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Lecture #2: Two MDE Applications using Functors

• App #1: verifying class & object diagram refactorings 
equiv: schema and database refactorings  

• Will use core 40-year-old relational database ideas & terminology

• App #2: Relationship of CT + relational algebra = foundation for OCL neat result

• Purpose of this lecture: show non-trivial examples of how CT organizes 
difficult problems and “how to think” in a structured way
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Very Different than Lecture #1

• Tour of an old, but still open, research area open for at least 2+ decades

• Refactoring class diagrams + OCL constraints + object diagrams 

• Refactoring is central to modern OO software development
• refactoring should have a central role in MDE meta-model development too

• And it is surprisingly hard…
• give you an insight why
• explain most recent progress w. CT viewpoint
• show what it would take to solve
• open problems suitable for PhDs
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Sit back, relax,
to learn some

neat ideas!



Tutorial: Lecture #2a
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Ends at 17:00

Most controversial 
part is Lecture #2b

Ends at 17:17 



Functors
and Embeddings

definition and examples
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Here we go!



A
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δ 

X

Y

Z

α 

β 

Functor Definition 
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ℝ𝕃𝕃

Functor   𝔽𝔽:𝕃𝕃 → ℝ is an embedding of category 𝕃𝕃 in category ℝ
1. Arrow from each domain D in 𝕃𝕃 to a domain 𝔽𝔽(D) in ℝ
2. Arrow from each arrow 𝜃𝜃: D1 → D2 in 𝕃𝕃 to  𝔽𝔽 𝜃𝜃 :𝔽𝔽 D1 → 𝔽𝔽(D2) in ℝ 

Simple but 
much is unsaid

“Embedding” = 
every pt and arrow 
and every inferable

arrow of 𝕃𝕃 is 
accounted for in ℝ

𝕃𝕃 ↪ ℝ



Functor  𝔽𝔽  embeds 𝕃𝕃 into ℝ definition  meaning

10

𝕏𝕏 𝔸𝔸

𝕐𝕐 𝔹𝔹

𝕃𝕃 ↪ ℝ

𝔽𝔽 preserves the ext        multi-graph structure of 𝕃𝕃 in ℝ

ℝ𝕃𝕃

/int



Simple Example: Functor 𝔽𝔽:𝕃𝕃 → ℝ
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Let’s
infer the arrows

𝕏𝕏

𝕐𝕐
𝔸𝔸

ℝ𝕃𝕃



Simple Example: Functor 𝔽𝔽:𝕃𝕃 → ℝ
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What points are 
they connected 

to?

𝕏𝕏

𝕐𝕐
𝔸𝔸

ℝ𝕃𝕃

QAns: for this example, it doesn’t matter -- pick any point in 𝔸𝔸
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• Categories with the same “shape”  are isomorphic: 𝕃𝕃 ↪ ℝ  and ℝ ↪ 𝕃𝕃 
• only difference between 𝕃𝕃 and ℝ are the names of points, domains, arrows
• functors of isomorphic categories have inverses

↪

Special Case #1: Category Equivalence

R S TA B WCβ γ Ψα Φ δ Ωβ γ Ψ

ℝ𝕃𝕃

R S TA B WCβ γ Ψα Φ δ Ω

14

𝔽𝔽

𝔽𝔽−1



Special Case #2: Domain Equivalence 
• Two categories each with a single domain 𝕁𝕁 and ℂ; functor 𝔽𝔽: 𝕁𝕁 → ℂ relates them
• Two domains are isomorphic if their points are in 1:1 correspondence
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𝕁𝕁

. . .

ℂ

. . .

𝔽𝔽

𝔽𝔽−1

will use this
later! ℝ𝕃𝕃



A Common
Example of 
a Functor
and correct CT terminology
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• A Java program is a category of Java files rooted at Main.java
• javac translates a JavaProgram into an isomorphic  category of dotClass files                                                                    

                                  all pts & arrows on Java side are preserved

• Note: these categories are at the internal level only – they don’t have internal diagrams!!

Revisit the Java Compiler

javac

17

main main



Meta-Functor

• javac, a meta-functor, translates every  Java program a category into 
a DotClassProgram an isomorphic category

JavaPrograms DotClassPrograms

. . . . . .

javac

Meta-Functor

18Q
Functor



Correct CT Terminology for Purists
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Arrow Arrow
Meta-Arrow Arrow

Functor Functor
Meta-Functor Functor

Domain Object
Point, Element Object

Correct CT
Terminology

My
Terminology

I will continue to use my terminology



Main Event

Verifying
Class Diagram
Refactorings

21

Ph.D. Topic



Metamodels in MDE

• 3 ways to declare metamodels in MDE:

Metamodel Decl Instance
Class diagram + OCL constraints Object Diagram

DSL grammar (BNF) Abstract Syntax Tree
Mix of the above Mix of above

This Lecture

22



Focus on Subset of UML Class Diagrams

• No interfaces, no methods
• Only classes, data members, 

associations, and class inheritance

• Subset known for 25 years 
IBM’s Rational Rose depicts relational 
database schemas with table inheritance

• Instances of schema are relational 
databases with table inheritance
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From Lecture #1
Abstractions
are largely 

interchangeable

even though…
MDE & DBMSs 

have very 
different 

implementations
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isomorphic

isomorphic

isomorphic

MOF
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Equalities or Isomorphisms 
Model Driven Engineering Relational Databases

OCL Constraints Relational Algebra Constraintsthe same

-name : String
-age : int

Dog'

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1

meta
model

-name : String
-age : int

Dog'

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1
the same schema

owner : String = Don
state : String = Tx

Obj3 : Owner

owner : String = Jim
state : String = Ark

Obj5 : Owner

name : String = Hawkeye
age : int = 3

obj1 : Dog'

name : String = Belle
age : int = 6

obj2 : Dog'

name : String = Willie
age : int = 4

obj3 : Dog'

object
diagram more scalable database

Q



Enter
the World of 
Refactorings

26



What are Refactorings?

• In physics, there are coordinate transformations
• that reposition an object to get 

a particular view of it
• does not change object semantics

• Watch this video of a 3D sculpture 
by James Hopkins.  A rotation is 
a coordinate transformation

Refactorings are the software counterpart 
to coordinate transformations 27

preserve semantics
invertible
R is discrete, not continuous






The Normalize
Refactoring

Running Example/Exemplar
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Initial Model

-name : String
-age : int
-owner : String
-state : String

Dog

Schema = class diagram

Database constraints called functional dependencies
Names of dogs is unique:         name → age, owner, state
Names of owners are unique: owner → state

not OCL constraints (technically)

database instance of schema

Problem with this design:
owner-state data is replicated

29

Model 𝕞𝕞𝕃𝕃



Normalize Schema and Database Refactoring 

-name : String
-age : int
-owner : String
-state : String

Dog

Database constraints called functional dependencies
Names of dogs is unique:         name → age, owner, state
Names of owners are unique: owner → state

30

Model 𝕞𝕞𝕃𝕃

Functional dependencies stay the same
Names of dogs is unique:         name → age, owner, state
Names of owners are unique: owner → statesame

Normalize
database

-name : String
-age : int

Dog'

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1

Normalize
schema

Model 𝕞𝕞𝕃𝕃



Unnormalize Schema and Database Refactoring 
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Functional dependencies stay the same
Names of dogs is unique:         name → age, owner, state
Names of owners are unique: owner → state

Database constraints called functional dependencies
Names of dogs is unique:         name → age, owner, state
Names of owners are unique: owner → state same

-name : String
-age : int
-owner : String
-state : String

Dog

Model 𝕞𝕞𝕃𝕃 Unnormalize
schema

Unnormalize
database

-name : String
-age : int

Dog'

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1

Model 𝕞𝕞𝕃𝕃



Big Picture of Upcoming Slides

• “Model” is a 3-tuple ( OCL Constraints, Schema, Database )
• Normalize: N(𝕞𝕞𝕃𝕃)  = 𝕞𝕞ℝ      and      N-1(𝕞𝕞ℝ)  = 𝕞𝕞𝕃𝕃
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Dℝ

-name : String
-age : int

Dog'

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1
Sℝ

Cℝ

D𝕃𝕃

-name : String
-age : int
-owner : String
-state : String

Dog

S𝕃𝕃

C𝕃𝕃

𝕞𝕞𝕃𝕃 𝕞𝕞ℝ

N

N-1



Part 2:

Part 1:

Big Picture of Upcoming Slides

• Part 1: how we verified refactorings of schemas and their databases
• MDE: a transformation of a type and its instances is a co-transformation

• Part 2: how OCL constraints might be refactored (and other interesting CT ideas)
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Dℝ

-name : String
-age : int

Dog'

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1
Sℝ

Cℝ

D𝕃𝕃

-name : String
-age : int
-owner : String
-state : String

Dog

S𝕃𝕃

C𝕃𝕃

Q



Part 1:

Verifying
Schema & Database

Refactorings

34

Here we go!



Ns

𝑵𝑵𝒔𝒔
−𝟏𝟏

What to Prove?

-name : String
-age : int
-owner : String
-state : String

Dog

𝔸𝔸 -name : String
-age : int

Dog

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1𝔹𝔹

a b

RoundTrip
Theorems:

𝔸𝔸 = 𝑵𝑵𝒔𝒔
−1 ⋅ 𝑵𝑵𝒔𝒔(𝔸𝔸)

𝔹𝔹 = 𝑵𝑵𝒔𝒔 ⋅ 𝑵𝑵𝒔𝒔
−1(𝔹𝔹)

schema:
a = 𝑵𝑵𝒅𝒅

−1 ⋅ 𝑵𝑵𝒅𝒅(a)

b = 𝑵𝑵𝒅𝒅 ⋅ 𝑵𝑵𝒅𝒅
−1(b)

database:

35

fixed schemas
Easy!

∀ a ∈ 𝔸𝔸 :  

∀ b ∈ 𝔹𝔹 :

∀ schema instances
Need a Theorem Prover

Nd

𝑵𝑵𝒅𝒅
−𝟏𝟏



Described in ACM TOSEM April 2023

• We identified a set non-trivial meta-model refactorings (including normalize)

• Proved these refactorings correct using the CT structure of prior slides
and used the Coq Proof Assistant (Rooster theorem prover)

• Proof details are in the paper 36



What we learned ⇒ You should learn too!
• About Coq (Rooster) Proof Assistant

• Remarkable tool, but is not the theorem prover to use in the future for these problems
• Why?   Answer:   it is at the wrong level of abstraction
• Proofs are much too difficult
• All meta-model refactorings we encountered define relational algebra equalities

37

-name : String
-age : int
-owner : String
-state : String

Dog

-name : String
-age : int

Dog

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1

‘

𝐃𝐃𝐃𝐃𝐃𝐃 =  𝐃𝐃𝐃𝐃𝐃𝐃′ ⋈ 𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎
𝐃𝐃𝐃𝐃𝐃𝐃′ = 𝚷𝚷𝐎𝐎𝐧𝐧𝐧𝐧𝐎𝐎,𝐧𝐧𝐃𝐃𝐎𝐎,𝐃𝐃𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎 𝐃𝐃𝐃𝐃𝐃𝐃
𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎 = 𝚷𝚷𝐃𝐃𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎,𝐬𝐬𝐬𝐬𝐧𝐧𝐬𝐬𝐎𝐎 𝐃𝐃𝐃𝐃𝐃𝐃



What we learned ⇒ You should learn too!
• Relational algebra operations are co-transformations
• One proof suffices for both the schema AND the database level!
• Still some problems to solve…
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-name : String
-age : int
-owner : String
-state : String

Dog

-name : String
-age : int

Dog

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1

‘

𝐃𝐃𝐃𝐃𝐃𝐃 =  𝐃𝐃𝐃𝐃𝐃𝐃′ ⋈ 𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎
𝐃𝐃𝐃𝐃𝐃𝐃′ = 𝚷𝚷𝐎𝐎𝐧𝐧𝐧𝐧𝐎𝐎,𝐧𝐧𝐃𝐃𝐎𝐎,𝐃𝐃𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎 𝐃𝐃𝐃𝐃𝐃𝐃
𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎 = 𝚷𝚷𝐃𝐃𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎,𝐬𝐬𝐬𝐬𝐧𝐧𝐬𝐬𝐎𝐎 𝐃𝐃𝐃𝐃𝐃𝐃



What we learned ⇒ You should learn too!
• What is needed doesn’t yet exist

• Need a theorem prover of relational algebra (RA) identities
• Define MDE refactorings as compositions of  RA  operations
• State refactoring as a RA identity + verify!
• Potential for a big impact

Ph.D. Topic

39Q



Not Finished!
More Embeddings

may be controversial

40

Ph.D. Topic



-name : String
-age : int

Dog'

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1

Embeddings Again!

• Class diagrams are rarely this isolated:

-name : String
-age : int
-owner : String
-state : String

Dog

-name : String
-age : int
-owner : String
-state : String

Dog

-name : String
-age : int
-owner : String
-state : String

Dog

-asdsa
-asd

Clinic

-End11
-End2

*

-dfdfdfd
-sds

Vet-End1

*

-End2

*

-sss
-sds
-xxx

Org

-End3 1

-End4*

-End5 1

-End6

*

-End7

1

-End8 *

-asdsa
-asd

Clinic

1

*

-dfdfdfd
-sds

Vet-End1

1

-End2

*

-sss
-sds
-xxx

Org

1

*

1
*

1

*

-name : String
-age : int

Dog'

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1

-name : String
-age : int
-owner : String
-state : String

Dog

41

N

N-1

𝑵𝑵𝒔𝒔

𝑵𝑵𝒔𝒔
−𝟏𝟏

-name : String
-age : int

Dog'

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1



What to Prove?

-name : String
-age : int
-owner : String
-state : String

Dog

𝔸𝔸 -name : String
-age : int

Dog

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1𝔹𝔹

𝔸𝔸 = 𝑵𝑵𝒔𝒔
−𝟏𝟏 ⋅ 𝑵𝑵𝒔𝒔(𝔹𝔹)

𝔹𝔹 = 𝑁𝑁𝑠𝑠 ⋅ 𝑁𝑁𝑠𝑠−1(𝔸𝔸)

RoundTrip
Theorems:

-name : String
-age : int
-owner : String
-state : String

Dog

-asdsa
-asd

Clinic

-End11
-End2

*

-dfdfdfd
-sds

Vet-End1

*

-End2

*

-sss
-sds
-xxx

Org

-End3 1

-End4*

-End5 1

-End6

*

-End7

1

-End8 *

-asdsa
-asd

Clinic

-End11 -End2

*

-dfdfdfd
-sds

Vet-End1

*

-End2

*

-sss
-sds
-xxx

Org

-End3 1

-End4*

-End5 1

-End6

*

-name : String
-age : int

Dog

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1
-End7

1

-End8 *

𝔻𝔻𝑝𝑝𝑝𝑝𝑝𝑝 𝔻𝔻𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝

-name : String
-age : int
-owner : String
-state : String

Dog

-fsfsfds
-sfd

Clinic

-End11
-End2

*

-dfsfds
-ffd

Vet-End1

1

-End2

*

-name : String
-age : int

Dog

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1

-fsfsfds
-sfd

Clinic

-End11 -End2

*

-dfsfds
-ffd

Vet-End1

1

-End2

*

∀ 𝔸𝔸 ∈ 𝔻𝔻𝑝𝑝𝑝𝑝𝑝𝑝 :

∀ 𝔹𝔹 ∈ 𝔻𝔻𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 :

42

Need a Theorem Prover

𝑵𝑵𝒔𝒔

𝑵𝑵𝒔𝒔
−𝟏𝟏

a b

Nd

𝑵𝑵𝒅𝒅
−𝟏𝟏

domain of
all schemas

that satisfy N’s
preconditions

domain of
all schemas

that satisfy N’s
postconditions

∀ a ∈ 𝔸𝔸 :

∀ b ∈ 𝔹𝔹 :

a = ℝ−1 ⋅ ℝ(a)

b = ℝ ⋅ ℝ−1(b)

Need a Theorem Prover

𝑵𝑵𝒔𝒔

𝑵𝑵𝒔𝒔
−𝟏𝟏



What to Prove?

-name : String
-age : int
-owner : String
-state : String

Dog

𝔸𝔸 -name : String
-age : int

Dog

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1𝔹𝔹

RoundTrip
Theorems:

∀ a ∈ 𝔸𝔸 :

∀ b ∈ 𝔹𝔹 :

-name : String
-age : int
-owner : String
-state : String

Dog

-asdsa
-asd

Clinic

-End11
-End2

*

-dfdfdfd
-sds

Vet-End1

*

-End2

*

-sss
-sds
-xxx

Org

-End3 1

-End4*

-End5 1

-End6

*

-End7

1

-End8 *

-asdsa
-asd

Clinic

-End11 -End2

*

-dfdfdfd
-sds

Vet-End1

*

-End2

*

-sss
-sds
-xxx

Org

-End3 1

-End4*

-End5 1

-End6

*

-name : String
-age : int

Dog

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1
-End7

1

-End8 *

𝔻𝔻𝑝𝑝𝑝𝑝𝑝𝑝 𝔻𝔻𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝

-name : String
-age : int
-owner : String
-state : String

Dog

-fsfsfds
-sfd

Clinic

-End11
-End2

*

-dfsfds
-ffd

Vet-End1

1

-End2

*

-name : String
-age : int

Dog

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1

-fsfsfds
-sfd

Clinic

-End11 -End2

*

-dfsfds
-ffd

Vet-End1

1

-End2

*

∀ 𝔸𝔸 ∈ 𝔻𝔻𝑝𝑝𝑝𝑝𝑝𝑝 :

∀ 𝔹𝔹 ∈ 𝔻𝔻𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 :

43

a = ℝ−1 ⋅ ℝ(a)

b = ℝ ⋅ ℝ−1(b)

a b

Nd

𝑵𝑵𝒅𝒅
−𝟏𝟏

Need a Theorem Prover

𝔸𝔸 = 𝑵𝑵𝒔𝒔
−𝟏𝟏 ⋅ 𝑵𝑵𝒔𝒔(𝔹𝔹)

𝔹𝔹 = 𝑁𝑁𝑠𝑠 ⋅ 𝑁𝑁𝑠𝑠−1(𝔸𝔸)

∀ 𝔸𝔸 ∈ 𝕌𝕌𝑝𝑝𝑝𝑝𝑝𝑝  :

∀ 𝔹𝔹 ∈ 𝕌𝕌𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 :

Need a Theorem Prover



What to Prove?

-name : String
-age : int
-owner : String
-state : String

Dog

𝔸𝔸 -name : String
-age : int

Dog

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1𝔹𝔹

RoundTrip
Theorems:

-name : String
-age : int
-owner : String
-state : String

Dog

-asdsa
-asd

Clinic

-End11
-End2

*

-dfdfdfd
-sds

Vet-End1

*

-End2

*

-sss
-sds
-xxx

Org

-End3 1

-End4*

-End5 1

-End6

*

-End7

1

-End8 *

-asdsa
-asd

Clinic

-End11 -End2

*

-dfdfdfd
-sds

Vet-End1

*

-End2

*

-sss
-sds
-xxx

Org

-End3 1

-End4*

-End5 1

-End6

*

-name : String
-age : int

Dog

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1
-End7

1

-End8 *

𝕌𝕌𝑝𝑝𝑝𝑝𝑝𝑝 𝕌𝕌𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝

-name : String
-age : int
-owner : String
-state : String

Dog

-fsfsfds
-sfd

Clinic

-End11
-End2

*

-dfsfds
-ffd

Vet-End1

1

-End2

*

-name : String
-age : int

Dog

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1

-fsfsfds
-sfd

Clinic

-End11 -End2

*

-dfsfds
-ffd

Vet-End1

1

-End2

*
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a b

Nd

𝑵𝑵𝒅𝒅
−𝟏𝟏

∀ a ∈ 𝔸𝔸 :

∀ b ∈ 𝔹𝔹 :

∀ 𝔸𝔸 ∈ 𝔻𝔻𝑝𝑝𝑝𝑝𝑝𝑝 :

∀ 𝔹𝔹 ∈ 𝔻𝔻𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 :

a = ℝ−1 ⋅ ℝ(a)

b = ℝ ⋅ ℝ−1(b)

Need a Theorem Prover

𝔸𝔸 = 𝑵𝑵𝒔𝒔
−𝟏𝟏 ⋅ 𝑵𝑵𝒔𝒔(𝔹𝔹)

𝔹𝔹 = 𝑁𝑁𝑠𝑠 ⋅ 𝑁𝑁𝑠𝑠−1(𝔸𝔸)

∀ 𝔸𝔸 ∈ 𝕌𝕌𝑝𝑝𝑝𝑝𝑝𝑝  :

∀ 𝔹𝔹 ∈ 𝕌𝕌𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 :

Need a Theorem Prover

You and I 
know this
is correct

but…



Time To Rethink the Problem

• The Problem: MDE thinking deals with explicit pointers and associations
• Pointers are the problem!!    Their copies are not identical
• We took this into account in our Rooster proofs and it complicated things…
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Time To Rethink the Problem

• My Conjecture: MDE thinking deals with explicit pointers and associations
• Pointers are the problem!!    Their copies are not identical
• We took this into account in our Rooster proofs and it complicated things…

46

For refactoring   
verification,

avoid pointers
in proofs!

Too low level

lesson RDB community
learned 45 years ago  



• No explicit pointers and associations!  Still there: They are implemented differently

• Why is this important?

Use Database Abstractions Instead

47

Keys

Ans: Refactorings are localized
Proofs using non-embedded schemas may suffice!

-clinicKey

Clinic

1

*

-vetKey

Vet-End1

1

-End2

*

-orgKey

Org

1

*

1

*

1

*

-dogKey : String

Dog

-clinicKey
-orgKey

Clinic
-vetKey
-clinicKey
-orgKey

Vet

-orgKey

Org -dogKey : String
-clinicKey
-parentDogKey

Dog

-clinicKey
-orgKey

Clinic
-vetKey
-clinicKey
-orgKey

Vet

-orgKey

Org
-dogKey : String
-clinicKey
-parentDogKey
-ownerKey

Dog'

-ownerKey : 
String

Owner

-name : String
-age : int

Dog'

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1

-name : String
-age : int
-owner : String

Dog'

-owner : String
-state : String

Owner



Think in Terms of Categories!

• Simplify proofs when dealing with domains like 𝕌𝕌𝑝𝑝𝑝𝑝𝑝𝑝  and 𝕌𝕌𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝
• Limit proofs to largely local changes, independent of embeddings

DBases
wo. ptrs

LiftToDB

Dbases
wo. ptrsDBrefactor

MDE
w. ptrs

MDE
w. ptrs CDrefactor

LiftToDB-1

my thinking 
was at this level

it needed to be
at this level

48
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Questions?

How to refactor OCL constraints
takes ~14 minutes extra

most controversial part of Tutorial



Part 2:

How OCL
constraints might 

be refactored

50

and other CT facts
Here we go!



Part 2: How to Refactor OCL constraints
• Recall Relational Algebra (RA)

• select, project, join, count, exists… generic operations on tables

• OCL is a subset of RA in OO syntax; OCL is RA without proper join & projection operations

• I’ll present a sequence of facts about CT that seem unrelated but
together you will see the above result unfold and why it is important

51

MODELSWARD 
2020



• An algebra is a set of operations with typed inputs and typed outputs
• A category diagram depicts an algebra

Int String

bool
Int inc(Int)
Int dec(Int)
Int add(Int, Int)
Int times(Int,Int)
String toString(Int)
bool eq(String)

Fact #1: Every Category is an Algebra

52

Int

times(int)

Int

add(int)
Int inc(Int)
Int dec(Int)
Int add(Int, Int)
Int times(Int,Int)
String toString(Int)
bool eq(String)

Int inc(Int)
Int dec(Int)
Int add(Int, Int)
Int times(Int,Int)
String toString(Int)
bool eq(String)

Int inc(Int)
Int dec(Int)
Int add(Int, Int)
Int times(Int,Int)
String toString(Int)
bool eq(String)

toString

eq(String)

inc

dec



Fact #2: Every Category is a Finite State Machine

• Start at any node and end at any node…

53

Int String

inc

dec

add(int)

times(int)

toString

bool
eq(String)



Int String

inc

dec

add(int)

times(int)

toString

bool
eq(String)

Fact #3: Every Path is a Type-Correct Expression

• A path of in algebra’s category is an expression a composition of algebra operations

• Given a category is a 
finite state machine ⇒
parser for expressions of 
the category’s algebra!

54

4.times(5).times(3).toString().eq(“60”)

4

×5

×3

eq(“60”)



Int String

inc

dec

add(int)

times(int)

toString

bool
eq(String)

Fact #3: Every Path is a Type-Correct Expression

• A path of in algebra’s category is an expression a composition of algebra operations

• Given a category is a 
finite state machine ⇒
parser for expressions of 
the category’s algebra!

• We will return to this idea shortly
55

4.times(5).times(3).toString().eq(“60”)

4

×5

×3

eq(“60”)

Q

Building a parser
for the language 

of an algebra is easy



Dog’                                

Dog String

Int

name
owner
state

age

-name : String
-age : int
-owner : String
-state : String

Dog

Dog’ String

Int

name

owner

sta
te

Owner

ownedBy

age
-name : String
-age : int

Dog'

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1

Fact #4: Functors seem “almost” perfect

• To translate an expr of one algebra into corresponding expr of another

56Q
Dog.state()

Expression
to refactor:

Refactored
expression: Dog’.ownedBy().state()



Fact #5: RA Categories

• Lecture #1 showed every class diagram has a standard category

57

-name : String
-age : int

Dog

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1

Dog’ String

Int

name

owner

sta
te

Owner

ownedBy

agestandardCategory



Fact #5: Relational Algebra (RA) Categories  #1(

58

id name age ownedBy

2 Belle 5 Don

1 Hawkeye 1 Don

3 Wille 4 Jim

Dog.sort(name).count() = 

3.count() = 
Id name age ownedBy

1 Hawkeye 1 Don

2 Belle 5 Don

3 Wille 4 Jim

-name : String
-age : int
-owner : String
-state : String

Dog

Dog Table

RA Expression

Id Name Age OwnedBy

1 Hawkeye 1 Don

2 Belle 5 Don

3 Wille 4 Jim

Q

syntax &
semantic
similarity

with 
OCL

Derived 
RA Category

Dog
Tablesort(key)

Int

count



Int

Dog
Table

count

sort(key)

Dog.select(d→d.age==4).exists()   = 

Fact #5: Relational Algebra (RA) Categories  #2
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-name : String
-age : int
-owner : String
-state : String

Dog

Id name age ownedBy

1 Hawkeye 1 Don

2 Belle 5 Don

3 Wille 4 Jim

Dog Table
Id Name Age OwnedBy

1 Hawkeye 1 Don

2 Belle 5 Don

3 Wille 4 Jim

Id Name Age OwnedBy

3 Wille 4 Jim .exists() =

Id Name Age OwnedBy

1 Hawkeye 1 Don

2 Belle 5 Don

3 Wille 4 Jim

True

Derived 
RA Category

select(pred)

Bool

exists



-name : String
-age : int

Dog'

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1

ownedBy

Fact #5: Association Traversal is a RA      (right-semijoin)  #3

60

Id Owner State

d Don Tx

j Jim Ark

t Timmy Cal

g Greg Tx

Dog’.select(d→d.age<5).ownedBy()  = 

Id Name Age OwnedBy

1 Hawkeye 1 d

2 Belle 5 d

3 Wille 4 j

4 Lassie 7 t

5 Pancake 6 g

Id Name Age OwnedBy

1 Hawkeye 1 d

2 Belle 5 d

3 Wille 4 j

Id Owner State

d Don Tx

j Jim Ark

RA Category

.ownedBy()  = 

given table of Dogs, produce table of their owners

IntBool

Dog’
Table

select(pred)

countexists

sort(key)

IntBool

Owner
Table

countexists

sort(key)

select(pred)

owndBy()
in RA is a

right semijoin



Fact #5: Association Traversal is a RA        (right-semijoin)  #4
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Id Owner State

d Don Tx

j Jim Ark

t Timmy Cal

g Greg Tx

Id Name Age OwnedBy

1 Hawkeye 1 d

2 Belle 5 d

3 Wille 4 j

4 Lassie 7 t

5 Pancake 6 g

Id Name Age OwnedBy

1 Hawkeye 1 d

2 Belle 5 d

3 Wille 4 j

.hasDogs()  = 
Id Owner State

d Don Tx

j Jim Ark

ownedby

RA Category

hasDogs()
in RA is a

right semijoin

hasDogs

-name : String
-age : int

Dog

-owner : String
-state : String

Owner'-hasDogs

1..*

-ownedBy

1

IntBool

Dog’
Table

select(pred)

countexists

sort(key)

IntBool

Owner
Table

countexists

sort(key)

select(pred)



Fact #5: Association Traversal is a RA           (right-semijoin)  #4

62

Id Owner State

d Don Tx

j Jim Ark

t Timmy Cal

g Greg Tx

Id Name Age OwnedBy

1 Hawkeye 1 d

2 Belle 5 d

3 Wille 4 j

4 Lassie 7 t

5 Pancake 6 g

Id Name Age OwnedBy

1 Hawkeye 1 d

2 Belle 5 d

3 Wille 4 j

.hasDogs()  = 
Id Owner State

d Don Tx

j Jim Ark

ownedby

RA Category

hasDogs()
in RA is a

right semijoin

hasDogs

-name : String
-age : int

Dog

-owner : String
-state : String

Owner'-hasDogs

1..*

-ownedBy

1

IntBool

Dog’
Table

select(pred)

countexists

sort(key)

IntBool

Owner
Table

countexists

sort(key)

select(pred)

Keep going and you’ll
define an RA approximation

of OCL in CT
see MODELSWARD paper for details



RA Dog’-
Owner

Category
RACat

domain of all
RA/OCL constraints

and expressions
for Dog’-Owner

 Schema

RA Dog
CategoryRACat

domain of all
RA/OCL constraints

and expressions
for Dog Schema

Putting it Together
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-name : String
-age : int
-owner : String
-state : String

Dog

-name : String
-age : int

Dog'

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1

N N

Looks promising to refactor OCL constraints!

NN-1 N-1 N-1



What I learned that you should know!

• Refactorings that delete domains cause problems in static models! 

64

<expression to recreate Owner table>
.select(o->o.state==“Tx”).count()<6

how does
constraint’
translate?

N-1

Dog.project(owner,state)

Database
Solution:

Dynamically
Reconstruct

Owner Table!

Owner
.select(o->o.state==“Tx”).count()<6

constraint’

# of owners in Tx must be less than 6

-name : String
-age : int
-owner : String
-state : String

Dog

-name : String
-age : int

Dog'

-owner : String
-state : String

Owner-hasDogs

1..*

-ownedBy

1
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• Refactorings that delete domains can cause problems in static models! 

<expression to recreate Dog table>
.select(d->d.age<5)

how does
constraint’
translate?

Dog
.select(d->d.age<5)

constraint’

N-1

Owner.project(name,age,owner)
.select(d->d.age<5)

Database
Solution:

Dynamically
Reconstruct

Owner Table!

Problem: Not sure this is
possible in OCL!

  
Must dynamically recreate

classes (tables) – that seems
verboten to class diagrams!

    

If you could, then you
can refactor OCL constraints!!

Ph.D. Topic



What You Should Have Learned

• CT is very powerful and practical way to think
• Uses simple graphics to express complex ideas

• Given
• Refactorings in MDE are important
• Refactoring of class diagrams & object diagrams & constraints are still open problems

• CT
• reveals the tasks required to verify refactorings
• showed us where serious challenges lie (nested quantifiers)

• encouraged broader thinking (using databases) to solve these problems

67



End of Lecture #2
End of Tutorial

 
Thank you!!

Questions?
68Q



The End of This Tutorial

• Most famous category in Swedish Language:

69

E3

E5 E1 E4

H3 H6

H2 H5

H1

L7

L6

L5

R3 R6

R2

R1 R4

L3 L4

L2L1


	Category Theory �  without math �well, maybe just a wee bit
	Lecture #2: Two MDE Applications using Functors
	Very Different than Lecture #1
	Tutorial: Lecture #2a
	Functors�and Embeddings
	Functor Definition 
	Functor  𝔽  embeds 𝕃 into ℝ   definition  meaning
	Simple Example: Functor 𝔽:𝕃→ℝ
	Simple Example: Functor 𝔽:𝕃→ℝ
	Slide Number 13
	Special Case #1: Category Equivalence
	Special Case #2: Domain Equivalence 
	A Common�Example of �a Functor
	Revisit the Java Compiler
	Meta-Functor
	Correct CT Terminology for Purists
	Main Event��Verifying�Class Diagram�Refactorings
	Metamodels in MDE
	Focus on Subset of UML Class Diagrams
	From Lecture #1
	Equalities or Isomorphisms 
	Enter�the World of Refactorings
	What are Refactorings?
	The Normalize�Refactoring
	Initial Model
	Normalize Schema and Database Refactoring 
	Unnormalize Schema and Database Refactoring 
	Big Picture of Upcoming Slides
	Big Picture of Upcoming Slides
	Part 1:��Verifying�Schema & Database�Refactorings
	What to Prove?
	Described in ACM TOSEM April 2023
	What we learned ⇒ You should learn too!
	What we learned ⇒ You should learn too!
	What we learned ⇒ You should learn too!
	Not Finished!�More Embeddings�may be controversial
	Embeddings Again!
	What to Prove?
	What to Prove?
	What to Prove?
	 Time To Rethink the Problem
	 Time To Rethink the Problem
	Use Database Abstractions Instead
	Think in Terms of Categories!
	End of Part 1�of Lecture 2
	Part 2:��How OCL�constraints might �be refactored
	Part 2: How to Refactor OCL constraints
		Fact #1: Every Category is an Algebra
		Fact #2: Every Category is a Finite State Machine
		Fact #3: Every Path is a Type-Correct Expression
		Fact #3: Every Path is a Type-Correct Expression
		Fact #4: Functors seem “almost” perfect
		Fact #5: RA Categories
	Fact #5: Relational Algebra (RA) Categories	 	#1(
	Fact #5: Relational Algebra (RA) Categories		#2
	Fact #5: Association Traversal is a RA      (right-semijoin)		#3
	Fact #5: Association Traversal is a RA        (right-semijoin) 		#4
	Fact #5: Association Traversal is a RA           (right-semijoin) 		#4
	Putting it Together
	 What I learned that you should know!
	 
	What You Should Have Learned
	End of Lecture #2�End of Tutorial� �Thank you!!
	The End of This Tutorial

