
1

Don Batory
University of Texas at Austin

2023
batory@cs.utexas.edu

dsbatory

Good Morning From Austin, Texas!

1. Why am I in Austin?
• I’m ancient with health problems

2. My limitations were clearly stated
in my proposal, but it was
accepted anyway

3. The proposal is 2 one-hour lectures. I was given 90 minutes, as all 2-hour
tutorials. I pause the presentation at 90 mins, finish 14 minutes later

3

My Background

• I studied relational databases from 1975-1990s and
• early on was interested in the design of DBMS software
• I was a closet Software Engineer (SE) but didn’t know it

• Like many SE researchers back then, I saw little connection and
relevance of mathematics to software design. Seemed a waste of time

• studied small problems, worked really hard, for small solutions that didn’t scale

• Eventually I realized I needed a language that would allow me to express
design concepts in Software Product Lines, Model Driven Engineering, and
Dataflow Programming. Category Theory (CT) basics fit the bill.
CT is not “abstract nonsense”. It is profound and immensely practical.

4

My Caveat

• I am NOT a mathematician; I am a Software Engineer with DBMS background
• Category Theory is vast; I know some basics

• DBMS History: When E.F. Codd proposed Relational Model in 1970,
mathematicians rejoiced that Set Theory 1880s was its foundation

• within 5-10 years, only the first few pages of a set theory text was ever used
• 50+ years later, not much has changed IMO

• I argue the same holds for Category Theory for MDE
• CT 1945 is a/the mathematical foundation of MDE 1995

5

Your Take Aways from this Lecture: CT is…

1. An essential counterpart to UML class diagrams

2. Should be taught in grad MDE courses and
 in intro SE grad courses and
 some ideas appropriate at undergrad level

3. An elegant and practical modeling language and way of thinking

• I will pause after a slide with this Q symbol which means “any questions?”

6Q

7

Fundamentals
of Information
Organization

As computer scientists and software engineers,
we collect information, process information,

and produce new information… we do this all the time.
CT is the foundation of this Universe

Here we go!

-name
-age

Customer
-zipcode
-city
-state

Zip
-livesIn

1..*

-inZip

1

• Four ideas:
1. information structures (aka objects, things, models)
2. computation on a structure produces another structure (aka arrow, transformation)

• Ex: refactoring a
 class diagram

• Regression testing

Fundamentals of Information Organization

8

refactor

execute

-name
-age
-zip
-city
-state

Customer

Fundamentals of Information Organization

• Model Driven Engineering

Define a Finite State
Machine of elevator door
and convert it into Java

• SQL Query
for a given DB

• Java program
9

select name, city
from CustomerDelivery
where deliveryDate = “May 1”

execute

hello

javac

hello

model2text

Q

Fundamentals of Information Organization

• Four ideas:
1. information structures (aka objects, things, models)
2. computation on a structure produces another structure (aka arrow, transformation)
3. structures are instances of meta-structures (types or meta-models)

10

JavaFile DotClassFileMeta-Structures
..⋯

Cone
of

Instances

.

domain
spec

Fundamentals of Information Organization

• Four ideas:
1. information structures (aka objects, things, models)
2. computation on a structure produces another structure (aka arrow, transformation)
3. structures are instances of meta-structures (types or meta-models)
4. computations are instances of a meta-computation (meta-arrow)

11

JavaFile DotClassFile

.

javac

MetaArrow

Q

How are Arrows Useful? Answer #1

• We need to define computational relationships between structures
• UML class diagrams are pre-eminent ways to express structures in UML
• Arrows tell us what our programs do with structures – is a natural fit

• This is a trivial category diagram, but it is still useful
12

-name
-address
-city

Customer
-date
-number
-value
-deliveryDate

Order
-cust

1

-ord

*

-name
-address
-city

Customer

-date
-number

Order-cust

1

-ord

*

-value
-deliveryDate

NormalOrder

-value
-discount
-deliveryWindow

SpecialOrder

refactor
& extend

updateCode javac

visualization of
existing program

How are Arrows Useful? Answer #2

• UML class diagrams are declarative – abstract away implementation detail
• Forces designers to focus on essential, not artificial or low-level details

• Same for arrows – abstract away implementation detail

• CT is essential counterpart to UML diagrams and other SE representations

13

-name
-address
-city

Customer
-date
-number
-value
-deliveryDate

Order
-cust

1

-ord

*

-name
-address
-city

Customer

-date
-number

Order-cust

1

-ord

*

-value
-deliveryDate

NormalOrder

-value
-discount
-deliveryWindow

SpecialOrder

refactor
& extend model2text javac

Q

• Are total functions: every element of the input domain is paired with
produces an element of the output domain.

Meta-Arrows

14

𝕐𝕐𝕏𝕏 A

yax1

ybx2

ycx3

ydx4

yex5

Q

OK if some 𝕐𝕐
 values are not
paired with an

𝕏𝕏 value

OK if some 𝕏𝕏
 values are
paired with

same 𝕐𝕐 value
a 1:1 correspondence

between 𝕏𝕏 and 𝕐𝕐
elements means

A has an inverse (A-1)

A-1𝐴𝐴:𝕏𝕏 → 𝕐𝕐

• Ignoring errors: is javac a total function?
• JavaDecompiler (JD) translates DotClassFile into a JavaFile: is it a total function?
• Is there an arrow that connects a blue Java file to its green Java?
• Arrow RCR removes comments and reformats a blue Java file → a green Java file
• How does RCR map green files?

Non-Trivial Example

15

JavaFile DotClassFile

JD

Remove extra
white-space and

reformat
arrow (RCR)

Q

javac
RCR

domain
of all legal
Java files

domain
of all legal

dotclass files

How does javac map green files?

Yes!
Yes!

Yes!

Like transitive
closure but…

closure can yield an
non-finite category

Axioms of CT

1. Arrows compose:

16

Int

A

B C

X

Y

D

ZY•X

Z•Y•X

𝑋𝑋: A → B and 𝑌𝑌: B → C then 𝑌𝑌 ⋅ 𝑋𝑋: A → C function
composition

Z•Y

A

B C

X

Y

D

Z

Axioms of CT

1. Arrows compose:
2. Composition is associative:

17

Y•X

𝑋𝑋: A → B and 𝑌𝑌: B → C then 𝑌𝑌 ⋅ 𝑋𝑋: A → C function
composition

Z•Y•X

𝑍𝑍 ⋅ (𝑌𝑌 ⋅ 𝑋𝑋) = (𝑍𝑍 ⋅ 𝑌𝑌) ⋅ 𝑋𝑋 function
composition

is
associative

Axioms of CT

1. Arrows compose:
2. Composition is associative:
3. Every domain structure has an identity arrow:

18

∀ b ∈ B: IB b = b ∧

IB ⋅ X = X ∧

Y ⋅ IB = Y

𝑋𝑋: A → B and 𝑌𝑌: B → C then 𝑌𝑌 ⋅ 𝑋𝑋: A → C function
composition

𝑍𝑍 ⋅ (𝑌𝑌 ⋅ 𝑋𝑋) = (𝑍𝑍 ⋅ 𝑌𝑌) ⋅ 𝑋𝑋 function
composition

is
associative

A

B C

X

Y

D

Z

Axioms of CT

1. Arrows compose:
2. Composition is associative:
3. Every domain structure has an identity arrow:

19

∀ b ∈ B: IB b = b ∧

IB ⋅ X = X ∧

Y ⋅ IS = Y

𝑋𝑋: A → B and 𝑌𝑌: B → C then 𝑌𝑌 ⋅ 𝑋𝑋: A → C function
composition

𝑍𝑍 ⋅ (𝑌𝑌 ⋅ 𝑋𝑋) = (𝑍𝑍 ⋅ 𝑌𝑌) ⋅ 𝑋𝑋 function
composition

is
associative

A

B C

X

Y

D

Z

These are the
3 axioms of

Category Theory Q

20

More
Terminology

and Facts
about CT

20

Errors Occur!

• How does CT handle errors?

• When an error occurs, computation stops

21

• Meaning you can draw arrows and not
know how to implement them

• This is the “Halting Problem” for which
no general algorithm exists Turing 1936

Program BooleanEventuallyHalts
Program

“Arrows are not Constructive”

• Ans: Why create this
UML class diagram?

22

Seems silly – why would anyone need this generality?

UML class diagrams are
not constructive either!

Q

+eventuallyHalts() : bool

Program

• A category or an external diagram is a directed multi-graph of labeled
nodes domains and labeled edges arrow from input domain to output domain

Java
File

DotClass
Filejavac

JavaFile DotClassFilejavac

Category Diagram

23

javac: JavaFile → DotClassFile

Internal Category Diagram

• A category or an external diagram is a directed multi-graph of labeled
nodes domains and labeled edges arrow from input domain to output domain

• An internal diagram shows the cone-of-instances for each domain
• and arrow instances consistent with meta-arrow(s) shown 24

An Internal
Diagram

JavaFile DotClassFilejavac An External
Diagram

javac

?

What is a Directed Multigraph?

• An external or internal diagram (directed multigraph) can have many arrows from
source to target

25

javac

Hint: gcc compiler has
 optimizer optionJava

File
DotClass

File

?javac –g:none

javac –g:none

Java w/w.o. debugging
 information

What tool
invocation

is “?”

Every Arrow in CT has 1 domain and 1 codomain:
That’s too restrictive!

• Earlier example: SQL Query for a given DB

• Makes more sense if execute() has 2 arguments: a DB and a query

26

,execute

,execute

,execute

[,]

[,]

[,]

[,]

Solution to multiple input/output problem
• Take cross-product of domains to produce an input domain of multiple arguments

27

Database
1Table
Queries

1Table
Relations

execute

Database
×

1Table
Queries

Database
1Table
Queries

1Table
Relations

execute

πdb

πq

Database
×

1Table
Queries

=

=

[,]

[,]

[,]

[,]

Solution to multiple input/output problem
• Take cross-product of domains to produce an input domain of multiple arguments

28

Database
1Table
Queries

1Table
Relations

execute

Database
×

1Table
Queries

Database
1Table
Queries

1Table
Relations

Database
×

1Table
Queries

execute

πdb

πq

=

Can produce multiple outputs
in the same way

Q

29

Type Recursion

29

Fundamentals of Information Organization

• Four ideas:
1. information structures (aka objects, things, models)

2. computation on a structure produces another structure (arrow)

3. structures are instances of a meta-structure (type or meta-model)

4. computations are instances of a meta-computation (meta-arrow)

30

Recursion

Every level of abstraction in CT is
governed by the same principles/ideas

Examples of Type Recursion

• Usually stops at the meta-meta-level although can indeed go higher

m1 m4m3

m2

meta-meta-structure

structures

i1 i3i2 i4 i6i5

meta-structures

31

MOF

Examples of Type Recursion

• Usually stops at the meta-meta-level although can indeed go higher

32

Examples of Type Recursion

• Usually stops at the meta-meta-level although can indeed go higher

33

Not accidental!
This is the Structure

of Information

Q

35

Containment
Recursion
different from type recursion

35

Containment Recursion

36

meta-category

String

Decimal

Customer

Order

city

name

deliveryDate

value

catalog#

cost

cust

String

Decimal

Customer

Order

Item

city

name

deliveryDate

value

catalog#

cost

in

cust

String Int

Employee

ename
city

age

A

B C

X

Y

D

ZA

D

B

C

f

g

f’

g’

F(A) G(A)

F(B)

F(h)

G(B)

G(h)

ηA

ηB

Domain of all
Categories (CAT)

Containment Recursion

37

cones of
instances

meta-category

categories

Domain of all
Categories (CAT)

Containment Recursion

38

meta-category

Domain of all
Categories (CAT)

Containment Recursion

39

meta-category

Every level of recursion abstraction in CT is
governed by the same principles/ideas

Domain of all
Categories (CAT)

-city

Customer

Order

-cust1

-ord*

This occurs???

• Yes! Stacked layer architectures is an example…
• Aside: Containment recursion does not exist in UML class diagrams
• Who does this??

40

is inside → class Customer {

 // Customer members and methods
}

 static class State { ... }

 static class City {
 State in; ... // association
 }

City

State

-in1

*

City

State

-in1

*

Java since 1997 allows class nesting… I used it in building software product lines

City

State

-in1

*

Q

41

Structures that
don’t seem to have

computations
but really do

41

-ename : String
-city : String
-age : int

Employee

Example

• Consider a trivial UML class diagram:
• Employee has a name, age and lives in a city
• Given an employee instance, what is his/her age?
• Then what is its category?

42

This is a simple lookup!
aka a computation!

String Int

answer Q

standard category age
ename

city

Employee

43

-number : int
-ename : String

Emp

-Dept : String

Salesman
-invoice : int
-value : int

Sale-by

1

-has

*

by

ISA

Every Class Diagram has a Standard Category

43

standard category

String

Int

number

ename

dept

valueinvoice

Emp Salesman

salesman
is subdomain

of Emp

Salesman

Sale

Emp

44

Every Class Diagram has a Category

44

standard category

StringStudent

name

name

Advisor

Answer in Lecture #2

-name : String

Advisor

-name : String

Student-has

*

-advises

*

45

Some
Well-Known

Category
Constructions

aka Design Patterns – common constructions
in information designs…

45

• An external diagram 𝕎𝕎 commutes if for every pair of domains in 𝕎𝕎,
say A and D, all directed paths from A to D yield the same result

• Constellation of domains does NOT IMPLY its diagram commutes

A

D

B

C

f

g

f ’

g’

most important Commuting Diagrams

46

g’· f = f ’· g

g’· f ≠ f ’· g

To say a diagram
commutes is a

strong
constraint!

𝕎𝕎

A

D

You must decide if 𝕎𝕎 commutes

• If you see any of these configurations:

• Complete the diagram to make it commute

A

B

h

Dy

A C

D

g

x

Hint about Commuting Diagrams

47

A

B

h

Cx

B

C

D

g

y

A

B

h

C

D

g

x

y

pushout pullback

A

B

h

C

D

g

x

y

ℝ+ℝ+

^Y

ℝ+

log

ℝ+×Y

ℝ+

ℝ+

log-1

Example #1 of Commuting Diagrams: Logarithms

• From high-school mathematics and using slide rules… compute XY:

𝑋𝑋𝑌𝑌 = 10^(Y ∗ log10 𝑋𝑋)

48

ℝ > 0
x xY

Example #2 of Commuting Diagrams: Javac and Extension

49

P.java javac P.class

Px.java

∆P
inject
source

code ∆P

= ∆B • P.class

∆B
compile ∆P

inject bytecode
∆B into P.class

javac Px.class

Example #3 of Commuting Diagrams: Version Control

50

conflicting edit nonconflicting edit

lice

ob

51

Testing Design
Patterns

51

• Regression Testing discussed earlier

• this diagram commutes

• Variation I encountered:

• Instead of changing my test output
• I added an arrow “removeWhiteSpace”

to my regression test
• this diagram commutes

Testing

52

execute

difference in
whitespace

execute

execute

CT Construct: Co-Equalizer

53

X Y Z

h is said to equalize f and g

ℎ • 𝑓𝑓 = ℎ • 𝑔𝑔

x1

f

g

y1

y2

h

z

Warning: Wee bit more general than this….

Q

h
X Y Z

Mine is a Special Case of Co-Equalizer

54

ℎ • 𝑓𝑓 = ℎ • 𝑔𝑔

Java Txtf

g

Txt2⊂Txt

Co-Equalizer How I “see” this
in my mind…

This diagram
commutes

X Y

Mine is a Special Case of Co-Equalizer

55

h

ℎ • 𝑓𝑓 = ℎ • 𝑔𝑔

Java Txtf

g

Txt2

Co-Equalizer

Why CT is Intimidating

• I asked my Ph.D. students to read a CT text:

• Reason: Abstract mathematics with examples from mathematics
• With examples from SE, CT ideas do become alive… But

56

• I can’t translate into a practical example

Y
f

g
S

find subdomain S ⊂ X
s.t. ∀𝑝𝑝 ∈ 𝑆𝑆:𝑓𝑓 𝑝𝑝 = 𝑔𝑔(𝑝𝑝)

Many CT Design Patterns

57Q

Z X Ye
f

g

∀ 𝑧𝑧 ∈ 𝑍𝑍: 𝑓𝑓 ⋅ 𝑒𝑒(𝑧𝑧) = 𝑔𝑔 ⋅ 𝑒𝑒(𝑧𝑧)

Equalizer

“e” equalizes arrows f and g

find a function
e : Z→S Z Xe S

• I can’t translate into a practical example

Y
f

g
S

find subdomain S ⊂ X
s.t. ∀𝑝𝑝 ∈ 𝑆𝑆:𝑓𝑓 𝑝𝑝 = 𝑔𝑔(𝑝𝑝)

Many CT Design Patterns

58Q

Z X Ye
f

g

∀ 𝑧𝑧 ∈ 𝑍𝑍: 𝑓𝑓 ⋅ 𝑒𝑒(𝑧𝑧) = 𝑔𝑔 ⋅ 𝑒𝑒(𝑧𝑧)

Equalizer

“e” equalizes arrows f and g

find a function
e : Z→S Z Xe S

Many CT Constructions
 (Design Patterns)

are like this

• What you should have learned
about CT: it

• defines computational relationships
among structures as functions

• is declarative, like UML class diagrams

• is a foundation of MDE and SE

• expresses common “design patterns”
of structures and computations

• Just a wee bit of basics
59

End of Lecture #1

• What you should have learned
about CT: it

• defines computational relationships
among structures as functions

• is declarative, like UML class diagrams

• is a foundation of MDE

• expresses common “design patterns”
of structures and computations

• Just a wee bit of basics
60

End of Lecture #1

• What is in Lecture #2? Functors
• A functor is an arrow between

categories F : 𝔸𝔸 → 𝔹𝔹
• Simple but non-obvious
• Brilliant idea
• Where almost all “action” in CT resides

F

Dog String

Int

name
owner
state

age

𝔸𝔸
Dog String

Int

name

owner

sta
te

Owner

ownedBy

age

𝔹𝔹

61

End of Lecture #1

Questions?
Thank You!

Q

	Tutorial on�Category Theory � without math �well, maybe just a wee bit
	Good Morning From Austin, Texas!
	My Background
	My Caveat
	Your Take Aways from this Lecture: CT is…
	Fundamentals �of Information Organization
	Fundamentals of Information Organization
	Fundamentals of Information Organization
	Fundamentals of Information Organization
	Fundamentals of Information Organization
	How are Arrows Useful? Answer #1
	How are Arrows Useful? Answer #2
	Meta-Arrows
	 Non-Trivial Example
	Axioms of CT
	Axioms of CT
	Axioms of CT
	Axioms of CT
	More�Terminology�and Facts�about CT
	Errors Occur!
	“Arrows are not Constructive”
	Category Diagram
	Internal Category Diagram
	What is a Directed Multigraph?
	Every Arrow in CT has 1 domain and 1 codomain: �That’s too restrictive!
	Solution to multiple input/output problem
	Solution to multiple input/output problem
	Type Recursion
	Fundamentals of Information Organization
	Examples of Type Recursion
	Examples of Type Recursion
	Examples of Type Recursion
	Containment Recursion
	Containment Recursion
	Containment Recursion
	Containment Recursion
	Containment Recursion
	This occurs???
	Structures that don’t seem to have computations �but really do
	Example
	Every Class Diagram has a Standard Category
	Every Class Diagram has a Category
	Some �Well-Known�Category Constructions
	most important Commuting Diagrams
	Hint about Commuting Diagrams
		Example #1 of Commuting Diagrams: Logarithms
		Example #2 of Commuting Diagrams: Javac and Extension
		Example #3 of Commuting Diagrams: Version Control
	Testing Design Patterns
	Testing
	CT Construct: Co-Equalizer
	Mine is a Special Case of Co-Equalizer
	Mine is a Special Case of Co-Equalizer
	Why CT is Intimidating
	Many CT Design Patterns
	Many CT Design Patterns
	End of Lecture #1
	End of Lecture #1
	End of Lecture #1

