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All’s Well That Ends Well: Supplementary Proofs

This document complements the paper “All’s Well That Ends
Well: Guaranteed Resolution of Simultaneous Rigid Body Impact”
and provides detailed proofs of several claims therein: that pairwise
Gauss-Seidel-like algorithms and Generalized Reflections, when
modified according to the template shown in Algorithm 3, satisfy all
the inexact impact operator desiderata, and hence are guaranteed
to terminate, just as are their exact arithmetic counterparts.

A DETAILED INEXACT ARITHMETIC PROOFS
Here we will prove the claims in §7: that both the inexact pairwise
Gauss-Seidel method described in Algorithm 3, as well as the Smith
et al.’s Generalized Reflections algorithm [2012], satisfy the inexact
impact operator axioms (ϵNORM)–(ϵMOD). We will assume the
following computation model: real numbers are approximated using
floating-point arithmetic, with machine epsilon ε < 1 and minimum
representable magnitude η < ε . We assume that no intermediate
calculation overflows; we then have an associated rounding operator
fl[x], so that for every exact quantity x ,

x − |x |ε − η ≤ fl[x] ≤ x + |x |ε + η.

For calculations we will make use of the weaker, more convenient
bound

x − |x |ε − ε ≤ fl[x] ≤ x + |x |ε + ε .

Arithmetic operations and square roots are assumed to take place
in infinite precision, and then rounded; we will write fl[E] to denote
that every operation in the expression E is performed in this way,
e.g. fl[x + y] = fl[fl[x] + fl[y]]. Finally, we will assume that Ûqi and
small integer constants are represented exactly, but that M , M−1,
and N must be rounded.

If ε is too large, the properties (ϵNORM), (ϵDRIFT), and (ϵMOD) can-
not be guaranteed. We will prove that both pairwise Gauss-Seidel
and Generalized Reflections satisfy these properties for ε sufficiently
small, and give a constructive bound for ε in terms of the magnitudes
of input quantities like Ûq0,M , N , etc. For both algorithms, we will
first look at drift, and construct aC which is used in the definition of
(ϵDRIFT) as a certificate that energy cannot grow unbounded over
the course of several iterations. The proof of no drift will already
impose a bound on ε ; intuitively, if the machine precision is too
large, the renormalization of the velocity after every iteration in
Algorithms 3 and 4 itself introduces so much error into the compu-
tation of Ûqi+1 that despite the renomalization, its magnitude cannot
be bounded.
Once we have constructed a C , we also need an ϵ . We will show

that (ϵNORM) imposes a lower bound of ϵ , and that this lower bound
decreases to zero as ε decreases. We end by proving (ϵMOD) hold,
provided that ϵ is not too large. The upper bound is constant, and
the lower bound shrinks as ε shrinks, so that it is always possible to
find an ϵ if ε is sufficiently small.

A.1 Pairwise Gauss-Seidel
In this section, we derive an ϵ and C for which the modified pair-
wise GS algorithm described in section 7 satisfies the six criteria
(ϵNORM)–(ϵMOD). Three of these, (ϵKIN), (ONE) and (ϵVIO), are
obvious from the construction of the algorithm. We first prove
(ϵDRIFT) by induction on the iteration i: suppose it holds for the
first i iterations of Algorithm 3. Then

1
2
∥ Ûqi ∥2M ≤

1
2
∥ Ûq0∥

2
M +C

∥ Ûqi ∥2M ≤ ∥ Ûq0∥
2
M + 2C

λmin∥ Ûqi ∥22 ≤ λmax∥ Ûq0∥
2
2 + 2C

∥ Ûqi ∥2 ≤ α1 + β1
√
C,

for

α1 =

√
λmax
λmin

∥ Ûq0∥2

β1 =
√

2.

where λmin and λmax are the minimum and maximum eigenvalue
ofM , respectively. Since ∥ Ûqi ∥∞ ≤ ∥ Ûqi ∥2 we also have that

∥ Ûqi ∥∞ ≤ α1 + β1
√
C .

We now bound p̄ = fl[Ûqi − 2⟨Ûqi ,n⟩M−1n], where n is some con-
straint gradient selected by Algorithm 3. The following fact will be
useful: for a sequence of numbers x1, . . . ,xd , it can be shown by
induction on d that������fl


d∑
j=1

xi

 −
d∑
j=1

fl[xi ]

������ ≤ ©­«d +
d∑
j=1
|fl[xi ]|

ª®¬ ε(1 + ε)d−1.

We now proceed to bound p̄. First,���fl[Ûqjinj ] − Ûqjinj ��� ≤ (���Ûqji ��� ��fl[nj ]�� + 1
)
ε

where nj denotes the jth coordinates of the vector n. We can write
these bounds as ���fl[Ûqjinj ] − Ûqjinj ��� ≤ ε

(
α2 + β2

√
C
)

where

α2 = α1(∥n∥∞(1 + ε) + ε) + 1
β2 = β1(∥n∥∞(1 + ε) + ε).

Since ���Ûqjinj ��� ≤ ∥qi ∥∞∥n∥∞ ≤ ∥n∥∞(α1 + β1
√
C),

summing over j gives

|fl [⟨Ûqi ,n⟩] − ⟨Ûqi ,n⟩| ≤ ε
(
α3 + β3

√
C
)

where

α3 = (1 + ∥n∥α1 + 2εα2)d(1 + ε)d−1

β3 = (∥n∥β1 + 2εβ2)d(1 + ε)d−1.
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Switching gears,����fl [(
M−1

)k j ]
−

(
M−1

)k j ���� ≤ 

M−1


∞
ε + ε

and ��fl [
nj

]
− nj

�� ≤ (∥n∥∞ + 1)ε,
so that ����fl [(

M−1
)k j

nj
]
−

(
M−1

)k j
nj

���� ≤ εα4

where

α4 = 7


M−1



∞
∥n∥∞ + 4



M−1


∞
+ 4∥n∥∞ + 3.

Summing again over j we can bound����fl [(
M−1n

)k ]
−

(
M−1n

)k ���� ≤ εα5

where
α5 =

(
1 +



M−1


∞
∥n∥∞ + 2εα4

)
(1 + ε)d−1.

Now since ����fl [(
M−1n

)k ] ���� ≤ d


M−1



∞
∥n∥∞ + εα5

we have that����fl [
⟨Ûqi ,n⟩

(
M−1n

) j ]
− ⟨Ûqi ,n⟩

(
M−1n

) j ���� ≤ ε(α6 + β6
√
C)

for

α6 = 1 + (1 + 2α3)d


M−1



∞
∥n∥∞ + 2α5d ∥n∥∞α1 + 2α3α5

β6 = 2β3d


M−1



∞
∥n∥∞ + 2α5d ∥n∥∞β1 + 2α5β3,

where we have made liberal use of the fact that ε2 < ε to simplify
the above expressions. Then����fl [

−2⟨Ûqi ,n⟩
(
M−1n

) j ]
+ 2⟨Ûqi ,n⟩

(
M−1n

) j ����
≤ε(α7 + β7

√
C)

where

α7 = 1 + 4α6 + 2d


M−1



∞
∥n∥2∞α1

β7 = 4β6 + 2d


M−1



∞
∥n∥2∞β1.

Finally, we bound p̄ in terms of p = Ûqi − 2⟨Ûqi ,n⟩M−1n. We have
that ��p̄j − pj �� ≤ ε(α8 + β8

√
C) (4)

for

α8 = 1 + α1 + 2α7 + 2d


M−1



∞
∥n∥2∞α1

β8 = β1 + 2β7 + 2d


M−1



∞
∥n∥2∞β1.

Next, we need to bound the norm fl [∥p̄∥M ] in the denominator
of the coefficient of the velocity update step. We can use the fact
that ��pj �� ≤ ∥p∥∞ ≤ ∥p∥M√

λmin
=
∥ Ûqi ∥M√
λmin

≤
∥ Ûq0∥M +

√
2C√

λmin
to get ���fl [

Mk j p̄j
]
−Mk jpj

��� ≤ ε(α9 + β9
√
C)

for

α9 = 1 + (2 + 3∥M ∥∞)

(
α8 +

∥ Ûq0∥M√
λmin

)
β9 = (2 + 3∥M ∥∞)

(
β8 +

√
2

λmin

)
.

The summation formula then gives���fl [
(M p̄)k

]
− (Mp)k

��� ≤ ε(α10 + β10
√
C)

where

α10 = dα9 +

(
1 + d ∥M ∥∞

∥ Ûq0∥M√
λmin

+ εα9

)
d(1 + ε)d−1

β10 = dβ9 +

(
d ∥M ∥∞

√
2

λmin
+ εβ9

)
d(1 + ε)d−1

Next, combining the last several bounds,��fl [
p̄j (M p̄)j

]
− pj (Mp)j

�� ≤ ε(α11 + β11
√
C + γ11C)

for

α11 = 1 +
d ∥M ∥∞∥ Ûq0∥2M

λmin
+ 2α8α10

+ 2(α10 + α8d ∥M ∥∞)
∥ Ûq0∥M√
λmin

β11 = 2d ∥M ∥∞
∥ Ûq0∥M

√
2

λmin
+ 2α8β10 + 2α10β8

+ 2(β10 + β8d ∥M ∥∞)
∥ Ûq0∥M√
λmin

+ 2(α10 + α8d ∥M ∥∞)

√
2

λmin

γ11 =
2d ∥M ∥∞
λmin

+ 2β8β10 + 2(β10 + β8d ∥M ∥∞)

√
2

λmin
.

We apply the summation formula a second time to get the squared
norm, ���fl [

p̄TM p̄
]
− pTMp

��� ≤ ε
(
α12 + β12

√
C + γ12C)

)
,

for

α12 = dα11 + (1 + d ∥ Ûq0∥M + dεα11)d(1 + ε)d−1

β12 = dβ11 + (d
√

2 + dεβ11)d(1 + ε)d−1

γ12 = dγ11 + d
2εγ11(1 + ε)d−1.

We can rewrite this bound in more convenient form, by completing
the square, in anticipation of taking the square root:���fl [

p̄TM p̄
]
− pTMp

���
≤ε

(
β12

2√γ12
+
√
γ12
√
C

)2
+ ε

(
α12 −

β2
12

4γ12

)
.

Finally, we have a bound on the norm of p:

|fl [∥p̄∥M ] − ∥p∥M | ≤ ε(α13 + β13
√
C), (5)

ACM Transactions on Graphics, Vol. 36, No. 4, Article 1. Publication date: July 2017.



All’s Well That Ends Well: Guaranteed Resolution of Simultaneous Rigid Body Impact • 1:3

where

α13 = 1 + ∥ Ûq0∥M +
1 + ε
√
ε

©­«
√√√�����α12 −

β2
12

4γ12

����� + β12
2√γ12

ª®¬
β13 =

1 + ε
√
ε

√
γ12.

Notice that since ∥M ∥∞ ≥ λmin, γ12 > 1 and so the denominators
in α13 are bounded well away from zero.
The last piece we need for computing Ûqi+1 is the norm of the

initial velocity, ∥ Ûq0∥M . To begin with,���fl [
Mk j Ûqj0

]
−Mk j Ûqj0

��� ≤ εα14

where
α14 = 2∥M ∥∞∥ Ûq0∥∞ + ∥ Ûq0∥∞ + 1.

Since
���Mk j Ûqj0

��� ≤ d ∥M ∥∞∥ Ûq0∥∞, applying the summation formula
yields ��fl [

(M Ûq0)
j ] − (M Ûq0)

j �� ≤ εα15

for

α15 = dα14 + (1 + d ∥M ∥∞∥ Ûq0∥∞ + εα14)d(1 + ε)d−1

Then ���fl [
Ûqj0(M Ûq0)

j
]
− Ûqj0(M Ûq0)

j
��� ≤ εα16

for
α16 = d ∥M ∥∞∥ Ûq0∥

2
∞ + ∥ Ûq

j
0∥α15 + 1.

Applying the summation formula a second time gives��fl [
∥ Ûq0∥

2
M

]
− ∥ Ûq0∥

2
M

�� ≤ εα17

for
α17 = dα16 +

(
1 + ∥ Ûq0∥

2
M + εα16

)
d(1 + ε)d−1.

Finally
|fl [∥ Ûq0∥M ] − ∥ Ûq0∥M | ≤ εα18 (6)

with
α18 = 1 + ∥q̄0∥M +

1 + ε
√
ε

√
α17.

Combining equations (4) and (6) gives��fl [
∥ Ûq0∥M p̄ j

]
− ∥ Ûq0∥Mp j

�� ≤ ε(α19 + β19
√
C)

where

α19 = 1 +
∥ Ûq0∥2M√
λmin

+ 2α18
∥ Ûq0∥M√
λmin

+ 2∥ Ûq0∥α8 + 2α18α8

β19 = ∥ Ûq0∥M

√
2

λmin
+ 2α18

√
2

λmin
+ 2∥ Ûq0∥M β8 + 2α18β8.

Now, we are at last prepared to bound the next velocity iterate

Ûqji+1 = fl
[
∥ Ûq0∥M p̄j

∥p̄∥M

]
.

Suppose that ∥p∥M > ε(α13 + β13
√
C). Then by the previous

bound, and equation (5),����Ûqji+1 −
∥ Ûq0∥Mpj

∥p∥M

���� ≤ ε
α20 + β20

√
C

∥p∥M − ε(α13 + β13
√
C)

(7)

for

α20 =
∥ Ûq0∥M√
λmin

α13 + 2α19 +
∥ Ûq0∥2M√
λmin

+ ∥ Ûq0∥M

β20 =
∥ Ûq0∥M√
λmin

β13 + 2β19 +
∥ Ûq0∥M

√
2√

λmin
+
√

2.

Therefore ��∥ Ûqi+1∥
2
M − ∥ Ûq0∥

2
M ∥

��
≤ 2∥ Ûq0∥λmax

√
dε

α20 + β20
√
C

∥p∥M − ε(α13 + β13
√
C)

+ ελmaxd

(
α20 + β20

√
C

∥p∥M − ε(α13 + β13
√
C)

)2

.

Let

α21 = 4λmax
√
dα20 +

1
∥ Ûq0∥2M

4λmaxdα
2
20

β21 = 4λmax
√
dβ20 +

1
∥ Ûq0∥2M

8λmaxdα20β20

γ21 =
1

∥ Ûq0∥2M
4λmaxdβ

2
20.

Lemma A.1. If ε < ∥ Ûq0 ∥M
2α13

, ε < 2
γ21

, and

εβ21 +
√
ε2β2

21 + 4εα21(2 − εγ21)

4 − 2εγ21
≤
(∥ Ûq0∥M − 2εα13)2

4(
√

2 + εβ13)2
,

then pairwise Gauss-Seidel satisfies (ϵDRIFT). Notice that these condi-
tions are satisfied if ε is sufficiently small.

Proof. Take

C =
1
2

(
(∥ Ûq0∥M − 2εα13)2

4(
√

2 + εβ13)2

+
εβ21 +

√
ε2β2

21 + 4εα21(2 − εγ21)

4 − 2εγ21

ª®®¬ .
Since ε < ∥ Ûq0 ∥M

2α13
,

∥ Ûq0∥M −
√

2C − ε(α13 + β13
√
C) ≥

1
2
∥ Ûq0∥M

and
∥p∥M − ε(α13 + β13

√
C) ≥

1
2
∥ Ûq0∥M ,

hence the bound in equation (7) is valid. Moreover we can substitute
this inequality into the bound on ∥ Ûqi+1∥2M to get��∥ Ûqi+1∥

2
M − ∥ Ûq0∥

2
M ∥

�� ≤ ε(α21 + β21
√
C + γ21C).

Then Ûqi+1 satisfies (ϵDRIFT) whenever

(2 − εγ21)C − εβ21 − εα21 ≤ 0,

and in particular, whenever

C ≥
εβ21 +

√
ε2β2

21 + 4εα21(2 − εγ21)

4 − 2εγ21
.
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�

We now prove the remaining properties, which are relatively
straightforward. First, we have that

Lemma A.2. Let C be as in the previous lemma, and suppose

ϵ >

√
ε
λmax
√
d(α20 + β20

√
C)

∥ Ûq0∥(∥ Ûq0∥ +
√

2C)
and

ϵ ≥ 2ελmax
√
d

2α20 + 2β20
√
C

∥ Ûq0∥M (∥ Ûq0M −
√

2C)
.

Then pairwise Gauss-Seidel satisfies (ϵNORM). Notice that both right-
hand sides vanish as ε decreases.

Proof. Let C be as in the previous lemma. By construction of
the algorithm and (ϵVIO) we know that the value of λ is

λ = −2⟨Ûqi ,n⟩ > 2ϵ ∥ Ûqi ∥M ≥ 2ϵ(∥ Ûq0∥M +
√

2C)

where the last inequality follows from (ϵDRIFT).
From the bound (7) on the components of c, we have that

∥c∥M ≤ ελmax
√
d

2α20 + 2β20
√
C

∥ Ûq0∥M
and this is less than ϵλ when

ελmax
√
d

2α20 + 2β20
√
C

∥ Ûq0∥M
≤ 2ϵ2(∥ Ûq0∥M +

√
2C).

Lastly since ∥ Ûqi ∥M ≥ ∥ Ûq0∥M −
√

2C , we have that ∥c∥M ≤ ϵ
2 ∥ Ûqi ∥

whenever

ϵ ≥ 2ελmax
√
d

2α20 + 2β20
√
C

∥ Ûq0∥M (∥ Ûq0M −
√

2C)
.

�

Lemma A.3. Pairwise Gauss-Seidel satisfies (ϵMOD) when ϵ < 1.

Proof. At every iteration where a constraint with gradient n is
violated,

∥ Ûqi+1 − Ûqi ∥M = ∥λM−1n + c∥M
≥ |λ | − ∥c∥M
≥ (1 − ϵ)|λ |
> 0.

�

A.2 Generalized Reflections
The generalized reflection operator of Smith et al. [2012] improves on
pairwise Gauss-Seidel by guaranteeing preservation of symmetries
and more accurately modeling shock propagations, at the cost of
an R that is more expensive to compute. Algorithm 4 shows how
to modify it so that it satisfies all the inexact desiderata required
for guaranteed termination. Notice that these modifications mirror
those of Gauss-Seidel: constraints whose violation does not exceed
a threshold are pruned from consideration every time a reflection
is applied, and the velocity is renormalized every step to prevent
energy drift.

Computing λ at each iteration of Algorithm 4 requires solving a
quadratic program (QP). Let λ be the exact solution to this QP, ξ the

Algorithm 4 Inexact Generalized Reflections

1: function ResolveImpactsApprox(q, Ûq, ϵ)
2: N ← ActiveConstraintGradients(q)
3: Ûq0 ← Ûq
4: for i := 1,∞ do
5: NV ← ViolatedN(Ûqi ) // ÛqTi NV < −ϵ ∥ Ûqi ∥M1
6: if NV = ∅ then
7: return Ûqi
8: end if
9: λ← argminλ ∥M−1NV λ + 2Ûqi ∥2M s.t. λ ≥ 0
10: Ûqi+1 ←

∥ Ûq0 ∥M
∥ Ûqi+M−1NV λ ∥M

(
Ûqi +M−1NV λ

)
11: end for
12: end function

corresponding positivity constraint Lagrange multipliers, and λ̄, ξ̄
the computed solution. We assume that λ̄ approximately satisfies
the KKT conditions of the QP,


NT

VM−1NV λ̄ + 2NT
V Ûqi − ξ̄





∞
≤ ε2κ1∥ Ûqi ∥M

λ̄ ≥ 0

ξ̄ ≥ 0

λ̄ ⊥ ξ̄ ,

where κ1 is an accuracy parameter independent of Ûqi ; notice that
this condition is a standard relative error termination criterion in
numerical QP codes.

The goal now will be to bound the intermediate step

p̄ = fl
[
Ûqi +M−1NV λ̄

]
in terms of the true step p = Ûqi+M−1NV λ; the proof of (ϵDRIFT)will
then follow directly from identical calculations to that in pairwise
Gauss-Seidel. Once we have a value ofC , we will prove that inexact
GR satisfies (ϵNORM) and (ϵMOD). As in the case of Gauss-Seidel,
(ϵKIN), (ONE), and (ϵVIO) all hold by construction of Algortihm 4.
Let NA ⊂ NV be the set of constraints that are active in the

inexact QP solution, and λ̄A the corresponding parts of λ̄. The matrix
NT
VM−1NV has ones along the diagonal, and off-diagonal entries of

magnitude at most one; therefore by the Gershgorin Circle Theorem
its maximum eigenvalue is at mostm, the number of total constraints
in N . Then we have the following useful bound on λ̄:

∥λ̄∥∞ = ∥λ̄A∥∞ ≤
∥NT

AM
−1NAλ̄A∥2

m

≤

√
d ∥NT

AM
−1NAλ̄A∥2

m

≤

√
d

m
(∥2NT

A Ûqi ∥∞ + εκ1∥ Ûqi ∥M )

≤

√
d

m

(
2m
λmax

∥ Ûqi ∥M + εκ1∥ Ûqi ∥M

)
≤ κ2 + µ2

√
C,
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with

κ2 =

(
2
√
d

λmax
+
εκ1
m

)
∥ Ûq0∥M

µ2 =

(
2
√
d

λmax
+
εκ1
m

)
√

2,

where as usual we have used ϵ2 < ϵ to simplify expressions.
Now for nj the jth row of NV , we have the bound���fl [

nkj λ̄
k
]
− nkj λ̄

k
��� ≤ ε(κ3 + µ3

√
C)

where

κ3 = 3∥N ∥∞κ2 + 2κ2 + 1
µ3 = 3∥N ∥∞µ2 + 2µ2,

so applying the summation formula gives���fl [ (
NV λ̄

) j ]
−

(
NV λ̄

) j ��� ≤ ε(κ4 + µ4
√
C)

for

κ4 = (2κ3 + 1 +m∥N ∥∞κ2)d(1 + ε)d−1

µ4 = (2µ3 +m∥N ∥∞µ2)d(1 + ε)d−1.

Then ����fl [(
M−1

)k j (
NV λ̄

) j ]
−

(
M−1

)k j (
NV λ̄

) j ����
≤ ε(κ5 + µ5

√
C)

for

κ5 = 1 + (5∥M−1∥∞ + 2)κ4 + 2(∥M−1∥∞ + 1)∥N ∥∞κ2

µ5 = (5∥M−1∥∞ + 2)µ4 + 2(∥M−1∥∞ + 1)∥N ∥∞µ2,

so that applying the summation formula gives����fl [(
M−1NV λ̄

) j ]
−

(
M−1NV λ̄

) j ���� ≤ ε(κ6 + µ6
√
C)

for

κ6 = dκ5 + (1 + d ∥M−1∥∞∥N ∥∞κ2 + κ5)d(1 + ε)d−1

µ6 = dµ5 + (µ5 + d ∥M
−1∥∞∥N ∥∞µ2)d(1 + ε)d−1.

Before we can bound p̄, we need to relate the impulse using the
approximate multipliers λ̄ to that using the exact multipliers. We
can do so by making use of the fact that the QP’s KKT conditions
are nearly satisfied for λ̄:

∥M−1NV λ −M
−1NV λ̄V ∥

2
M

= (λ − λ̄)T (NT
VM−1NV λ − N

T
VM−1NV λ̄)

≤ −⟨λ, ξ̄ ⟩ − ⟨λ̄, ξ ⟩ + ∥λ − λ̄∥∞
√
dκ1ε

2∥ Ûqi ∥M

≤ ∥λ − λ̄∥∞
√
dκ1ε

2∥ Ûqi ∥M

≤ (∥λ∥∞ + ∥λ̄∥∞)
√
dκ1ε

2(∥ Ûq0∥M +
√

2C)

≤ 2(κ2 + µ2
√
C)
√
dκ1ε

2(∥ Ûq0∥M +
√

2C)

≤ ε2(κ7 + µ7
√
C + ν7C)

for

κ7 = 2∥ Ûq0∥M
√
dκ2κ1

µ7 = 2
√

2dκ2κ1 + 2∥ Ûq0∥M
√
dκ1µ2

ν7 = 2
√

2dκ1µ2.

Completing the square gives

∥M−1NV λ −M
−1NV λ̄∥∞

≤
1

λmax
∥M−1NV λ −M

−1NV λ̄∥M

≤ ε(κ8 + µ8
√
C)

with

κ8 =
1

λmax

©­« µ7
2√ν7

+

√√√�����κ7 −
µ2

7
4ν7

�����ª®¬
µ8 =

√
ν7

λmax
.

Therefore����fl [(
M−1NV λ̄

) j ]
−

(
M−1NV λ

) j ���� ≤ ε(κ9 + µ9
√
C)

where simply κ9 = κ6 + κ8 and µ9 = µ6 + µ8. We then have��p̄j − pj �� ≤ ε(κ10 + µ10
√
C)

for

κ10 = 2κ9 + d
2∥M−1∥∞∥NV ∥∞κ2 + α1 + 1

µ10 = 2µ9 + d
2∥M−1∥∞∥NV ∥∞µ2 + β1.

The proof of (ϵDRIFT) now follows identically the arguments for
pairwise Gauss-Seidel, with κ10 and µ10 taking the place of α8
and β8. As in the pairwise GS case, construction of a C certifying
(ϵDRIFT) requires that ε be sufficiently small.

We nowprove that GR satisfies the remaining properties, (ϵNORM) and
(ϵMOD).

Lemma A.4. Let C be as in the proof of (ϵDRIFT), and suppose that

ϵ ≥
a +
√
a2 + b

2
,

where

a =
ϵ2

2
κ1(∥ Ûq0∥M +

√
2C)

b = 4mελmax
α20 + β20

√
C

√
d ∥ Ûq0∥M

,

and

ϵ ≥ 2ελmax
√
d

2α20 + 2β20
√
C

∥ Ûq0∥M (∥ Ûq0M −
√

2C)
.

Then Generalized Reflections satisfies (ϵNORM). Notice that both right-
hand sides vanish as ε decreases.

Proof. Since at least one constraint must be violated, by (ϵVIO),

∥NT
VM−1NV λ̄∥2 ≥ 2ϵ ∥ Ûqi ∥M − ε2κ1∥ Ûqi ∥M

and

λ ≥
2ϵ − ε2κ1

m
(∥ Ûq0∥M +

√
2C),
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where we have used (ϵDRIFT) and again the fact that the largest
eigenvalue of NT

VM−1NV is at mostm.
From the bound (7) on the components of c, we have that

∥c∥M ≤ ελmax
√
d

2α20 + 2β20
√
C

∥ Ûq0∥M
and this is less than ϵ ∥λ∥1 when

ελmax
√
d

2α20 + 2β20
√
C

∥ Ûq0∥M
≤ ϵd

2ϵ − ε2κ1
m

(∥ Ûq0∥M +
√

2C).

Rearranging gives

ϵ2 − ϵ
ε2

2
κ1(∥ Ûq0∥M +

√
2C) −mελmax

α20 + β20
√
C

√
d ∥ Ûq0∥M

≥ 0

and the first inequality above. Lastly since ∥ Ûqi ∥M ≥ ∥ Ûq0∥M −
√

2C ,
we have that ∥c∥M ≤ ϵ

2 ∥ Ûqi ∥ whenever

ϵ ≥ 2ελmax
√
d

2α20 + 2β20
√
C

∥ Ûq0∥M (∥ Ûq0M −
√

2C)
,

as in the case of pairwise Gauss-Seidel. �

At last we end with

LemmaA.5. If ϵ < 4, then Generalized Reflections satisfies (ϵMOD).

Proof. At every iteration where a constraint is violated,

∥ Ûqi+1 − Ûqi ∥M = ∥M−1NV λ + c∥M

≥ ∥M−1Nvλ∥M − ∥c∥M

≥
√

2∥λ∥1ϵ ∥ Ûqi ∥M − ∥c∥M

≥
√

2∥λ∥1ϵ ∥ Ûqi ∥M − ϵ
√
∥λ∥1∥ Ûqi ∥M /2

≥
√

2∥λ∥1ϵ ∥ Ûqi ∥M − ϵ
√
∥λ∥1∥ Ûqi ∥M /2.

The right-hand side is positive when ϵ < 4. �
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