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Abstract

Database researchers have made signi�cant progress on
several research issues related to multidimensional data
analysis� including the development of fast cubing al�
gorithms� e�cient schemes for creating and maintain�
ing precomputed group�bys� and the design of e�cient
storage structures for multidimensional data� However�
to date there has been little or no work on multidi�
mensional query optimization� Recently� Microsoft has
proposed �OLE DB for OLAP� as a standard multidi�
mensional interface for databases� OLE DB for OLAP
de�nes Multi�Dimensional Expressions 	MDX
� which
have the interesting and challenging feature of allow�
ing clients to ask several related dimensional queries in
a single MDX expression� In this paper� we present
three algorithms to optimize multiple related dimen�
sional queries� Two of the algorithms focus on how
to generate a global plan from several related local
plans� The third algorithm focuses on generating a good
global plan without �rst generating local plans� We also
present three new query evaluation primitives that allow
related query plans to share portions of their evaluation�
Our initial performance results suggest that the ex�
ploitation of common subtask evaluation and global op�
timization can yield substantial performance improve�
ments when relational database systems are used as
data sources for multidimensional analysis�

� Introduction

In the past few years� database researchers have made
great progress on OLAP issues such as cubing algo�
rithms� techniques for e�ectively creating and maintain�
ing materialized group�bys� and multi�dimensional stor�
age structures and indexing� However� to our knowledge
there has been very little attention devoted to optimiz�
ing multiple simultaneous OLAP queries� In addition to
its intrinsic interest� the problem of optimizing multiple
simultaneous OLAP queries is likely to be of consider�
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able practical importance due to recent developments
in the industry�

Speci�cally� Miscrosoft recently released its proposed
�OLE DB for OLAP� standard for interfaces to mul�
tidimensional data sources �MS� This standard� or one
heavily in�uenced by this standard� is likely to become
widely supported� One of the most interesting aspects of
this standard is that it de�nes �Multi�Dimensional Ex�
pressions� 	MDX
� which provide a framework in which
a user can very naturally ask several related OLAP
queries in a single MDX query� This aspect of MDX re�
�ects the fact that OLAP�style analysis very often gives
rise to simultaneous related queries� MDX is intended
to be a uniform front end for a variety of data sources�
including multidimensional database systems and rela�
tional database systems� In this paper we consider the
evaluation of MDX expressions by relational database
systems�

Of course� the fact that the queries are expressed in
a single MDX expression does not mean that the data
source must evaluate them as a single unit� a data source
can always evaluate the queries one after another with�
out regard for the relationships between them� How�
ever� as we show in this paper� doing so typically misses
an opportunity for substantial performance gains that
could be achieved by optimizing and executing these
queries as a unit� While our results apply directly to
MDX� they would be equally applicable to other lan�
guage frameworks that allow the expression of multiple
dimensional queries�

While similar problems have long been studied in the
context of global query optimization 	see� for exam�
ple� �PS��� �S��� and �SS��
� the multidimensional
nature of the simultaneous queries found in MDX ex�
pressions present both new opportunities and new chal�
lenges� The opportunities arise primarily because of
the restricted nature of the queries in question � the
queries in MDX expressions typically look 	in relational
terms
 like a select�star�join followed by an aggregation
at some level in dimension hierarchies� The restricted
domain of the queries facilitates the identi�cation and
exploitation of their common subtasks�

The �rst contribution of this paper is the design of sev�
eral new query operators that allow multiple related
star join queries to share common subtasks� even if each
plan uses a di�erent star join method� The new oper�
ators are shared scan hash�based star join� shared scan
hash�based and join index�based star join� and shared
join index�based star join� In the performance study�
we show that these three query operators improve the
performance of multiple related dimensional queries�

�



A signi�cant challenge in multiple dimensional query
optimization and evaluation arises due to the way mul�
tidimensional data sources attempt to speed up query
evaluation using precomputation �GHQ��� HRU���
CR��� Simply put� in general� for any dimensional
query there will be a number of distinct precomputed
aggregates that can be used as the data table from which
to evaluate the query� Choosing the best aggregate
to use is simple in the context of a single dimensional
query� however� choosing the correct set of tables to use
for a set of dimensional queries is non�trivial�

The second contribution of our paper is the develop�
ment of algorithms that choose which aggregate tables
to use to evaluate a set of dimensional queries� These al�
gorithms are TPLO 	Two Phase Local Optimal
� ET�
PLG 	Extended Two Phase Local Greedy
� and GG
	Global Greedy
� These algorithms di�er in how aggres�
sively they search for query plans that contain shared
subtasks� We will discuss each of these in detail in
the remainder of the paper and give examples of their
performance implications� The evaluation plans gener�
ated by these algorithms make use of the new query
operators introduced above in order to share common
subtasks� The results obtained from our implementa�
tion suggest that common subtask sharing and global
optimization can provide substantial performance im�
provements when relational database systems are used
as data sources for multidimensional analysis�

We organize the paper as the following� In Section ��
we introduce MDX� In Section �� we discuss the three
shared operators� We present the TPLO algorithm in
Section �� the ETPLG algorithm in Section �� and the
GG algorithm in Section �� We study and compare our
three algorithms in Section �� Finally� we conclude in
Section ��

� Multi�Dimensional Expressions
�MDX�

Due to space constraints� in this section we only dis�
cuss the MDX features which are relevant to the paper�
The reader interested in more detail is referred to �MS�
We mainly focus on expressing several related OLAP
queries in a single MDX expression� The Microsoft doc�
ument �MS includes the following example�

NEST ��Venkatrao� Netz��
�USA�North�CHILDREN� USA�South� Japan��

on COLUMNS
�Qtr	�CHILDREN� Qtr
� Qtr�� Qtr��CHILDREN �
on ROWS

CONTEXT SalesCube
FILTER�Sales� 	��	�� Products�All�

NEST� CONTEXT� COLUMNS� ROWS� CHILDREN� and
FILTER are all reserved MDX keywords� This query
asks for the total sales for salesmen Venkatrao and Netz
in all states of USA North� USA South� and Japan for
all the months of the �rst quarter� the second quarter�
the third quarter� and all the months of fourth quarter�
for �����

In relational terms� the joins between the fact table and
dimension tables are de�ned implicitly in an MDX ex�
pression� Therefore� we do not see the join attributes

and join conditions� This is because an MDX expres�
sion does not de�ne how an OLAP server processes a
MDX query � MDX is supposed to be system indepen�
dent� working for both Relational OLAP 	ROLAP
 and
Multidimensional OLAP 	MOLAP
�

For the above MDX example� we assume that the
database has �ve dimensions and one fact table 	Whole�
SalesData�
 The �ve dimensions are the Time� Store�
Product� Sales person� and Measure� On the Time di�
mension� we have the Date � Month � Quarter �
Year hierarchy� Ths Store dimension contains the Store
� City � State � Region � Country hierarchy�

In terms of SQL statements� this MDX expression spec�
i�es six di�erent group�by queries�

�� the total sales for Venkatrao and Netz in all states
of USA North for the �nd and �rd quarters in ����

�� the total sales for Venkatrao and Netz in all states
of USA North for the Months of the �st and �th

quarters in ����

�� the total sales for Venkatrao and Netz in region
USA South for the �nd and �rd quarters in ����

�� the total sales for Venkatrao and Netz in region
USA South for the Months of the �st and �th quar�
ters in ����

�� the total sales for Venkatrao and Netz in Country
Japan for the �nd and �rd quarters in ����

�� the total sales for Venkatrao and Netz in Country
Japan for the Months of the �st and �th quarters
in ����

More succinctly� we have the six group�bys 	Sales�
Person� State� Quarter
� 	SalesPerson� State� Month
�
	SalesPerson� Region� Quarter
� 	SalesPerson� Region�
Month
� 	SalesPerson� Country� Quarter
� and 	Sales�
Person� Country� Month
� In addition� for each group�
by we have disjoint selection predicates� This means
that we cannot use the ��nding the Common Selec�
tion predicates� techniques that are so widely used in
multi�query optimization algorithms for general SQL
queries �S���

In this paper� for simplicity of notation we interchange
the MDX query with the target group�by corresponding
to the query� For example� we use A�B�C� both to refer
to the target list of a group by and to the query that
computes this group�by� For a relational data source
storing its data in a star schema� each individual query
of an MDX expression can be evaluated using a star join
query followed by an aggregation for the target group�
by� In addition� a typical query of MDX includes a
selection predicate along each join dimension� In the
rest of the paper� we use SQL and MDX interchangably
to describe queries�

� Operators for Merging Query
Plans

The fundamental task in evaluating multiple related di�
mensional queries is identifying and exploiting common
subtasks between the queries� In this section we pro�
pose several operators that are useful for this task in
the context of relational implementations of dimensional



data sets� Recall that the basic operation in such an
environment is a star join� In this paper� we consider
two star join methods� hash�based and index�based star
join� For very selective star join queries� the join index�
based star join method is a good alternative �OQ���
For non�selective star join queries� the hash�based star
join is a good solution �Su���

��� Shared Scan for Hash�based Star
Join

Before discussing this new operator� we describe by ex�
ample how a generic pipelined right�deep star�join fol�
lowed by an aggregation works in a relational system�
Suppose that we have a fact table F 	A�B� dollars
� and
dimension tables Adim	A�A�
 and Bdim	B�B�
� Then
consider evaluating the query

select A�� B�� Sum�dollars�
from Adim� Bdim� F
where Adim�A � F�A and Bdim�B � F�B
group by A�� B�

The pipelined right�deep hash�based join begins by
building hash tables on each of the 	small
 dimension
tables Adim and Bdim� Then� the large fact table F
is streamed past these hash tables� probing them for
matches in order to create joined tuples with the schema
	A�� B�� dollars
� Finally� these joined tuples are passed
to an aggregation operator to compute the group by on
the attributes A� and B�� We assume that this aggre�
gation is also done by hashing�

This pipelined right�deep query tree hash�based join
method creates two di�erent opportunities for shar�
ing among query trees� Suppose we have two di�er�
ent queries sharing the same fact table� First� these
query trees can share the scan of the base table� This
technique is used in some commercial systems� for ex�
ample� Teradata uses shared scans for multiple queries
that happen to simultaneously be accessing the same
table�

A more sophisticated opportunity for sharing arises if
two query trees use the same set of dimension tables�
Recall that the hash�based star join involves building
a hash table on each dimension table� and then prob�
ing these hash tables with tuples of the fact table� If
two queries use the same set of dimension tables� they
can share hash tables� instead of redundantly building
and probing several hash tables on the same dimension
tables�

Consider the following schema� We have three dimen�
sion A� B� and C� Dimension A has the hierarchy
A � A� � A��� Dimension B contains the hierarchy
B � B� � B�� Dimension C includes the hierarchy
C � C� � C��

In Figure �� we show the hash�based star join query
plan for computing the query A�B�C�� using the base
table ABC� The query plans for the group�by A�BC
and AB�C�� are very similar to that of A�B�C�� except
the aggregation step� The shared scan hash�based star
join operator for the three group�bys is shown in Fig�
ure �� Note that the scan of the base table ABC and
the three join hash tables is shared by the three group�
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Figure �� Query Plan for a single group�by
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Figure �� Query Plan for Shared Scan group�bys

bys� After a tuple is joined with the dimension C� it is
sent to the corresponding group�by�s hash table for ag�
gregation� When a tuple is fetched from the base table�
we construct three result tuples for each group�by� Each
tuple has to join with the dimension tables and project
on the proper aggregation attributes of each group�by to
the result tuple� For instance� the tuple for the group�
by A�B�C�� has to probe the shared hash table A with
its key attribute value and copy the corresponding hash
entry�s A� attribute to the result tuple� Then� it has
to probe the hash table B and C� and copy the hash
table entries� corresponding attributes B� and C�� to
the result tuple� Finally� it uses the hash table for the
group�by A�B�C�� to aggregate the query result�

��� Shared Index Join

This technique is useful for index�based star join query
plans using the same base table� Suppose that we have
the query



select A�� B�� Sum�dollars�
from Adim� Bdim� F
where Adim�A � F�A and Bdim�B � F�B
and Adim A� in �a	� a
�
and Bdim B� in �b
� b��
group by A�� B�

Also suppose that we have bitmap join indices map�
ping Adim�s A� attribute to tuples of F and Bdim�s
B� attribute to tuples of F � The index�based star join
proceeds by �rst reading the bitmaps from these two
indices� and then probing F to extract the tuples that
match� The idea of the new operator in this section is to
let two such query plans over the same fact table share
the fact table look ups� In order for the query plans to
share these base table lookups� we �rst OR the result
bitmaps for all the query plans� and then use the ORed
bitmap to look up the corresponding tuples in the base
table� Once the result tuples are retrieved from the base
table� we send them to corresponding group�by hash ta�
bles for aggregations by consulting the group�by result
bitmaps�

Figure � shows the query plan for the group�by AB�C���
First� we consider in more detail how a standard join
index bitmap join works� Here� we assume that there is
join bitmap index built on each attribute A� B� and C of
the base table ABC� We also assume for this example�
that the selectivity of the selection predicates of the
group�by A�B�C�� is high� which causes the optimizer
to use the bitmap index�based star join method� The
join uses the follow steps�

�� retrieve bitmaps from the index of dimensionA and
OR them to generate the bitmap BPA

�� retrieve bitmaps from the index of dimension B and
OR them to get the bitmap BPB

�� AND the two bitmaps BPB and BPA to get the
bitmap BPAB

�� retrieve bitmaps from the index of dimension C and
OR them to get the bitmap BPC

�� AND the bitmap BPAB with the bitmap BPC to
generate the query result bitmap BPresult

�� use the bitmap BPresult to probe the fact table to
get the results tuples

�� join the result tuples with the dimension hash ta�
bles and aggregate to produce the �nal result for
the group�by

In Figure �� we show how the shared bitmap star join
operator works� We need to compute the queries having
aggregation on group by A�B��C��� A��B��� and A�B��C��
The operator goes through the following steps�

�� build the join bitmaps for each query and OR the
three join bitmaps to get one bitmap

�� use the bitmap to probe the base table ABC

�� use the tuples� position to split them into their cor�
responding group�bys� Given a tuple position� we
test whether a query�s bitmap�s corresponding bit
is set to �� If so� we know the tuple belongs to this
group�by� This task is done in each of the �Filter
tuples� operators�

Generate 
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Figure �� Query Plan for one Bitmap Star Join
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Figure �� Query Plan for Shared Bitmap Star Join

�� aggregate the results for each query

��� Shared Scan for Hash�based and
Index�based Star Join

The goal of this technique is to create sharing among
the query plans using the same base table� but di�erent
star join methods� In general� we may have a situation
where some of the plans perform a hash�based star join
that needs to scan the base table� other queries use the
star�join index based join 	index join
� Here� we assume
that star�join indices can be either position based B�
tree or bitmap indices� Since the query plans all have
to read data from the base tables� we should merge the
table scan query plans with index join plans to save the
the cost of probing the base table for index�based star
join plans� We know that a typical index join query has
two phases� building the join bitmap and using the �nal
bitmap to probe the base table� Here� we modify the
probing of the base table to scanning it for the group�bys
using index�based star join and use the result bitmap as
the selection �lter after the scan� This conversion allows
us to share the scan of the base table among the hash�
based and index based�join plans� We save the cost of
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Figure �� Shared Scan for Hash�based and Index�based
Star Join

probing the base table for an index�based query plan�

Figure � shows the operator of the shared scan for hash�
based and index�based star joins� A scan of table ABC
is shared by four di�erent queries� A�B��C�� AB��C��
B��C��� and BC��� For each tuple read from the table
ABC� we use the ORed bitmap for the query B��C��

and BC�� and tuple position to test whether the tuple
should be aggregated for the group�by B��C�� and BC���
As tuples pass through the �rst �lter� we use the the
query B��C�� and BC���s bitmaps to split those tuples
and aggregate the corresponding tuples to each query�
For the query using hash�based star join� the operator
works exactly the same for shared scan hash�based star
join operator�

	 Two Phase Local Optimal Algo�
rithm

Section � introduced three operators for sharing sub�
tasks among queries� In this and the two following sec�
tions we discuss optimization techniques that generate
query plans for a set of queries� The goal is to produce
a plan for a set of queries that allows the operators of
Section � to be used to exploit common subtasks�

The Two Phase Local Optimal algorithm 	TPLO
 is
perhaps the most natural and straight�forward way
to approach the problem of simultaneous dimensional
query optimization� TPLO breaks a MDX expression
into several SQL queries� Virtually all database sys�
tems support OLAP queries by precomputing group
bys� TPLO independently picks the best precomputed
	materialized
 group by for each of these component
subqueries� Once the target �group by� for each com�
ponent query has been determined� TPLO uses the SQL
optimizer to generate the best plan for the queries� Fi�
nally� it generates a global plan by merging the common
tasks among the query plans as much as possible� using
the operators from Section ��

We �rst divide the MDX expression into several SQL
queries� MDX expressions use implicit joins among the
fact table and dimension tables� One option that is al�
ways available is to use the lowest level fact table LL to
compute each query� 	LL is the base data� without any
aggregation� for simplicity� we also consider LL to be a
�materialized group by�
� Using LL is a mistake if there

Target group-by A’B"C’

Star Join 

Index-based

Aggregate 
for A’B"C’

Base Table A’B’C’

Hash-based
Star Join

Aggregate Aggregate
for A"B’C"

Hash-based
Star Join

Target group-by A"B’C"

Optimal Local Plan for A’B"C’

for A’B"C"

Target group-by A’B"C"

Base Table A’B’C"

Optimal Local Plan for A"B’C"Optimal Local Plan for A’B"C"

Base Table A"B’C’

Figure �� Phase One of Two Phase Local Optimal

is more highly aggregated materialized view that can
be used to answer the query� Determining the material�
ized group�by to be used for a given query is done using
a standard relational query optimizer by enumerating
query plans for all candidate group bys and choosing
the one with lowest estimated cost� We call each such
plan the �optimal local plan� for the query�

For example� in Figure �� suppose that for a given MDX
expression we need to compute the group�bys A�B��C��
A�B��C��� and A��B�C��� We have a set of materialized
group�by ABC� A�B�C�� A�B�C��� and A��B�C�� The
TPLO would choose the materialized group�by A�B�C��
A�B�C��� and A��B�C� in the optimal local plans to com�
pute the query A�B��C�� A�B��C��� and A��B�C���

Once we have the best query plan for each group�by of
the MDX expression� we use the three techniques from
Section � to merge the common tasks of the query plans�
if there are any such common tasks� We call this phase
two of TPLO� Returning to our example of Figure ��
we see that there are no such common subtasks� This
is likely to happen with TPLO� this problem motivates
the algorithms of the following sections�


 Extended Two Phase Local
Greedy Algorithm

The motivation of the Extended Two Phase Local
Greedy 	ETPLG
 is to solve a drawback of the Two
Phase Local Optimal 	TPLO
 algorithm� TPLO always
uses the best local plan for each query of an MDX ex�
pression and merges plans at the query tree level to
generate a global plan� The limitation of TPLO is that
it cannot create the sharing of base tables if the opti�
mal plans for the individual queries use di�erent tables
as their input� In some cases it may be better for in�
dividual queries to use sub�optimal base tables so that
they can share tasks in their execution� We use a simple
example to illustrate this�

Example �� Suppose we need to compute the queries
for the group�bys A�B��C�� and A��B�C�� of a MDX ex�
pression� The materialized group�bys include A�B�C���
and A�B�C�� TPLO generates the Plan � including
	A�B�C�� � A�B��C��
Hash�basedSJ and 	A

��B�C� �
A��B�C��
Hash�basedSJ in Figure �� 	X � Y 
Z stands
for compute the group�by Y using X and Z star
join method� Since the group�by A�B�C�� is di�er�



ent from A��B�C�� there are no common query tasks
to share for the two queries� The ETPLG algo�
rithm produces the following query plan for each query�
	A�B�C�� � A�B�C�
Shared�HB�SJ and 	A

�B�C�� �
A�B�C�
Shared�HB�SJ � The two queries A

�B��C�� and
A��B�C�� use the same base table A�B�C��� Hence� they
are able to share the scan of the table A�B�C��� The
main di�erence between global plans � and � is that
plan � explores the possibility of sharing of the base
table�

Example � suggests that we should consider using
locally sub�optimal plans to create opportunities for
global sharing� This is the goal of the Extended Two
Phase Local Greedy 	ETPLG
 algorithm� ETPLG cre�
ates a global plan by adding new queries 	required
group�bys
 one at a time� When adding a new query
into the global plan� it chooses between the best plan
that allows the new query to share a base table with
other selected queries� and the best local plan for the
query� In phase two� just like in TPLO� we merge the
query plans at the query tree node level�

During optimization of a set of queries ETPLG main�
tains two sets� The shared group�by set contains mate�
rialized group�bys shared by the selected queries� The
unused materialized group�by set includes all the ma�
terialized group�bys that are not used by any chosen
query� When ETPLG picks a new query N and adds
it to the global plan� it chooses the base table from the
unused materialized group�by set or the shared group�
by set� ETPLG calculates the cost of the best query
plan in each set and picks the most e�cient plan from
each set� Thus we have�

� The best plan BD that uses an unshared material�
ized group�by D� and

� The best plan BS that uses a shared group�by S�

If the cost of BD is higher than that of BS � ETPLG
adds the query N to the set of queries using the shared
group by S� In general� we de�ne a class X to be the
set of queries using the same base table X� If the cost
of BD is lower than that of BS � then it creates a new
class D and adds the query N to the class D� It also
needs to update the two sets by adding the group�by
D to the shared group�by set and deleting it from the
unshared materialized group�by set�

It is useful to de�ne for each group by the Group�
byLevel� which is the sum of the group�by levels along
each dimension� That is� a group�by�s GroupbyLevel is
the sum of the hierarchy level of the group�by on each
dimension�

In ETPLG� we sort the queries by their GroupbyLevel
and pick the next query with the smallest Group�
byLevel� The heuristic used here is to create more logi�
cal sharing� that is� sharing base tables among queries�
The smaller the value of a group�by�s GroupbyLevel�
the more likely we can share the group�by�s base table
with other queries because a base table�s GroupbyLevel
is never greater than the computed group�by�s Group�
byLevel� The smaller a group�by�s GroupbyLevel� the
more group�bys we can use it to compute�

Now� we present the ETPLG algorithm in greater detail�

Extended Two Phase Local Greedy Algorithm

��Phase One
Set SharedSet empty�
Initialize MSet�
Set Group�bys G � �G	� G
� ��� Gn��
Sort G by GroupbyLevel�
For each Gi in G
�

Find the group�by D in MSet with
Minimum �Gi�CostOfUsing�D���
Find the Class S in SharedSet with
Minimum�Gi�CostOfUsing�S�BaseTable����
B � S�BaseTable���
if �Gi �� G	 �� Gi�CostOfUsing�B� � Gi�CostOfUsing�D��
�

SharedSet � SharedSet Union D�
MSet � MSet � D�
Construct a new Class D�
Generate the best plan Q for Gi using D�
Add Q to the Class D�
Add Class D to the ClassList�

�
else
�

Generate the best plan Q for Gi using B�
Add Q to Class S�

�
�
��Phase Two
For each Class in the ClassList

Merge the query plans�

The set MSet is �rst initialized to contain all the pre�
computed group�bys and the lowest level base table
LL� The CostOfUsing	X
 function estimates the cost of
computing a query from the materialized group�by X�
X�BaseTable	
 returns the shared base table of Class
X� Each class in the ClassList contains a set of queries
using the same base table�

Figure � shows the query A�B��C�� being processed by
the ETPLG algorithm� It adds the query A�B�C�� to
the Class A�B�C� because the cost of using the group�
by A�B�C� is cheaper than using the group�by A�B�C��

to compute the group�by A�B��C��� The cost of scan�
ning A�B�C� is shared by two queries� In the next Fig�
ure �� the ETPLG algorithm adds the query A��B��C��

to the global plan� The ETPLG algorithm decides to
use the materialized group�by A�B�C� to compute the
query A��B��C��� In the next subsection� we explain the
cost model used to compute the cost of queries sharing
the base table�


�� Cost Formula

To compute X�CostOfUsing�B� for a query X using the
shared materialized table B for the Class Y � we have to
consider two types of cost� One is the I�O cost shared
by the queries in the class Y � the other is the CPU and
I�O cost� not shared by the other queries� Adding the
query X to the class Y may change the shared I�O cost
for the class�

If we use a hash�based star join to compute the query
X from the shared base table B� we use CB�X �
CostCPU ��CostIOB to compute the cost� �CostIOB
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is the change of the shared IO cost for the class Y after
adding X to the class� Using the hash�based star join
to compute X from B may change the shared IO cost
of a class� If all the other queries in the class Y use an
index�based star join� using the hash�based star join to
compute X changes the shared I�O cost of the class Y
from a random read of some data pages to a sequen�
tial scan of the table B� In this case� the value of the
�CostIOB might be positive�

If we use an index�based star join to compute query X�
we use CB�X � CostCPU�CostIOIndex��CostIOB to
compute the query cost� CostIOIndex contains the cost
of the query index lookup� If any other group�by in class
Y scans the group�by B� the shared I�O cost of the class
�CostIOB is equal to � because the I�O cost of probing
the fact table B for query X is already counted in the
scan cost� If all the group�bys in the class use an index�
based star join� we have�CostIOB � � because we may
retrieve more data pages for computing the query X�

Next� consider the situation in which we use an unused
materialized table U instead of a shared group�by to
compute the query X� Since the I�O cost for the table
U is not shared� we use di�erent formulas to compute
X�CostOfUsing�U� according to the star join method�

� If the query plan for the group�by X involves a
hash�based star join� we use CU�X � CostCPU �
CostIOU �

� If it uses the index�based star join� we choose
CU�X � CostCPU � CostIOIndex � CostIOU to
compute the query cost�

In the second case� CostCPU includes the CPU cost
for index operation such as ANDing or ORing bitmaps�
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Now we are ready to compute the cost of a global plan
generated by ETPLG� The cost of computing all queries
in the class i is given by�

Cclassi �

pkX

k��

	CostCPUplank � CostIOplank



�Cost	SharedIOi
 � Cost	SharedCPUi


where pk is number of group�bys in the class i� The
CostCPUplank

for a plan k is the CPU cost not

shared by the other plans in the class i� Similarly�
The CostIOplank is the non�shared I�O cost for plan

k� The cost of reading data and processing the tu�
ples and the cost of building shared hash tables are
included in Cost	SharedIOi
 � Cost	SharedCPUi
�
Cost	SharedIOi
�Cost	SharedCPUi
 is shared by all
the group�bys of the class i� The cost of the global
plan is the sum of the cost of each class� Cglobal �Pn

i��
Cclassi where n is number of classes in the global

plan�

� Global Greedy Algorithm

The Extended Two Phase Local Greedy 	ETPLG
 algo�
rithm employs heuristics to increase the sharing of base
tables among multiple queries� But the global plan pro�
duced by the ETPLG algorithm may still not be a good
global plan� The reason is that ETPLG never �changes
its mind� about which base table to use for a query� We
use Example � below to elaborate�

Example � � We want to compute the queries for
group�bys A��B��C� and A��B�C�� of an MDX expres�
sion� Let A�B�C�� A�B�C��� and A�B��C� be pre�
computed group�bys� We also have Size	A�B�C��
 �
Size	A�B��C�
 � Size	A�B�C�
� Size	A�B�C��
 �
Size	A�B�C�
� and Size	A�B�C��
 � Size	A�B�C�
�
The two queries are not very selective� So the ET�
PLG algorithm generates the global query plan for the
MDX expression� 	A�B�C�� � A��B�C��
hash�basedSJ
and 	A�B��C� � A��B��C�
hash�basedSJ � It uses the
hash�based star join and the materialized table A�B�C��

to compute the query for A��B�C��� ETPLG would not
choose the the materialized table A�B�C� to compute ei�
ther of the two queries since it costs more CPU and I�O
time to process a large table than a small table� But� if
we use the group�by A�B�C� to compute both queries�
we may get a better global plan� The I�O cost of scan�
ning the table A�B�C� is shared by the two queries� We
reduce I�O cost for the two queries� but increase the



CPU cost since we have to process more tuples� For
Example �� let us assume the increase of CPU cost is
smaller than the reduction of I�O cost� This means that
we have a better global plan than the ETPLG�s global
plan�

To �nd a better global plan� we extended the ETPLG to
the Global Greedy 	GG
 algorithm� Similar to the ET�
PLG algorithm� the Global Greedy algorithm grows the
global plan by adding a new query 	required group�by

to the plan one at a time� The di�erence between the
two is that the GG algorithm allows a class to change its
shared base table in order to include the new group�by�
which is not allowed in the ETPLG algorithm�

Before adding a new query to a global plan� we have
to decide whether adding the query N to any exist�
ing classes is a better plan than using the best unused
materialized group�by U to compute N � For each exist�
ing class� we �rst have to determine a new materialized
group�by S� for the class so that we can compute the
query N and all queries in the class from S�� The ag�
gregated cost of using S� for the query N and the class
should be the smaller than the aggregated cost of using
any other materialized group�bys� So� we pick the S�i
for each existing class i� Then� we choose the class with
the minimum aggregated cost of computing all queries
in the class and the query N as the candidate class�
Now� we have to decide whether to use the candidate
class�s base table S� or use the best unused materialized
group�by U to compute N � The details of this step are
listed in the algorithm below� If we choose to use the
candidate class to compute N� we have to use S� as the
base table for the class� If the S� is di�erent from the
old base table S of the class� we replace S with S�� If
S� � S� we use S for the class� We add the query N to
the class� If we decide to use the table D to compute
N� we leave the class unchanged and create a new class
D and add the query N to the class�

The main di�erence the ETPLG and GG algorithms
is that we allow the class to choose new materialized
group�by as the new base table for the class when adding
a new required the group�by to the class� As we ex�
plained in the Example �� it allows to consider some
suboptimal local materialized group�by as the class base
table� which may produce a better global plan� We
present the algorithm GG below�

Global Greedy Algorithm

Set ShareSet empty�
Initialize MSet�
Set Group�bys G � �G	� G
� ��� Gn��
Sort G by GroupbyLevel�
For each Gi
�

Find the group�by N in MSet
with Min�Gi�CostOfUsing� N ���
Choose Class Ci with Min�Ci�CostOfAdd�Gi���
if �Gi �� G	 �� Ci�CostOfAdd�Gi� �

Gi�CostOfUsing�N��
�

SharedSet � SharedSet Union N�
MSet � MSet � N�
Construct new Class N�
Generate the best plan Q for Gi using N�

Add Q to Class N�
Add Class D to the ClassList�

�
else
�

S� � Ci�NewBaseTable���
S � Ci�OldBaseTable���
If � S� �� S�
�

Generate the best plan Q for Gi using S�
Add Q to the Class Ci�

�
else
�

Generate the new best plan using S�
for each query in Class Ci�
SharedSet � SharedSet � S � S��

�
MergeClass���
if S� in other Class Cj � j �� i �

remove the plan of S� from Class Cj�
�

�
For each Class in the ClassList

Merge the query plans�

The group�by S� and S may be the same� In this case�
we just add the query N to the class without changing
the class base table� If S� � N� we add the query N
to the Class S�� We compute CostOfAdd	N
 for a class
i using the formula� CostOfAdd	N
 � Cost	Classi �
N
S� � Cost	Classi
S� Cost	X
Y compute the aggre�
gate cost of X using the base table Y �

The return value of CostOfAdd	N
 should not be the
negative for any class i� If the value is negative� it
is equivalent to say Cost	Classi
S� � Cost	Classi �
N
S� � Cost	Classi
S� This is not possible because we
must choose S� over S as the base table for the class i
before we process the group�by N �

In the MergeClass	
 procedure� we handle the following
cases� If a class has already chosen S� as the base table�
then we should merge these two classes together and
use group�by S� for the new class�s base table� This
step prevents the plan from doing repeated I�O on the
same table�

The GG algorithm trades the more expensive I�O cost
by sharing it with queries for the less expensive CPU
cost by processing more tuples for each query� Choosing
a non�optimal base table for queries increases the CPU
cost for processing more tuples for hash�based star join
queries or doing more bitmap operations for index�based
star join queries� In the next section� we study how well
Global Greedy perform when compared with the global
optimal plan�

� Performance Examples

Doing a performance analysis for optimization tech�
niques is never easy� analyzing the performance of al�
gorithms for optimizing multiple simultaneous dimen�
sional queries is particularly di�cult� The primary
reason for this is that the problem space is immense�
There is the combinatorial e�ect of considering multiple
queries as a unit 	instead of the more common optimiza�



tion task of optimizing individual queries
� added to this
is yet another combinatorial e�ect that arises from the
exponentially many alternatives for precomputed aggre�
gates that exist in OLAP workloads� For this reason�
rather than attempting to claim an exhaustive evalua�
tion of these optimization techniques� in this section we
present a number of examples that illustrate that un�
der a fairly realistic setting 	measured numbers from an
actual implementation rather than a simulation
 these
techniques can o�er substantial performance bene�ts as
compared to naive approaches that do not attempt any
simultaneous optimization or evaluation�

��� System Conguration

These tests were run on an ���MHZ Intel Pentium
Pro processor with ��MB main memory and a ���
GB Quantum Fireball disk� The operating system
used was Solaris ���� We used version ��� of Par�
adise �DKLPY��� con�gured with an ��MB bu�er pool�
The test databases were created using the Unix �le sys�
tem on a local disk� We �ushed both the Unix �le sys�
tem bu�er and Paradise bu�er pool before running each
test�

��� Data Sets

The test database is set up in the following tables�
The base table tuple has four dimensional attributes
and one measure attribute� Each tuple in the base
table has length �� bytes� The base table tuple has
four dimensional attributes and one measure attribute�
There are star join bitmap indexes created on at�
tributes A�� B� and C� of the group�by A�B�C�D� There
are four dimensional tables� We have a three level
hierarchy along dimension A� B� and C� D� Dimension
A has a hierarchy A � A� � A��� Dimension B has
the hierarchy B � B� � B��� Dimension C has the
hierarchy C � C� � C��� Dimension D has the
hierarchy D � D� � D���

��� MDX Queries

We �rst list of set of basic queries� At the top level of the
hierarchy along each dimension A� B� and C� we assume
that each of them has three distinct values A��A�� A��
B�� B�� B�� C�� C�� and C��

Query �

�A���A	�CHILDREN� on COLUMNS
�B���B	� on ROWS
�C���C	� on PAGES
CONTEXT ABCD FILTER � D�DD	 ��

The query asks the sum of ABCD for the group�
by A�B��C��D with selection predicates A� �
A���A��CHILDREN and B�� � B� and C�� � C� and
D � DD��

Query �

�A���A	� A���A
� A���A�� on COLUMNS
�B���B
�CHILDREN� on ROWS
�C���C
� on PAGES
CONTEXT ABCD FILTER �D�DD	��

The query asks the sum of the table ABCD for the

group�by A��B�C��D with selection predicates 	A�� �
A� or A�� � A� or A�� � A�
 and B� �
B���B��CHILDREN and C�� � C� and D � DD��
The key word CONTEXT in MDX is equal to FROM
in the standard SQL�

Query �

�A���A
� on COLUMNS
�B���B
� on ROWS
�C���C	� C���C�� on PAGES
CONTEXT ABCD FILTER �D�DD	��

Query �

�A���A�� A���A
� on COLUMNS
�B���B�� on ROWS
�C���C	� C���C
� C���C� � on PAGES
CONTEXT ABCD FILTER �D�DD	��

Query �

�A���A	�CHILDREN�AA
� on COLUMNS
�B���B	� on ROWS
�C���C�� on PAGES
CONTEXT ABC FILTER �D�DD	�

This query asks the sum of ABCD for the
group�by A�B��C��D with selection predicates A� �
A���A��CHILDREN�AA� and B�� � B� and C�� � C�
and D � DD��

Query �

�A���A
�CHILDREN�AA�� on COLUMNS
�B���B	�CHILDREN� on ROWS
�C���C��CHILDREN�CC
� on PAGES
CONTEXT ABCD FILTER �D�DD	�

Query 	

�A���A��CHILDREN�AA
� on COLUMNS
�B���B
�CHILDREN�BB�� on ROWS
�C���C	�CHILDREN�CC	� on PAGES
CONTEXT ABCD FILTER �D�DD	�

Query 


�A���A	�CHILDREN�AA
� on COLUMNS
�B���B
�CHILDREN�BB	� on ROWS
�C���C	� on PAGES
CONTEXT ABCD FILTER �D�DD	�

Query �

�A���A	�CHILDREN� on COLUMNS
�B���B
� B���B�� on ROWS
�C���C	�CHILDREN� on PAGES
CONTEXT ABCD FILTER �D�DD	�

Query � is selective on dimension A and is to compute
the group�by A�B��C��D� Query � and Query � are se�
lective on dimension A� B� and C and computes the
group�by A�B�C�D� Query � is selective on dimension
A and B and computes the group�by A�B�C��D�

��	 Performance of the Three Shared
Operators

We ran three tests to measure the performance of the
three shared star join operators�
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Test �� We ran Queries �� �� �� and �� We forced
each query plan to use hash�based star join using the
same base table ABCD� The result is shown in Fig�
ure ��� The dotted bars represent the total execution
time of the queries running separately� The solid bars
are the execution time of the queries using the shared
scan hash�based star join operator� Each time we add
a new query� we increase the CPU cost of the operator�
but we save the I�O cost of scanning the base table for
the new query� The CPU cost for hash�based star join
is not small due to memory copying attributes for result
tuples and probing of hash tables for both star join and
aggregation�

Test �� We ran Queries �� �� �� and �� All the queries
use the bitmap index star join method and use the
A�B�C�D as the base table� Figure �� shows the test
results� The solid bars are the execution time of Queries
�� �� �� and �� The dotted bars represent the execution
time of using shared index�based star join to process
the queries� We �nd that more than �� of the shared
index star join time is spent on probing the base table�
When we increase the number of queries from � to ��
the probing time changes from ����� seconds to �����
seconds� Sharing the probing among index�based star
join query reduces the aggregated cost dramatically�

Test �� we use the hash�based star join method for
Query � and the bitmap index star join method for
Query �� �� and �� We use A�B�C�D as the base ta�
ble for all the queries� The test results are shown in
Figure ��� The dotted bars represent the time of execu�
tion of queries separately� The solid bars represent the
execution time of queries using the shared scan hash�
based and index�based star join operator� We see that
adding a new index�based query to the operator only
increases the total execution time by a small amount�
The reason is that the I�O cost of the new index�based
query is avoided by sharing the scan of the base table�
The CPU cost for each index�based query is very small�

In general it is clear that the sharing operators can
have a non�negligible positive e�ect on overall execu�
tion times�
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Algorithm Test � Test � Test � Test �
TPLO ������ ������ ����� ������
ETPLG ������ ������ ����� ������
GG ������ ������ ����� ������
Optimal ������ ������ ����� ������

Table �� Execution time 	in seconds
 for Test �� �� �
and �

��
 Performance of the Three Opti�
mization Algorithms

Test �� We used all three algorithms� Two Phase
Local Optimal 	TPLO
� Extended Two Phase Local
Greedy 	ETPLG
� and Global Greedy 	GG
 to gen�
erate a global plan for an MDX expression including
Queries �� �� and �� The performance results of
the global plan produced by the three algorithms
and the optimal global plan are listed in Table ��
Both TPLO and ETPLG generate the following
query plans 	A�B��C�D � A�B��C��D
Hash�basedSJ �
	A�B�C��D � A��B�C��D
Hash�basedSJ � and
	A��B��C�D � A��B��C��D
Hash�basedSJ � The exe�
cution time of the each above query plan is �������
������� and ����� seconds� ETPLG does not use
A�B�C��D to compute A��B��C�D because the CPU
cost of computing A��B��C��D from A�B�C��D is
higher than the cost of the plan 	A��B��C�D �

A��B��C��D
Hash�basedSJ � The GG algorithm generates
the plan 	A�B�C��D � A�B��C��D
Shared�HB�SJ �
	A�B�C��D � A��B�C��D
Shared�HB�SJ � and
	A��B��C�D � A��B��C��D
Hash�basedSJ The GG
algorithm adds each query to the global plan in the
order A�B��C��D� A��B�C��D� and A��B��C��D� The
total execution time for queries in the Class A�B�C��D
is ������ seconds and the running time of the queries
in the Class A��B��C�D is ����� seconds�

Test �� We used the three algorithms to generate a
global plan for Queries �� �� and �� We show the perfor�
mance results for the global plan produced by the three
algorithms and for the optimal global plan in the table
below�

Test � is di�erent from Test �� The lo�
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cal optimal plan for the query A�B��C��D is
	A�B�C��D � A�B��C��D
Index�basedSJ � The TPLO
and ETPLG algorithms generate the query plans for
Test �� 	A�B��C�D � A�B��C��D
Index�basedSJ �
and 	A�B�C��D � A��B�C��D
Hash�based�SJ �
	A��B��C�D � A��B��C��D
Hash�basedSJ � The
execution time of each plan is ������ �������
and ����� seconds� GG generates the plans�
	A�B��C�D � A�B��C��D
Shared�HB�IB�SJ �
and 	A�B�C��D � A��B�C��D
Shared�HB�IB�SJ �
	A��B��C�D � A��B��C��D
Hash�basedSJ � The run�
ning time for the queries in the Class A�B�C��D is
������ seconds� We also have the optimal global plan
for Test �� 	A�B��C�D � A��B�C��D
Hash�basedSJ �
	A�B�C��D � A��B��C��D
Shared�HB�IB�SJ � and
	A�B�C��D � A��B�C��D
Shared�HB�IB�SJ � The
running time for the Class A�B�C��D is ������ seconds�
The query time for the last plan is ����� seconds� This
optimal plan was found by exploring all possible query
plans�

From Test � and Test �� we see that GG produces a
global plan which performs close to the optimal global
plan� We also observe that GG�s global plan performs
better than ETPLG for both tests� The simple reason
for this is that the GG creates more logical sharing� i�e��
base table sharing than ETPLG does� So� the logical
sharing of materialized group�bys is important for mul�
tiple OLAP query optimization�

Test �� The MDX expression consists of Queries ��
�� and �� We list the performance results in Table ��
Since each of the Queries �� �� and � are very selective�
the best sharing among the queries is at the query tree
level i�e� using the shared index�base star join operator�
There is not much logical sharing to be found by the
ETPLG and GG algorithm� Therefore� the di�erent
global plans perform about the same for this situation�

Test 	� The MDX expression contains the Queries �� ��
and �� The performance results are shown in Table ��
The GG and ETPLG generate the same global plan as
the optimal global plan� All three queries use a hash�
based star join� TPLO produces the worst global plan�
Since it chooses di�erent fact table for each query� the



three queries do not share any common tasks�

From Test � and Test �� we see that GG and ETPLG
algorithms generate a better global plan if all the queries
are not very selective� On the other hand� if all queries
are very selective� GG and ETPLG algorithm do not
have much opportunity to create logical level sharing�

� Conclusion and Future Work

In this paper� we design three new shared star join op�
erators for di�erent star join methods to create sharing
among di�erent query plans� Our performance exam�
ples show that the three query primitives can substan�
tially improve multiple query performance� To pursue
sharing behind the query plan� we also designed and
implemented three algorithms for multiple OLAP query
optimization� Both ETPLG and GG create logical level
sharing by letting the queries share the same base table�
We found that� in the most of our tests� the GG algo�
rithm produces a global plan close to the global optimal
plan in terms of query performance� The selectivity of
a set of related queries also a�ects the degree of shar�
ing available among query plans� If all queries of an
MDX expression are not selective� the optimizer will
choose hash�based star join for each query� In this case
ETPLG and GG are able to explore opportunities for
logical sharing� i�e� sharing base tables among queries�
On the other hand� if all the queries of an MDX ex�
pression are very selective� which causes the optimizer
choose index�based star join for those queries� TPLO
produces a fairly good global plan since the local op�
timal plans are very e�cient and logical sharing is not
very useful� In this situation� ETPLG and GG would
generate the same global plans as TPLO�

The true test of any optimization scheme is how well it
works on �real� workloads� As OLE DB for OLAP or
a similar standard becomes available to application de�
velopers we will have a chance to examine the kinds of
simultaneous multiple queries that arise in practice� We
regard the results obtained from our implementation as
encouraging� suggesting that common subtask sharing
and global optimization will yield substantial perfor�
mance improvements when relational database systems
are used as data sources for multidimensional analysis�

An important issue to be explored in the future is the
time and space trade�o� for the three algorithms TPLO�
ETPLG� and GG� In terms of the number of global plans
searched� GG dominates ETPLG and ETPLG domi�
nates TPLO� However� this comes at a price � the run
time of GG is bigger than that of ETPLG� and ETPLG
is slower than TPLO� The study of this trade�o� may
lead to the discovery of new algorithms that have both
better time and space performance than the above three
algorithms�
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