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CS 341 
Second Midterm Exam 

Practice 
 

Use extra paper to determine your solutions then neatly transcribe them onto these 
sheets. 
 
You may use any claim we proved in class as a theorem.  But make sure that you only 
use such a claim when it is exactly what you need.  If we have proved something “close” 
in class, then you must do a complete proof here, but you can use the proof we did in 
class as a model for your proof. 
 
 
 
 

 
 
(1) For each of the following languages L, state whether it is regular, context-free but not regular, or 
neither.  Prove your answer.  Make sure, if you say that a language is context free, that you show that it 
is not also regular. 
 
(a) {w∈ {0, 1}* : ∃k ≥ 0 and w is a binary encoding (leading zeros allowed) of 2k+1}. 
 

Regular.  L = 0* (10 ∪ 10*1). 
 
(b) {a*b*c* - {anbncn : n ≥ 0}}. 
 

Context-free not regular.  L = {aibjck : i, j, k ≥ 0 and i ≠ j or j ≠ k}.  L can be accepted by the 
PDA shown in Example 12.8 except that the top branch should not be present. 
 
If L were regular, then ¬L would also be regular.   
 
¬L = {w ∈ {a, b, c}* with letters out of order} ∪ {anbncn : n ≥ 0}.  If ¬L is regular, then so 
is: 
L1 = ¬L ∩ a*b*c*.  But: 
L1 = {anbncn : n ≥ 0}, which is not even context-free, much less regular. 

 
 
 

1 a    15  
   b   15  
   c 15  
   d 15  
2 15  
3 a 8  
   b 8  
   c 8  
4 a 5  
   b 15  
5 a 8  
   b 8  
6 20  
Total 155  



(c) {(ab)nanbn : n > 0}. 
 

Not context-free.  We prove this with the Pumping Theorem.  Let w = (ab)kakbk.  Divide w into 
three regions: the ab region, the a region, and the b region.  If either v or y crosses the 
boundary between regions 2 and 3 then pump in once.  The resulting string will have characters 
out of order.  We consider the remaining alternatives: 
(1, 1) If |vy| is odd, pump in once and the resulting string will have characters out of order.  If it 
is even, pump in once.  The number of ab’s will no longer match the number of a’s in region 2 
or b’s in region 3. 
(2, 2) Pump in once.  More a’s in region 2 than b’s in region 3. 
(3, 3) Pump in once.  More b’s in region 3 than a’s in region 2. 
v or y crosses the boundary between 1 and 2:  Pump in once.  Even if v and y are arranged such 
that the characters are not out of order, there will be more ab pairs than there are b’s in region 
3. 
(1, 3) |vxy| must be less than or equal to k. 

 



(d) {x ∈ {a, b}* : |x| is even and the first half of x has one more a than does the second half}. 
 

Not context-free.  In a nutshell, we can use the stack either to count the a’s or to find the 
middle, but not both. 
 
If L were context-free, then L′ = L ∩ a*b*a*b* would also be context-free.  But it is not, 
which we show using the Pumping Theorem.  Let w = ak+1bkakbk+1.  Divide w into four regions 
(a’s, then b’s, then a’s, then b’s).  If either v or y crosses a region boundary, pump in.  The 
resulting string is not in L because the characters will be out of order.  If |vy| is not even, pump 
in once.  The resulting string will not be in L because it will have odd length.  Now we consider 
all the cases in which neither v nor y crosses regions and |vy| is even: 
(1, 1): pump in once.  The boundary between the first half and the second half shifts to the left.  
But, since |vxy| ≤ k, only b’s flow into the second half.  So we added a’s to the first half but not 
the second. 
(2, 2): pump out.  Since |vy| is even, we pump out at least 2 b’s so at least one a migrates from 
the second half to the first. 
(3, 3): pump out.  This decreases the number of a’s in the second half.  Only b’s migrate in 
from the first half. 
(4, 4): pump in once.  The boundary between the first half and the second half shifts to the 
right, causing a’s to flow from the second half into the first half. 
(1, 2): pump in once.  The boundary shifts to the left, but only b’s flow to the second half.  So 
a’s were added in the first half but not the second. 
(2, 3): pump out.  If |v| < |y| then the boundary shifts to the left.  But only b’s flow.  So the 
number of a’s in the second half is decreased but not the number of a’s in the first half.  If |y| < 
|v| then the boundary shifts to the right.  a’s are pumped out of the second half and some of 
them flow into the first half.  So the number of a’s in the first half increases and the number of 
a’s in the second half decreases.  If |v| = |y|, then a’s are pumped out of the second half but not 
the first. 
(3, 4): pump out.  That means pumping a’s out of the second half and only b’s flow in from the 
first half. 
(1, 3), (1, 4), (2, 4): |vxy| must be less than or equal to k. 

 
 



(2)  Give a decision procedure to answer the question, “Given a context-free grammar G, does G 
generate at least three strings?” 
 

To construct a decision procedure for this problem, we exploit the same idea that we used as 
the basis of the Pumping Theorem.  Let b be the branching factor of G and let n be the number 
of G’s nonterminals.  Then the longest string that G can generate and assign a parse tree with 
no duplicated nonterminals on any path has length no more than bn.  If G can generate even one 
string of length greater than that, then that string can be pumped.  So G generates an infinite 
number of strings and thus at least three.  Further, if there is at least one such long string, there 
must also be a shorter one (the result of pumping out from it).  We also know that |vxy| ≤ bn+1.  
So if G generates any string of length greater than bn +bn+1, then it must also generate at least 
one whose length is between bn and bn+1 (because we can keep pumping out until we get such a 
shorter string).  So the following algorithm decides the question: 
 
1. Examine G and determine b and n. 
2. Set count to 0. 
3. For every string w in ΣG* such that |w| ≤ bn do: 

3.1. If decideCFL(G, w) then count = count + 1. 
4. If count = 0 then return False.   
5. If count ≥ 3 then return True. 
6. For every string w in ΣG* such that bn < |w| ≤ bn +bn+1 do: 

6.1. If decideCFL(G, w) then return True. 
7. Return False. 

 



(3) Let L =  {w ∈ {a, b}* : the first, middle, and last characters of w are identical}. 
(a) Show a context-free grammar that generates L. 

 
S → A | B 
A → a MA a 
MA → CMAC | a 
B → b MB b 
MB → CMBC | b 
C → a | b 

 
(b) Show a natural PDA that accepts L. 

 
 
    a/ε/c   a/c/ε 
   b/ε/c   b/c/ε 
 
    2 a/ε/ε  3 a/ε/ε  4 
 
   a/ε/ε 
 
  1   a/ε/c   a/c/ε 
    b/ε/c   b/c/ε 
   b/ε/ε 
 
    5 b/ε/ε  6 b/ε/ε  7 
 

 
 
     (c) Prove that L is not regular. 
 

If L were regular, then L′ = L ∩ ab*ab*a would also be regular.  But we show that it is not 
by pumping.   
 
Let w = a bk a bk a 
             1 | 2 |3| 4 | 5 
 
If y contains the initial a, pump out.  The resulting string will violate the form constraint and 
thus not be in L.  The only other possibility is that y falls completely in region 2 (since it must 
occur in the first k characters).  Note that every string in L has odd length, so y must have even 
length or we can pump in once and the resulting string will not be in L. Thus y is two or more 
b’s.  Pump in once.  The middle of the resulting string will fall in the initial b region.  Thus it 
differs from the first and last characters.  So the pumped string is not in L.   

 



(4) Let middle be a function that maps from any language L over some alphabet Σ to a new language L′ 
as follows: 
 middle(L) = {x: ∃y, z ∈ Σ* (yxz ∈ L)}. 
 
(a) Let L = {w ∈ {a, b}* : #a(w) = #b(w)}.  What is middle(L)? 
 

{a, b}* 
 
(b) Prove that, for any language L, if L is context free then M(L) is context free. 

 
The proof is by a construction similar to the one given for init except that we build two extra 
copies of M, both of which mimic all of M’s transitions except they read no input.  From each 
state in copy one, there is a transition labeled ε/ε/ε to the corresponding state in M, and from 
each state in M there is a transition labeled ε/ε/ε to the corresponding state in the second copy.  
The start state of M* is the start state of copy 1.  So M* begins in the first copy, performing, 
without actually reading any input, whatever stack operations M could have performed while 
reading some initial input string y.  At any point, it can guess that it’s skipped over all the 
characters in y.  So it jumps to M and reads x.  At any point, it can guess that it’s read all of x.  
Then it jumps to the second copy, in which it can do whatever stack operations M would have 
done on reading z.  If it guesses to do that before it actually reads all of x, the path will fail to 
accept since it will not be possible to read the rest of the input. 

 
(5) Provide short answers to each of the following questions: 
     (a) Let L1 = L2 ∩ L3. 

(i) Show values for L1, L2, and L3, such that L1 is context-free but neither L2 nor L3 is. 
 

Let:  L1 = {anbn : n ≥ 0}. 
 L2 = {anbncj : j ≤ n}. 
 L3 = {anbncj : j = 0 or j > n}. 

 
(ii) Show values for L1, L2, and L3, such that L2 is context-free but neither L1 nor L3 is. 

 
Let: L2 = a*. 
 L1 = {an : n is prime}.  
 L3 = {an : n is prime}.  

 
     (b) Give an example of a regular language L1 that has a superset L2 that is context-free but not 
regular. (Specify both L1 and L2 in your example.) 
 

L1 = {ε}.  L2 = AnBn.   
 
 



(6) Consider the following grammar G: 
 
 S → 1 S 1 | T 
 T → 1 X 1 | X 
 X → 0 X 0 | 1 
   

(a) What are the first four strings in the lexicographic enumeration of L(G)? 
 

1, 010, 111, 00100 
 
     (b) Give an example of a string w ∈ {0, 1}+ such that |w| > 7 and w ∉ L(G). 
 

00000000, or, for other examples, any string of even length. 
 
     (c) Show that G is ambiguous. 
 

The string 111 has more than one parse tree in G: 
 
   S      S 
 
 
  1 S 1     T  
 
 
   T      1 X 1 
 
 
   X      1 
 
 
   1 

 
 
(7) Give a short English description of what the following machine M does.  We are looking for a 
high-level description of the result of running M, not a play-by-play description of how it works. 
Assume that the input to M is in 1 (0 ∪ 1)*. M = 
                                                                    
                                                                         
 >RT L L  1    0  
 
                                 
                        T             0 
 
             1 L             1 LT 
                                                            

Viewing its input as a binary number, M adds 2. 
 
 


