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Neurons that respond optimally to line segments of a partic-
ular length were first reported in early studies of the cat and
monkey visual cortex1,2. These neurons, which are especially
abundant in cortical layers 2 and 3, have the curious property
of endstopping (or end-inhibition): a vigorous response to an
optimally oriented line segment is reduced or eliminated when
the same stimulus extends beyond the neuron’s classical recep-
tive field (RF). Such ‘extra-classical’ RF effects occur in sever-
al visual cortical areas, including V1 (area 17; refs 2, 3), V2
(area 18; refs 1, 4), V4 (ref. 5) and MT6. In most of these cases,
neural responses are suppressed when stimulus properties at
the center, such as orientation, velocity or direction of motion,
match those in the surrounding extra-classical RF.

Why should a neuron that responds to a stimulus stop
responding when the same stimulus extends beyond the clas-
sical RF? Some studies have postulated a role for ‘hypercom-
plex’ endstopped neurons in the detection of visual
curvature1,7 . Others have suggested a role for these cells in
detecting corners and line terminations8, occlusion9, percep-
tual grouping10 and illusory contours11. However, a straight-
forward extension of these arguments to extra-classical RF
effects in different cortical areas has been difficult. We have
previously shown that a model12 based on the principle of
Kalman filtering can account for certain visual cortical respons-
es in a monkey freely viewing natural images13. It was conjec-
tured that a similar model might also account for endstopping
and other extra-classical effects.

Here we show simulations suggesting that extra-classical RF
effects may result directly from predictive coding of natural
images. The approach postulates that neural networks learn
the statistical regularities of the natural world, signaling devi-
ations from such regularities to higher processing centers. This
reduces redundancy by removing the predictable, and hence

redundant, components of the input signal. Roots of this idea
can be found in early information-theoretic approaches to sen-
sory processing14–16. More recently, it has been used to explain
the spatiotemporal response properties of cells in the reti-
na17–19 and lateral geniculate nucleus (LGN)20,21. Because
neighboring pixel intensities in natural images tend to be cor-
related, values near the image center can often be predicted
from surrounding values. Thus, the raw image-intensity value
at each pixel can be replaced by the difference between a cen-
ter pixel value and its spatial prediction from a linear weight-
ed sum of the surrounding values. This decorrelates (or
whitens) the inputs17,19 and reduces output redundancy, pro-
viding a functional explanation for center–surround receptive
fields in the retina and LGN. The values of a given pixel also
tend to correlate over time. A retinal/LGN cell’s phasic response
can thus be interpreted as the difference between the actual
input and its temporal prediction based on a linear weighted
sum of past input values19–21. Similarly, the responses of reti-
nal photoreceptors sensitive to different wavelengths are often
correlated because their spectral sensitivities overlap. Thus,
the L-cone (long-wavelength or ‘red’ receptor) response may
predict the M-cone (medium-wavelength or ‘green’ receptor)
response, and the L- and M-cone responses together may pre-
dict the S-cone (short-wavelength or ‘blue’ receptor) response.
Thus, the color-opponent (red – green) and blue – (red +
green) channels in the retina might reflect predictive coding
in the chromatic domain similar to that of the spatial and tem-
poral domains18.

Using a hierarchical model of predictive coding, we show
that visual cortical neurons with extra-classical RF properties
can be interpreted as residual error detectors, signaling the dif-
ference between an input signal and its statistical prediction
based on an efficient internal model of natural images.
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We describe a model of visual processing in which feedback connections from a higher- to a lower-
order visual cortical area carry predictions of lower-level neural activities, whereas the feedforward
connections carry the residual errors between the predictions and the actual lower-level activities.
When exposed to natural images, a hierarchical network of model neurons implementing such a
model developed simple-cell-like receptive fields. A subset of neurons responsible for carrying the
residual errors showed endstopping and other extra-classical receptive-field effects. These results
suggest that rather than being exclusively feedforward phenomena, nonclassical surround effects in
the visual cortex may also result from cortico-cortical feedback as a consequence of the visual system
using an efficient hierarchical strategy for encoding natural images.
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Results
HIERARCHICAL PREDICTIVE CODING MODEL

Each level in the hierarchical model network (except the lowest
level, which represents the image) attempts to predict the respons-
es at the next lower level via feedback connections (Fig. 1a). The
error between this prediction and the actual response is then sent
back to the higher level via feedforward connections. This error
signal is used to correct the estimate of the input signal at each
level (see Methods and Fig. 1b), similar to some previous mod-
els22–24 (see also refs 15, 25, 26). The prediction and error-cor-
rection cycles occur concurrently throughout the hierarchy, so
top-down information influences lower-level estimates, and bot-
tom-up information influences higher-level estimates of the input
signal. Lower levels operate on smaller spatial (and possibly tem-
poral) scales, whereas higher levels estimate signal properties at
larger scales because a higher-level module predicts and estimates
the responses of several lower-level modules (for example, three
in Fig. 1c). Thus, the effective RF size of units increases progres-
sively until the highest level, where the RF spans the entire input
image. The underlying assumption here is that the external envi-
ronment generates natural signals hierarchically via interacting
hidden physical causes (object attributes such as shape, texture
and luminance) at multiple spatial and temporal scales. The goal
of a visual system then becomes optimally estimating these hid-
den causes at each scale for each input image and, on a longer
time scale, learning the parameters governing the hierarchical
generative model. Similar models have been studied by other
researchers (for example, refs 27, 28).

HIERARCHICAL PREDICTIVE CODING OF NATURAL IMAGES

Given that the visual cortex is hierarchically organized and that
cortico-cortical connections are almost always reciprocal29, the
model described above suggests the following hypothesis: feed-
back connections from a higher area to a lower area (say V2 to
V1) carry predictions of expected neural activity in V1, whereas
feedforward connections convey to V2 the residual activity in V1

that was not predicted by V2 (refs 12, 22). To test this hypothesis,
a three-level hierarchical network of predictive estimators
(Fig. 1c) was trained on image patches extracted from five nat-
ural images (Fig. 2a), the motivation being that the response
properties of visual neurons might be largely determined by the
statistics of natural images17,20,21,30. Such an approach has pre-
viously explained some important visual cortical RF proper-
ties26,31,32.

We allowed the network to learn a hierarchical internal model
of its natural image inputs by maximizing the posterior proba-
bility of generating the observed data (Methods). The internal
model is encoded in a distributed manner within the synapses
of model neurons at each level. The synaptic weights (or ‘effica-
cies’) of a neuron encode a single basis vector that in conjunc-
tion with other basis vectors predicts lower-level inputs. For
example, a given input image at the zeroth level can be predicted
as an appropriate linear combination of the first-level basis vec-
tors (Methods, Equation 2). In this linear combination, the
weighting coefficient for the kth basis vector is given by the
response of the kth neuron in the first level. The response is deter-
mined by a first-order differential equation implementing the
prediction and error-correction cycle mentioned above. This
equation, like the synaptic learning rule, is also derived by max-
imizing the posterior probability of generating the observed data
(Methods). Thus, for any given input, the network converges to
a set of neuronal responses optimal for predicting that input.
These responses are then used to adapt the synaptic basis vec-
tors. The same description applies to each level of the hierarchy,
with each level predicting the inputs at its lower level using its
set of learned basis vectors and, on a slower time scale, adapting
these basis vectors to enable more accurate prediction of the
inputs in the future.

After exposure to several thousand natural image patches, the
basis vectors learned by the network at level 1 resembled orient-
ed edges or bars (Fig. 2b), whereas the basis vectors at level 2
seemed to be composed of various combinations of the features
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Fig. 1. Hierarchical network for predictive coding. (a) General
architecture of the hierarchical predictive coding model. At each
hierarchical level, feedback pathways carry predictions of neural
activity at the lower level, whereas feedforward pathways carry
residual errors between the predictions and actual neural activity.
These errors are used by the predictive estimator (PE) at each level
to correct its current estimate of the input signal and generate the
next prediction. (b) Components of a PE module, composed of
feedforward neurons encoding the synaptic weights UT, neurons
whose responses r maintain the current estimate of the input signal,
feedback neurons encoding U and conveying the prediction f(Ur) to
the lower level, and error-detecting neurons computing the differ-
ence (r – rtd) between the current estimate r and its top-down prediction rtd from a higher level. (c) A three-level hierarchical network used
in the simulations. An input image was analyzed by three level-1 PE modules, each predicting its own local image patch. The responses r of all
three level-1 modules were input to the level-2 module. This convergence of lower-level inputs to a higher-level module increases receptive-
field size of neurons as one ascends the hierarchy, with the receptive field at the highest level spanning the entire input image.
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represented at level 1 (Fig. 2c). The basis vectors can be regarded
as approximate ‘receptive fields’ of the feedforward model neu-
rons because they are the primary determinants of the neurons’
feedforward responses26,32. These RFs at level 1 are reminiscent of
oriented Gabor or difference-of-Gaussian filters that have been
used to model simple-cell RFs in primary visual cortex (for exam-
ple, ref. 7). We used a Gaussian weighting profile to model the
input dendritic arbor of the model neurons so that each set of
the level 1 neurons only sees a localized portion of the entire input
image. However, the model also learns localized receptive fields
without a Gaussian spatial window if we impose the additional
constraint of sparseness on the model neuron responses (Meth-
ods; Fig. 2d)26,32. In this case, the wavelet-like basis vectors code
for local oriented structures rather than being centered in the
input window as in Fig. 2b. These basis vectors and their level-2
counterparts were used for the simulations in Fig. 6, whereas all
other simulations used the basis vectors in Fig. 2b and c.

ENDSTOPPED RESPONSES INTERPRETED AS ERROR SIGNALS

Given an input image, the initial predictions at any given level
are based on an arbitrary random combination of the basis vec-
tors, giving large error signals. To minimize this error, the net-
work converges to the responses that best predict the current
input by subtracting the prediction from the input (via inhibi-
tion) and propagating the residual error signal to the neurons at
the next level, which integrate this error and generate a better
prediction (Methods).

The model neurons carrying the error signal (the ‘error-
detecting’ neurons) send feedforward connections from the lower
level to the higher level. In the visual cortex, feedforward con-

nections to a higher area generally arise from the superficial lay-
ers (such as layer 2/3). A relatively large number of neurons in
layer 2/3 of striate cortex (V1) show endstopping and related
extra-classical effects2,3,33. To ascertain whether these observed
neuronal responses can be functionally interpreted as residual
error signals, we recorded the responses of level-1 error-detecting
neurons in the simulated network, when exposed to the image
of a short dark bar lying within their RF (Fig. 3a). The solid box
in the first panel (‘Input’) represents the RF size of the level-1
neurons (16 × 16 pixels), whereas the dotted box represents the
level-2 RFs (16 × 26 pixels). The last two panels show the two
components that determine the error signal. Many of the error-
detecting neurons showed significant non-zero responses,
demonstrating that feedback from level 2 could not completely
predict the responses at level 1.

On the other hand, when the bar stimulus extends beyond
the classical receptive field into the flanking regions (Fig. 3b),
the same error-detecting neurons showed little or no response
because the predictions from level 2 were much more accurate,
with prediction errors close to zero. Why are the level 2 predic-
tions much more accurate for the longer bar than for the short
bar? Recall that the network was trained on natural images. In
natural images, short bars seldom occur in isolation; rather, a
bar in a small region of an image is usually part of a longer bar
that extends into neighboring regions. Because the network was
optimized for natural image statistics, the most accurate predic-
tions are generated when the input’s properties match those of
natural images. The continuation of the bar into the surrounding
region provides the necessary context for the bar in the center to
be predicted, much as in the case of retinal center-surround pre-
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Fig. 2. Receptive fields of feedforward model neurons after
training on natural images. (a) Five natural images used for
training the three-level hierarchical network of Fig. 1c
(Methods). The two upper boxes in the bottom right corner
show relative sizes (16 x 16 and 16 x 26 pixels) of level-1 and
level-2 receptive fields respectively. (b) Learned synaptic
weights (RF weighting profiles) of 20 of the 32 feedforward
model neurons in the level-1 module analyzing the central image
region. Flanking image regions were analyzed by two other
level-1 modules (Fig. 1c), each with 32 feedforward model
neurons (Methods). Values for these synapses, which form rows
of the matrix UT, can be positive (excitatory, bright regions) or
negative (inhibitory, dark regions). These RF profiles resemble

classical oriented-edge/bar detectors charac-
teristic of simple cells2. (c) RF profiles of 12
of the 128 level-2 feedforward model neu-
rons. (d) Localized RF profiles resembling
Gabor wavelets obtained by using a sigmoidal
nonlinearity in the generative model, along
with a sparse kurtotic prior distribution for
the network activities (Methods). All 32
level-1 feedforward model neurons are
shown; Gaussian windowing of inputs (as in
b) was not necessary in this case.

a

b
Level 1

c
Level 2

d
Level 1 (with sparse prior distribution)
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diction mechanisms. Without this contextual information in the
surrounding region, the higher level cannot accurately predict
the bar in the center. The short bar thus elicits a relatively large
response from the error-detecting neurons as compared to the
longer bar.

This argument suggests that the autocorrelation along a dom-
inant orientation in a local region in natural images extends over
reasonably large distances. We tested this hypothesis on a set of
natural images (Fig. 4a). Random locations were selected in these
images, and the local oriented energy was computed by summing
the squared outputs of quadrature pairs of filters. The orienta-
tion that maximized this energy measure was selected as the dom-
inant orientation. Correlations in the dominant orientation
direction and in the opposite direction in the natural image were
then calculated along three different orientation directions (ver-
tical, horizontal and diagonal) for several thousand random
image locations (Fig. 4b). The average correlations along the
dominant directions, especially the vertical and horizontal direc-
tions, remain relatively high for distances of up to plus or minus
50 pixels as compared to the correlations in the opposite direc-
tion. As a control, we repeated the experiment for three differ-
ent natural image sizes (968 × 968, 484 × 484 and 242 × 242
pixels). In all three cases, higher correlations were observed in
the dominant direction as compared to the opposite direction.
(Results for a random white-noise image are shown in Fig. 4c.)

To compare model neuron responses to neurophysiological
data, we computed the tuning curves of model error-detecting
neurons to bars of increasing length (Fig. 3c). The prediction

from level 2 falls short of the actual level-1 responses for shorter
bar lengths but gradually matches the actual response as the
length of the bar is increased. This determines the model length-
tuning curves, which closely resemble the tuning curves of layer
2/3 neurons in cat striate cortex (Fig. 5a). The model tuning curve
is a parameter-free prediction of the data in the sense that it is
determined by the statistics of the input natural images rather
than by the physiological data. Thus, the close similarity between
the model and physiological tuning curves is noteworthy. In the
model, the average length of the bar eliciting maximal response
was found to be approximately 4.5 pixels, the absolute RF sizes
being approximately 5 × 10 pixels. For comparison, ref. 3 reports
RF sizes of 1° × 1.75° and 0.5° × 1.5° for two visual cortical neu-
rons. These were maximally responsive to bars of length 1° and
0.5°, respectively.

PREDICTIVE FEEDBACK AND EXTRA-CLASSICAL RF EFFECTS

The removal of feedback from level 2 to level 1 in the model
caused previously endstopped neurons to continue to respond
to bars of increasing lengths (Fig. 5a), supporting the hypothesis
that predictive feedback is important in mediating endstopping
in the level-1 model neurons. To quantify this result, we com-
puted the distribution of endstopping (Fig. 5b) in all 32 model
layer 2/3 (error-detecting) neurons in the central level-1 module
(see Fig. 1c) with and without feedback from level 2. The degree
of endstopping was quantified as the percentage difference
between peak response and average plateau response for lengths
greater than 18 pixels: (peak – plateau)/peak × 100. Model neu-
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Fig. 3. Endstopping in the model net-
work. (a) Responses of the 32 error-
detecting model neurons in the central
level-1 module to a dark bar. (Positive val-
ues are upward bars; negative values are
downward bars.) Although not modeled
here, positive and negative values may be
coded by separate neurons in the cortex.
(b) Reduction in the level-1 residual
errors due to increase in top-down pre-
diction accuracy as the bar extends
beyond the classical RF (solid box), up to
the size of the level-2 RF (dashed box).
This reduced prediction error manifests
itself as endstopping in the error-detect-
ing model neurons. (c) Length-tuning
curves for two error-detecting model
neurons at level 1 with even-symmetric
(left) and odd-symmetric (right) RF pro-
files. Both model neurons show the
decrease in response characteristic of
endstopping as the bar extends beyond
the classical RF. The dashed line repre-
sents the corresponding response r at
level 1, and the dotted line represents the
predictive feedback rtd from level 2.
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rons were classified into 10 categories according to their degree of
endstopping, with 100% inhibition denoting a plateau response
of zero to long bars. If we define endstopping as greater than 50%
inhibition, 28 of the 32 model error-detecting neurons were end-
stopped with feedback intact. Disabling the feedback connec-
tions eliminated endstopping in all but 5 of these neurons, a
reduction of 82%. The five neurons that continued to show some
degree of endstopping after removal of feedback were those whose
receptive field orientations were not completely aligned with that
of the bar used for testing.

OTHER EXTRA-CLASSICAL RF EFFECTS IN THE MODEL

Several neurophysiological studies have reported nonclassical
surround effects due to orientation contrast between the stimuli
in the central classical RF region and the surrounding
region33,35,36. To investigate whether some of these effects could
result from the extended positive correlations along dominant
orientation directions in natural images (Fig. 4), we trained a

three-level hierarchical network, similar to the one used
for the endstopping simulations, on ten different natural
images. Rather than using a Gaussian window to localize
receptive fields as in the endstopping experiments, we
allowed the network to learn localized receptive fields by
imposing a sparse prior distribution32 on the network
responses (Methods). A total of nine level-1 modules
arranged in three rows and three columns analyzed a local
image patch (14 × 14 pixels). The outputs of these nine
modules were input to the single level-2 module.

An oriented grating in the classical RF produced a
robust response in a level-1 error-detecting model neu-
ron in the simulated network (Fig. 6a). This steady-state
response was suppressed 85.3% when a grating at the
same orientation was introduced in the surrounding
extra-classical region, consistent with a reduction in the

residual error signal due to better prediction from level 2 based
on the surrounding context. Introducing an orientation contrast
between the center and the surrounding region increased the
model neuron response by 19.1% over the classical RF response,
reflecting an increase in the residual error. Similar increases in
neuronal responses due to cross-oriented grating stimuli have
been reported in primary visual cortex36. An optimally oriented
grating restricted only to the surround elicited little response in
the model neuron. We determined the response of a model neu-
ron (Fig. 6b) to four different texture stimuli previously used in
a macaque V1 study35. The largest response was elicited by the
‘pop-out’ texture stimulus (compare with Fig. 4 of ref. 35 show-
ing a similar response in a V1 neuron). For these stimuli, the spa-
tial displacement of the central and surrounding bars in a
particular direction sometimes modified a response from sup-
pression to enhancement or vice versa, an effect attributable to
the localized nature of the level-1 receptive fields (Fig. 2d). We
also tested the response of an error-detecting model neuron

articles

Fig. 4. Autocorrelation along dominant orientation direc-
tions in natural images. (a) Three natural images from the
Sweeney/Rubin Ansel Adams Fiat Lux collection (repro-
duced with permission from the California Museum of
Photography, University of California, Riverside). Each image
was filtered with quadrature pairs of oriented filters for
computing oriented energy. Three of these oriented filters
are shown at the bottom alongside the arrows. The bottom
row shows examples of oriented structures extending over
relatively large distances in three natural image patches. 
(b) Average correlations in the natural images along the
dominant orientation direction and the orthogonal direc-
tion, shown here for three different orientation directions
(horizontal, vertical and diagonal) and for three different
natural image sizes. Correlations were computed by choos-
ing a 16 x 16 image patch at a randomly selected location in
a natural image and translating the correlation window up to
plus and minus 50 pixels along the dominant orientation
direction and the orthogonal direction. The dominant orien-
tation was chosen to be the one that maximized the local
oriented energy as given by the sum of squared outputs of
the quadrature pairs of filters. Correlations along the domi-
nant directions remained positive for distances of up to plus
or minus 50 pixels, supporting the hypothesis that oriented
structures in natural images on the average tend to extend
over reasonably large distances. (c) Results of applying the
same procedure to a randomly generated white-noise image.
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(Fig. 6c) to random texture stimuli used in a study of contextu-
al modulation in alert macaque V1 (ref. 33). The tonic phase of
the model neuron response reveals a large positive difference
(93.5%) developing over time for the orientation-contrast tex-
ture as compared to the homogeneous texture. This modulation
in response resembles the type of contextual modulation observed
in V1 neurons (compare with Fig. 2 of ref. 33).

Discussion
Our simulation results suggest that certain extra-classical RF
effects could be an emergent property of the cortex using an effi-
cient hierarchical and predictive strategy for encoding natural
images. In this model, cortical neurons showing extra-classical
effects are interpreted as error-detecting neurons that signal the
difference between an input and its prediction from a higher visu-
al area. In particular, the layer 2/3 neurons that send axons to the
higher visual area are posited to be likely candidates for this func-
tion. In the model, predictions are made based on progressively
larger spatial contexts as one ascends the visual hierarchy. As a
result, when the stimulus properties in a neuron’s receptive field
match the stimulus properties in the surrounding region, little
response is evoked from the error-detecting neurons because the
‘surround’ can predict the ‘center.’ On the other hand, when the
stimulus occurs in isolation, such a prediction fails, eliciting a
relatively large response. This behavior can be viewed as a refine-
ment of the types of predictive coding observed at the retina17–19

and the LGN20,21 involving spatiotemporal prediction based on
weighted averages of spatially/temporally local pixels and sub-
traction of this prediction from current pixel values.

The model predicts that layer 2/3 neurons will respond most
vigorously to stimuli whose statistics differ in certain drastic ways
from natural image statistics (as in, for example, Fig. 6). This
raises the interesting possibility of discovering novel extra-classical
RF effects by explicitly constructing stimuli that deviate from
natural image statistics. In addition, termination of cortical feed-

back should disinhibit the responses of layer 2/3 neurons that are
suppressed by extra-classical stimuli under normal conditions.
In anesthetized monkeys, inactivation of higher-order visual cor-
tical areas disinhibits responses to surround stimuli in lower-area
neurons37 (see also Hupé, J. M. et al., Soc. Neurosci. Abstr. 23,
1031, 1997 and James, A. C. et al., Soc. Neurosci. Abstr. 21, 904,
1995), consistent with the predictive coding model. In the cat,
removal of feedback from visual cortical areas 17 and 18 to the
LGN strongly reduces the degree of end-inhibition in LGN cells38.
Also, extra-classical RF effects in layer 2/3 neurons in alert mon-
key V1 often manifest themselves only 80–100 milliseconds after
stimulus onset, suggesting that feedback from higher areas may be
involved in mediating these effects33.

The simulation results show that extra-classical RF effects can
occur in the predictive coding model under either Gaussian
(Figs 3 and 5) or sparse kurtotic (Fig. 6) prior distributions for
the network activities. The issue of prior distributions has been
much discussed12,31,32, with kurtotic distributions being favored
because they can produce localized receptive fields and sparse
codes. Our results suggest that the effects can be obtained under
both sparse and non-sparse prior distributions, as long as one
interprets the effects as being caused due to residual errors in pre-
diction based on an internal model of natural image statistics.

The predictive coding model does not rule out the possibility
that certain extra-classical contextual effects may result from
recurrent lateral inhibition mediated by long-range horizontal
connections within the same visual area39. In fact, the equation
for the dynamics of the network can be rewritten such that some
of the effects of feedback are replaced by recurrent lateral inter-
actions (Methods, Equation 8; refs 32, 40). In addition, the repet-
itive subtraction of neighboring neuronal activities (Equation 8)
may produce a net effect similar to divisive normalization41, an
operation that reproduces certain extra-classical effects in sim-
ulations (Simoncelli, E. P., results presented at the 1998 Center
for Visual Science Symposium, Rochester, New York, 1998).
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Fig. 5. Predictive feedback and endstopping. (a) Effect of
inactivating feedback from level 2 in the model. Plotted on
the left are the length tuning curves for a ‘layer 2/3’ error-
detecting model neuron at level 1 with and without feed-
back from level 2 (solid and dotted line respectively).
Tuning curves for a layer 2/3 complex cell in cat striate cor-
tex (V1) (redrawn from Fig. 3 in ref. 3) are shown on the
right for comparison. Disabling top-down feedback elimi-
nated endstopping in the model neuron in a manner quali-
tatively similar to that observed in the cortical neuron after
inactivation of layer 6 (dotted line). Elimination of feedback
from V2 dramatically affects neural responses in layer 6 of
V1 in the squirrel monkey34. (b) Histograms summarizing
the distribution of length tuning in all 32 model layer 2/3
neurons in the central level 1 module with feedback (left)
and without feedback (right) from level 2. Endstopping was
quantified as the percentage difference between peak
response and average plateau response for lengths greater
than 18 pixels. Model neurons were classified into ten cate-
gories according to their degree of endstopping. Disabling
feedback connections eliminated endstopping (defined as
greater than 50% inhibition) in 82% of the model layer 2/3
neurons.
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Some extra-classical RF effects involve facilitatory rather than
inhibitory responses39. In other words, the presence of a stimulus
in the surround may facilitate rather than inhibit the neural
response elicited by a stimulus in the center alone. Some examples
of such facilitatory effects in the model are shown in Fig. 6, but
other facilitatory effects may reflect a bipolar strategy for encod-
ing prediction errors. Because these errors can be either positive
or negative, the cortex may use two distinct populations of neu-
rons to signal errors, one for positive and another for negative
errors, in analogy with the existence of on-center, off-surround
and off-center, on-surround cells in the early visual pathway.

Although we have focused on interpreting responses in V1,
the general idea of predictive coding may help explain certain
responses in other brain regions as well. For example, some neu-
rons in MT are suppressed when the direction of stimulus motion
in the surrounding region matches that in the center of the clas-
sical RF6. This suggests a hierarchical predictive coding strategy
for motion analogous to the one suggested here for image fea-
tures. Although the precise details of such a strategy are far from
clear, a testable prediction of such a model would be a significant
reduction in extra-classical effects in layer 2/3 neurons in MT
upon inactivation of feedback from a higher area such as MST.
Certain neurons in the anterior inferotemporal (IT) cortex of
alert behaving monkeys fire vigorously whenever a presented test
stimulus does not match the item held in memory, though show-
ing little or no response in the case of a match42. This suggests
an interpretation of these responses in terms of residual error
signals between a test stimulus and a predicted item from mem-
ory. Whether such a model can also account for the very specif-
ic face and view-sensitive cells in IT43,44 remains unclear
(however, see ref. 45). A third example suggestive of predictive
coding is the generation and subtraction of sensory expectations

from actual inputs in cerebellum-like structures in several dis-
tinct classes of fishes46. In this case, the sensory prediction is gen-
erated using not only recent sensory inputs but also corollary
discharge or proprioceptive signals associated with motor com-
mands. Finally, the responses of dopaminergic neurons project-
ing to the cortex and striatum from the midbrain can often be
characterized as encoding reward prediction errors: large respons-
es are elicited whenever actual rewards do not match the pre-
dicted rewards in a behavioral task47. These examples suggest
that the general idea of predictive coding may be applicable across
different brain regions and modalities, providing a useful frame-
work for understanding the general structure and function of
the neocortex22,48.

Methods
HIERARCHICAL GENERATIVE MODEL. Consider an image I represented as a
vector of n pixels. We assume that the cortex tries to represent the image
in terms of hypothetical causes, as represented by a vector r. We charac-
terize the relationship between the causes r and the image I using the
function f and a matrix U:

where n is a stochastic noise process characterizing the differences
between I and f(Ur). Note that

where Uj are columns of U, representing basis vectors for generating
images. Thus, each image I is assumed to be generated by a linear super-
position of the basis vectors followed by a possible nonlinearity f. In
terms of a neural network, the coefficients rj correspond to the activities
or firing rates of neurons, whereas the basis vectors Uj correspond to the
synaptic weights of neurons. The function f(x) is the neuronal activa-

articles

Fig. 6. Nonclassical surround effects in the model. (a) Responses
of an error-detecting model neuron to oriented gratings in the
classical (center region) and extra-classical RF (surrounding
region)36. An oriented grating in the classical RF produced a
robust response (first bar in the bar graph), which was sup-
pressed when a grating at the same orientation was introduced in
the surrounding extra-classical region (second bar). Introducing
an orientation contrast between center and surround increased
the response beyond the center-only response (third bar). An
optimally oriented grating in the surround only elicited a small
response (fourth bar). (b) Responses of an error-detecting model
neuron to texture stimuli used in ref. 35. The largest response
was elicited by the ‘pop-out’ texture stimulus (compare with Fig.
4 of ref. 35). (c) Extra-classical contextual modulation in the tem-
poral response of an error-detecting model neuron, when
exposed to the random texture stimuli used in ref. 33. The tonic phase of the response reveals a large positive difference developing over
time for the orientation-contrast texture as compared to the homogeneous stimulus (compare with Fig. 2 of ref. 33).
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tion function, typically a sigmoidal function such as tanh(x). The coef-
ficients rj can be regarded as the network’s internal representation of the
spatial characteristics of the image I, as interpreted using the internal
model defined by the basis vectors Uj.

To make this model hierarchical, we assume that the causes r them-
selves can be represented as a set of higher-level causes rh representing
more abstract stimulus properties than the lower level. This yields the
equation:

where rtd = f(Uh rh) is the ‘top-down’ prediction of r, and ntd is a sto-
chastic noise process.

Because the dendritic arbors of neurons can only span a finite spatial
extent, we limit the size of I at the lowest level so that only a local por-
tion of the actual image is being generated by a given set of causes r. The
higher-level vector rh, however, generates several sets of these causes r
associated with local neighboring image regions. Thus, a given image is
generated by groups of local causes r, several groups being generated by
a single higher-level vector rh, several of which are in turn generated by an
even higher level of causes until the entire image is accounted for. This
results in increasing receptive field size as one ascends the hierarchy, sim-
ilar to that observed in the occipitotemporal visual pathway29. To allow
prediction in time for time-varying images, the model can be extended
using a set of recurrent synaptic weights V that recursively transform the
vector r(t) at time t to the predicted vector r(t+1) at time t+1: r(t+1) =
f(Vr(t)) + m where m is a noise process. Because static images sufficed
for our simulation results, we did not use the temporal prediction com-
ponent, but the interested reader is referred to refs 12 and 49 for more
details.

OPTIMIZATION FUNCTION. The goal is to estimate, for each hierarchical
level, the coefficients r for a given image and, on a longer time scale, learn
appropriate basis vectors Uj for each hierarchical level. Assuming that
the noise terms n and ntd are Gaussian with zero mean and variances σ2

and σtd
2 respectively, one can write the following optimization function:

where the superscript T denotes the transpose of a vector or matrix. Note
that E1 is the negative logarithm of the probability of the data given the
parameters. It is the sum of squared prediction errors for level 1 and level
2, each term being weighted by the respective inverse variances. Taking
into account the prior distributions of r and U, one obtains the opti-
mization function:

where g(r) and h(U) are the negative logarithms of the prior probabilities of
r and U respectively. For the endstopping simulations, we used Gaussian
prior distributions for both these model parameters because this was suffi-
cient to illustrate the properties of the model. This results in g(r) = α Σi ri

2 and
h(U) = λ Σi,j Ui,j

2 where α and λ are positive constants related to the vari-
ance of the Gaussian prior distributions. Localized receptive fields can be
obtained by using sparse kurtotic prior distributions for r (refs 26,31), e.g.,

This choice was used for the extra-classical surround experiments in Fig.
6. Note that by Bayes Theorem, minimizing E is equivalent to maximiz-
ing the posterior probability of the model parameters given the input
data. In the context of information theory, E can be interpreted as rep-
resenting the cost of coding the errors and parameters in bits (in base e).
Thus, minimizing E is equivalent to using the minimum description
length principle50, which requires solutions to be not only accurate but
also cheap in terms of coding length.

NETWORK DYNAMICS AND SYNAPTIC LEARNING. An optimal estimate of r can
be obtained by performing gradient descent on E with respect to r:

where k1 is a positive constant governing the rate of descent towards a
minimum for E, x = Ur, and g´ is the derivative of g with respect to r. In
the linear case (f(x) = x),

is the identity matrix and in the case where f(x) = tanh(x),

= (1 – tanh(x)2). 

Similarly, for a Gaussian prior distribution, g´(r) = 2α r and for the kur-
totic prior distribution in Equation 6, g´(ri) = 2α ri /(1+ ri

2) (ref. 32).

To modify r toward the optimal estimate (Equation 7), one needs the
‘bottom-up’ residual error (I – f(Ur)) and the ‘top-down’ error (rtd – r).
The bottom-up error is multiplied by the transpose of the gradient and
the basis matrix UT, and a decay term g´(r) due to the prior probability of
r is subtracted. Note that all the information required is available local-
ly at each level. The weight accorded to the top-down and bottom-up
errors is inversely proportional to their respective noise variances: the
larger the noise variance, the smaller the weight (see ref. 12). In a neur-
al implementation (Fig. 1b), each row of the matrix UT corresponds to
the synaptic weights of a single neuron.

In the linear case (f(x) = x), the above dynamics can be rewritten to
allow lateral interactions32,40:

where W = UTU. In this implementation, the neural responses r under-
go recurrent lateral inhibition due to the term 

Wr,

where the ith row of W represents the lateral weights for the ith neuron
that maintains the estimate ri. Such lateral connections between neurons
maintaining r may thus also be involved in mediating some of the extra-
classical RF effects observed in the visual cortex (see Discussion).

A synaptic learning rule for adapting the basis matrix U can be
obtained by performing gradient descent on E with respect to U:

where k2 is a positive parameter determining the learning rate of the net-
work and x = Ur. Note that this learning rule is a form of Hebbian adap-
tation, the presynaptic activity being r and the postsynaptic activity being
the residual error (I – f (Ur)) (see Fig. 1b). 

Although the top-down feedback rtd does not appear explicitly in the
learning rule for U, it nevertheless influences the estimation of r (see
Equation 7) and hence, also U.

SIMULATIONS. For the endstopping simulations, five natural images of dif-
ferent sizes (Fig. 2a) were first filtered using a center-surround difference-
of-Gaussians operator to approximate processing at the levels of the retina
and the LGN (see also ref. 26). During the training phase, three 16 × 16
overlapping Gaussian-windowed image patches (offset by 5 pixels hori-
zontally) were input to the three level-1 modules (Fig. 1c). The respons-
es from the level-1 modules at each time instant were input as a single
vector to the level-2 module. The effective level-2 RF thus encompassed a
16 × 26 image region spanned by the three overlapping circles (Fig. 2a).
For simplicity, a linear generative model (f(x) = x) was used in the end-
stopping simulations. Each level-1 module consisted of 32 feedforward
neurons representing UT (size 32 × 256), 32 neurons that maintained r
(according to equation 7), 32 error-detecting neurons that propagated to
level 2 the top-down residual (r – rtd), and a set of 256 feedback neurons
whose synaptic efficacies encoded the rows of U and that conveyed the
prediction Ur to level 0. The level-2 module consisted of 128 feedforward
neurons receiving inputs from the three level-1 modules, 128 neurons for
maintaining rh, and 96 feedback neurons whose synapses encoded rows
of Uh and which conveyed the prediction Uhrh to level 1. Parameter values:
k1 = 0.5, σ2 = 1, σtd

2 = 10, α = 1 for level 1 and 0.05 for level 2, and λ =
0.02. The learning rate k2 was initially set to 1 and decreased gradually by
dividing with 1.015 after every 40 training inputs.

articles

r = rtd + ntd (3)

E1 =       (I – f (Ur))T (I – f (Ur)) +       (r – rtd)T (r – rtd) (4)1—
σ2

1—
σtd

2

E = E1+ g(r) + h(U) (5)

g(r) = α ∑ log(1 + ri
2) (6)

i

= –            =      UT (I – f (Ur)) +      (rtd – r) –      g´(r) (7)
dr—
dt

k1—
2

∂E—∂r
k1—
σ2

∂f T—∂x
k1—
σtd

2
k1—
2

=      UTI +      (rtd – r) –      g´(r) –      Wr (8)dr—
dt

k1—
σ2

k1—
σtd

2
k1—
2

k1—
σ2

= –            =            (I – f (Ur))rT – k2λU (9)dU—
dt

k2—
σ2

k2—
2
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For the extra-classical RF simulations in Fig. 6, a nonlinear hierarchical
generative model (f(x) = tanh(x)) was used at levels 1 and 2 of the three-
level hierarchical network, along with a kurtotic prior distribution for r
(Equation 6). Nine level-1 modules, each with 32 feedforward model neu-
rons and each analyzing a local 8 × 8 pixel image region, were arranged
in a 3 × 3 overlapping configuration to analyze a 14 × 14 pixel image
region. The level-2 module included 64 feedforward model neurons. The
network was trained on ten prewhitened natural images and during train-
ing, the gain of each basis vector in U was adapted so as to maintain equal
variance on each ri (see ref. 26 for more details). The level-1 basis vectors
were learned first, followed by the level-2 basis vectors.
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