
Simultaneous Optimization and Evaluation of Multiple
Dimensional Queries

Yihong Zhao Prasad M. Deshpande Jeffrey F. Naughton Amit Shukla�

Computer Sciences Department
University of Wisconsin, Madison

fzhao, pmd, naughton, samit g@cs.wisc.edu

Abstract

Database researchers have made signi�cant progress on
several research issues related to multidimensional data
analysis� including the development of fast cubing al�
gorithms� e�cient schemes for creating and maintain�
ing precomputed group�bys� and the design of e�cient
storage structures for multidimensional data� However�
to date there has been little or no work on multidi�
mensional query optimization� Recently� Microsoft has
proposed �OLE DB for OLAP� as a standard multidi�
mensional interface for databases� OLE DB for OLAP
de�nes Multi�Dimensional Expressions 	MDX
� which
have the interesting and challenging feature of allow�
ing clients to ask several related dimensional queries in
a single MDX expression� In this paper� we present
three algorithms to optimize multiple related dimen�
sional queries� Two of the algorithms focus on how
to generate a global plan from several related local
plans� The third algorithm focuses on generating a good
global plan without �rst generating local plans� We also
present three new query evaluation primitives that allow
related query plans to share portions of their evaluation�
Our initial performance results suggest that the ex�
ploitation of common subtask evaluation and global op�
timization can yield substantial performance improve�
ments when relational database systems are used as
data sources for multidimensional analysis�

� Introduction

In the past few years� database researchers have made
great progress on OLAP issues such as cubing algo�
rithms� techniques for e�ectively creating and maintain�
ing materialized group�bys� and multi�dimensional stor�
age structures and indexing� However� to our knowledge
there has been very little attention devoted to optimiz�
ing multiple simultaneous OLAP queries� In addition to
its intrinsic interest� the problem of optimizing multiple
simultaneous OLAP queries is likely to be of consider�

�This research was supported by a gift from the NCR Corp��

and by ARPA through Rome Air Force Laboratory cntract
F������	
������
�

able practical importance due to recent developments
in the industry�

Speci�cally� Miscrosoft recently released its proposed
�OLE DB for OLAP� standard for interfaces to mul�
tidimensional data sources �MS� This standard� or one
heavily in�uenced by this standard� is likely to become
widely supported� One of the most interesting aspects of
this standard is that it de�nes �Multi�Dimensional Ex�
pressions� 	MDX
� which provide a framework in which
a user can very naturally ask several related OLAP
queries in a single MDX query� This aspect of MDX re�
�ects the fact that OLAP�style analysis very often gives
rise to simultaneous related queries� MDX is intended
to be a uniform front end for a variety of data sources�
including multidimensional database systems and rela�
tional database systems� In this paper we consider the
evaluation of MDX expressions by relational database
systems�

Of course� the fact that the queries are expressed in
a single MDX expression does not mean that the data
source must evaluate them as a single unit� a data source
can always evaluate the queries one after another with�
out regard for the relationships between them� How�
ever� as we show in this paper� doing so typically misses
an opportunity for substantial performance gains that
could be achieved by optimizing and executing these
queries as a unit� While our results apply directly to
MDX� they would be equally applicable to other lan�
guage frameworks that allow the expression of multiple
dimensional queries�

While similar problems have long been studied in the
context of global query optimization 	see� for exam�
ple� �PS��� �S��� and �SS��
� the multidimensional
nature of the simultaneous queries found in MDX ex�
pressions present both new opportunities and new chal�
lenges� The opportunities arise primarily because of
the restricted nature of the queries in question � the
queries in MDX expressions typically look 	in relational
terms
 like a select�star�join followed by an aggregation
at some level in dimension hierarchies� The restricted
domain of the queries facilitates the identi�cation and
exploitation of their common subtasks�

The �rst contribution of this paper is the design of sev�
eral new query operators that allow multiple related
star join queries to share common subtasks� even if each
plan uses a di�erent star join method� The new oper�
ators are shared scan hash�based star join� shared scan
hash�based and join index�based star join� and shared
join index�based star join� In the performance study�
we show that these three query operators improve the
performance of multiple related dimensional queries�

�

A signi�cant challenge in multiple dimensional query
optimization and evaluation arises due to the way mul�
tidimensional data sources attempt to speed up query
evaluation using precomputation �GHQ��� HRU���
CR��� Simply put� in general� for any dimensional
query there will be a number of distinct precomputed
aggregates that can be used as the data table from which
to evaluate the query� Choosing the best aggregate
to use is simple in the context of a single dimensional
query� however� choosing the correct set of tables to use
for a set of dimensional queries is non�trivial�

The second contribution of our paper is the develop�
ment of algorithms that choose which aggregate tables
to use to evaluate a set of dimensional queries� These al�
gorithms are TPLO 	Two Phase Local Optimal
� ET�
PLG 	Extended Two Phase Local Greedy
� and GG
	Global Greedy
� These algorithms di�er in how aggres�
sively they search for query plans that contain shared
subtasks� We will discuss each of these in detail in
the remainder of the paper and give examples of their
performance implications� The evaluation plans gener�
ated by these algorithms make use of the new query
operators introduced above in order to share common
subtasks� The results obtained from our implementa�
tion suggest that common subtask sharing and global
optimization can provide substantial performance im�
provements when relational database systems are used
as data sources for multidimensional analysis�

We organize the paper as the following� In Section ��
we introduce MDX� In Section �� we discuss the three
shared operators� We present the TPLO algorithm in
Section �� the ETPLG algorithm in Section �� and the
GG algorithm in Section �� We study and compare our
three algorithms in Section �� Finally� we conclude in
Section ��

� Multi�Dimensional Expressions
�MDX�

Due to space constraints� in this section we only dis�
cuss the MDX features which are relevant to the paper�
The reader interested in more detail is referred to �MS�
We mainly focus on expressing several related OLAP
queries in a single MDX expression� The Microsoft doc�
ument �MS includes the following example�

NEST ��Venkatrao� Netz��
�USA�North�CHILDREN� USA�South� Japan��

on COLUMNS
�Qtr	�CHILDREN� Qtr
� Qtr�� Qtr��CHILDREN �
on ROWS

CONTEXT SalesCube
FILTER�Sales� 	��	�� Products�All�

NEST� CONTEXT� COLUMNS� ROWS� CHILDREN� and
FILTER are all reserved MDX keywords� This query
asks for the total sales for salesmen Venkatrao and Netz
in all states of USA North� USA South� and Japan for
all the months of the �rst quarter� the second quarter�
the third quarter� and all the months of fourth quarter�
for �����

In relational terms� the joins between the fact table and
dimension tables are de�ned implicitly in an MDX ex�
pression� Therefore� we do not see the join attributes

and join conditions� This is because an MDX expres�
sion does not de�ne how an OLAP server processes a
MDX query � MDX is supposed to be system indepen�
dent� working for both Relational OLAP 	ROLAP
 and
Multidimensional OLAP 	MOLAP
�

For the above MDX example� we assume that the
database has �ve dimensions and one fact table 	Whole�
SalesData�
 The �ve dimensions are the Time� Store�
Product� Sales person� and Measure� On the Time di�
mension� we have the Date � Month � Quarter �
Year hierarchy� Ths Store dimension contains the Store
� City � State � Region � Country hierarchy�

In terms of SQL statements� this MDX expression spec�
i�es six di�erent group�by queries�

�� the total sales for Venkatrao and Netz in all states
of USA North for the �nd and �rd quarters in ����

�� the total sales for Venkatrao and Netz in all states
of USA North for the Months of the �st and �th

quarters in ����

�� the total sales for Venkatrao and Netz in region
USA South for the �nd and �rd quarters in ����

�� the total sales for Venkatrao and Netz in region
USA South for the Months of the �st and �th quar�
ters in ����

�� the total sales for Venkatrao and Netz in Country
Japan for the �nd and �rd quarters in ����

�� the total sales for Venkatrao and Netz in Country
Japan for the Months of the �st and �th quarters
in ����

More succinctly� we have the six group�bys 	Sales�
Person� State� Quarter
� 	SalesPerson� State� Month
�
	SalesPerson� Region� Quarter
� 	SalesPerson� Region�
Month
� 	SalesPerson� Country� Quarter
� and 	Sales�
Person� Country� Month
� In addition� for each group�
by we have disjoint selection predicates� This means
that we cannot use the ��nding the Common Selec�
tion predicates� techniques that are so widely used in
multi�query optimization algorithms for general SQL
queries �S���

In this paper� for simplicity of notation we interchange
the MDX query with the target group�by corresponding
to the query� For example� we use A�B�C� both to refer
to the target list of a group by and to the query that
computes this group�by� For a relational data source
storing its data in a star schema� each individual query
of an MDX expression can be evaluated using a star join
query followed by an aggregation for the target group�
by� In addition� a typical query of MDX includes a
selection predicate along each join dimension� In the
rest of the paper� we use SQL and MDX interchangably
to describe queries�

� Operators for Merging Query
Plans

The fundamental task in evaluating multiple related di�
mensional queries is identifying and exploiting common
subtasks between the queries� In this section we pro�
pose several operators that are useful for this task in
the context of relational implementations of dimensional

data sets� Recall that the basic operation in such an
environment is a star join� In this paper� we consider
two star join methods� hash�based and index�based star
join� For very selective star join queries� the join index�
based star join method is a good alternative �OQ���
For non�selective star join queries� the hash�based star
join is a good solution �Su���

��� Shared Scan for Hash�based Star
Join

Before discussing this new operator� we describe by ex�
ample how a generic pipelined right�deep star�join fol�
lowed by an aggregation works in a relational system�
Suppose that we have a fact table F 	A�B� dollars
� and
dimension tables Adim	A�A�
 and Bdim	B�B�
� Then
consider evaluating the query

select A�� B�� Sum�dollars�
from Adim� Bdim� F
where Adim�A � F�A and Bdim�B � F�B
group by A�� B�

The pipelined right�deep hash�based join begins by
building hash tables on each of the 	small
 dimension
tables Adim and Bdim� Then� the large fact table F
is streamed past these hash tables� probing them for
matches in order to create joined tuples with the schema
	A�� B�� dollars
� Finally� these joined tuples are passed
to an aggregation operator to compute the group by on
the attributes A� and B�� We assume that this aggre�
gation is also done by hashing�

This pipelined right�deep query tree hash�based join
method creates two di�erent opportunities for shar�
ing among query trees� Suppose we have two di�er�
ent queries sharing the same fact table� First� these
query trees can share the scan of the base table� This
technique is used in some commercial systems� for ex�
ample� Teradata uses shared scans for multiple queries
that happen to simultaneously be accessing the same
table�

A more sophisticated opportunity for sharing arises if
two query trees use the same set of dimension tables�
Recall that the hash�based star join involves building
a hash table on each dimension table� and then prob�
ing these hash tables with tuples of the fact table� If
two queries use the same set of dimension tables� they
can share hash tables� instead of redundantly building
and probing several hash tables on the same dimension
tables�

Consider the following schema� We have three dimen�
sion A� B� and C� Dimension A has the hierarchy
A � A� � A��� Dimension B contains the hierarchy
B � B� � B�� Dimension C includes the hierarchy
C � C� � C��

In Figure �� we show the hash�based star join query
plan for computing the query A�B�C�� using the base
table ABC� The query plans for the group�by A�BC
and AB�C�� are very similar to that of A�B�C�� except
the aggregation step� The shared scan hash�based star
join operator for the three group�bys is shown in Fig�
ure �� Note that the scan of the base table ABC and
the three join hash tables is shared by the three group�

Scan base

Hash Join
with A

Hash Join
with B

Hash Join
with C

Aggregate

Join Hash
table for A

Join Hash
table for B

Join Hash
table for C

Probe

Probe

Probe

table ABC

Figure �� Query Plan for a single group�by

Hash Join
with A

Hash Join
with B

Hash Join
with C

table for A

table for B

Probe

Probe

Probe

Aggregate for Aggregate for Aggregate for

 A’BC A’B’C’ AB’C"

Shared Scan base

Shared Hash

Shared Hash

table for C
Shared Hash

table ABC

Figure �� Query Plan for Shared Scan group�bys

bys� After a tuple is joined with the dimension C� it is
sent to the corresponding group�by�s hash table for ag�
gregation� When a tuple is fetched from the base table�
we construct three result tuples for each group�by� Each
tuple has to join with the dimension tables and project
on the proper aggregation attributes of each group�by to
the result tuple� For instance� the tuple for the group�
by A�B�C�� has to probe the shared hash table A with
its key attribute value and copy the corresponding hash
entry�s A� attribute to the result tuple� Then� it has
to probe the hash table B and C� and copy the hash
table entries� corresponding attributes B� and C�� to
the result tuple� Finally� it uses the hash table for the
group�by A�B�C�� to aggregate the query result�

��� Shared Index Join

This technique is useful for index�based star join query
plans using the same base table� Suppose that we have
the query

select A�� B�� Sum�dollars�
from Adim� Bdim� F
where Adim�A � F�A and Bdim�B � F�B
and Adim A� in �a	� a
�
and Bdim B� in �b
� b��
group by A�� B�

Also suppose that we have bitmap join indices map�
ping Adim�s A� attribute to tuples of F and Bdim�s
B� attribute to tuples of F � The index�based star join
proceeds by �rst reading the bitmaps from these two
indices� and then probing F to extract the tuples that
match� The idea of the new operator in this section is to
let two such query plans over the same fact table share
the fact table look ups� In order for the query plans to
share these base table lookups� we �rst OR the result
bitmaps for all the query plans� and then use the ORed
bitmap to look up the corresponding tuples in the base
table� Once the result tuples are retrieved from the base
table� we send them to corresponding group�by hash ta�
bles for aggregations by consulting the group�by result
bitmaps�

Figure � shows the query plan for the group�by AB�C���
First� we consider in more detail how a standard join
index bitmap join works� Here� we assume that there is
join bitmap index built on each attribute A� B� and C of
the base table ABC� We also assume for this example�
that the selectivity of the selection predicates of the
group�by A�B�C�� is high� which causes the optimizer
to use the bitmap index�based star join method� The
join uses the follow steps�

�� retrieve bitmaps from the index of dimensionA and
OR them to generate the bitmap BPA

�� retrieve bitmaps from the index of dimension B and
OR them to get the bitmap BPB

�� AND the two bitmaps BPB and BPA to get the
bitmap BPAB

�� retrieve bitmaps from the index of dimension C and
OR them to get the bitmap BPC

�� AND the bitmap BPAB with the bitmap BPC to
generate the query result bitmap BPresult

�� use the bitmap BPresult to probe the fact table to
get the results tuples

�� join the result tuples with the dimension hash ta�
bles and aggregate to produce the �nal result for
the group�by

In Figure �� we show how the shared bitmap star join
operator works� We need to compute the queries having
aggregation on group by A�B��C��� A��B��� and A�B��C��
The operator goes through the following steps�

�� build the join bitmaps for each query and OR the
three join bitmaps to get one bitmap

�� use the bitmap to probe the base table ABC

�� use the tuples� position to split them into their cor�
responding group�bys� Given a tuple position� we
test whether a query�s bitmap�s corresponding bit
is set to �� If so� we know the tuple belongs to this
group�by� This task is done in each of the �Filter
tuples� operators�

Generate
bitmap for A

Generate

Generate
Bitmap
Join (AND)

Bitmap Join
(AND bitmaps)

Bitmap Join

Probe

Base table
ABC

Build join bitmaps

bitmap for B’

bitmap for C"

Figure �� Query Plan for one Bitmap Star Join

Build bitmap
for A’B"C"

Build bitmap
for A"B"

Build bitmap
for A’B"C’

OR bitmaps

Star Join

Base table

Filter tuples
for A’B"C"

Filter tuples
for A"B"

Filter tuples
for A’B"C’

Aggregate
for A’B"C"

Aggregate
for A"B"

Aggregate
for A’B"C’

Probe
Shared Bitmap

ABC

Figure �� Query Plan for Shared Bitmap Star Join

�� aggregate the results for each query

��� Shared Scan for Hash�based and
Index�based Star Join

The goal of this technique is to create sharing among
the query plans using the same base table� but di�erent
star join methods� In general� we may have a situation
where some of the plans perform a hash�based star join
that needs to scan the base table� other queries use the
star�join index based join 	index join
� Here� we assume
that star�join indices can be either position based B�
tree or bitmap indices� Since the query plans all have
to read data from the base tables� we should merge the
table scan query plans with index join plans to save the
the cost of probing the base table for index�based star
join plans� We know that a typical index join query has
two phases� building the join bitmap and using the �nal
bitmap to probe the base table� Here� we modify the
probing of the base table to scanning it for the group�bys
using index�based star join and use the result bitmap as
the selection �lter after the scan� This conversion allows
us to share the scan of the base table among the hash�
based and index based�join plans� We save the cost of

Hash Join
with B

Hash Join
with C

table for B

Probe

Probe

Scan base

Filter tuples

Filter tuples Filter tuples

for B"C" for B’C"

Aggregate
for B"C"

Aggregate
for B’C"

Aggregate
for AB"C’

Aggregate
for AB"C’

table ABC

B"C" or B’C"

Shared Hash

table for C
Shared Hash

Figure �� Shared Scan for Hash�based and Index�based
Star Join

probing the base table for an index�based query plan�

Figure � shows the operator of the shared scan for hash�
based and index�based star joins� A scan of table ABC
is shared by four di�erent queries� A�B��C�� AB��C��
B��C��� and BC��� For each tuple read from the table
ABC� we use the ORed bitmap for the query B��C��

and BC�� and tuple position to test whether the tuple
should be aggregated for the group�by B��C�� and BC���
As tuples pass through the �rst �lter� we use the the
query B��C�� and BC���s bitmaps to split those tuples
and aggregate the corresponding tuples to each query�
For the query using hash�based star join� the operator
works exactly the same for shared scan hash�based star
join operator�

	 Two Phase Local Optimal Algo�
rithm

Section � introduced three operators for sharing sub�
tasks among queries� In this and the two following sec�
tions we discuss optimization techniques that generate
query plans for a set of queries� The goal is to produce
a plan for a set of queries that allows the operators of
Section � to be used to exploit common subtasks�

The Two Phase Local Optimal algorithm 	TPLO
 is
perhaps the most natural and straight�forward way
to approach the problem of simultaneous dimensional
query optimization� TPLO breaks a MDX expression
into several SQL queries� Virtually all database sys�
tems support OLAP queries by precomputing group
bys� TPLO independently picks the best precomputed
	materialized
 group by for each of these component
subqueries� Once the target �group by� for each com�
ponent query has been determined� TPLO uses the SQL
optimizer to generate the best plan for the queries� Fi�
nally� it generates a global plan by merging the common
tasks among the query plans as much as possible� using
the operators from Section ��

We �rst divide the MDX expression into several SQL
queries� MDX expressions use implicit joins among the
fact table and dimension tables� One option that is al�
ways available is to use the lowest level fact table LL to
compute each query� 	LL is the base data� without any
aggregation� for simplicity� we also consider LL to be a
�materialized group by�
� Using LL is a mistake if there

Target group-by A’B"C’

Star Join

Index-based

Aggregate
for A’B"C’

Base Table A’B’C’

Hash-based
Star Join

Aggregate Aggregate
for A"B’C"

Hash-based
Star Join

Target group-by A"B’C"

Optimal Local Plan for A’B"C’

for A’B"C"

Target group-by A’B"C"

Base Table A’B’C"

Optimal Local Plan for A"B’C"Optimal Local Plan for A’B"C"

Base Table A"B’C’

Figure �� Phase One of Two Phase Local Optimal

is more highly aggregated materialized view that can
be used to answer the query� Determining the material�
ized group�by to be used for a given query is done using
a standard relational query optimizer by enumerating
query plans for all candidate group bys and choosing
the one with lowest estimated cost� We call each such
plan the �optimal local plan� for the query�

For example� in Figure �� suppose that for a given MDX
expression we need to compute the group�bys A�B��C��
A�B��C��� and A��B�C��� We have a set of materialized
group�by ABC� A�B�C�� A�B�C��� and A��B�C�� The
TPLO would choose the materialized group�by A�B�C��
A�B�C��� and A��B�C� in the optimal local plans to com�
pute the query A�B��C�� A�B��C��� and A��B�C���

Once we have the best query plan for each group�by of
the MDX expression� we use the three techniques from
Section � to merge the common tasks of the query plans�
if there are any such common tasks� We call this phase
two of TPLO� Returning to our example of Figure ��
we see that there are no such common subtasks� This
is likely to happen with TPLO� this problem motivates
the algorithms of the following sections�

 Extended Two Phase Local
Greedy Algorithm

The motivation of the Extended Two Phase Local
Greedy 	ETPLG
 is to solve a drawback of the Two
Phase Local Optimal 	TPLO
 algorithm� TPLO always
uses the best local plan for each query of an MDX ex�
pression and merges plans at the query tree level to
generate a global plan� The limitation of TPLO is that
it cannot create the sharing of base tables if the opti�
mal plans for the individual queries use di�erent tables
as their input� In some cases it may be better for in�
dividual queries to use sub�optimal base tables so that
they can share tasks in their execution� We use a simple
example to illustrate this�

Example �� Suppose we need to compute the queries
for the group�bys A�B��C�� and A��B�C�� of a MDX ex�
pression� The materialized group�bys include A�B�C���
and A�B�C�� TPLO generates the Plan � including
	A�B�C�� � A�B��C��
Hash�basedSJ and 	A

��B�C� �
A��B�C��
Hash�basedSJ in Figure �� 	X � Y
Z stands
for compute the group�by Y using X and Z star
join method� Since the group�by A�B�C�� is di�er�

ent from A��B�C�� there are no common query tasks
to share for the two queries� The ETPLG algo�
rithm produces the following query plan for each query�
	A�B�C�� � A�B�C�
Shared�HB�SJ and 	A

�B�C�� �
A�B�C�
Shared�HB�SJ � The two queries A

�B��C�� and
A��B�C�� use the same base table A�B�C��� Hence� they
are able to share the scan of the table A�B�C��� The
main di�erence between global plans � and � is that
plan � explores the possibility of sharing of the base
table�

Example � suggests that we should consider using
locally sub�optimal plans to create opportunities for
global sharing� This is the goal of the Extended Two
Phase Local Greedy 	ETPLG
 algorithm� ETPLG cre�
ates a global plan by adding new queries 	required
group�bys
 one at a time� When adding a new query
into the global plan� it chooses between the best plan
that allows the new query to share a base table with
other selected queries� and the best local plan for the
query� In phase two� just like in TPLO� we merge the
query plans at the query tree node level�

During optimization of a set of queries ETPLG main�
tains two sets� The shared group�by set contains mate�
rialized group�bys shared by the selected queries� The
unused materialized group�by set includes all the ma�
terialized group�bys that are not used by any chosen
query� When ETPLG picks a new query N and adds
it to the global plan� it chooses the base table from the
unused materialized group�by set or the shared group�
by set� ETPLG calculates the cost of the best query
plan in each set and picks the most e�cient plan from
each set� Thus we have�

� The best plan BD that uses an unshared material�
ized group�by D� and

� The best plan BS that uses a shared group�by S�

If the cost of BD is higher than that of BS � ETPLG
adds the query N to the set of queries using the shared
group by S� In general� we de�ne a class X to be the
set of queries using the same base table X� If the cost
of BD is lower than that of BS � then it creates a new
class D and adds the query N to the class D� It also
needs to update the two sets by adding the group�by
D to the shared group�by set and deleting it from the
unshared materialized group�by set�

It is useful to de�ne for each group by the Group�
byLevel� which is the sum of the group�by levels along
each dimension� That is� a group�by�s GroupbyLevel is
the sum of the hierarchy level of the group�by on each
dimension�

In ETPLG� we sort the queries by their GroupbyLevel
and pick the next query with the smallest Group�
byLevel� The heuristic used here is to create more logi�
cal sharing� that is� sharing base tables among queries�
The smaller the value of a group�by�s GroupbyLevel�
the more likely we can share the group�by�s base table
with other queries because a base table�s GroupbyLevel
is never greater than the computed group�by�s Group�
byLevel� The smaller a group�by�s GroupbyLevel� the
more group�bys we can use it to compute�

Now� we present the ETPLG algorithm in greater detail�

Extended Two Phase Local Greedy Algorithm

��Phase One
Set SharedSet empty�
Initialize MSet�
Set Group�bys G � �G	� G
� ��� Gn��
Sort G by GroupbyLevel�
For each Gi in G
�

Find the group�by D in MSet with
Minimum �Gi�CostOfUsing�D���
Find the Class S in SharedSet with
Minimum�Gi�CostOfUsing�S�BaseTable����
B � S�BaseTable���
if �Gi �� G	 �� Gi�CostOfUsing�B� � Gi�CostOfUsing�D��
�

SharedSet � SharedSet Union D�
MSet � MSet � D�
Construct a new Class D�
Generate the best plan Q for Gi using D�
Add Q to the Class D�
Add Class D to the ClassList�

�
else
�

Generate the best plan Q for Gi using B�
Add Q to Class S�

�
�
��Phase Two
For each Class in the ClassList

Merge the query plans�

The set MSet is �rst initialized to contain all the pre�
computed group�bys and the lowest level base table
LL� The CostOfUsing	X
 function estimates the cost of
computing a query from the materialized group�by X�
X�BaseTable	
 returns the shared base table of Class
X� Each class in the ClassList contains a set of queries
using the same base table�

Figure � shows the query A�B��C�� being processed by
the ETPLG algorithm� It adds the query A�B�C�� to
the Class A�B�C� because the cost of using the group�
by A�B�C� is cheaper than using the group�by A�B�C��

to compute the group�by A�B��C��� The cost of scan�
ning A�B�C� is shared by two queries� In the next Fig�
ure �� the ETPLG algorithm adds the query A��B��C��

to the global plan� The ETPLG algorithm decides to
use the materialized group�by A�B�C� to compute the
query A��B��C��� In the next subsection� we explain the
cost model used to compute the cost of queries sharing
the base table�

�� Cost Formula

To compute X�CostOfUsing�B� for a query X using the
shared materialized table B for the Class Y � we have to
consider two types of cost� One is the I�O cost shared
by the queries in the class Y � the other is the CPU and
I�O cost� not shared by the other queries� Adding the
query X to the class Y may change the shared I�O cost
for the class�

If we use a hash�based star join to compute the query
X from the shared base table B� we use CB�X �
CostCPU ��CostIOB to compute the cost� �CostIOB

Hash-based

Aggregate

for A’B"C’

Star Join

Query Plan for Class A’B’C’

Aggregate

for A’B"C’

Aggregate

for A’B"C"

Shared Scan

Star Join

Hash-based

Star Join

Hash-based

Aggregate

for A’B"C"

Group-by A’B"C"Group-by A’B"C’Group-by A’B"C’

Base Table A’B’C’
Class A’B’C’

Base Table A’B’C’ Base Table A’B’C"

Optimal Plan for A’B"C’

Group-by A’B"C"

Optimal Plan for A’B"C"

Figure �� ETPLG� Adding the Query A�B�C� to the
Global Plan

Aggregate

for A’B"C’

Aggregate

Shared Scan
Hash-based
Star Join

Aggregate

for A’B"C’

Aggregate Aggregate

for A"B"C"

Star Join
Hash-based
Shared Scan

for A’B"C" for A’B"C"

Query Plan for Class A’B’C’

Base Table A’B’C’

Group-by A’B"C’ Group-by A’B"C"

Class A’B’C’

Optimal Local for A"B"C"

Base Table A’B’C"

Star Join

Hash-based

Aggregate

for A"B"C"

Group-by A"B"C"

Base Table A’B’C’

Query Plan for Class A’B’C’

Class A’B’C’

Group-by A’B"C’ Group-by A’B"C" Group-by A"B"C"

Figure �� ETPLG� Adding the Query A�B�C� to the
Global Plan

is the change of the shared IO cost for the class Y after
adding X to the class� Using the hash�based star join
to compute X from B may change the shared IO cost
of a class� If all the other queries in the class Y use an
index�based star join� using the hash�based star join to
compute X changes the shared I�O cost of the class Y
from a random read of some data pages to a sequen�
tial scan of the table B� In this case� the value of the
�CostIOB might be positive�

If we use an index�based star join to compute query X�
we use CB�X � CostCPU�CostIOIndex��CostIOB to
compute the query cost� CostIOIndex contains the cost
of the query index lookup� If any other group�by in class
Y scans the group�by B� the shared I�O cost of the class
�CostIOB is equal to � because the I�O cost of probing
the fact table B for query X is already counted in the
scan cost� If all the group�bys in the class use an index�
based star join� we have�CostIOB � � because we may
retrieve more data pages for computing the query X�

Next� consider the situation in which we use an unused
materialized table U instead of a shared group�by to
compute the query X� Since the I�O cost for the table
U is not shared� we use di�erent formulas to compute
X�CostOfUsing�U� according to the star join method�

� If the query plan for the group�by X involves a
hash�based star join� we use CU�X � CostCPU �
CostIOU �

� If it uses the index�based star join� we choose
CU�X � CostCPU � CostIOIndex � CostIOU to
compute the query cost�

In the second case� CostCPU includes the CPU cost
for index operation such as ANDing or ORing bitmaps�

Shared Scan
Hash-based
Star Join

Aggregate

for A"B’C" for A"B"C’

Aggregate
Aggregate

for A"B’C"

Hash-based

Star Join Star Join

Hash-based

Aggregate

for A"B"C’

Optimal Plan for A"B"C’

Group-by A"B"C’Group-by A"B’C" Group-by A"B"C’ Group-by A"B’C"

Base Table A’B’C’
Class A’B’C’

Query Plan for Class A’B’C’

Base Table A’B"C’Base Table A’B’C"

Optimal Plan for A"B’C"

Figure �� GG Query Plan for Example �

Now we are ready to compute the cost of a global plan
generated by ETPLG� The cost of computing all queries
in the class i is given by�

Cclassi �

pkX

k��

	CostCPUplank � CostIOplank

�Cost	SharedIOi
 � Cost	SharedCPUi

where pk is number of group�bys in the class i� The
CostCPUplank

for a plan k is the CPU cost not

shared by the other plans in the class i� Similarly�
The CostIOplank is the non�shared I�O cost for plan

k� The cost of reading data and processing the tu�
ples and the cost of building shared hash tables are
included in Cost	SharedIOi
 � Cost	SharedCPUi
�
Cost	SharedIOi
�Cost	SharedCPUi
 is shared by all
the group�bys of the class i� The cost of the global
plan is the sum of the cost of each class� Cglobal �Pn

i��
Cclassi where n is number of classes in the global

plan�

� Global Greedy Algorithm

The Extended Two Phase Local Greedy 	ETPLG
 algo�
rithm employs heuristics to increase the sharing of base
tables among multiple queries� But the global plan pro�
duced by the ETPLG algorithm may still not be a good
global plan� The reason is that ETPLG never �changes
its mind� about which base table to use for a query� We
use Example � below to elaborate�

Example � � We want to compute the queries for
group�bys A��B��C� and A��B�C�� of an MDX expres�
sion� Let A�B�C�� A�B�C��� and A�B��C� be pre�
computed group�bys� We also have Size	A�B�C��
 �
Size	A�B��C�
 � Size	A�B�C�
� Size	A�B�C��
 �
Size	A�B�C�
� and Size	A�B�C��
 � Size	A�B�C�
�
The two queries are not very selective� So the ET�
PLG algorithm generates the global query plan for the
MDX expression� 	A�B�C�� � A��B�C��
hash�basedSJ
and 	A�B��C� � A��B��C�
hash�basedSJ � It uses the
hash�based star join and the materialized table A�B�C��

to compute the query for A��B�C��� ETPLG would not
choose the the materialized table A�B�C� to compute ei�
ther of the two queries since it costs more CPU and I�O
time to process a large table than a small table� But� if
we use the group�by A�B�C� to compute both queries�
we may get a better global plan� The I�O cost of scan�
ning the table A�B�C� is shared by the two queries� We
reduce I�O cost for the two queries� but increase the

CPU cost since we have to process more tuples� For
Example �� let us assume the increase of CPU cost is
smaller than the reduction of I�O cost� This means that
we have a better global plan than the ETPLG�s global
plan�

To �nd a better global plan� we extended the ETPLG to
the Global Greedy 	GG
 algorithm� Similar to the ET�
PLG algorithm� the Global Greedy algorithm grows the
global plan by adding a new query 	required group�by

to the plan one at a time� The di�erence between the
two is that the GG algorithm allows a class to change its
shared base table in order to include the new group�by�
which is not allowed in the ETPLG algorithm�

Before adding a new query to a global plan� we have
to decide whether adding the query N to any exist�
ing classes is a better plan than using the best unused
materialized group�by U to compute N � For each exist�
ing class� we �rst have to determine a new materialized
group�by S� for the class so that we can compute the
query N and all queries in the class from S�� The ag�
gregated cost of using S� for the query N and the class
should be the smaller than the aggregated cost of using
any other materialized group�bys� So� we pick the S�i
for each existing class i� Then� we choose the class with
the minimum aggregated cost of computing all queries
in the class and the query N as the candidate class�
Now� we have to decide whether to use the candidate
class�s base table S� or use the best unused materialized
group�by U to compute N � The details of this step are
listed in the algorithm below� If we choose to use the
candidate class to compute N� we have to use S� as the
base table for the class� If the S� is di�erent from the
old base table S of the class� we replace S with S�� If
S� � S� we use S for the class� We add the query N to
the class� If we decide to use the table D to compute
N� we leave the class unchanged and create a new class
D and add the query N to the class�

The main di�erence the ETPLG and GG algorithms
is that we allow the class to choose new materialized
group�by as the new base table for the class when adding
a new required the group�by to the class� As we ex�
plained in the Example �� it allows to consider some
suboptimal local materialized group�by as the class base
table� which may produce a better global plan� We
present the algorithm GG below�

Global Greedy Algorithm

Set ShareSet empty�
Initialize MSet�
Set Group�bys G � �G	� G
� ��� Gn��
Sort G by GroupbyLevel�
For each Gi
�

Find the group�by N in MSet
with Min�Gi�CostOfUsing� N ���
Choose Class Ci with Min�Ci�CostOfAdd�Gi���
if �Gi �� G	 �� Ci�CostOfAdd�Gi� �

Gi�CostOfUsing�N��
�

SharedSet � SharedSet Union N�
MSet � MSet � N�
Construct new Class N�
Generate the best plan Q for Gi using N�

Add Q to Class N�
Add Class D to the ClassList�

�
else
�

S� � Ci�NewBaseTable���
S � Ci�OldBaseTable���
If � S� �� S�
�

Generate the best plan Q for Gi using S�
Add Q to the Class Ci�

�
else
�

Generate the new best plan using S�
for each query in Class Ci�
SharedSet � SharedSet � S � S��

�
MergeClass���
if S� in other Class Cj � j �� i �

remove the plan of S� from Class Cj�
�

�
For each Class in the ClassList

Merge the query plans�

The group�by S� and S may be the same� In this case�
we just add the query N to the class without changing
the class base table� If S� � N� we add the query N
to the Class S�� We compute CostOfAdd	N
 for a class
i using the formula� CostOfAdd	N
 � Cost	Classi �
N
S� � Cost	Classi
S� Cost	X
Y compute the aggre�
gate cost of X using the base table Y �

The return value of CostOfAdd	N
 should not be the
negative for any class i� If the value is negative� it
is equivalent to say Cost	Classi
S� � Cost	Classi �
N
S� � Cost	Classi
S� This is not possible because we
must choose S� over S as the base table for the class i
before we process the group�by N �

In the MergeClass	
 procedure� we handle the following
cases� If a class has already chosen S� as the base table�
then we should merge these two classes together and
use group�by S� for the new class�s base table� This
step prevents the plan from doing repeated I�O on the
same table�

The GG algorithm trades the more expensive I�O cost
by sharing it with queries for the less expensive CPU
cost by processing more tuples for each query� Choosing
a non�optimal base table for queries increases the CPU
cost for processing more tuples for hash�based star join
queries or doing more bitmap operations for index�based
star join queries� In the next section� we study how well
Global Greedy perform when compared with the global
optimal plan�

� Performance Examples

Doing a performance analysis for optimization tech�
niques is never easy� analyzing the performance of al�
gorithms for optimizing multiple simultaneous dimen�
sional queries is particularly di�cult� The primary
reason for this is that the problem space is immense�
There is the combinatorial e�ect of considering multiple
queries as a unit 	instead of the more common optimiza�

tion task of optimizing individual queries
� added to this
is yet another combinatorial e�ect that arises from the
exponentially many alternatives for precomputed aggre�
gates that exist in OLAP workloads� For this reason�
rather than attempting to claim an exhaustive evalua�
tion of these optimization techniques� in this section we
present a number of examples that illustrate that un�
der a fairly realistic setting 	measured numbers from an
actual implementation rather than a simulation
 these
techniques can o�er substantial performance bene�ts as
compared to naive approaches that do not attempt any
simultaneous optimization or evaluation�

��� System Conguration

These tests were run on an ���MHZ Intel Pentium
Pro processor with ��MB main memory and a ���
GB Quantum Fireball disk� The operating system
used was Solaris ���� We used version ��� of Par�
adise �DKLPY��� con�gured with an ��MB bu�er pool�
The test databases were created using the Unix �le sys�
tem on a local disk� We �ushed both the Unix �le sys�
tem bu�er and Paradise bu�er pool before running each
test�

��� Data Sets

The test database is set up in the following tables�
The base table tuple has four dimensional attributes
and one measure attribute� Each tuple in the base
table has length �� bytes� The base table tuple has
four dimensional attributes and one measure attribute�
There are star join bitmap indexes created on at�
tributes A�� B� and C� of the group�by A�B�C�D� There
are four dimensional tables� We have a three level
hierarchy along dimension A� B� and C� D� Dimension
A has a hierarchy A � A� � A��� Dimension B has
the hierarchy B � B� � B��� Dimension C has the
hierarchy C � C� � C��� Dimension D has the
hierarchy D � D� � D���

��� MDX Queries

We �rst list of set of basic queries� At the top level of the
hierarchy along each dimension A� B� and C� we assume
that each of them has three distinct values A��A�� A��
B�� B�� B�� C�� C�� and C��

Query �

�A���A	�CHILDREN� on COLUMNS
�B���B	� on ROWS
�C���C	� on PAGES
CONTEXT ABCD FILTER � D�DD	 ��

The query asks the sum of ABCD for the group�
by A�B��C��D with selection predicates A� �
A���A��CHILDREN and B�� � B� and C�� � C� and
D � DD��

Query �

�A���A	� A���A
� A���A�� on COLUMNS
�B���B
�CHILDREN� on ROWS
�C���C
� on PAGES
CONTEXT ABCD FILTER �D�DD	��

The query asks the sum of the table ABCD for the

group�by A��B�C��D with selection predicates 	A�� �
A� or A�� � A� or A�� � A�
 and B� �
B���B��CHILDREN and C�� � C� and D � DD��
The key word CONTEXT in MDX is equal to FROM
in the standard SQL�

Query �

�A���A
� on COLUMNS
�B���B
� on ROWS
�C���C	� C���C�� on PAGES
CONTEXT ABCD FILTER �D�DD	��

Query �

�A���A�� A���A
� on COLUMNS
�B���B�� on ROWS
�C���C	� C���C
� C���C� � on PAGES
CONTEXT ABCD FILTER �D�DD	��

Query �

�A���A	�CHILDREN�AA
� on COLUMNS
�B���B	� on ROWS
�C���C�� on PAGES
CONTEXT ABC FILTER �D�DD	�

This query asks the sum of ABCD for the
group�by A�B��C��D with selection predicates A� �
A���A��CHILDREN�AA� and B�� � B� and C�� � C�
and D � DD��

Query �

�A���A
�CHILDREN�AA�� on COLUMNS
�B���B	�CHILDREN� on ROWS
�C���C��CHILDREN�CC
� on PAGES
CONTEXT ABCD FILTER �D�DD	�

Query 	

�A���A��CHILDREN�AA
� on COLUMNS
�B���B
�CHILDREN�BB�� on ROWS
�C���C	�CHILDREN�CC	� on PAGES
CONTEXT ABCD FILTER �D�DD	�

Query

�A���A	�CHILDREN�AA
� on COLUMNS
�B���B
�CHILDREN�BB	� on ROWS
�C���C	� on PAGES
CONTEXT ABCD FILTER �D�DD	�

Query �

�A���A	�CHILDREN� on COLUMNS
�B���B
� B���B�� on ROWS
�C���C	�CHILDREN� on PAGES
CONTEXT ABCD FILTER �D�DD	�

Query � is selective on dimension A and is to compute
the group�by A�B��C��D� Query � and Query � are se�
lective on dimension A� B� and C and computes the
group�by A�B�C�D� Query � is selective on dimension
A and B and computes the group�by A�B�C��D�

��	 Performance of the Three Shared
Operators

We ran three tests to measure the performance of the
three shared star join operators�

Materialized Group�by number of tuples

ABCD �������
A�B�C�D �������
A�B�C�D ������
A�B�C�D ������
A�B�C�D ������
A�B�C�D ������

Table �� Table Size of Materialized Group�bys

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5

R
es

po
ns

e
T

im
e

(S
ec

on
d

s)

Number of Queries

Shared Scan Hash-based SJ
Sum of Queries

Figure ��� Performance Results for Test �

0

2

4

6

8

10

0 1 2 3 4 5

R
es

po
ns

e
T

im
e

(S
ec

on
d

s)

Number of Queries

Shared Index-based SJ
Sum of Queries

Figure ��� Performance Results for Test �

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5

R
es

po
ns

e
T

im
e

(S
ec

on
d

s)

Number of Queries

Shared Scan Hash-based and Index-based SJ
Sum of Queries

Figure ��� Performance Results for Test �

Test �� We ran Queries �� �� �� and �� We forced
each query plan to use hash�based star join using the
same base table ABCD� The result is shown in Fig�
ure ��� The dotted bars represent the total execution
time of the queries running separately� The solid bars
are the execution time of the queries using the shared
scan hash�based star join operator� Each time we add
a new query� we increase the CPU cost of the operator�
but we save the I�O cost of scanning the base table for
the new query� The CPU cost for hash�based star join
is not small due to memory copying attributes for result
tuples and probing of hash tables for both star join and
aggregation�

Test �� We ran Queries �� �� �� and �� All the queries
use the bitmap index star join method and use the
A�B�C�D as the base table� Figure �� shows the test
results� The solid bars are the execution time of Queries
�� �� �� and �� The dotted bars represent the execution
time of using shared index�based star join to process
the queries� We �nd that more than �� of the shared
index star join time is spent on probing the base table�
When we increase the number of queries from � to ��
the probing time changes from ����� seconds to �����
seconds� Sharing the probing among index�based star
join query reduces the aggregated cost dramatically�

Test �� we use the hash�based star join method for
Query � and the bitmap index star join method for
Query �� �� and �� We use A�B�C�D as the base ta�
ble for all the queries� The test results are shown in
Figure ��� The dotted bars represent the time of execu�
tion of queries separately� The solid bars represent the
execution time of queries using the shared scan hash�
based and index�based star join operator� We see that
adding a new index�based query to the operator only
increases the total execution time by a small amount�
The reason is that the I�O cost of the new index�based
query is avoided by sharing the scan of the base table�
The CPU cost for each index�based query is very small�

In general it is clear that the sharing operators can
have a non�negligible positive e�ect on overall execu�
tion times�

GB A"B"C’D

Hash-based
Star Join

Hash-based
Star Join

Hash-based
Star Join

GB A’B"C"D

Star Join Star Join

Hash-based

Star Join

Shared Scan
Hash-based
Star Join

GB A’B"C"D

GB A’B’C"D

GB A’B’C"D GB A"B"C’D

GB A’B"C"D GB A"B’C"D GB A"B"C"D

GB A’B"C’D

GB A"B"C"DGB A"B’C"D

Two Phase Local Optimal

Global Greedy

Two Phase Local Greedy

Optimal Gobal Plan

GB A’B"C’D

GB A"B’C"D

GB A’B’C"D GB A"B"C’D

GB A"B"C"D

Hash-based

Star Join

Hash-basedHash-based

GB A’B"C"D GB A"B’C"D

Shared Scan

Hash-based

Star Join

GB A’B’C"D

GB A"B"C"D

Hash-based

Star Join

GB A"B"C’D

Figure ��� Query Plans for Test �

Algorithm Test � Test � Test � Test �
TPLO ������ ������ ����� ������
ETPLG ������ ������ ����� ������
GG ������ ������ ����� ������
Optimal ������ ������ ����� ������

Table �� Execution time 	in seconds
 for Test �� �� �
and �

��
 Performance of the Three Opti�
mization Algorithms

Test �� We used all three algorithms� Two Phase
Local Optimal 	TPLO
� Extended Two Phase Local
Greedy 	ETPLG
� and Global Greedy 	GG
 to gen�
erate a global plan for an MDX expression including
Queries �� �� and �� The performance results of
the global plan produced by the three algorithms
and the optimal global plan are listed in Table ��
Both TPLO and ETPLG generate the following
query plans 	A�B��C�D � A�B��C��D
Hash�basedSJ �
	A�B�C��D � A��B�C��D
Hash�basedSJ � and
	A��B��C�D � A��B��C��D
Hash�basedSJ � The exe�
cution time of the each above query plan is �������
������� and ����� seconds� ETPLG does not use
A�B�C��D to compute A��B��C�D because the CPU
cost of computing A��B��C��D from A�B�C��D is
higher than the cost of the plan 	A��B��C�D �

A��B��C��D
Hash�basedSJ � The GG algorithm generates
the plan 	A�B�C��D � A�B��C��D
Shared�HB�SJ �
	A�B�C��D � A��B�C��D
Shared�HB�SJ � and
	A��B��C�D � A��B��C��D
Hash�basedSJ The GG
algorithm adds each query to the global plan in the
order A�B��C��D� A��B�C��D� and A��B��C��D� The
total execution time for queries in the Class A�B�C��D
is ������ seconds and the running time of the queries
in the Class A��B��C�D is ����� seconds�

Test �� We used the three algorithms to generate a
global plan for Queries �� �� and �� We show the perfor�
mance results for the global plan produced by the three
algorithms and for the optimal global plan in the table
below�

Test � is di�erent from Test �� The lo�

Index-based
Star Join

Hash-based
Star Join

Hash-based
Star Join

Global Greedy

Two Phase Local Greedy

GB A’B"C"D

Optimal Gobal Plan

GB A’B"C"D

Index-based

Star Join

GB A’B"C’D

GB A"B’C"D GB A"B"C"D

Shared Scan

Hash-based

Star Join

GB A’B’C"D

GB A"B’C"D

Hash-based

Star Join

Index-based

Star Join

GB A’B’C"DGB A’B"C’D

GB A"B"C"D

Hash-based

Star Join

GB A"B"C’D

Two Phase Local Optimal

GB A’B"C"D GB A"B’C"D

GB A’B"C’D GB A’B’C"D GB A"B"C’D

GB A"B"C"D

GB A"B"C’D

Hash-based

Star Join

GB A’B"C"D GB A"B’C"D GB A"B"C"D

Shared Scan

Hash-based
Index-based

Star Join

GB A’B’C"D

Class A’B’C"

Figure ��� Query Plans for Test �

cal optimal plan for the query A�B��C��D is
	A�B�C��D � A�B��C��D
Index�basedSJ � The TPLO
and ETPLG algorithms generate the query plans for
Test �� 	A�B��C�D � A�B��C��D
Index�basedSJ �
and 	A�B�C��D � A��B�C��D
Hash�based�SJ �
	A��B��C�D � A��B��C��D
Hash�basedSJ � The
execution time of each plan is ������ �������
and ����� seconds� GG generates the plans�
	A�B��C�D � A�B��C��D
Shared�HB�IB�SJ �
and 	A�B�C��D � A��B�C��D
Shared�HB�IB�SJ �
	A��B��C�D � A��B��C��D
Hash�basedSJ � The run�
ning time for the queries in the Class A�B�C��D is
������ seconds� We also have the optimal global plan
for Test �� 	A�B��C�D � A��B�C��D
Hash�basedSJ �
	A�B�C��D � A��B��C��D
Shared�HB�IB�SJ � and
	A�B�C��D � A��B�C��D
Shared�HB�IB�SJ � The
running time for the Class A�B�C��D is ������ seconds�
The query time for the last plan is ����� seconds� This
optimal plan was found by exploring all possible query
plans�

From Test � and Test �� we see that GG produces a
global plan which performs close to the optimal global
plan� We also observe that GG�s global plan performs
better than ETPLG for both tests� The simple reason
for this is that the GG creates more logical sharing� i�e��
base table sharing than ETPLG does� So� the logical
sharing of materialized group�bys is important for mul�
tiple OLAP query optimization�

Test �� The MDX expression consists of Queries ��
�� and �� We list the performance results in Table ��
Since each of the Queries �� �� and � are very selective�
the best sharing among the queries is at the query tree
level i�e� using the shared index�base star join operator�
There is not much logical sharing to be found by the
ETPLG and GG algorithm� Therefore� the di�erent
global plans perform about the same for this situation�

Test 	� The MDX expression contains the Queries �� ��
and �� The performance results are shown in Table ��
The GG and ETPLG generate the same global plan as
the optimal global plan� All three queries use a hash�
based star join� TPLO produces the worst global plan�
Since it chooses di�erent fact table for each query� the

three queries do not share any common tasks�

From Test � and Test �� we see that GG and ETPLG
algorithms generate a better global plan if all the queries
are not very selective� On the other hand� if all queries
are very selective� GG and ETPLG algorithm do not
have much opportunity to create logical level sharing�

� Conclusion and Future Work

In this paper� we design three new shared star join op�
erators for di�erent star join methods to create sharing
among di�erent query plans� Our performance exam�
ples show that the three query primitives can substan�
tially improve multiple query performance� To pursue
sharing behind the query plan� we also designed and
implemented three algorithms for multiple OLAP query
optimization� Both ETPLG and GG create logical level
sharing by letting the queries share the same base table�
We found that� in the most of our tests� the GG algo�
rithm produces a global plan close to the global optimal
plan in terms of query performance� The selectivity of
a set of related queries also a�ects the degree of shar�
ing available among query plans� If all queries of an
MDX expression are not selective� the optimizer will
choose hash�based star join for each query� In this case
ETPLG and GG are able to explore opportunities for
logical sharing� i�e� sharing base tables among queries�
On the other hand� if all the queries of an MDX ex�
pression are very selective� which causes the optimizer
choose index�based star join for those queries� TPLO
produces a fairly good global plan since the local op�
timal plans are very e�cient and logical sharing is not
very useful� In this situation� ETPLG and GG would
generate the same global plans as TPLO�

The true test of any optimization scheme is how well it
works on �real� workloads� As OLE DB for OLAP or
a similar standard becomes available to application de�
velopers we will have a chance to examine the kinds of
simultaneous multiple queries that arise in practice� We
regard the results obtained from our implementation as
encouraging� suggesting that common subtask sharing
and global optimization will yield substantial perfor�
mance improvements when relational database systems
are used as data sources for multidimensional analysis�

An important issue to be explored in the future is the
time and space trade�o� for the three algorithms TPLO�
ETPLG� and GG� In terms of the number of global plans
searched� GG dominates ETPLG and ETPLG domi�
nates TPLO� However� this comes at a price � the run
time of GG is bigger than that of ETPLG� and ETPLG
is slower than TPLO� The study of this trade�o� may
lead to the discovery of new algorithms that have both
better time and space performance than the above three
algorithms�

Acknowledgements We would like to thank Rick
Stellwagen who �rst lead us to attack this problem� We
also like to thank the anonymous referees for helpful
suggestions�

References

�CS�� S� Chaudhuri and K� Shim� �Including group�
by in query optimization�� In VLDB Confer�
ence� page �������� �����

�CR�� Damianos Chatziantoniou� Kenneth A� Ross�
Querying Multiple Features of Groups
in Relational Databases�� Multidimensional
Aggregates�� In Proceedings of the ��nd
International Conference on Very Large
Databases� Mumbai 	Bombay
� pp��������

�DKLPY�� D�J� DeWitt� N� Kabra� J� Luo� J�M� Pa�
tel� J� Yu� �Client�Server Paradise�� Proceed�
ings of the ��th VLDB Conference� Santiago�
Chile� �����

�HRU�� V� Harinarayan� A� Rajaraman� and J�D�
Ullman� � Implementing Data Cubes E��
ciently�� Proc� ACM SIGMOD ����

�GHQ�� A� Gupta� V Harinarayan� D� Quass�
�Aggregate�Query Processing in Data Ware�
housing Environments�� Proceedings of the
��st VLDB Conference Zurich� Swizerland�
�����

�MS Microsoft Corporated� �OLE DB for
OLAP Design Speci�cation ! Beta ���
http�www�microsoft�comdata
oledbolapprodinfo�html

�OQ�� Patrick O�Neil and Dallan Quass� �Improved
Query Performance with Variant Indexes��
Proc� of the ���� SIGMOD Conference� May�
�����

�PS�� J� Park and A Segev �Using common subex�
pressions to optimize multiple queries�� In
Proc� �th Intern� Conf� on Data Engineering�
pages �������� February� �����

�S�� Timos K� Sellis� �Multiple�Query Optimiza�
tion�� ACM Transactions on Database Sys�
tems� Vol ��� No��� March ����� Pages ������

�SS�� K� Shim and T�Sellis� �Improvements on a
Heuristic Algorithm for Multiple� Query Op�
timization�� Data and Knowledge Engineer�
ing� Vol� ��� No��� March �����

�SM�� Sunita Sarawagi� Michael Stonebraker� �Ef�
�cient Organization of Large Multidimen�
sional Arrays�� In Proceedings of the Eleventh
International Conference on Data Engineer�
ing� Houston� TX� February �����

�Su�� Prakash Sundaresan� �Data Warehousing
Features in Informix OnLine XPS�� Presen�
tation at the Fourth International PDIS Con�
ference� December ������ ����� Miami Beach�
Florida�

�YL�� W� P� Yan and P� Larson� �Eager aggregation
and lazy aggregation�� In VLDB Conference�
page �������� �����

�ZTN�� Y�H� Zhao� K� Tufte� and J�F� Naughton�
�On the Performance of an Array�Based
ADT for OLAP Workloads�� Technical
Report CS�TR��������� University of
Wisconsin�Madison� CS Department� May
�����

