
CS386D Problem Set #7

[1] Consider the following three relations, each having 9 attributes listed in increasing order of selectivity
(i.e., the most selective attribute is listed first):

relation A { type-a1 A1; // type-a1 is the data type for attribute A1
 ...
 type-an A9;
 }
relation B { type-b1 B1;
 ...
 type-bn B9;
 }

For the following questions, assume the MGL graph below

database

relation

index_recordstuples

. Also, assume that the first five attributes

of relations A and B are indexed. Using the Degree 2 Cursor Stability Record Locking Protocol (CS2)
presented in class, what locks would be taken and held till the end of the transaction for each
statement? And how many locks would this be? (Assume n is the number of tuples that fully qualify
and let m be the number of tuples that are qualified only by index records).

(a) select *
 from A
 where A2= 2 and A4 = 4

(b) select *
 from A
 where A8 = 8

(c) update A
 set A1 = a1, A2 = a2
 where A8 = 9 and A5 = 5

(d) delete A
 where A4 = 4

(e) select *
 from A,B
 where A3=3 and B4=4 and A2=B2

(f) update A
 set A1 = A1+1
 where A1 > 3

[2] Resolve [1], except use the RR2 protocol.
1

Solutions

Note: in problem [1], I’m counting the number of locks that are held till the end of the transaction. The
actual number of locks taken is a bit more — remember, in CS2 we place and remove locks on tuples we
are not interested in. These locks are NOT counted below. And remember: attributes A1..A5 and
B1..B5 are indexed; the remaining attributes of relations A and B are not indexed.

[2a] The following 3 + n locks are taken:

IR(database), IR(relation A), R(A2=2),
foreach tuple t that satisfies (A2=2) and (A4=4): R(t)

[2b] The following 2 locks would be held:

IR(database), R(relation A)

Note that the indices don’t help in restricting the read set of A; hence a read lock on relation A is
needed.

[2c] The following 5 + 3n locks are taken:

IW(database), IW(relation A), w(A1=a1), W(A2=a2), R(A5=5),
foreach tuple t that satisfies (A8=9) and (A5=5):
 W(t), W(A1=t[A1]), W(A2=t[A2])

Note that the index records (A1=a1) and (A2=a2) are write-locked because their index records are
updated. The index lock (A5=5) is locked in read mode because the record is read, not updated. Each
qualified tuple is write-locked for updates.

[2d] The following 3 + 5n locks are taken:

IW(database), IW(relation A), W(A4=4)
foreach tuple t that satisfies (A4=4):
 W(t), W(A1=t[A1]), W(A2=t[A2]), W(A3=t[A3]), W(A5=t[A5])

Note that each tuple to be deleted is write-locked, along with every index record that references that
tuple is write-locked because those index records are to be updated.

[2e] Note: locks are taken only during retrieval, NOT during join processing. The following 5 + 2n locks
are held:

IR(database), IR(relation A), R(A3=3),
foreach tuple t that satisfies (A3=3): R(t)
IR(relation B), R(B4=4),
foreach tuple r that satisfies (B4=4): R(r)

[2f] This is a tricky one. If you process this query using the A1 index, you’ll see that you’ll fall into an end-
less loop. That is, you update a tuple, and its new index record will be inserted into the list of tuples that
you have to update again. This is called the Halloween Problem. So, the only way to process this query is
by using a scan. A total of 2 locks are taken, even though many A records and index records may be
updated.

IW(database), W(relation A)
2

Note: problem 3 is the same as problem #2. Differences in the answers are (1) tuples are qualified only on
index predicates (and not also on residuals) and (2) (basically) n is replaced by m in the number of locks
taken, where n<m.

[3a] The following 3 + m locks are taken:

IR(database), IR(relation A), R(A2=2),
foreach tuple t that satisfies (A2=2): R(t)

[3b]The following 2 locks are taken:

IR(database), R(relation A)

[3c] The following 5 + m + 2n locks are taken:

IW(database), IW(relation A), w(A1=a1), W(A2=a2), R(A5=5),
foreach tuple t that satisfies (A5=5): W(t)

and for those that also satisfy (A8=9): W(A1=t[A1]), W(A2=t[A2])

Note here: all tuples that satisfy (A5=5) are locked in W mode. Only for those tuples that are actually
updated (those that satisfy A8=9) will write locks be placed on A1=t[A1] and A2=t[A2].

[3d] The following 3 + 5m locks are taken:

IW(database), IW(relation A), W(A4=4)
foreach tuple t that satisfies (A4=4):
 W(t), W(A1=t[A1]), W(A2=t[A2]), W(A3=t[A3]), W(A5=t[A5])

[3e] The following 5 + 2m locks are taken:

IR(database), IR(relation A), R(A3=3),
foreach tuple t that satisfies (A3=3): R(t)
IR(relation B), R(B4=4),
foreach tuple r that satisfies (B4=4): R(r)

[3f] The following 2 locks are taken:

IW(database), W(relation A)
3

	CS386D Problem Set #7
	Solutions

