Dynamic Programming I
Fibonacci Numbers

Defined recursively by

\[
 f(n) = \begin{cases}
 0, & n = 0 \\
 1, & n = 1 \\
 f(n - 1) + f(n - 2), & n \geq 2.
 \end{cases}
\]

Problem: given k, compute f(k)

• (0 <= k <= 1,000,000)
Fibonacci Numbers

There are \textbf{at least} six different solutions. Let’s code up the most naïve one.

\[f(n) = \begin{cases}
0, & n = 0 \\
1, & n = 1 \\
f(n - 1) + f(n - 2), & n \geq 2.
\end{cases} \]
Fibonacci Numbers

There are at least six different solutions. Let’s code up the most naïve one.

```c
int f(int n):
    if(n==0) return 0;
    if(n==1) return 1;
    return f(n-1) + f(n-2);
```

\[f(n) = \begin{cases}
0, & n = 0 \\
1, & n = 1 \\
f(n-1) + f(n-2), & n \geq 2.
\end{cases} \]
Fibonacci Numbers

There are at least six different solutions. Let’s code up the most naïve one.

```c
int f(int n):
    if(n==0) return 0;
    if(n==1) return 1;
    return f(n-1) + f(n-2);
```

what's the bug?
Recursive Fibonacci Solution

Several issues with this solution:

1. Stack overflow if n too large
Recursive Fibonacci Solution

Several issues with this solution:

1. Stack overflow if \(n \) too large

2. What’s the runtime?
Recursive Fibonacci Solution

Several issues with this solution:

1. Stack overflow if n too large

2. What’s the runtime? $O(2^n)$
Recursive Fibonacci Solution

Key Idea:

why recompute \(f(k) \) a bunch of times?
store and reuse previous values.
Recursive Fibonacci Solution

Key Idea:
why recompute $f(k)$ a bunch of times?
store and reuse previous values.

```c
int f(int n, hashset h):
    if(n == 0) return 0;
    if(n == 1) return 1;
    if(h.contains(n)) return h[n];
    return h[n] = f(n-1,h) + f(n-2,h);
```
Recursive Fibonacci Solution

Key Idea:
why recomputate f(k) a bunch of times?
store and reuse previous values.

What’s the running time?
What’s the space usage?
Recursive Fibonacci Solution

Key Idea:

why recompute $f(k)$ a bunch of times?
store and reuse previous values.

What’s the running time?
What’s the space usage? $O(n)$

Called memoization: trade space for time
Yet Another Solution

Iteratively build a table of partial sols:

\[
\begin{array}{cccccc}
 f(0) & f(1) & f(2) & f(3) & f(4) & f(5) \\
 0 & 1 & & & & \\
\end{array}
\]
Yet Another Solution

Iteratively **build a table** of partial sols:

<table>
<thead>
<tr>
<th>f(0)</th>
<th>f(1)</th>
<th>f(2)</th>
<th>f(3)</th>
<th>f(4)</th>
<th>f(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

we have accumulated just enough information to compute this
Yet Another Solution

Iteratively build a table of partial sols:

<table>
<thead>
<tr>
<th></th>
<th>$f(0)$</th>
<th>$f(1)$</th>
<th>$f(2)$</th>
<th>$f(3)$</th>
<th>$f(4)$</th>
<th>$f(5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

we have accumulated just enough information to compute this
Yet Another Solution

Iteratively **build a table** of partial sols:

<table>
<thead>
<tr>
<th>$f(0)$</th>
<th>$f(1)$</th>
<th>$f(2)$</th>
<th>$f(3)$</th>
<th>$f(4)$</th>
<th>$f(5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

now “slide window right” and compute this
Yet Another Solution

Iteratively **build a table** of partial sols:

<table>
<thead>
<tr>
<th></th>
<th>$f(0)$</th>
<th>$f(1)$</th>
<th>$f(2)$</th>
<th>$f(3)$</th>
<th>$f(4)$</th>
<th>$f(5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

now “slide window right” and compute this
Yet Another Solution

```c
int fib(int n):
    int table[n+1] = {0, 0, ....};
    table[0] = 0;
    table[1] = 1;
    for(int i=2; i<=n; i++)
        table[i] = table[i-1]+table[i-2];
    return table[n];
```
Yet Another Solution

Iteratively **build a table** of partial sols

What’s the running time?
What’s the space usage?
Yet Another Solution

Iteratively build a table of partial sols

What’s the running time? \(O(n) \)
What’s the space usage? \(O(n) \)

Called **dynamic programming**: trade space for time
Dynamic Programming

Requires two things to be true:

1. Large problem can be recursively broken up into smaller sub-problems
Dynamic Programming

Requires two things to be true:

1. Large problem can be recursively broken up into smaller sub-problems (has **optimal substructure**).
Dynamic Programming

Requires two things to be true:

1. Large problem can be recursively broken up into smaller sub-problems (has **optimal substructure**)

2. Results from sub-problems are reused many times in solving the large problem
Dynamic Programming

Dynamic programming (bottom-up) and memoization (top-down) are equivalent

• (but sometimes one approach is easier/more natural)
Dynamic Programming

Dynamic programming (bottom-up) and memoization (top-down) are equivalent
• (but sometimes one approach is easier/more natural)

Hints to use dynamic programing:
• problem “smells exponential”
Dynamic Programming

Dynamic programming (bottom-up) and memoization (top-down) are equivalent
• (but sometimes one approach is easier/more natural)

Hints to use dynamic programing:
• problem “smells exponential”
• there are ways to reuse/prune/cull partial results
“What title, what name, could I choose? In the first place I was interested in planning, in decision making, in thinking. But planning, is not a good word for various reasons. I decided therefore to use the word “programming”. I wanted to get across the idea that this was dynamic, this was multistage, this was time-varying. I thought, let's kill two birds with one stone. Let's take a word that has an absolutely precise meaning, namely dynamic, in the classical physical sense. It also has a very interesting property as an adjective, and that it's impossible to use the word dynamic in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It's impossible. Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities.”

-Bellman
The DOOM Problem

You are playing a game with 10 levels. Each level you can use 10 different strategies. You start with 100 health.

Strategy s on level l:

- Takes $t_{l,s}$ seconds
- Costs $h_{l,s}$ health

What’s the quickest you can beat the game without dying?
The DOOM Problem

Naïve solution: try all 10^{10} sets of strategies (no chance)

What is the optimal substructure?
The DOOM Problem

Thought process:

“I can beat level L with different amounts of health left. For each amount of health, I care about the fastest I can get to the end of level L with at least that amount of health. I don’t care about slower strategies that also get me there with the same amount of health.”
The DOOM Problem

Naïve solution: try all 10^{10} sets of strategies (no chance)

What is the optimal substructure?

Compute $f(L, h)$: the fastest you can beat level L with at least h health.
The DOOM Problem

Compute $f(L, h)$: the fastest you can beat level L with at least h health.

Large problem: $f(100, 1)$

Recursive sub-problems:

$$f(L, h) = \min_{s=1, \ldots, 10} f(L - 1, h + h_{L,s}) + t_{L,s}$$
The DOOM Problem

Compute $f(L, h)$: the fastest you can beat level L with at least h health.

Large problem: $f(100, 1)$

Recursive sub-problems:

$$f(L, h) = \min_{s=1, \ldots, 10} f(L - 1, h + h_{L,s}) + t_{L,s}$$

"first get to level L-1 with at least $h + h_{L,s}$ health. Then use level L strategy s."
int DOOM():
int f[11][101] = {0,…};
for(int L=1; L<=10; L++)
 for(int h=0; h<=100; h++)
 int best = infinity;
 for(int s=0; s<10; s++)
 int hneeded = h+h[L][s];
 if(hneeded <= 100)
 best = min(best, f[L-1][hneeded]);
 f[L][h] = best;
return f[10][1];
The Peg Game

Given starting board state, what is the fewest number of pegs possible after a legal sequence of jump?

Has obvious recursive subproblems. Can dynamic programming be used? How?
Concern #1

Requires two things to be true:

1. Large problem can be recursively broken up into smaller sub-problems (has *optimal substructure*)

2. Results from sub-problems are reused many times in solving the large problem
Concern #1

Requires two things to be true:
1. Large problem can be recursively broken up into smaller sub-problems (has optimal substructure)
2. Results from sub-problems are reused many times in solving the large problem

Ok, because many different move sequences can end at the same peg state
Concern #2

Aren’t there still exponential many subproblems we need to examine?
(Board with n holes a p pegs has n choose p possible configurations)
Concern #2

Aren’t there still exponential many subproblems we need to examine?
(Board with n holes a p pegs has n choose p possible configurations)

Only a few such configurations are reachable from the starting state

• Memoization much easier than DP