

Lecture #2: Two MDE Applications using Functors

* App #1: verifying class & object diagram refactorings

equiv: schema and database refactorings

* Will use core 40-year-old relational database ideas & terminology

* App #2: Relationship of CT + relational algebra = foundation for OCL neat result

* Purpose of this lecture: show non-trivial examples of how CT organizes
difficult problems and “how to think” in a structured way

Very Different than Lecture #1

* Tour of an old, but still open, research area open for at least 2+ decades
» Refactoring class diagrams + OCL constraints + object diagrams

e Refactoring is central to modern OO software development
* refactoring should have a central role in MDE meta-model development too

* And it is surprisingly hard... .
e give you an insight why Sit baCk’ rEIaX’

e explain most recent progress w. CT viewpoint tO |ea rn some
* show what it would take to solve

* open problems suitable for PhDs neat |deaS!

Tutorial: Lecture #2a

Ends at 17:00

part is Lecture #2b
Ends at 17:17

/A=

Functors
and Embeddings

—

definition and examples
Herewe goy,

Functor Definition

Functor F:IL - IR is an embedding of category LL in category R
1. Arrow from each domain D in IL to a domain F(D) in R
2. Arrow from each arrow 68:D; —» D, inLto F(6):F(D,) - F(D,)inR

“Embedding” = @ 55555555 @

every pt and arrow
and every inferable L ©----___ f R

arrow of L is : ,,:
accounted for in R @/ -7 & Simple but

much is unsaid

LoR :

FunCtOr IF embeds IL intO R definition meaning

LoR
(7 [AR
L %:/ T l R
4 — g P O
OY N\ S PrT
intarnal diacram AnFT intarnal diacram nf TR

—_

[F preserves the ecint mutigrapn Structure of IL in R

Simple Example: Functor F: L - R

R

Let’s
infer the arrows

intfarnal Aiacgrarm AF Tl ntarnal Aiaograrm AfF IR 11

Simple Example: Functor F: L - R

What points are
they connected
to?

Ans: for this example, it doesn’t matter -- pick any point in A
intfarnal Aiacgrarm AF Tl ntarnal Aiaograrm AfF IR

That’s a lot!

Fortunately, all examples of functors

familiar to me in SE are special cases

that are easy to understand

13

Special Case #1: Category Equivalence

e Categories with the same “shape” are isomorphic: L9 R and R L
* only difference between IL. and R are the names of points, domains, arrows
 functors of isomorphic categories have inverses

[F
e e B e
F~ 1

Special Case

2: Domain Equivalence

* Two categories each with a single domain J and C; functor IF:] — C relates them

* Two domains are isomorphic if their points are in 1:1 correspondence

L J

will use this

[F C later!]:R

15

A Common
Example of
a Functor

and correct CT terminology

Revisit the Java Compiler

* A Java program is a category of Java files rooted at Main.java

* javac translates a JavaProgram into an isomorphic category of dotClass files
all pts & arrows on Java side are preserved

/
javac f%\

main

* Note: these categories are at the internal level only — they don’t have internal diagrams!!

17

Meta-Functor

¢ javac, d meta-functor, translates every Java Program a category Into
d DotCIassProgram an isomorphic category

JavaPrograms javac DotClassPrograms
7 §

Meta-Functor

Functor

Correct CT Terminology for Purists

Arrow

My Meta-Arrow
Terminology

Functor

Meta-Functor
Point, Element
Domain

= Arrow

= Arrow

—

i 4 4

Functor
Functor
Object
Object

Correct CT
Terminology

| will continue to use my terminology

Main Event

Verifying
Class Diagram
Refactorings

Ph.D. Topic

Metamodels in MDE

* 3 ways to declare metamodels in MDE:

Metamodel Decl Instance

This Lecture | Class diagram + OCL constraints Object Diagram

Focus on Subset of UML Class Diagrams

* No interfaces, no methods

* Only classes, data members,
associations, and class inheritance

e Subset known for 25 years
IBM’s Rational Rose depicts relational
database schemas with table inheritance

* Instances of schema are relational
databases with table inheritance

H MindMapModel

g

1.”

H Content

Ea

1

H Structure - H GraphicalConactor B Tag
=2 O nodelDi
= nodellD i
1-*
B NMZ—K-* T
= nodelD Sk T S)
O nodeText ge = No n oW
O npotation 'ﬂ_g:t
- E'-:.. \
HGr [‘f‘ T H Notation
o & E Lea
Elfli-:anter H Relationship o Textua H Ien H [moge

Abstractions
are largely
interchangeable

even though...
MDE & DBMSs
have very
different
implementations

From Lecture #1

MDE databases
meta-class diagram isomorphic meta-schema

class
diagrams

\ schema

/

object diagrams — ~~ databases

MOF

meta
model

Equalities or Isomorphisms

Model Driven Engineering

Owner

’—owner : String
-state : String

object
diagram

Dog -hasDogs -ownedBy
-name : String
-age :int
1.* 1
OCL Constraints
objl : Dog'
name: String = Hawkeye| %
age:int=3 T ////
obj2 : Dog' - -
name : String = Belle ////
age:int=6 f
obj3 : Dog' /////

name : String = Willie
age:int=4

the same

the same

Obj3 : Owner

owner : String = Don
state : String = Tx

Relational Databases

Dog

-name : String
-age :int

-hasDogs

-ownedBy

Owner

’—owner : String

more scalable

1.*

-state : String

1

Relational Algebra Constraints

Obj5 : Owner

owner : String = Jim
state : String = Ark

schema

database

Id Name Age OwnedBy
Id Owner State
1 | Hawkeye 1 o |
% d Don Tx
2 Belle 5 o | - I e
[y im r
3 Willie 4 o |

Enter
the World of
Refactorings

What are Refactorings?

* In physics, there are coordinate transformations

* that reposition an object to get
a particular view of it

* does not change object semantics

* Watch this video of a 3D sculpture
by James Hopkins. A rotation is
a coordinate transformation

)

Refactorings are the software counterpart | presere semantics

| invertible

to COoO rd i nate tr‘a nSfO rm ations R is discrete, not continuc2)7us

The Normalize
Refactoring

Running Example/Exemplar

Dog

Model mn

-age :int

-name : String

-owner : String
-state : String

Initial Model

Schema = class diagram

Database constraints called functional dependencies
Names of dogs is unique:
Names of owners are unique: owner — state

name — age, owner, state

not OCL constraints (technically)

Id

Age Owner

State

A\

database instance of schema

1 | Hawkeye 1 Tx
2 Belle 5 Don Tx
3 Willie 4 Jim Ark
4 Lassie 7 | Timmy | Cal
5 | Pancake 6 Greg Tx

Problem with this design:

owner-state data is replicated

ANy N

29

NOrmaIize Schema and Database REfa CtOring

Model m

Dog

Model m

-name : String
-age :int
-owner : String
-state : String

Normalize
schema

Database constraints called functional dependencies
Names of dogs is unique:

name — age, owner, state

Dog

-name : String
-age : int

-hasDogs

-ownedBy

1

Owner

’-owner : String

-state : String

Names of owners are unique: owner —> state same
Id Name Age Owner State
1 | Hawkeye 1 Don Tx
2 Belle 5 Don Tx Normalize
3 | willie 4 Jim Ark database
4 Lassie 7 | Timmy | Cal
5 | Pancake 6 Greg Tx

Functional dependencies stay the same
Names of dogs is unique:
Names of owners are unique: owner — state

name — age, owner, state

Id Name Age OwnedBy
Id Owner State
1 | Hawkeye 1 *— |
| d | Don X
2 Belle 5 o— | : F ATk
>] im r
3 Willie 4 — - o
> immy a
4 Lassie 7 — | - -
g reg X
5 | Pancake 6 T

30

Unnormalize schemaand patabase Refactoring

Model m

Dog

Model m

-name : String
-age :int
-owner : String
-state : String

Unnormalize
schema

Database constraints called functional dependencies
Names of dogs is unique:
Names of owners are unique: owner — state

name — age, owner, stat
same

Dog

-name : String
-age : int

-hasDogs

-ownedBy

1

Owner

’-owner : String

-state : String

Id Name Age Owner State
1 | Hawkeye 1 Don Tx

2 Belle 5 Don Tx

3 Willie 4 Jim Ark
4 Lassie 7 | Timmy | Cal
5 | Pancake 6 Greg Tx

N

Functional dependencies stay the same
Names of dogs is unique:
Names of owners are unique: owner — state

name — age, owner, state

Unnormalize
database

Id Owner State

d Don Tx
j Jim Ark
t | Timmy [Cal
g Greg Tx

Id Name Age OwnedBy

1 | Hawkeye 1 *— |

2 Belle 5 0/>
3| willie 4 — |
4 Lassie 7 0//
5 | Pancake 6 —T

31

Big Picture of Upcoming Slides

* “Model” is a 3-tuple (OCL Constraints, Schema, Database)
* Normalize: N(my) =mp and NYmpg) =my

Big Picture of Upcoming Slides

* Part 1: how we verified refactorings of schemas and their databases
*- MDE: a transformation of a type and its instances is a co-transformation

* Part 2: how OCL constraints might be refactored (and other interesting CT ideas)

Part 2: Cp 3 > Cgr

Dog
''''' : String Dog' -hasDogs -ownedBy Owner

S -age :int -name : String ’—owner : String S
I, |-owner : String -age :int -state : String R

v

A

-state : String 1.* 1

Part 1:

Part 1.

/A=

Verifying
Schema & Database
Refactorings

—

Herewe goy,

~1 mintutes

RoundTrip
Theorems:

Prove
domaing
A and IR

are

icomonrnhic

What to Prove?

A= N;l N (A) Va€A: a=Ny;' Ny
schema: database:
B =N, N;1(B) VbeEB: b=Ny N;'(b)
fixed schemas Y schema instances
Easy! Need a Theorem Prover

Now 2 vanilla nroblem

iNn thenrem nrovvino

35

Described in ACM TOSEM April 2023

On Proving the Correctness of Refactoring Class Diagrams of
MDE Metamodels

NAJD ALTOYAN" and DON BATORY, The University of Texas at Austin, USA

Model Driven Engineering (MDE) is general-purpose engineering methodology to elevate system design,
maintenance, and analysis to corresponding activities on models. Models (graphical and/or textual) of a target
application are automatically transformed into source code, performance models, Promela files (for model
checking), and so on for system analysis and construction.

Models are instances of metamodels. One form an MDE metamodel can take is a [class diagram, constraints|
pair: the class diagram defines all object diagrams that could be metamodel instances; OCL constraints
eliminate semantically undesirable instances.

A metamodel refactoring is an invertible semantics-preserving co-transformation, i.e., it transforms both a
metamodel and its models without losing data. This paper addresses a subproblem of metamodel refactoring:
how to prove the correctness of refactorings of class diagrams without OCL constraints using the Coq Proof
Assistant.

* We identified a set non-trivial meta-model refactorings (including normalize)

* Proved these refactorings correct using the CT structure of prior slides
and used the Coqg Proof Assistant (Rooster theorem prover)

* Proof details are in the paper

What we learned = You should learn too!

* About Cog (Rooster) Proof Assistant

* Remarkable tool, but is not the theorem prover to use in the future for these problems
« Why? Answer: itis at the wrong level of abstraction

* Proofs are much too difficult
* All meta-model refactorings we encountered define relational algebra equalities

Dog

-name : String Dog’ -hasDogs -ownedBy Owner
-age :int L -name : String ’—owner : String
-owner : String | -age :int -state : String
-state : String 1.* 1

- : Dog’ = l-[name,age,owner Dog
Dog = Dog’ x Owner Owner = Iyyner state DO

What we learned = You should learn too!

* Relational algebra operations are co-transformations
* One proof suffices for both the schema AND the database level!

* Still some problems to solve...

Dog

-name : String
-age :int I
-owner : String I
-state : String

Dog = Dog’ < Owner

Dog ‘

-name : String
-age : int

-hasDogs

-ownedBy

Owner

’—owner : String

1.*

1

-state : String

r_
Dog = l-lname,age,owner Dog
Owner = l-lowner,state Dog

38

What we learned = You should learn too!

* What is needed doesn’t yet exist

* Need a theorem prover of relational algebra (R,) identities
* Define MDE refactorings as compositions of R, operations
* State refactoring as a R, identity + verify!

* Potential for a big impact

/\/\—//:\/\—/

Ph.D. Topic

,/\/\/

Not Finished:!
More Embeddings

may be controversial

Ph.D. Topic

Embeddings Again!

* Class diagrams are rarely this isolated:

Dog
-name : String N Dog' -hasDogs -ownedBy Owner
-age :int - » |-name : String ’l-owner : String
-owner : String | -1 -age :int -state : String
-state : String N 1. 1

-hasDogs -ownedBy
1.* 1

41

RoundTrip
Theorems:

domain of

all schemas
that satisfy N’s
preconditions

What to Prove?
)

-
VAED,,: A=N;l Ny(B)
kv B € Dyost: B =N - Ns‘l(AL

Need a Theorem Prover

VaeA: a=R 1 R(a)

VbeB: b=R-R1(b)

Need a Theorem Prover

domain of

all schemas
that satisfy N’s
postconditions

RoundTrip
Theorems:

-

_

What to Prove?
)

VAEUy,: A=N;' Ny(B)

VBEUyys: B=N,- Ns‘l(AL

Need a Theorem Prover

VAED,,,: Va€A: a=R"'-R(a)

VBED,: VbeEB: b=R-R(b)

Need a Theorem Prover

43

What to Prove?
: r)
RoundTrlp VAEU,.: A=N;l Ny(B) VAED,,: YVacA: a=R* R()
Theorems: |vBeu,,.: B=N, va)
—/

VBED,,: VbeB: b=R-R1(b)

eorem Prover

You andl |
"W know this [ff ~ "

D R . by f e

nnnnnnnnnn
(((((((((((

-J . Iscorrect [
but... ||

L] 1d Owner State
ey e s
5 om [an

ey

44

Time To Rethink the Problem

* The Problem: MDE thinking deals with explicit pointers and associations
* Pointers are the problem!! Their copies are not identical
* We took this into account in our Rooster proofs and it complicated things...

Id Name Age OwnedBy Id Name Age OwnedBy
Id Owner State Id Owner State
Hawkeye O Hawkeye O

1 1 ‘ 1 1
d Don Tx) d Don Tx
2 Belle 5 o/) 2 Belle 5 —
i Jim Ark I g I Jim Ark
3 Willie 4 o// J 3 Willie 4 — | J
__— t | Timm Cal —%| t | Timm Cal
4 Lassie 7 ~— | E 4 Lassie 7 — | E
—> g Greg Tx —>| g Greg Tx
5 Pancake 6 o 5 Pancake 6 o

45

Time To Rethink the Problem

* My Conjecture: MDE thinking deals with explicit pointers and associations
P Pointers are the pr..I.IA...II T Al e HP Py § P [P 5

 We took this into

cal

lesson RDB community
learned 45 years ago ®

Id Owner State

d Don Tx

Jim Ark

L
4 Lassie 7 %—
(—

J
t | Timmy | Cal
5 Pancake 6 =

Greg Tx

46

Use Database Abstractions Instead

* No explicit pointers and associations! still there: They are implemented differently

Dog'

-name : String

-age :int

-owner : String

Id

Name

Age

1 | Hawkeye 1 0
2 Belle 5 d
3 Wille 4 j
4 Lassie 7 t
5 Pancake 6 g

* Why is this important?

Owner

-owner : String
-state : String

Ark

Cal

TX

Clinic

-clinicKey
-orgKey

Org

-orgKey

Vet

-vetKey
-clinicKey
-orgKey

Dog'

-dogKey : String
-clinicKey
-parentDogKey
-ownerKey

Ans: Refactorings are localized
Proofs using non-embedded schemas may suffice!

Owner

-ownerKey :

String

Think in Terms of Categories!

it needed to be
at this level

my thinking
was at this level

LiftToDB

DBrefactor—»@
WO. ptrs

LiftToDB™

@Cmefactor
W. ptrs

» Simplify proofs when dealing with domains like Uy, and U,

//\\—/_\/\/

Ph.D. Topic

* Limit proofs to largely local changes, independent of embeddings

|
Z:(é ST PAre

D

Part 2.

/A=

How OCL
constraints might
be refactored

and other CT facts

—

Herewe goy,

~14 minutes

Part 2: How to Refactor OCL constraints

* Recall Relational Algebra (R,)

* select, project, join, count, exists... generic operations on tables

e OCL is a subset of RA in OO syntax; OCL is R, without proper join & projection operations

Aocl : A Pure-Java Constraint and Transformation Language for MDE

Don Batory and Najd Altoyan

Department of Computer Science

The University of Texas at Austin, Austin, Texas MODELSWARD

batory, naltovan} @cs.urexas. edu
{batory, nalioyan} 2020

OCL is a standard MDE language to express constraints. OCL has been criticized for being too complicated,
over-engineered, and difficult to learn. But beneath OCL’s complicated exterior is an elegant language based
on relational algebra. We call this language & ., which has a straightforward implementation in Java. & .
can be used to write OCL-like constraints and model transformations in Java. A simple MDE tool generates
an & .y Java 8.0 package from an input class diagram for & __ to be used.

* I’ll present a sequence of facts about CT that seem unrelated but
together you will see the above result unfold and why it is important

51

Fact #1: Every Category is an Algebra

* An algebra is a set of operations with typed inputs and typed outputs

* A category diagram depicts an algebra

String toString(Int)
bool eq(String)

times(int)

add(int) ‘\

eq(String)

toString
N
k/ ¢

Fact #2: Every Category is a Finite State Machine

 Start at any node and end at any node...

times(int)

add(int)

(String)
/“A
dec toString

Fact #3: Every Path is a Type-Correct Expression

* A path of in algebra’s category is an expression a composition of algebra operations

4-time5(5)A-times(3).AtOString()ieq(”6()"4)al
T W o 1

* Given a category is a
finite state machine =
parser for expressions of
the category’s algebra!

54

Fact #3: Every Path is a Type-Correct Expression

* A path of in algebra’s category is an expression a composition of algebra operations
% Building a parser %
for the language
. Gi\{en a category . JD\
finite state mach Of @ algebra IS easyl . .,

parser for exprest———.
the category’s algebra!

* We will return to this idea shortly

Fact #4: Functors seem “almost” perfect

* To translate an expr of one algebra into corresponding expr of another

age

Dog

-name : String

-age :int
-owner : String
-state : String

Refactored
expression:

Expression

to refactor: Dog’.ownedBy().state()

Dog.state()

Fact #5: R, Categories

* Lecture #1 showed every class diagram has a standard category

Dog -hasDogs -ownedBy Owner
-name : String PO String Standardcategorz >
-age :int -state : String ownedB
1..* 1
8
O/]/

Fact #5: Relational Algebra (R,) Categories 1

Dog
-name : String _ _
age - int Dog.sort(name).count() = R, Expression
-owner : String
-state : Strin
= syntax &
id name age ownedBy .
semantic
2 Belle 5 Don T
—_ similarit
1 | Hawkeye § 1 Don 'Count() - 3 ith Y
Dog Table | . Wi
Id Name Age OwnedBy Wille 4 Jim OCL
1 | Hawkeye 1 Don
2 Belle 5 Don
3 Wille 4 Jim
. Dog
. sort(ke
Derived (key)\ Table
R, Category count

Fact

5: Relational Algebra (R,) Categories

Dog

-age :

-name : String

int

-owner : String
-state : String

Dog Table
id Name Age OwnedBy
1 | Hawkeye 1 Don
2 Belle 5 Don
3 Wille 4 Jim

2

Dog.select(d—d.age==4).exists() =

Id
3

Name

Wille

Age OwnedBy
4 Jim *

Derived
R, Category

select(pred)

exists() = True

Fact #5: Association Traversal is a R, X (right-semioin #3
Id Name Age OwnedBy

; 1 | Hawkeye 1 d -~=q-—--_____

Dog -hasDogs -ownedBy Owner | @ T 1 | __--—----T ~ d Don Tx
-name : String ’—owner : String 2 Belle > d -- -] Jim Ark
-age :int -state : String 3 Wille 4 j --r-"""777

1.* 1) - ___- -t | Timmy | Cal
4 Lassie 7 t --r~~~ " o Greg T

5 | Pancake 6 g ——f----—""""77 ‘
’ —
Dog’.select(d—d.age<5).ownedBy() =

select(pred) select(pred) -
/‘ ownedBy N
sort(key) sort(key) Id Name Age OwnedBy T T
1 | Hawkeye 1 d

exists count exists _ count = c : . OW N e d By() = d Don Tx

Belle
: . j Jim Ark
in R, is a

right semijoin

R, Category given table of Dogs, produce table of their owners 60

Fact #5: Association Traversal is a R, X (ignt-semioin) #4
A
Id Name Age Owndy

: 1 | Hawkeye 1 —t——-———_ __
Dog -hasDogs -ownedBy Owner' | @ ————— T T | ___-----—% ~d Don Tx
-name : String "-owner : String 2 Belle > d -- -] Jim Ark
-age :int -state : String 3 Wille 4 j --r-"""777
1.* ! 1 ___- -t | Timmy | Cal
4 Lassie 7 t --r~-~""
_____ g Greg Tx
5 | Pancake 6 g --r—-——~~°
select(pred) select(pred)
k/‘ ownedby -~) PR T
t t
sort(key) Table Jg—= hasbogs sort(key) Id Owner
exists count exists count . h aSs D Ogs () -

® ®06
inR,is a

right semijoin

R, Category

61

Fact #5: Association Traversal isa R, X (right-semioin

Id Name Age OwnedBy

of OCLin CT

’ owng¢
sort(key) Dog

/e see MODELSWARD paper for details

define an R, approximation

Id Owner State
: 1 | Hawkeye 1 d -=q4--____

Dog -hasDogs -ownedBy Owner | | | | |_ ______________ d Do Tx
_____ : String Aatmor Ctrine 2 Belle 5 d — s
-age :int

Keep going and you II i
Tx

Jim

Ark

©E @@ -

R, Category

hasDogs()
inR,is a
right semijoin

1 d
5 d
3 Wille 4 j

62

Putting it Together

domain of all
R,/OCL constraints
and expressions
for Dog Schema

Dog

-name : String

-age :int RACat

-owner : String
-state : String

[

NI N
\ l domain of all
DOE" -hasDogs -ownedBy Ow : RA/OCL ConStralntS
ame Sing : o e St R,Cat and expressions
L. L for Dog’-Owner
Schema

Looks promising to refactor OCL constraints!

63

What | learned that you should know!

* Refactorings that delete domains cause problems in static models!

Dogs -ownedBy | Owner
-owner : String
-state : String

-name : String
-age :int

Dog

select(pred)

select(pred) select(pred) N-1
ownedBy Database
sort(key) sort(key) Solution:
hasDogs .
Dynamically
exists count exists count Re Constru Ct
Owner Table!
Owner how does
.select(o->0.state=="“Tx").count()<6 constraint’
translate?

constraint’

of owners in Tx must be less than 6

exists count

. ©6

Dog.project(owner,state)
.select(o->o.state=="Tx").count()<6

64

Problem: Not sure this is
possible in OCL!

* Refacto nodels!

select(f ct(pred)

Must dynamically recreate (> —
= classes (tables) — that seems | Ph-D- Topic

exists e —— e —

verboten to class diagrams! | (i)

sort(key)

If you could, then you
can refactor OCL constraints!!

age<5)

What You Should Have Learned

e CT is very powerful and practical way to think
* Uses simple graphics to express complex ideas

* Given
» Refactorings in MDE are important
» Refactoring of class diagrams & object diagrams & constraints are still open problems

e CT
* reveals the tasks required to verify refactorings
* showed us where serious challenges lie (nested quantifiers)
* encouraged broader thinking (using databases) to solve these problems

The End of This Tutorial

.

* Most famous category in Swedish Language:

©-0-© ©—©

©—O
(Thank You!)

®

	Category Theory � without math �well, maybe just a wee bit
	Lecture #2: Two MDE Applications using Functors
	Very Different than Lecture #1
	Tutorial: Lecture #2a
	Functors�and Embeddings
	Functor Definition
	Functor 𝔽 embeds 𝕃 into ℝ definition meaning
	Simple Example: Functor 𝔽:𝕃→ℝ
	Simple Example: Functor 𝔽:𝕃→ℝ
	Slide Number 13
	Special Case #1: Category Equivalence
	Special Case #2: Domain Equivalence
	A Common�Example of �a Functor
	Revisit the Java Compiler
	Meta-Functor
	Correct CT Terminology for Purists
	Main Event��Verifying�Class Diagram�Refactorings
	Metamodels in MDE
	Focus on Subset of UML Class Diagrams
	From Lecture #1
	Equalities or Isomorphisms
	Enter�the World of Refactorings
	What are Refactorings?
	The Normalize�Refactoring
	Initial Model
	Normalize Schema and Database Refactoring
	Unnormalize Schema and Database Refactoring
	Big Picture of Upcoming Slides
	Big Picture of Upcoming Slides
	Part 1:��Verifying�Schema & Database�Refactorings
	What to Prove?
	Described in ACM TOSEM April 2023
	What we learned ⇒ You should learn too!
	What we learned ⇒ You should learn too!
	What we learned ⇒ You should learn too!
	Not Finished!�More Embeddings�may be controversial
	Embeddings Again!
	What to Prove?
	What to Prove?
	What to Prove?
	 Time To Rethink the Problem
	 Time To Rethink the Problem
	Use Database Abstractions Instead
	Think in Terms of Categories!
	End of Part 1�of Lecture 2
	Part 2:��How OCL�constraints might �be refactored
	Part 2: How to Refactor OCL constraints
		Fact #1: Every Category is an Algebra
		Fact #2: Every Category is a Finite State Machine
		Fact #3: Every Path is a Type-Correct Expression
		Fact #3: Every Path is a Type-Correct Expression
		Fact #4: Functors seem “almost” perfect
		Fact #5: RA Categories
	Fact #5: Relational Algebra (RA) Categories	 	#1(
	Fact #5: Relational Algebra (RA) Categories		#2
	Fact #5: Association Traversal is a RA (right-semijoin)		#3
	Fact #5: Association Traversal is a RA (right-semijoin) 		#4
	Fact #5: Association Traversal is a RA (right-semijoin) 		#4
	Putting it Together
	 What I learned that you should know!
	
	What You Should Have Learned
	End of Lecture #2�End of Tutorial� �Thank you!!
	The End of This Tutorial

