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ABSTRACT
Search engines have primarily focused on presenting the most
relevant pages to the user quickly. A less well explored aspect
of improving the search experience is to remove or group all
near-duplicate documents in the results presented to the user.
In this paper, we apply a Bloom filter based similarity detec-
tion technique to address this issue by refining the search
results presented to the user. First, we present and analyze
our technique for finding similar documents using content-
defined chunking and Bloom filters, and demonstrate its ef-
fectiveness in compactly representing and quickly matching
pages for similarity testing. Later, we demonstrate how a
number of results of popular and random search queries re-
trieved from different search engines, Google, Yahoo, MSN,
are similar and can be eliminated or re-organized.

1. INTRODUCTION
Enterprise and web search has become a ubiquitous part

of the web experience. Numerous studies have shown that
the ad-hoc distribution of information on the web has re-
sulted in a high degree of content aliasing (i.e., the same
data contained in pages from different URLs) [14] and which
adversely affects the performance of search engines [6]. The
initial study by Broder et al., in 1997 [7], and the later one
by Fetterly et al. [11], shows that around 29.2% of data is
common across pages in a sample of 150 million pages. This
common data when presented to the user on a search query
degrades user-experience by repeating the same information
on every click.

Similar data can be grouped or eliminated to improve the
search experience. Similarity based grouping is also useful
for organizing the results presented by meta-crawlers (e.g.,
vivisimo, metacrawler, dogpile, copernic). The findings by
searchenginejournal.com [2] show a significant overlap of
search results returned by Google and Yahoo search engines—
the top 20 keyword searches from Google had about 40%
identical or similar pages to the Yahoo results. Sometimes
search results may appear different purely due to the restruc-
turing and reformatting of data. For example, one site may
format a document into multiple web pages, with the top
level page only containing a fraction of the document along
with a “next” link to follow to the remaining part, while an-
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other site may have the entire document in the same web
page. An effective similarity detection technique should find
these “contained” documents and label them as similar.

Although improving search results by identifying near-
duplicates had been proposed for Altavista [6], we found
that popular search engines, Google, Yahoo, MSN, even to-
day have a significant fraction of near-duplicates in their
top results1. For example, consider the results of the query
“emacs manual” using the Google search engine. We focus
on the top 20 results (i.e., first 2 pages) as they represent
the results most likely to be viewed by the user. Four of
the results, www.delorie.com/gnu/docs/emacs/emacs toc.html,

www.cs.utah.edu/dept/old/texinfo/emacs19/emacs toc.html, www.
dc.urkuamk.fi/docs/gnu/emacs/emacs toc.html, and
www.linuxselfhelp.com/gnu/emacs/html chapter/emacs toc.html,
on the first page (top-10 results), were highly similar—in fact,
they had nearly identical content but different page headers,
disclaimers, and logo images. For this particular query, on
the whole, 7 out of 20 documents were redundant (3 identical
pairs and 4 similar to one top page document). Similar results
were found using Yahoo, MSN2, and A93 search engines.

In this paper, we study the current state of popular search
engines and evaluate the application of a Bloom filter based
near-duplicate detection technique on search results. We
demonstrate, using multiple search engines, how a number
of results (ranging from 7% to 60%) on search queries are
similar and can be eliminated or re-organized. Later, we
explore the use of Bloom filters for finding similar objects
and demonstrate their effectiveness in compactly representing
and quickly matching pages for similarity testing. Although
Bloom filters have been extensively used for set membership
checks, they have not been analyzed for similarity detection
between text documents. Finally, we apply our Bloom filter
based technique to effectively remove similar search results
and improve user experience. Our evaluation of search results
shows that the occurrence of near-duplicates is strongly cor-
related to: i) the relevance of the document and ii) the popu-
larity of the query. Documents that are considered more rel-
evant and have a higher rank also have more near-duplicates
compared to less relevant documents. Similarly, results from
the more popular queries have more near-duplicates com-
pared to the less popular ones.

Our similarity matcher can be deployed as a filter over

1Google does have a patent [17] for near-duplicate detection
although it is not clear which approach they use.
2Results for a recently popular query, “ohio court battle”
from both Google and MSN search had a similar behavior,
with 10 and 4 out of the top 20 results being identical resp.
3A9 states that it uses a Google back-end for part of its
search.



any search engine’s result set. The overhead of integrating
our similarity detection algorithm with search engines only
associates about 0.4% extra bytes per document and pro-
vides fast matching on the order of milliseconds as described
later in section 3. Note that we focus on one main aspect of
similarity—text content. This might not completely capture
the human-judgement notion of similarity in all cases. How-
ever, our technique can be easily extended to include link
structure based similarity measures by comparing Bloom fil-
ters generated from hyperlinks embedded in web pages.

The rest of the paper is organized as follows. Similarity
detection using Bloom filters is described and analyzed in
Section 2. Section 3 evaluates and compares our similarity
technique to improve search results from multiple engines and
for different workloads. Finally, Section 4 covers related work
and we conclude with Section 5.

2. SIMILARITY DETECTION USING BLOOM
FILTERS

Our similarity detection algorithm proceeds in three steps
as follows. First, we use content-defined chunking (CDC) to
extract document features that are resilient to modifications.
Second, we use these features as set elements for generating
Bloom filters4. Third, we compare the Bloom filters to detect
near-duplicate documents above a certain similarity thresh-
old (say 70%). We start with an overview of Bloom filters and
CDCs, and later present and analyze the similarity detection
technique for refining web search results.

2.1 Bloom Filter Overview
A Bloom filter of a set U is implemented as an array of

m bits [4]. Each element u (u ∈ U) of the set is hashed
using k independent hash functions h1, . . . , hk. Each hash
function hi(u) for 1 ≤ i ≤ k maps to one bit in the
array {1 . . . m}. Thus, when an element is added to the set,
it sets k bits, each bit corresponding to a hash function, in
the Bloom filter array to 1. If a bit was already set it stays
1. For set membership checks, Bloom filters may yield a
false positive, where it may appear that an element v is in
U even though it is not. From the analysis in [8], given
n = |U | and the Bloom filter size m, the optimal value of
k that minimizes the false positive probability, pk, where p

denotes that probability that a given bit is set in the Bloom
filter, is k = m

n
ln 2. Previously, Bloom filters have primarily

been used for finding set-membership [8].

2.2 Content-defined Chunking Overview
To compute the Bloom filter of a document, we first need

to split it into a set of elements. Observe that splitting a doc-
ument using a fixed block size makes it very susceptible to
modifications, thereby, making it useless for similarity com-
parison. For effective similarity detection, we need a mecha-
nism that is more resilient to changes in the document. CDC
splits a document into variable-sized blocks whose bound-
aries are determined by its Rabin fingerprint matching a pre-
determined marker value [18]. The number of bits in the
Rabin fingerprint that are used to match the marker deter-
mine the expected chunk size. For example, given a marker
0x78 and an expected chunk size of 2k, a rolling (overlapping
sequence) 48-byte fingerprint is computed. If the lower k bits
of the fingerprint equal 0x78, a new chunk boundary is set.
Since the chunk boundaries are content-based, any modifica-
tions should affect only a couple of neighboring chunks and

4Within a search engine context, the CDCs and the Bloom
filters of the documents can be computed offline and stored.

not the entire document. CDC has been used in LBFS [15],
REBL [13] and other systems for redundancy elimination.

2.3 Bloom Filters for Similarity Testing
Observe that we can view each document to be a set in

Bloom filter parlance whose elements are the CDCs that it is
composed of5. Given that Bloom filters compactly represent
a set, they can also be used to approximately match two sets.
Bloom filters, however, cannot be used for exact matching
as they have a finite false-match probability but they are
naturally suited for similarity matching.

For finding similar documents, we compare the Bloom fil-
ter of one with that of the other. In case the two documents
share a large number of 1’s (bit-wise AND) they are marked
as similar. In this case, the bit-wise AND can also be per-
ceived as the dot product of the two bit vectors. If the set
bits in the Bloom filter of a document are a complete sub-
set of that of another filter then it is highly probable that
the document is included in the other. Web pages are typ-
ically composed of fragments, either static ones (e.g., logo
images), or dynamic (e.g., personalized product promotions,
local weather) [19]. When targeting pages for a similarity
based “grouping”, the test for similarity should be on the
fragment of interest and not the entire page.

Bloom filters, when applied to similarity detection, have
several advantages. First, the compactness of Bloom filters
is very attractive for storage and transmission whenever we
want to minimize the meta-data overheads. Second, Bloom
filters enable fast comparison as matching is a bitwise-AND
operation. Third, since Bloom filters are a complete repre-
sentation of a set rather than a deterministic sample (e.g.,
shingling), they can determine inclusions effectively.

To demonstrate the effectiveness of Bloom filters for sim-
ilarity detection, consider, for example, the pages from the
Money/CNN web server (money.cnn.com). We crawled 103
MB of data from the site that resulted in 1753 documents.
We compared the top-level page marsh ceo/index.html with
all the other pages from the site. For each document, we con-
verted it into a canonical representation as described later
in Section 3. The CDCs of the pages were computed us-
ing an expected and maximum chunk size of 256 bytes and
64 KB respectively. The corresponding Bloom filter was of
size 256 bytes. Figure 1 shows that two other copies of the
page one with the URI /2004/10/25/news/fortune500/marsh\

ceo/index.htm and another one with a dynamic URI /2004/

10/25/news/fortune500/marsh ceo/index.htm?cnn=yes matched
with all set bits in the Bloom filter of the original document.

As another example, we crawled around 20 MB of data
(590 documents) from the ibm web site (www.ibm.com). We
compared the page /investor/corpgovernance/index.phtml with
all the other crawled pages from the site. The chunk sizes
were chosen as above. Figure 2 shows that two other pages
with the URIs /investor/corpgovernance/cgcoi.phtml and /investor/

corpgovernance/cgblaws.phtml appeared similar, matching in
53% and 69% of the bits in the Bloom filter, respectively.

To further illustrate that Bloom filters can differentiate
between multiple similar documents, we extracted a technical
documentation file ‘foo’ (say) (of size 17 KB) incrementally
from a CVS archive, generating 20 different versions, with
‘foo’ being the original, ‘foo.1’ being the first version (with
a change of 415 bytes from ‘foo’) and ‘foo.19’ being the last.
As shown in Figure 3, the Bloom filter for ’foo’ matched the
most (98%) with the closest version ‘foo.1’.

5For multisets, we make each CDC unique before Bloom filter
generation to differentiate multiple copies of the same CDC.



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000  1200  1400  1600  1800

Fr
ac

tio
n 

of
 1

’s
 m

at
ch

ed
 in

 th
e 

A
N

D
 o

ut
pu

ts

Web documents in money.cnn.com Source Tree

Document Similarity using Bloom Filter: marsh_ceo/index.html

marsh_ceo/index.html

marsh_ceo/index.htm

marsh_ceo/index.htm?cnn=yes

Figure 1: Comparison of the doc-

ument marsh ceo/index.html with all

pages from the money.cnn.com web site

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600

Fr
ac

tio
n 

of
 1

’s
 m

at
ch

ed
 in

 th
e 

A
N

D
 o

ut
pu

ts

Web documents in www.ibm.com Source Tree

Document Similarity using Bloom Filter: investor/corpgovernance/index.phtml

investor/corpgovernance/index.phtml

investor/corpgovernance/cgblaws.phtml

investor/corpgovernance/cgcoi.phtml

Figure 2: Comparison of the document

investor/corpgovernance/index.phtml

with pages from www.ibm.com

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 2 4 6 8 10 12 14 16 18 20

F
ra

ct
io

n 
of

 1
’s

 m
at

ch
ed

 in
 th

e 
A

N
D

 o
ut

pu
ts

foo versions

File Similarity using Bloom Filter: CVS Repository Benchmark

foo.1

Figure 3: Comparison of the origi-

nal file ‘foo’ with later versions ‘foo.1’,

‘foo.2’ · · · ‘foo.19’

2.3.1 Analysis
The main consideration when using Bloom filters for sim-

ilarity detection is the false match probability of the above
algorithm as a function of similarity between the source and a
candidate document. Extending the analysis for membership
testing in [4] to similarity detection, we proceed to determine
the expected number of inferred matches between the two
sets. Let A and B be the two sets being compared for simi-
larity. Let m denote the number of bits (size) in the Bloom
filter. For simplicity, assume that both sets have the same
number of elements. Let n denote the number of elements in
both sets A and B i.e., |A| = |B| = n. As before, k denotes
the number of hash functions. The probability that a bit is
set by a hash function hi for 1 ≤ i ≤ k is 1

m
. A bit can be

set by any of the k hash functions for each of the n elements.
Therefore, the probability that a bit is not set by any hash
function for any element is (1− 1

m
)nk. Thus, the probability,

p, that a given bit is set in the Bloom filter of A is given by:

p =
“

1 −
`

1 −
1

m

´

nk”

≈ 1 − e
−

nk

m (1)

For an element to be considered a member of the set, all
the corresponding k bits should be set. Thus, the probability
of a false match, i.e., an outside element is inferred as being
in set A, is pk. Let C denote the intersection of sets A and
B and c denote its cardinality, i.e., C = A∩B and |C| = c.

For similarity comparison, let us take each element in set
B and check if it belongs to the Bloom filter of the given set
A. We should find that the c common elements will definitely
match and a few of the other (n − c) may also match due to
the false match probability. By Linearity of Expectation, the
expected number of elements of B inferred to have matched
with A is

E[# of inferred matches] = (c) + (n − c)pk

To minimize the false matches, this expected number should
be as close to c as possible. For that (n−c)pk should be close
to 0, i.e., pk should approach 0. This happens to be the same
as minimizing the probability of a false positive. Expanding
p and under asymptotic analysis, it reduces to minimizing

(1 − e−
nk

m )k. Using the same analysis for minimizing the
false positive rate given in [8], the minima obtained after dif-
ferentiation is when k = m

n
ln 2. Thus, the expected number

of inferred matches for this value of k becomes

E[# of inferred matches] = c + (n − c)(0.6185)
m

n

Thus, the expected number of bits set corresponding to
inferred matches is

E[# of matched bits] = m
h

1 −
“

1 −
1

m

”k

`

c + (n−c)(0.6185)
m

n

´

i

Under the assumption of perfectly random hash functions,
the expected number of total bits set in the Bloom filter of

the source set A, is mp. The ratio, then, of the expected
number of matched bits corresponding to inferred matches in
A ∩B to the expected total number of bits set in the Bloom
filter of A is:

E[# of matched bits]

E[# total bits set]
=

“

1 − e−
k

m
(c + (n−c)(0.6185)

m

n )
”

`

1 − e−
nk

m

´

Observe that this ratio equals 1 when all the elements
match, i.e., c = n. If there are no matching elements, i.e.,

c = 0, the ratio = 2(1 − (0.5)(0.6185)
m

n ). For m = n, this
evaluates to 0.6973, i.e., 69% of matching bits may be false.
For larger values, m = 2n, 4n, 8n, 10n, 11n, the corresponding
ratios are 0.4658, 0.1929, 0.0295, 0.0113, 0.0070 respectively.
Thus, for m = 11n, on an average, less than 1% of the bits
set may match incorrectly. The expected ratio of matching
bits is highly correlated to the expected ratio of matching
elements. Thus, if a large fraction of the bits match, then it’s
highly likely that a large fraction of the elements are common.

2.4 Discussion
Previous work on document similarity has mostly been

based on shingling or super fingerprints. Using this method,
for each object, all the k consecutive words of a document
(called k-shingles) are hashed using Rabin fingerprint [18]
to create a set of fingerprints (also called features or pre-
images). These fingerprints are then sampled to compute a
super-fingerprint of the document. Many variants have been
proposed that use different techniques on how the shingle fin-
gerprints are sampled (min-hashing, Modm, Mins etc.) and
matched [7, 6, 5]. While Modm selects all fingerprints whose
value modulo m is zero; Mins selects the set of s fingerprints
with the smallest value. The min-hashing approach further
refines the sampling to be the min values of say 84 random
min-wise independent permutations (or hashes) of the set of
all shingle fingerprints. This results in a fixed size sample of
84 fingerprints that is the resulting feature vector. To fur-
ther simplify matching, these 84 fingerprints can be grouped
as 6 “super-shingles” by concatenating 14 adjacent finger-
prints [11]. In [13] these are called super-fingerprints. A pair
of objects are then considered similar if either all or a large
fraction of the values in the super-fingerprints match.

Our Bloom filter based similarity detection differs from the
shingling technique in several ways. It should be noted, how-
ever, that the variants of shingling discussed above improve
upon the original approach and we provide a comparison of
our technique with these variants wherever applicable. First,
shingling (Modm, Mins) computes document similarity us-
ing the intersection of the two feature sets. In our approach,
it requires only the bit-wise AND of the two Bloom filters
(e.g., two 128 bit vectors). Next, shingling has a higher com-
putational overhead as it first segments the document into
k-word shingles (k = 5 in [11]) resulting in shingle set size



of about S − k + 1, where S is the document size. Later, it
computes the image (value) of each shingle by applying set
(say H) of min-wise independent hash functions (|H|=84 as
used in [11]) and then for each function, selecting the shingle
corresponding to the minimum image. On the other hand,
we apply a set of independent hash functions (typically less
than 8) to the chunk set of size on average ⌈S

c
⌉ where c is the

expected chunk size (e.g., c = 256 bytes for S = 8 KB docu-
ment). Third, the size of the feature set (number of shingles)
depends on the sampling technique in shingling. For example,
in Modm, even some large documents might have very few
features whereas small documents might have zero features.
Some shingling variants (e.g., Mins, Mod2i) aim to select
roughly a constant number of features. Our CDC based ap-
proach only varies the chunk size c, to determine the number
of chunks as a trade-off between performance and fine-grained
matching. We leave the empirical comparison with shingling
as future work.

In general, a compact Bloom filter is easier to attach as a
document tag and can be compared simply by matching the
bits. Thus, Bloom filter based matching is more suitable for
meta crawlers and can be added on to existing search engines
without any significant changes.

3. EXPERIMENTAL EVALUATION
In this section, we evaluate Bloom filter-based similar-

ity detection using several types of query results obtained
from querying different search engines using the keywords
posted on Google Zeitgeist www.google.com/press/zeitgeist.

html, Yahoo Buzz buzz.yahoo.com, and MSN Search Insider
www.imagine-msn.com/insider.

3.1 Methodology
We have implemented our similarity detection module us-

ing C and Perl. The code for content defined chunking is
based on the CDC implementation of LBFS [15]. The exper-
imental testbed used a 933 MHz Intel Pentium III worksta-
tion with 512 MB of RAM running Linux kernel 2.4.22. The
three commercial search engines used in our evaluation are
Google www.google.com, Yahoo Search www.yahoo.com, and
MSN Search www.msnsearch.com. The Google search results
were obtained using the GoogleAPI [1], for each of the search
queries, the API was called to return the top 1000 search re-
sults. Although we requested 1000 results, the API, due to
some internal errors, always returned less than 1000 entries
varying from 481 to 897.

For each search result, the document from the correspond-
ing URL was fetched from the original web server to compute
its Bloom filter. Each document was converted into a canon-
ical form by removing all the HTML markups and tags, bul-
lets and numberings such as “a.1”, extra white space, colons,
replacing dashes, single-quotes and double-quotes with single
space, and converting all the text to lower case to make the
comparison case insensitive. In many cases, due to server un-
availability, incorrect document links, page not found errors,
and network timeouts, the entire set of requested documents
could not always be retrieved.

3.1.1 Size of the Bloom Filter
As we discussed in the section 2, the fraction of bits that

match incorrectly depends on the size of the Bloom filter.
For a 97% accurate match, the number of bits in the Bloom
filter should be 8x the number of elements (chunks) in the
set (document). When applying CDC to each document, we
use the expected chunk size of 256 bytes, while limiting the
maximum chunk size to 64 KB. For an average document

of size 8 KB, this results in around 32 chunks. The Bloom
filter is set to be 8x this value i.e., 256 bits. To accommodate
large documents, we set the maximum document size to 64
KB (corresponding to the maximum chunk size). Therefore,
the Bloom filter size is set to be 8x the expected number of
chunks (256 for document size 64 KB) i.e., 2048 bits or 256
bytes, which is a 3.2% and 0.4% overhead for document size
of 8 KB and 64 KB respectively.

Example. When we applied the Bloom filter based matcher
to the “emacs manual” query (Section 1), we found that the
page www.linuxselfhelp.com/gnu/emacs/html chapter/emacs toc.

html matched the other three, www.delorie.com/gnu/docs/emacs/
emacs toc.html, www.cs.utah.edu/dept/old/texinfo/emacs19/emacs
toc.html, and www.dc.turkuamk.fi/docs/gnu/emacs/emacs toc.

html, with 74%, 81% and 95% of the Bloom filter bits match-
ing, respectively. A 70% matching threshold would have iden-
tified and grouped all these 4 pages together.
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3.2 Effect of the Degree of Similarity
In this section, we evaluate how the degree of similarity

affects the number of documents that are marked similar.
The degree of similarity is the percentage of the document
data that matches (e.g., a 100% degree of similarity is an
identical document). Intuitively, the higher the degree of
similarity, the lower the number of documents that should
match. Moreover, the number of documents that are similar
depends on the total number of documents retrieved by the
query. Although, we initially expected a linear behavior, we
observed that the higher ranked results (the top 10 to 20
results) were also the ones that were more duplicated.

Using GoogleAPI, we retrieved 493 results for the “emacs
manual” query. To determine the number of documents that
are similar among the set of retrieved documents, we use a
union-find data structure for clustering Bloom filters of the
documents based on similarity. Figure 4 shows that for 493
documents retrieved, the number of document clusters were
56, 220, 317, 328, 340, when the degree of similarity was
50, 60, 70, 80, 90%, respectively. Each cluster represents a
set of similar documents (or a single document if no similar
ones are found). We assume that a document belongs to
a cluster if it is similar to a document in the cluster, i.e.,
we assume that similarity is transitive for high values of the
degree of similarity (as in [9]). The fraction of duplicate
documents as shown in figure 4, decreases from 88% to 31%
as the degree of similarity increases from 50% to 90%. As
the number of retrieved queries increase from 10 to 493, the
fraction of duplicate documents initially decrease and then
increase forming a minima around 250 results. The decrease
was due to the larger aliasing of “better” ranked documents.
However, as the number of results increase, the initial set
of documents get repeated more frequently, increasing the
number of duplicates. Similar results were obtained for a
number of other queries that we evaluated.

3.3 Effect of the Search Query Popularity
To get a representative collection of the types of queries
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performed on search engines, we selected samples from Google
Zeitgeist (Nov. 2004) of three different query popularities: i)
Most Popular, ii) Medium-Popular, and iii) Random.

For most-popular search queries, the three queries selected
in order were—“jon stewart crossfire”(TP1), “electoral col-
lege”(TP2) and “day of the dead”(TP3). We computed the
number of duplicates having 70% similarity (atleast 70% of
the bits in the filter matched) in the search results. Figure 5
shows the corresponding number of duplicates for a maximum
of 870 search results from the Google search API. The TP1
query had the maximum fraction of near-duplicates, 44.3%,
while the other two TP2 and TP3 had 29.7% and 24.3%, re-
spectively. Observe that the most popular query TP1was the
one with the most duplicates.

For the medium popular queries, we selected three queries
from the list “Google Top 10 Gaining Queries” for the week
ending Aug. 30, 2004 on the Google Zeitgeist—“indian larry”
(MP1), “national hurricane center”(MP2) and “republican
national convention”(MP3). Figure 6 shows the correspond-
ing search results having 70% similarity for a maximum of
880 documents from the Google search engine. The fraction
of near-duplicates among 880 search results ranged from 16%
for MP1 to 28% for MP2.

For a non-popular query sample, we selected three queries
at random—“olympics 2004 doping”, “hawking black hole
bet”, and “x prize spaceship”. The Google API retrieved only
about 360 results for the first two queries and 320 results for
the third query. Figure 7 shows the number of near-duplicate
documents in the search results corresponding to the three
queries. The fraction of near-duplicates in all these queries
were in the same range, around 18%.

As we observed earlier, as the popularity of queries de-
crease so do the number of duplicate results. The most pop-
ular queries had the largest number of near-duplicate results,
the medium ones fewer, and the random queries the lowest.

3.4 Behavior of different search engines
The previous experiments all compared the results from

the Google search engine. We next evaluate the behavior of
all three search engines, Google, Yahoo and MSN search in re-
turning near-duplicate documents for the 10 popular queries
featured on their respective web sites. To our knowledge, Ya-
hoo and MSN search do not provide an API similar to the
GoogleAPI for doing automated retrieval of search results.
Therefore, we manually made HTTP requests to the URLs
corresponding to the first 50 search results for a query.

We plot minimum, average and maximum number of near-
duplicate (atleast 70% similar) search results in the 10 pop-
ular queries. The three whiskers on each vertical bar in Fig-
ures 8,9,10 represent min., avg., and max. in order. Figure 8
shows the results for Google, with average number of near-
duplicates ranging from 7% to 23%. Figure 9 shows near-
duplicates in Yahoo results ranging from 12% to 25%. Fig-

ure 10 shows the results for MSN, where the near-duplicates
range from 18% to 26%. Comparing the earlier “emacs man-
ual” query, MSN had 32% near duplicates while Yahoo had
22%. These experiments support our hypothesis that current
search engines return a significant number of near-duplicates.
However, these results do not in any way suggest that any
particular search engine performs better than the others.

3.5 Analyzing Response Times
In this section, we analyze the response times for perform-

ing similarity comparisons using Bloom filters. The timings
include (a) the (offline) computation time to compute the
document CDC hashes and generating the Bloom filter, and
(b) the (online) matching time to determine similarity using
bitwise AND on Bloom filters and time for insertions and
unions in a union-find data structure for clustering.

Exp. Chunk Sizes 256 Bytes 512 Bytes 2 KB 8 KB
File Size (ms) (ms) (ms) (ms)

10 KB 0.3 0.3 0.2 0.2
100 KB 4 3 3 2
1 MB 29 27 26 24
10 MB 405 321 267 259

Table 1: CDC hash computation time for different files

and expected chunk sizes

# of chunks k = 2 k = 4 k = 8
Document Size (n) (ms) (ms) (ms)

10 KB 35 11 12 14
100 KB 309 118 120 126
1 MB 2959 961 1042 1198
10 MB 30463 11792 11960 12860

Table 2: Time (ms) for Bloom filter generation for dif-

ferent document sizes (expected chunk size 256 bytes)

Bloom Filter Size 100 300 625 1250 2500 5000
(Bits)

Time (µsec) 1.9 2.4 2.9 3.9 6.2 10.7

Table 3: Time (microseconds) for computing the bitwise

AND of Bloom filters for different sizes

Table 1 shows the CDC hash computation times for a
complete document (of size 10 KB, 100 KB, 1 MB, 10 MB)
for different expected chunk sizes (256 bytes, 512 bytes, 2
KB, 8 KB). The Bloom filter generation times are shown in
Table 2 for different values (2, 4, 8) of the number of hash
functions (k) and different number of chunks (n). Although
the Bloom filter generation times appear high relative to the
CDC times, it is more an artifact of the implementation of
the Bloom filter code in Perl instead of C and not due to any
inherent complexity in the Bloom filter code. A preliminary
implementation in C reduced the Bloom filter generation time
by an order of magnitude.

For the matching time overhead, Table 3 shows the pair-
wise matching time for two Bloom filters for different filter
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Figure 10: Search results for 10 popu-

lar queries on MSN Search

No. of Results 10 20 40 80 160 320
Search Query

“emacs manual” 1 4 15 66 286 1233
“ohio court battle” 1 7 24 98 369 1426

“hawking black hole bet” 1 6 23 88 364 1407

Table 4: Matching and Clustering time (in ms)

sizes ranging from 100 bits to 5000 bits. The overall match-
ing and clustering time for different query requests is shown
in Table 4. Overall, using untuned Perl and C code, for clus-
tering 80 results each of size 10 KB for the “emacs manual”
query would take around 80*0.3 ms + 80* 14 ms + 66ms =
1210 ms. However, the Bloom filters can be computed and
stored apriori reducing the time to 66 ms.

4. RELATED WORK
The problem of near-duplicate detection consists of two

major components: (a) extracting document representations
aka features (e.g., shingles using Rabin fingerprints [18], super-
shingles [11], super-fingerprints [13]), and (b) computing the
similarity between the feature sets. As discussed in Sec-
tion 2, many variants have been proposed that use different
techniques on how the shingle fingerprints are sampled (e.g.,
min-hashing, Modm, Mins) and matched [7, 6, 5]. Google’s
patent for near-duplicate detection uses another shingling
variant to compute fingerprints from the shingles [17].

Our similar detection algorithm uses CDC [15] for com-
puting document features and then applies Bloom filters for
similarity testing. In contrast to existing approaches, our
technique is simple to implement, incurs only about 0.4%
extra bytes per document, and performs faster matching us-
ing only bit-wise AND operations. Bloom filters have been
proposed to estimate the cardinality of set intersection in [8]
but have not been applied for near-duplicate elimination in
web search. We recently learned about Bloom filter replace-
ments [16] which we will explore in the future.

Page and site similarity has been extensively studied for
web data in various contexts, from syntactic clustering of web
data [7] and its applications for filtering near duplicates in
search engines [6] to storage space and bandwidth reduction
for web crawlers and search engines. In [9], replica identifi-
cation was also proposed for organizing web search results.
Fetterly et al. examined the amount of textual changes in
individual web pages over time in the PageTurner study [12]
and later investigated the temporal evolution of clusters of
near-duplicate pages [11]. Bharat and Broder investigated
the problem of identifying mirrored host pairs on the web
[3]. Dasu et al. used min hashing and sketches to identify
fields having similar values in database tables [10].

5. CONCLUSIONS
In this paper, we applied a Bloom filter based similarity

detection technique to refine the search results presented to

the user. Bloom filters compactly represent the entire docu-
ment and can be used for quick matching. We demonstrated
how a number of results of popular and random search queries
retrieved from different search engines, Google, Yahoo, MSN,
are similar and can be eliminated or re-organized.
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