could be the
idle child.

Program

main()

(1 perch :=1I,

2) while true

3) perch := perch.heavy_ancestor().weak _descendant();
4) perch.request();

heavy_ancestor()
(1) if load() < deactivation()

2) secondary = reactivation();
3) reset();
4) return parent().heavy_ancestor();

(5 return this;

weak_descendant()
(1) if missing() # 0

2) return this;

3) if (30 : 0 € children() A §.primary > 0 A d.load() > reactivation())
4) return d.weak _descendant();

3) if pristine() =1

(6) reset();

@) Letd : 0 € children() A d.primary = 0 A é.load() > activation()
(8) d.primary = d.secondary := activation();

9) return §.weak _descendant();

3.2 Correctness of the Program

We now show that that the adversarial program is well-defined and each round terminates with the generation of a
request, i.e., ADV can generate an arbitrarily long sequence of requests given any online HCC algorithm. Lemma
3.1 shows that heavy_ancestor() returns an ancestor with load > deactivation(). Lemma 3.2 shows an invariant
that establishes that the program is well-defined at steps 7 and 8 of weak _descendant(), i.e., ¢ is not null at step 8.
Lemmas 3.3 and 3.4 show that weak _descendant () returns an ancestor and the next request can be generated.

Lemma 3.1 Aninvocation of heavy_ancestor() (i) terminates, (ii) returns an ancestor with load () > deactivation).

Proof: (i) When heavy_ancestor() is invoked on II at depth 0, it terminates via step 5 as both load() and
deactivation() are 0, by definition, for the root. When heavy_ancestor() is invoked on a hierarchy at depth 4,
it either terminates via step 5 or invokes heavy_ancestor() on its parent at depth ¢ — 1. Hence, it terminates and
returns an ancestor.

(ii) Follows from steps 1 and 5 of heavy_ancestor(). O

Lemma 3.2 The predicate I = I1 N\ Iy A I3 is an invariant of the program, where I, I, and I3 are:
(i) I1: A non-trivial hierarchy always has a child with primary = 0.

(ii) I: When weak _descendant() is invoked on a hierarchy, load() > deactivation().

(iii) Is: At step 7 of weak _descendant(), 6 is not null.

request()

(1) Generate a request for f at leftmost() where f € missing();

) Serve the request.

3) Let ALG serve the request and arbitrarily modify its placement.

reset()
(1) foreach o € children()
2) a.primary = a.secondary = 0;

Proof: It can be easily checked that I holds initially. It thus suffices to show that I is preserved by every step. We
list below why every conjunct of I is preserved by every step.

(i) I;: The only point in the code where the primary field of a child is set to a non-zero value is in step 8 of
weak _descendant(). From I, § is not null and step 8 of weak_descendant() is well-defined. After step 6, the
number of children with primary = 0 is greater than 1 as reset(), if executed, sets it to k. Thus, step 8 is executed
only when there is more than one child with primary = 0. Hence, the lemma.

(ii) Io: The first invocation of weak_descendant() in an iteration of the loop in main() is on a hierarchy returned by
heavy_ancestor(). Hence, at this invocation, load() > deactivation() from lemma 3.1(ii). Subsequent recursive
invocations of weak_descendant() are on a child § such that d.load() > §.reactivation() (step 4) or d.load () >
d.activation() (step 9, well-defined by I3). Since, by definition, d.reactivation() and d.activation() are both
greater than ¢.deactivation (), the lemma holds for all invocations of weak _descendant ().

(iii) I3: Consider an invocation of weak _descendant() on a hierarchy at depth 7. Let A denote the set of chil-
dren with primary = 0 and B that with primary > 0. Let r denote |A|. From Iy, » > 0. By inspection of
the code, step 7 is executed only if missing() returned § in step 1. Thus, Y . 4 a.load() + Y ,cp o.load() =
load() + |S;]. Also, by inspection of the code at step 3, a.load() < a.reactivation()) for all children « in
B. Therefore, } ,cpa.load() < >, cpa.reactivation() < (k —r) - (k4=1=2. =2) From invariant 3.2,
load() > deactivation() = k4~i~1. % By definition, |S;| = k41, Hence, Y, 4 a.load() = load() +
1Si] = Y pep a-load() > r- [k (£ 4+ L) + k‘f;_z] on simplifying and rearranging the terms. Thus, there

exists a child a in A such that a.load() > k%~'~1 - (£ + &) = a.activation(). Hence, the lemma. O

Lemma 3.3 An invocation of weak_descendant() (i) terminates, (ii) returns a hierarchy such that missing() is
non-empty.

Proof: (i) Consider an invocation of weak_descendant() on a hierarchy at depth 4bk. By lemma 3.2(ii), load () >
deactivation(). By definition, for a hierarchy at depth 4bk, deactivation() = bk?~* > b - capacity(). Thus,
load() > b- capacity(). Since ALG has a capacity blowup of at most b, missing() returns a non-empty set (the set
Sapr) and the invocation terminates at step 2. Now, consider an invocation of weak_descendant() on a hierarchy
at depth ¢ for ¢ < 4bk. By inspection of the code, this invocation either terminates via step 2 or recursively invokes
weak _descendant () on a suitable child ¢ at depth 7 4 1 via step 4 or 9. Thus, by reverse induction on the depth of
the hierarchy that weak _descendant() is invoked on, the lemma follows.

(ii) Follows from step 2 of weak _descendant ().

Lemma 3.4 In step 1 of request(), missing() returns a non-empty set.
Proof: The method request() is invoked only on a hierarchy returned by weak _descendant(). Thus, by lemma
3.3(ii), missing() returns a non-empty set in step 1 of request(). O

4 Cost Accounting

In this section, we show that there exists a nonempty family of offline HCC algorithms each of which serves the
sequence of requests generated by the program given in the previous section and incurs a cost that is a factor
Q(log d) less than that incurred by any b-feasible online HCC algorithm. The algorithm ADV introduced in the
previous section is an algorithm in this family.

First, we list some properties that directly follow from the structure of the adversary’s program. For proving
properties about the recursive methods heavy_ancestor(), weak _descendant(), and request(), we introduce the
notion of a level invariant analagous to the standard notion of a loop invariant for iterative programs. A level is
defined as the set of instructions starting from the invocation of a method till the next recursive invocation of the
method, if one exists, and the end of the method otherwise. A predicate P is a level invariant of a recursive method
if execution of a level of the method preserves P.

Lemma 4.1 Forany hierarchy, (i) secondary is restricted to the values {0, reactivation (), primary}; (ii) primary =
0 or primary > reactivation().

Proof: (i) By inspection of the code, the only points where secondary is modified are at step 2 of heavy_ancestor(),
step 8 of weak _descendant (), and step 2 of reset and the invariant is preserved in each one of the cases.

(ii) The only nonzero value assigned to primary is at step 8 of weak _descendant() where it is set to activation() >
reactivation () by definition. O

Lemma 4.2 Let P(«) denote the predicate that 3.primary > 0 for all ancestors 3 of o except IL. Then, (i) P(this)
is a level invariant of heavy_ancestor() and weak _descendant(); (ii) Whenever heavy_ancestor() is invoked on
a hierarchy other than 11, primary > 0.

Proof: Assume that P(this) is true before an invocation of weak _descendant (). If the current level terminates via
step 2, P(this) trivially continues to hold at the end of the level. If not, weak _descendant() is invoked via step 4
or step 9 on a suitable child 4. In either case, by inspection of steps 3 and 8, d.primary > 0. Thus, P(this) is a
level invariant of weak _descendant(). In any level of heavy_ancestor(), the primary fields of ancestors remain
unmodified and the level either terminates via step 5 or invokes heavy_ancestor() on its parent. Thus, P(this) is
a level invariant of heavy_ancestor().

(ii) Assume that P(perch) is true just before an invocation of perch.heavy_ancestor() in step 3 of main(). From
lemma 4.2 and induction on the depth of recursion in the invocation of heavy_ancestor(),

P(perch.heavy_ancestor()) is true. Similarly, by induction on the depth of recursion in an invocation of weak _descendas
P(perch.heavy_ancestor (). weak _descendant()) is true. Thus, step 3 of main() preserves P(perch). In the be-
ginning of main(), P(perch) is trivially true as perch is initialized to II. Thus, P(perch) is always true just before

step 3 of main(). Again, by induction on the depth of recursion, P(this) is true whenever heavy_ancestor() is
invoked. Hence, (ii) follows. U

Lemma 4.3 For any hierarchy, secondary < primary.

Proof: Let P denote the predicate primary < secondary for all hierarchies. The only points in weak _descendant ()
where the primary or secondary field of any hierarchy is modified is in step 6 through reset() and step 8. In either

case, P is a level invariant of weak _descendant(), and by induction on the depth of recursion, P is preserved by

weak _descendant (). The only points in heavy_ancestor() where the primary or secondary field of any hierarchy

is modifed is in step 2 and step 3 through reset(). Step 3 sets the primary and secondary fields of all children

to 0 and hence does not affect P. Since load() = deactivation() = 0 by definition for II, an invocation of

IT.heavy_ancestor() never reaches step 2. Thus, by lemma 4.2(ii), primary > 0 at step 2. When secondary is set

to reactivation() in step 2, P is preserved by lemma 4.1. Thus, P is a level invariant of heavy_ancestor(), and by

induction, is preserved by any invocation of heavy_ancestor(). Since request() doesn’t affect P, it is an invariant
of the program. O

Definition 1 A sequence ag, a1, ...,a,,0 < <k, is defined to be i-active if and only ifaj = g(i + 1,k —j),0 <
j<r

Lemma 4.4 When reset() is invoked on a hierarchy a, the non-zero primary fields of the children of a form an
i-active sequence, where i = a.depth().

Proof: : Let P(«) denote the predicate that the non-zero primary fields of the children of a form an i-active
sequence. For a child 3 of «, the only points in the code where §.primary is modified are in a.reset(), where it
is set to 0, and in step 8 of a.weak _descendant (), where it is set to a.activation(). At the beginning of main(),
P(a) is trivially true as the primary field of every hierarchy is 0. An invocation of a..reset() preserves P(«) as it
sets the primary fields of all the children of « to 0. Step 8 of weak _descendant() preserves P(«) as d.primary
is set to d.activation() which by definition equals g(¢ + 1,k — j) where j is the number of siblings of § with
primary > 0. Thus, P(«) is preserved by every step except those in a.reset(). It follows that P(«) is true before
and after every step outside of a.reset(). Hence, the lemma. U

Lemma 4.5 Let P(«) denote the boolean condition that [3.secondary < (.reactivation() is true for all 3 that
are not ancestors of a. Then, (i) P(this) is a level invariant of heavy_ancestor(); (ii) P(this) is a level invariant
of weak _descendant().

Proof: (i) Assume that P(this) is true at the beginning of an invocation of heavy_ancestor(). If the current
level terminates via step 5, P(this) trivially continues to hold at the end of the level. If not, secondary is set to
reactivation () in step 2. Subsequently, until step 4, P(parent()) is true at which point parent().heavy_ancestor()
is invoked. Hence, (i) follows.

(ii) Assume that P(this) is true at the beginning of an invocation of weak_descendant(). If the current level
terminates via step 2, P(this) trivially continues to hold at the end of the level. If not, the current level terminates
via step 4 or 9. For any child v, P(this) implies P(v) irrespective of any modifications to v.secondary. Thus,
P(§) is true at either of steps 4 or 9 just before the invocation of §.weak _descendant(). Hence, (ii) follows. [

Lemma 4.6 When weak _descendant() is invoked on a hierarchy «, (3.secondary < [.reactivation() for every (3

that is not an ancestor of a.

Proof: : Let P be as defined in lemma 4.5. Assume that P(perch) is true just before some invocation of
perch.heavy_ancestor(). From lemma 4.5(a) and induction on the depth of recursion in the invocation of heavy _ancestor
P(perch.heavy_ancestor()) is true. Similarly, from lemma 4.5(b) and induction on the depth of recursion in the in-
vocation of weak_descendant(), P(perch.heavy_ancestor().weak _descendant()) is true. Thus, step 1 of main()
preserves P(perch). At the beginning of main(), P(perch) is true as the secondary field of every hierarchy is

0. Therefore, P(perch) is true before every invocation of perch.heavy_ancestor(). Again, inductively applying
lemmas 4.5(a) and (b), the lemma to be proved follows. [l

4.1 A Potential Function Argument

We use a potential function argument to show that there exists an offline algorithm that serves the requests generated
by the program and incurs a cost that is at least a factor ¥ = min(%, W) less than the cost incurred by an online

b-feasible algorithm.

We introduced a marking placement in Section 3. At any point in the execution of the adversarial program, the
primary and secondary fields of hierarchies are said to represent the current state of the program. A marking

placement is said to be consistent with the state of the program if the idle child of every non-trivial hierarchy has
primary = 0. Two marking placements P and @ are said to be adjacent if they differ in the selection of the idle
child at exactly one hierarchy.

Lemma 4.7 The set of consistent marking placements is always non-empty
Proof: From lemma 3.2(ii), every hierarchy always has at least one child with primary = 0. Thus, by definition,
a consistent marking placement always exists. O

Lemma 4.8 The cost incurred in moving from a marking placement P to an adjacent marking placement Q) is at
most 2k411 . o diameter (), where o is the hierarchy where P and Q have different idle children.

Proof: Let 3 and « be the the idle children of « in P and @ respectively. The cost incurred in moving from P
to @ is the total cost of exchanging files placed in 8 and y with each other. This cost is at most 2 - 3.capacity() -
a.diameter() = 2k%1 . a.diameter(). O

Lemma 4.9 Let P denote a consistent marking placement just before an invocation of reset(). Then, there exists
an adjacent consistent placement Q) just after the invocation.

Proof: An invocation of reset() on a hierarchy « sets the primary fields of all of a’s children to 0. A consistent
marking placement P just before the invocation can be moved to a consistent marking placement () at the end of

the invocation by simply switching the idle child of « in P with that in Q. U
Lemma 4.10 After m invocations of reset(), there exists a sequence of adjacent marking placements Py, . .., Py,
such that P; and P;y1 are consistent with the state of the program just before and after the i’th reset().

Proof: Follows from lemmas 4.10, 4.8 and inductive application of lemma 4.9. O

Let the sequence of placements maintained by ADV since the beginning of main() be denoted by Py, P, ..., Py
where Py denotes the empty placement, P;, 1 < ¢ < m are consistent marking placements, and P,, is the current
placement. We call such a sequence an execution sequence. By lemma 4.10, such a sequence exists. We divide
time into epochs where the end of an epoch and the beginning of the next is marked by an invocation of reset()
on any hierarchy. Initially, ADV moves from Py to P; by incurring a suitable cost. Thereafter, during an epoch,
the placement remains unchanged, but while moving from one epoch to another, the current placement is moved
to the next placement in the sequence. Next, we show that the total cost incurred by ADV in moving through such
a sequence of placements is at least a factor v less than any b-feasible online HCC algorithm.

A hierarchy « is associated with a potential function ¢(«) defined as follows:

ola) = Z B.parent().diameter()(B.primary — (B.secondary + B.load()) +
B¢ Ancestors(c)

Z B.parent().diameter() - B.primary (1)
B€ Ancestors(c)

We define an overall potential function ® as follows:
® = ¢(a) +v-Tapv — TaLc (2)

where « is defined as perch at points just before and after steps in main() and as this during the execution of the
methods heavy_ancestor (), weak _descendant(), and request(); Targ is the total cost incurred by ALG since the
beginning of main() and Tapy is the total cost incurred by ADV after it moved to the first nonempty placement
P, in its sequence. For convenience of exposition, we account for the one-time cost of moving from the empty
placement Py to P, for ADV separately.

10

Lemma 4.11 An invocation of heavy_ancestor () preserves the invariant ® < 0.

Proof: : Consider the change in ® in a single recursive level of execution of heavy_ancestor() on a hierarchy at
depth . If the level terminates via step 5, ® remains unchanged. If not, from lemma 4.8, ADV incurs at most a cost
c1 = diameter()-2k% "1 in moving to the next consistent marking placement in its execution sequence at the end
of the invocation of reset() in step 3. In this case, from step 1 and definitions of load () and deactivation(), i > 0.
At the end of the level, parent().heavy_ancestor() is invoked at step 4. From (1), the decrease in ¢(this) in this
level equals parent().diameter()-(secondary —load()) at the end of the level. From steps 1 and 2, this decrease is
atleast parent ().diameter () - (reactivation () — deactivation()) = parent.diameter()-k4="1.4 > 2.c; > v-cy.
Thus, ® does not increase due to a single level of execution of heavy_ancestor(), i.e., & < 0 is a level invariant
of heavy_ancestor(). By induction on the depth of recursion in an invocation of heavy_ancestor(), the lemma
follows. U

Lemma 4.12 An invocation of weak _descendant() preserves the invariant ® < 0.

Proof: : Consider the change in ® in a single recursive level of execution of heavy_ancestor() on a hierarchy at
depth 7. If the level terminates via step 2, ® remains unchanged. If not, the program execution can take three paths
each of which is analyzed below with respect to the resulting change in ®. Note that ALG does not incur any cost
in any of the cases.

(i) Via step 4: In this case, ADV does not incur any cost. At the end of the level, weak _descendant() is invoked
on a suitable child §. From (1), the decrease in ¢(this) in this level equals the value of d.load () — d.secondary ()
at the end of the level. From step 3, d.load() is at least d.reactivation(). From 4.6, d.secondary() is at most
d.reactivation (). Thus, the decrease in @ in the level is non-negative.

(ii) Via step 9 without executing step 6: In this case, ADV does not incur any cost. At the end of the level,
weak _descendant () is invoked on a suitable child §. From (1), the decrease in ¢(this) in this level equals d.load () —
d.primary at the end of the level. From steps 7 and 8, d.load () is at least d.activation() and 8.primary is equal to
d.activation (). Thus, the decrease in @ in the level is non-negative.

(iii) Via step 9 after executing step 6: From lemma 4.8, ADV incurs a cost of at most ¢; = diameter()-2k4~1
in moving to the next consistent marking placement in its execution sequence at the end of the invocation of reset()
in step 6. We only analyze steps 5 and 6 as the analysis of steps 7 and 8 is identical to the previous case. Invocation
of reset() sets the primary fields of all the children to 0. From step 5 and lemma 4.4, the values of the primary
fields of the children form a sequence g(i+ 1,k —r),1 < r < k— 1, just before the invocation of reset(). Thus, in
the decrease in @(this) in step 6 is diameter()-> o< <_1 9(i + 1,k —) > diameter()-3 ;. kA==t (L) >
diameter() - k441 . Mk{—l) > v - ¢1. Thus, the decrease in ® is non-negative.

Thus, ® < 0 is a level invariant of weak _descendant(). By induction on the depth of recursion in an invocation
of weak _descendant(), the lemma follows. O

Lemma 4.13 An invocation of request preserves the invariant ® < 0.

Proof: In request, a request is generated for a file f in perch.missing(). By lemma 3.4, such a file is guaranteed
to exist. Thus, ALG incurs a cost of at least parent.diameter() > A - diameter() and ADV incurs a cost of at
most diameter(). In request(), ¢(this) increases by at most parent().diameter(). Thus, from (2), it follows that
® does not increase. Hence, the lemma. O

Theorem 1 The total cost incurred by ALG is at least a factor v greater than that incurred by ADV after any
number of requests.

Proof: At the beginning of main(), ® = 0. From lemmas 4.11,4.12, and 4.13, & < 0 is an invariant of the
loop in main(). From fact 4.1(ii), it follows that the function ¢ is non-negative. Therefore, Targ > v - Tapy is
an invariant of the loop. Let C' be the cost incurred by ADV in moving from the empty placement Py to the first

11

consistent marking placement P;. The total cost, Tapy + C, incurred by ADV can thus be made arbitrarily close
to T/j% by appropriately increasing the length of the request sequence generated by the program. 0

The Q(log d) bound on the competitive ratio for a capacity blowup b = d*~¢, e > 0, claimed in the beginning of
Section 3 follows from the fact that d = 4bk, n = k*°* and that ADV can choose an arbitrarily large .

5 Discussion

Because each set of files .S; is relevant to every depth-¢ hierarchy, our offline adversary makes widespread use of
replication. Interestingly, this replication is not essential to our lower bound argument. In particular, rather than
associating the same set of files .S; with each depth-¢ hierarchy, we can modify our argument by associating with
each hierarchy « a unique set of files of size equal to |S;| where ¢ = a.depth(). With this modification, our lower
bound argument continues to hold with essentially no changes. Thus our lower bound results are also applicable
to the variant of the HCC problem in which no replication is allowed.

Cooperative caching as an idea has in fact found its application in areas other than distributed systems. For example,
in NUCA (NonUniform Cache Architecture), a switched network allows data to migrate to different cache regions
according to access frequency [9]. Although NUCA only supports a single processor at the time of this writing,
multiprocessor NUCA is being developed, with data replication as a possibility [8]. As discussed in the previous
paragraph, our lower bound is applicable to this setting whether or not replication is allowed.

References

[1] T.E. Anderson, M. D. Dahlin, J. N. Neefe, D. A. Patterson, D. S. Rosselli, and R. Y. Wang. Serverless network
file systems. In Proceedings of the 15th Symposium on Operating Systems Principles, pages 109-126, 1995.

[2] B. Awerbuch, Y. Bartal, and A. Fiat. Distributed paging for general networks. In Proceedings of the Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 574-583, January 1996.

[3] Y. Bartal. On approximating arbitrary metrics by tree metrics. In Proceedings of the 37th Annual IEEE
Symposium on Foundations of Computer Science, pages 184—193, October 1996.

[4] Y Bartal. Distributed paging. In A. Fiat and G. J. Woeginger, editors, The 1996 Dagstuhl Workshop on Online
Algorithms, volume 1442 of Lecture Notes in Computer Science, pages 97-117. Springer, 1998.

[5] C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Manber, and Michael F. Schwartz. The Harvest
information discovery and access system. Computer Networks and ISDN Systems, 28(1-2):119-125 (or 119—
12677), 1995.

[6] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson. Cooperative caching: Using remote client
memory to improve file system performance. In Proceedings of the First Symposium on Operating Systems
Design and Implementation, pages 267-280, November 1994.

[7] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics by tree metrics.
In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pages 448-455, June 2003.

[8] J. Huh and C. K. Kim. Personal communication.

[9] C.K.Kim, D. Burger, and S. Keckler. An adaptive, non-uniform cache structure for wire-delay dominated on-
chip caches. In Proceedings of the 10th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 211-222, October 2002.

12

[10] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Placement algorithms for hierarchical cooperative caching.
Journal of Algorithms, 38:260-302, 2001.

[11] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Communications of the
ACM, 28(2):202-208, 1985.

[12] D. Wessels. Squid Internet object cache. Available at URL http://squid.nlanr.net/Squid, January 1998.
[13] D. Wessels and K. Cla. RFC 2187: Appliation of Internet Cache Protocol, 1997.
[14] N.E. Young. On-line file caching. Algorithmica, 33:371-383, 2002.

[15] Lixia Zhang, Sally Floyd, and Van Jacobson. Adaptive Web Caching. In Proceedings of the 1997 NLANR
Web Cache Workshop, 1997.

A An Easy Upper Bound

We show in this section that, given a factor 2d blowup in capacity, where d is the depth of the hierarchy, a simple
LRU-like algorithm is constant competitive. For the sake of simplicity, we assume that every file has unit size and
uniform miss penalty. Our result, however, can be easily extended to handle variable file sizes and nonuniform
miss penalties, using a method similar to LANDLORD.

The algorithm, which we refer to as the Hierarchical Least Recently Used (HLRU), works as follows. Let P denote
the current placement maintained by the algorithm. Every cache v in HLRU is 2d times as big as the corresponding
cache in OPT. HLRU divides every cache w into 2d equal-sized parts. For a hierarchy « at level 4, the logical cache
of « is defined to be the union of the ith part of all the caches below a. We use LRU(«, f) to denote an LRU
algorithm that runs at the logical cache of a. LRU(«, f) adds f to the logical cache; it returns either the evicted
file or nil if no file is evicted.

HLRU(a, f)

(1) serve(P,q, f);

2 repeat

3) a, f := parent(a), LRU(q, f)

4) until @ = nil vV f = nil

HLRU incurs two kinds of costs: retrieval costs and eviction costs. Retrieval costs account for the cost of creating
a copy of a file at a local cache from an existing copy at remote cache through the serve operation in step 1.
Eviction costs account for the cost of moving files via step 3 to logical caches at higher levels through a fetch
at the destination followed a discard at the source. Hence, the retrieval cost can be thought of as moving files
downwards and the eviction cost can be thought of moving files upwards. Since a file has to be moved down before
being moved up and all caches start empty, the cost of moving files up is bounded by the cost of moving files down.
Hence, to show that HLRU is constant competitive, it suffices to show the following lemma.

Lemma A.1 The retrieval cost of HLRU is at most a constant factor of that of OPT.

Proof Outline: We think of the top-level hierarchy as a tree with logical caches at interior nodes with an edge
connecting a node to its parent. Thus, a hierarchy corresponds to a node of the tree. Let nf (e, ALG) denote the
number of downward file movements generated by algorithm ALG along edge e. It suffices to show that for every
edge e, nf (e, HLRU) is at most a constant factor of nf(e, OPT). Consider an arbitrary node «. The number of

13

downward file movements on the edge e from parent(«) to « (if « is the root, then from the server to o) equals the
number of file misses at o generated by an algorithm. For HLRU, a file miss occurs if the file is not in any logical
cache within the subtree rooted at c. For OPT, a file miss occurs if the file is not in any physical cache below a.
Let the total capacity of the physical caches below « of OPT be C. Hence, the capacity of the logical cache at « is
2C. To facilitate the comparison between HLRU and OPT, consider a third unrealistic algorithm, XLRU, that uses
the LRU algorithm and a single cache of capacity 2C' to serve the requests generated by the physical caches below
a of OPT and behaves the same as OPT at other caches. By the well-known result of Sleator and Tarjan [11],
nf(e, XLRU) < 2 - nf (e, OPT). We next compare nf (e, XLRU) and nf (e, HLRU). We make a key observation
that, as an invariant, the files in the logical caches within the subtree rooted at o of HLRU is a superset of the files
in the cache of XLRU. Suppose this is not true, then there is a first time that some file f is in XLRU but not in
HLRU. By the HLRUalgorithm, this happens only if f is older than 2C other files, because the capacity of the
logical cache at « is 2C and f is evicted from «. But f is in XLRU, which implies that f is one of the 2C' most
recently requested files. A clear contradiction. Hence, at all times, if a file is in XLRU, then it is in HLRU. It then
follows that nf (e, HLRU) < nf (e, XLRU). Hence the lemma. O

The proof outline above assumes that the hierarchies are well-separated, i.e., the diameter of the parent of any
hierarchy is at least A times its diameter, where A > 1. However, by using a preprocessing phase similar to that
used in [10], any ultrametric can be converted to a well-separated hierarchy with a constant factor distortion of
distances. The following theorem then immediately follows from lemma A.1.

Theorem 2 HLRU is constant competitive.

14

