
CS386D Problem Set #1

[1] Consider the following query:

select * from A a, B b, C c, D d
where a.X=b.X and b.Y=c.Y and c.Z=d.Z and d.W=A.W

(a) List all of the logical access plans are examined by the System R optimizer. Hint: do not show the
stream ordering and join predicate parameters in your expressions. Follow the analysis in the class
notes (choose a sink and find all 1-relation queries, then prune, 2-relation queries, then prune, etc.)

(b) What logical access plans are not examined by the System R optimizer? Why are they are not
considered?

[2] Consider a linear query graph. What is the size of the search space that System R examines? (or how
many plans does System R generate)? Pick one question — they have different answers.

[3] Consider the following attributes, their cardinalities, and index storage structures:

Attribute Cardinality
Storage
Structure

A 20 B+ trees

B 2000 B+ trees

C 2000 hash

D 20 Not Indexed

Now consider the following local predicates. For each predicate, what index would you use (if any) to
most efficiently retrieve the tuples that satisfy this predicate:

(a) B=3 or B=4

(b) B= 66 and C=12

(c) B>3 and C>77

(d) B=22 and A = 15

(e) D=44 and B>34 

[4] Suppose join predicates are of the form “A or B or C or ...” where A, B, C, ... are typical conjunctive
join predicates. How would you generalize the System R algorithm to process such queries?
1

solution

[1a]

a b

cd

1 relation queries are a, b, c, d

2 relation queries are a-b, a-d, b-a, b-c, c-b, c-d, d-a, d-c
pruning: ab = min(a-b,b-a), bc = min(b-c, c-b), cd = min(c-d, d-c), ad = min(a-d,d-a)


3 relation queries are: ab-c, ab-d, bc-a, bc-d, cd-a, cd-b, ad-b, ad-c
pruning: abc = min(ab-c, bc-a), abd = min(ab-d, ad-b), bcd = min(bc-d, cd-b), acd = min(cd-a, ad-c)

4 relation queries are: abc-d, adb-c, bcd-a, acd-b
pruning abcd = min(abc-d, adb-c, bcd-a, acd-b)

[1b] system r produces left-deep operator trees (meaning that the right operation is a retrieval, never a
join). So a plan never considered is ((a,b),(c,d)) i.e., join(join(a,b), join(c,d))

[2] A linear query of n relations is a query graph that is a line:
1 2 3 nn-1

…

How many distinct logical access plans (or equivalently, join orderings) could be produced by the Sys-
tem R algorithm for a linear query of n relations? You are to ignore stream orderings and simply con-
sider the number of distinct orders in which relations can be joined. Define a (closed-form) formula for
S(n). You may find the following identity helpful:

2
k k

i 
 

i 0=

k

=

Let node i be the sink node. There are i-1 nodes to the “left” of i and n-i nodes to the right. There are
n 1–
i 1– 

  ways of forming a logical access plan, given node i as a sink. Reason: fixing i, nodes can be
dragged down the sink in any order of listing from right to left. Summing over all positions for i, we
have the total number of logical plans that can be created:

S n  n 1–
i 1– 

 

i 1=

n

=

It follows that S(n) = 2n-1.

Another way to interpret this question is how many plans are actually generated (i.e., taking into
account pruning). The number of plans for 1 relation is n. The number of plans for 2 relations (before
pruning) is approx n-1+n-1= 2*(n-1). Note: for a line of n nodes, only n-1 nodes can be joined with a
2

node to the right, and only n-1 nodes can be joined to the left. The number of plans for 3 relations is n-
2+n-2=2*(n-2). For i relations, there are 2*(n-i+1) plans. Summing, the complexity is O(n2).

[3] Consider the following attributes, their cardinalities, and index storage structures:

Attribute Cardinality
Storage
Structure

A 20 B+ trees

B 2000 B+ trees

C 2000 hash

D 20 Not Indexed

Now consider the following local predicates. For each predicate, what index would you use (if any) to
most efficiently retrieve the tuples that satisfy this predicate:

(a) B=3 or B=4 -- either scan or use B index twice

(b) B= 66 and C=12 -- C would be fastest (if you use 1 index). You could use multiple indices and take
the intersection of their pointers.

(c) B>3 and C>77 -- scan

(d) B=22 and A = 15 -- use B index (could intersect lists, but this is not clear that even creating an
index for A is that useful).

(e) D=44 and B>34 -- scan

[4] There are a variety of answers that you could postulate. The “framework” of System-R is extraordi-
narily robust. Just as a join predicate (A.x = B.y and A.z=B.w) could be supplied as an argument to a join
operation (e.g., JOIN(A,B, A.x=B.y and A.z=B.w)), there’s no reason why (A.x=B.y or A.z=B.w) could be
provided as an argument to a join operation (e.g., JOIN(A,B, A.x=B.y or A.z=B.w)). The trick here is what
algorithm could you use to process this join predicate. Nested loops would work just fine. As a possible
future problem, is there a reasonable generalization of merge-join and/or hash-join to deal with such join
predicates?

You could have other, more drastic solutions: you could allow cross-product edges with join predicate
labels. They would be considered first, before pure or unrestricted cross products.

There is even a rather simple generalization of System-R algorithm to allow an additional operation that
takes a stream S and predicate P (join predicate, relation predicate, mix of the two) and produces a stream
where only records of S that satisfy P are output.

There is no end to the creativity of how this could be accomplished. If you don’t see such possibilities, as I
list above, please (by all means) ask in class. If you do understand my points, you have a very good under-
standing of this material.



3

	CS386D Problem Set #1
	[1] Consider the following query:
	[2] Consider a linear query graph. What is the size of the search space that System R examines? (or how many plans does System R generate)? Pick one question — they have different answers.
	[3] Consider the following attributes, their cardinalities, and index storage structures:
	[4] Suppose join predicates are of the form “A or B or C or ...” where A, B, C, ... are typical conjunctive join predicates. How would you generalize the System R algorithm to process such queries?

	solution

