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1 What is Discrete Differential Geometry?

The classic theory of differential geometry concerns itself with smooth curves and surfaces. In practice,
however, our experiments can only measure a finite amount of data, and our simulations can only resolve
a finite amount of detail. Discrete differential geometry (DDG) studies discrete counterparts of classical
differential geometry that are applicable in this discrete setting, and converge to the smooth theory in the
limit of refinement.

Smooth geometric objects possess a rich set of symmetries, invariants, and interrelationships – for in-
stance, the Gauss-Bonnet theorem ties together the Gaussian curvature of a surface to its topology in a
beautiful way. There are many different ways to discretize any given geometric object, and surprisingly, it
is often possible with care to choose a discretization with special properties that exactly, not just approx-
imately, mimic this smooth structure. Choosing the right discretization that preserves the right structure
leads to particularly elegant and efficient algorithms for solving problems in computational geometry and
physical simulation.

I will give an overview of DDG, with a particular focus on discretizing the geometry of surfaces in R3.
Topics we will cover include discrete curvature measures, discrete exterior calculus, the Laplace-Beltrami
operator and its properties, mean curvature flow, conformal surface parameterization, vibration modes of
membranes, statics and dynamics of elastic plates, and time integration using the discrete Hamilton’s prin-
ciple.

Before studying discrete surfaces, however, we will look at the geometry of curves in the plane, and in
this more elementary setting gain initial experience with DDG.

2 Smooth Curve Geometry

Let γ(t) : [0, 1] → R2 be a curve in the plane. To avoid technical distractions we will assume that γ is
C∞ smooth and regular: ‖γ′(t)‖ 6= 0. Most results in this chapter carry over with minor modification to
piecewise-regular C2 curves. We will say the curve is closed if the beginning and end agree to every order:

γ(c)(0) = γ(c)(1) ∀c ∈ Z ≥ 0.

We are interested in the geometry of γ: the properties of the oriented set of points im γ. We distinguish
the beginning γ(0) and end γ(1) of the curve, but otherwise care only about the image of γ, and not about
the properties of the function γ itself.

So what about the geometry of γ can we measure? We can locate individual positions γ(t), of course,
and measure extrinsic distances ‖γ(t2)− γ(t1)‖ between points. We also have a notion of intrinsic distance,
the arc length between two points on the curve∫ t2

t1

‖γ′(t)‖dt.
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Recall that we can reparameterize curves by arc length. To simplify calculations we will assume from now
on that we have done so, so that γ : [0, L]→ R2 has unit-length derivative: ‖γ′(s)‖ = 1.

What else can we measure? At every point on the curve we have a tangent vector T (s) = γ′(s) and normal

vector N(s) = JT (s), where J =

[
0 −1
1 0

]
acts on vectors in the plane by rotating them counterclockwise by

ninety degrees. (We arbitrary choose the orientation of N so that a circle, winding clockwise, has outward-
pointing normal vector.) Most importantly, we can measure curvature κ(s). Often curvature is introduced
as the nonnegative magnitude of the derivative of the tangent vector |κ(s)| = ‖T ′(s)‖ but we will find it
more useful to work with signed curvature

κ(s) = −T ′(s) ·N(s).

Here the sign of κ(s) is chosen arbitrary so that a circle, oriented clockwise, has positive curvature.

Remark Knowing the curvature of a curve is enough to reconstruct the entire curve, up to the position
γ(0) and orientation γ′(0) of its starting point. To see this, notice that at every s we can decompose T ′(s)
in the tangent and normal basis:

T ′(s) = αT (s) + βN(s) = αT (s) + βJT (s).

Since ‖T‖ = 1, differentiating gives 2T ·T ′ = 0 and α = 0. The definition above of curvature gives β = −κ(s).
Therefore we can integrate γ(s) from the system of first-order ODEs

T ′(s) = −κ(s)JT (s)

γ′(s) = T (s).

2.1 Properties of Curvature

Let’s try to make a list of all of the properties we can think of that curvature satisfies. This list should
include some properties about how curvature changes as the curve γ changes; to facilitate this we will think
of L(γ) as a functional which evaluates to the total arc length of γ, and κγ as a functional that takes in a
curve γ and produces the curvature function κγ(s) : [0, L(γ)]→ R for that curve.

So how about the properties?

0. The identity from the remark above: γ′′(s) = −κ(s)N(s)

We will call this “property zero” as it is directly equivalent to the definition of curvature. Next, curvature
possesses certain symmetry properties. It is invariant under applying Euclidean motions (translation and
rotation) σ to γ:

1. κσ◦γ(s) = κγ , σ ∈ E2.

Reflecting γ over a line in the plane, or reparameterizing γ to reverse the direction of travel, flip the sign of
curvature. Lastly, curvature scales inversely with length.

2. κr◦γ = −κγ for plane reflections r.

3. κγ(L−s)(s) = −κγ(L− s).

4. καγ = 1
ακγ for α ∈ R.

We know the curvature of several special classes of curves:

5. For a straight line, κ = 0.

6. For a circle of radius r oriented clockwise, curvature is constant and equal to 1
r .
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7. κ(s) diverges at “kinks”: points where T (s) is undefined or not differentiable. Notice that such kinks
cannot occur in a regular curve, but can occur as a limit of regular curves, and curvature also diverges
in this limit.

Two more miscellaneous properties. The first is easy to overlook and follows directly from the definition,
but is tremendously important:

8. Curvature is local : κγ(s) depends on γ only in a neighborhood of s.

The second is commonly encountered as the geometric definition of curvature:

9. The radius of the osculating circle at γ(s) is 1
|κ(s)| . The osculating circle is the unique (possibly

degenerate) circle that agrees with γ to second order at γ(s).

Now we move to some less-obvious properties of curvature. Notice that a circle of radius r has curvature
1
r and circumference 2πr, so that its total curvature integrated along the curve is 2π. Reverse the orientation,
and you get total curvature −2π. Concatenate two circle, so that the circle “winds around twice,” and you
get 4π. If you deform the circle slightly, to make it an ellipse, you increase the curvature near the major axis
and decrease it near the minor axis, suggesting that perhaps the total curvature stays the same. In fact,

Theorem 2.1 (Whitney-Graustein) (“winding number theorem”) For closed curves γ,∫ L

0

κ(s) ds = 2πn, n ∈ Z.

Proof We can write T (s) in coordinates as (T x(s), T y(s)), and furthermore identify T (s) with a single
complex number τ(s) = T x(s)+ iT y(s). Notice that J acts exactly as multiplication by i: JT ∼= iτ. Property
zero then becomes

τ ′(s) = −κ(s)iτ(s).

This is an elementary ODE with solution

τ(s) = A exp

(
−i
∫ s

0

κ(t) dt

)
and A = τ(0). Since γ is closed and T is unit-length, τ(L) = τ(0) 6= 0 and

1 = cos

(∫ L

0

κ(s) ds

)
− i sin

(∫ L

0

κ(s) ds

)

which holds only when
∫ L

0
κ(s) ds is an integer multiple of 2π.

Another fact about curvature is that it is the “gradient of arc length,” a property used all of the time
when studying the shape of soap films and fluid interfaces. To make this idea more precise, recall from
elementary Calculus that we define the directional derivative (Dvf)(x) of an ordinary function f : Rn → R
in the direction v by the limit (

d

dt
f(x+ tv)

)∣∣∣∣
t→0

.

The gradient (∇f)(x) is then defined as the unique vector with the property that ∇f · v = Dvf for all
directions v.

Similarly, every smooth vector field δ along γ is a “direction” along which we could vary γ to get a new
curve γ + tδ. As we smoothly change t, we smoothly change γ, and so we smoothly change the arc length of
γ: the directional derivative

(DδL)(γ) =

(
d

dt
L(γ + tδ)

)∣∣∣∣
t→0
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is well-defined. We define the gradient ∇L to be the vector field along γ that satisfies

〈∇L, δ〉 = DδL

where 〈v, w〉 =
∫ L

0
v ·w ds is the L2 inner product along γ. (It should be checked that such a gradient always

exists and is unique, as is the case for gradients of smooth functions, but we won’t worry about that here.)

Theorem 2.2 For a closed curve γ(s), ∇γL = κ(s)N(s).

Proof Pick an arbitrary vector field δ. Since γ is closed, we restrict to vector fields continuous across the
curve endpoints, δ(0) = δ(L). We can compute explicitly the directional derivative DδL. First,

L(γ + tδ) =

∫ L(γ)

0

‖γ′ + tδ′‖ ds

d

dt
L(γ + tδ) =

∫ L(γ)

0

γ′ + tδ′

‖γ′ + tδ′‖
δ′ ds

DδL =

∫ L(γ)

0

γ′ · δ′ ds.

Integrating by parts, and using the fact that γ′(0) = γ′(L) and δ(0) = δ(L) since γ is closed,

DδL = γ′ · δ
∣∣∣∣L
0

−
∫ L

0

γ′′ · δ ds =

∫ L

0

κ(s)N(s) · δ(s) ds = 〈κN, δ〉.

Since the above holds for arbitrary δ, ∇L = κN.

We will look at one last property of curvature. Suppose γ is closed and simple (injective on [0, L): the
curve does not self-intersect). Then γ encloses a well-defined region Ω0 of the plane. Suppose further that γ
is oriented so that its normal vectors N(s) point outwardly from Ω0. We can “inflate” the region by flowing
the boundary along γ’s normal vector, to get a new boundary curve γε(s) = γ(s) + εN(s) and new enclosed
region Ωε. How does the area of the new region A(Ωε) compare to the area of the original region A(Ω0)?

Clearly, the two areas are equal to each to zeroth order, and to first order, the area of the inflated region
increases proportionally to the arc length of the original curve:

A(Ωε) = A(Ω0) + εL+O(ε2).

For a circle of radius r, A(Ωε) = π(r + ε)2 = πr2 + 2πrε+ πε2, and we see a quadratic correction term, but
nothing third order or higher. In fact,

Theorem 2.3 For ε sufficiently small and γ closed, simple, and oriented clockwise, A(Ωε) = A(Ω0) + εL+
ε2

2

∫ L
0
κ(s) ds. By the winding number theorem, the quadratic term is always equal to 2π, but for reasons that

will become clear in the future we will keep the term in its unevaluated form.

Proof The area of the inflated region is given by
∫

Ωε
1 dA. By Stokes’ theorem, we have∫

Ωε

1 dA =

∫
Ωε

1

2
∇ · (x, y) dA =

∫
∂Ωε

1

2
(x, y) ·Nε dsε =

∫ L

0

1

2
γε(s) ·Nε(s) dsε,

where Nε(s) is the normal of the inflated curve γε and dsε is its length element (notice that γε is not arc-length
parameterized.) γε has the same normal as γ, and

dsε = ‖γ′ + εN ′‖ds = ‖T + εJT ′‖ds = ‖T − εκJN‖ds = ‖T − εκJ2T‖ = 1 + εκ,
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since J2 = −I. (Here we assume that ε < κ, so that we do not develop any cusps during inflation.) Therefore

A(Ωε) =

∫ L

0

1

2
(γ(s) + εN(s)) ·N(s)(1 + εκ(s)) ds.

Gathering terms by power of ε, and integrating by parts,

A(Ωε) =

∫ L

0

1

2
γ ·N ds+ ε

∫ L

0

1

2
ds+ ε

∫ L

0

1

2
γ ·Nκds+

ε2

2

∫ L

0

κ(s) ds

=

∫
Ω0

1 dA+ ε
L

2
+ ε

∫ L

0

1

2
γ · −γ′′ ds+

ε2

2

∫ L

0

κ(s) ds

= A(Ω0) + ε
L

2
+ ε

[
−1

2
γ · γ′

∣∣∣∣L
0

+
1

2

∫ L

0

γ′ · γ′ ds

]
+
ε2

2

∫ L

0

κ(s) ds

= A(Ω0) + εL+
ε2

2

∫ L

0

κ(s) ds.

3 Discrete Curve Geometry

v0 = vn v1e1+1/2vn-1 v2
ψ1

ψ2A3
Figure 1: Notation for the vari-
ous elements of Γ.

We will now develop a theory of curve geometry that parallels the smooth
theory reviewed above. First, we need a discrete curve, which we will
take to be a sequence of points in the plane connected by straight lines.
Formally, a discrete curve Γ is an ordered tuple (v0, v1, . . . , vn−1) ∈ R2n

of vertices vi ∈ R2, with vi+1 6= vi for all i. Between each consecutive pair
of vertices, we have edges represented by edge vectors ei+1/2 = vi+1 − vi.
In this chapter, we will concentrate on closed discrete curves, with a final
edge en−1/2 joining the last vertex to the first, and to avoid cumberson
notation will take all vertex indices modulo n, so that for instance we can
write vn for v0.

What geometric quantities can we measure on Γ? The concept of arc
length carries over directly: in particular, the length of Γ between vertices
vi and vi+1 is simply ‖ei+1/2‖, and the total arc length the sum

L =

n−1∑
i=0

‖ei+1/2‖.

The edge vectors give us a natural tangent vector Ti+1/2 along each

edge equal to
ei+1/2

‖ei+1/2‖
, and normal vector Ni+1/2 = JTi+1/2. If we think of the curve as a piecewise smooth,

piecewise affine curve, these definitions of tangent vector and normal vector make sense almost everywhere,
but certainly not at the vertices. Is there a sensible notion of normal vector at a vertex vi, for instance?
This is a surprisingly subtle question that will be revisited in the exercises.

Even more problematically, the above tangent and normal vectors are piecewise constant, so that applying
the smooth definition of curvature to them directly is nonsensical. How, then, can we compute the curvature
of Γ? There are several typical approaches.

• You don’t consider Γ to be the “real” curve. Instead, it is one element of a family of curves Γi converging
to a smooth limit curve γ, with some refinement rule Γi → Γi+1 specifying how to construct this family.
Perform all calculations on γ and call that the curvature of Γ.

There are several downsides to this approach. First, the refinement rule must be specified, and there
are many possible rules that might be chosen (four-point subdivision, B-spline subdivision, etc.) each
of which will give a different limit curve. It doesn’t make sense to think of Γ as representing some
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“platonic ideal” curve γ independent of specifying the refinement rule! Second, for most rules you
might pick, actually computing γ can be very difficult, and measuring quantities such as curvature on
γ can give counterintuitive results: for instance, it is easy to construct a family of discrete curves of
arc length 4 that converge to a unit circle of circumference 2π.

• You don’t consider Γ to be the “real” curve. Instead, it represent one element γ(s) =
∑
i vibi(s) of

some finite-dimensional subspace of smooth curves spanned by smooth basis elements bi(s). This is
the key idea behind the method of finite elements, and is incredibly powerful – when the subspace is
chosen correctly. This is not the approach that we will take, but a lot of what we do could be suitably
interpreted to look like first-order finite elements.

• You do consider Γ to be the real curve! Instead of taking the differential equation that defines curvature
and trying to discretize it directly, we can instead look at the symmetries, properties, and relationships
that κ obeys for smooth curves, and use those to construct an analogous quantity with analogous
structure on Γ. This is the philosophy at the heart of discrete differential geometry, and in the remainder
of this chapter we will see it in practice as we try to construct a discrete curvature for plane curves.

First, we will need a bit more machinery. For a smooth curve, curvature is a scalar function over that
curve – we need an analogous concept of a discrete function over Γ. In particular, where a smooth function
assigns a scalar to every point on γ, a discrete function assigns a scalar to every vertex of Γ. Let Ω0(Γ) ∼= Rn
be the space of discrete functions on Γ, where each element F ∈ Rn of Ω0 is an assignment of a scalar Fi to
each vertex vi of Γ.

We also need an inner product on Ω0(Γ). For smooth functions, we have the L2 norm 〈f, g〉 =
∫ L

0
fg ds;

besides the usual properties of an inner product, notice that this one is local, depending only on f, g, and γ
in the neighborhood of the same point γ(s). Notice also that 〈1, 1〉 = L.

What is the discrete inner product 〈F,G〉? First, observe that every possible inner product can be written
in the form 〈F,G〉 = FTAG, where the matrix A depends only on Γ and not on F or G. If we want a property
analogous to the locality of the smooth inner product, we want A diagonal, with the ith diagonal entry Ai
depending only on the part of Γ near vi. We also want 〈1, 1〉 = L. These two desiderata lead to one natural

choice: assign to each vertex vi a discrete length element Ai =
‖ei−1/2‖+‖ei+1/2‖

2 , so that

〈F,G〉 =

n−1∑
i=0

AiFiGi.

3.1 Properties of Discrete Curvature

We want to define a discrete curvature ki ∈ Ω0(Γ). We can start by browsing the list of properties of κ
and applying those, axiomatically, to define ki. Some properties are not immediately useful: for instance,
property zero cannot be used since we cannot differentiate Ti+1/2, and it is not clear how to define an
osculating circle to Γ.

However, κ obeys some useful symmetries. It is an isometry invariant; in order for ki to be isometry
invariant, it must remain unchanged if we translate or rotate Γ. This means that ki cannot depend arbitrarily
on the vertices vi, but instead can depend only on quantities that are themselves invariant under plane
isometries: lengths ‖ei+1/2‖ and angles. We need to be careful how we define these angles with respect to
the orientation of Γ: for instance we can work with the clockwise turning angle ψi between ei−1/2 and ei+1/2.

So ki depends on edge lengths and angles. But not any edge lengths and angles: locality of curvature
imposes that ki can only depend on those lengths and angles near vi – in particular, ‖ei−1/2‖, ‖ei+1/2‖, and
ψi. The behavior of κ(s) under reflection and parameterization-reversal also give us some symmetries ki
must satisfy:

ki(‖ei−1/2‖, ‖ei+1/2‖, ψi) = ki(‖ei+1/2‖, ‖ei−1/2‖, ψi)
= −ki(‖ei−1/2‖, ‖ei+1/2‖,−ψi).
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What else? We have several other smooth properties of curvature, including the three deeper properties:
the winding number theorem, the curvature normal as the gradient of arc length, and the behavior of area
under inflation. Let’s look at each of these in turn.

3.2 Discrete Winding Number Theorem

For smooth closed curves γ(s), we had that
∫ L

0
κ(s) ds = 2πn for some integer n. We can interpret that

left-hand side as an inner product:
〈κ, 1〉 = 2πn.

We can use this identity as a guiding principle for defining discrete curvature ki. If we do so, we will end
up with a formula for discrete curvature that obeys the winding number theorem – not just approximately,
and not just in the limit of refinement, but exactly.

Recall from elementary geometry that the turning angles of a simple polygon add up to ±2π. This is not
hard to prove – by induction on the number of sides, for instance – but it’s also intuitively clear: translate
all turning angles so that they lie around a common point, and they add up to a complete rotation. It
follows that all polygons, including those that self-intersect, have total turning angle

∑
ψi = 2πn: to see

this, induct on the number of self-intersections, and cut the polygon into two separate polygons at a point
of self-intersection.

One choice of discrete curvature that would satisfy the winding number theorem, then, is to set

〈ki, 1〉 =

n−1∑
i=0

ψi.

This gives us
∑n−1
i=0 Aiki =

∑n−1
i=0 ψi, and since the only turning angle that ki can depend on is ψi,

ki =
2ψi

‖ei−1/2‖+ ‖ei+1/2‖
. (1)

We have a formula for discrete curvature!

3.3 Discrete Gradient of Arc Length

Instead of looking at the winding number theorem, we could instead have constructed discrete curvature
starting from the desideratum that the discrete curvature obey a discrete analogue of the smooth fact that
∇γL = κ(s)N(s).

As in the smooth case, we can define the gradient of arc length by way of the directional derivative.
Consider an arbitrary variation δ ∈ Ω0(Γ)2, where δi ∈ R2 is a displacement of the vertex vi of Γ. Then for
any scalar t, we have a discrete curve Γ + tδ with vertices vi + tδi. Although Γ is a discrete curve and δ a
discrete function, the total arc length L(Γ + tδ) is smooth as a function of t, and so the derivative DδL of
the arc length of Γ in the δ direction is well-defined.

The discrete gradient ∇L ∈ Ω0(Γ) × Ω0(Γ) is then the discrete vector-valued function (if it exists)
satisfying

〈∇L, δ〉 = DδL (2)

for every discrete variation δ. Earlier we defined an inner product for scalar-valued discrete functions on Γ;
for vector-valued functions we extend this definition in the straightforward way:

〈∇L, δ〉 =

n−1∑
i=0

Ai(∇L)i · δi.

We want equation 2 to hold for every variation δ, so in particular it must hold for the variation

δi =

{
0, i 6= j

w, i = j
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where j is some vertex of Γ and some w ∈ R2. This variation corresponds to moving one vertex of Γ, and
leaving all other vertices fixed. Plugging this particular variation into equation 2 yields

n−1∑
i=0

Ai(∇L)i · δi = Aj(∇L)j · w =

(
d

dt
L(Γ + tδ)

)∣∣∣∣
t→0

=

(
d

dt

n−1∑
i=0

‖vj+1 + tδj+1 − vj − tδj‖

)∣∣∣∣
t→0

=

(
d

dt
(‖vj + tw − vj−1‖+ ‖vj+1 − vj − tw‖)

)∣∣∣∣
t→0

=

(
vj + tw − vj−1

‖vj + tw − vj−1‖
· w − vj+1 − vj − tw

‖vj+1 − vj − tw‖
· w
)∣∣∣∣

t→0

=

(
ej−1/2

‖ej−1/2‖
−

ej+1/2

‖ej+1/2‖

)
· w.

This equality must hold for any choice of w, so

(∇L)j =
1

Aj

(
ej−1/2

‖ej−1/2‖
−

ej+1/2

‖ej+1/2‖

)
.

The direction of this discrete vector field gives us a notion of normal vectors at vertices Ni. The magnitude
gives us another way of deriving discrete curvature:

|ki| = ‖(∇L)i‖

=
1

Ai

√
2− 2

ej−1/2

‖ej−1/2‖
·
ej+1/2

‖ej+1/2‖

=
1

Ai

√
2− 2 cosψi

=
2

Ai

∣∣∣∣sin ψi2
∣∣∣∣ .

Taking into account the sign of ki gives us

ki =
4 sin ψi

2

‖ei−1/2‖+ ‖ei+1/2‖
. (3)

Notice that this does not agree with the formula we got from the winding number theorem, in equation (1)!
In fact, it is easy to see that this formula does not satisfy the winding number theorem. Consider a regular
n-gon, with turning angle ψi = 2π

n . For n large, ψi is small, and 0 < sin ψi
2 < ψi

2 . This gives us that

0 < 〈k, 1〉 =

n−1∑
i=0

2 sin
ψi
2

= 2n sin
2π

2n
< 2π,

violating the turning angle theorem.

3.4 Discrete Area Inflation

We now have two different formulas for curvature. Recall that for smooth closed injective curves,

A(Ωε) = A(Ω0) + εL+
ε2

2

∫ L

0

κ(s) ds.

8



εεε θπ-θ ψ=θ
Figure 2: Left: Inflation of Γ by Mikowski-summing with a circle of radius ε. Right : At each vertex vi, the
angle of the inflated circle sector is equal to the turning angle ψi.εεε ψ/2 ε

Figure 3: Left: Inflation of Γ by parallel lines distance ε from Γ’s edges. Right : The area of each kite at
vertex vi is equal to ε2 tan ψi

2 .

Could a disretization of this formula give us yet another notion of discrete curvature?
For a closed discrete curve Γ with no self-intersections, it is easy to compute the area of the enclosed

polygon Ω0. But how do we define the “inflated” region Ωε? There are several reasonable choices.
First, we could take the Mikowski sum of Ω0 with a ball of radius ε: in other words, sweep a ball of

radius ε around Γ and take the outer boundary of the resulting region as the boundary of Ωε. See figure 2.
We can compute the area of Ωε by cutting it up into easily-managed pieces. In the center, we have the

area of the original region A(Ω0). Along each edge, we have rectangular pieces of area ε‖ei+1/2‖. At every

vertex, we have a sector of a circle of radius ε. The area of each sector is πε2 · θ2π = ε2

2 θ, where θ is the sector
angle; this angle is equal to the vertex’s turning angle ψi (see figure 2.)

We therefore have that

A(Ωε) = A(Ω0) + εL+
ε2

2

n−1∑
i=0

ψi,

and in order to match the smooth formula we want kiAi = ψi, recovering the curvature formula in equa-
tion (1).

But we could have chosen a different way of inflating Ω0: for instance, we could replace all edges with
parallel edges a distance ε away, with kites instead of sectors at the corners (see figure 3). The area of the
kites is then ε2 tan ψi

2 , giving us the formula

A(Ωε) = A(Ω0) + εL+
ε2

2

n−1∑
i=0

2 tan
ψi
2
,
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Formula
Basic Symmetries

(2–4; 8)
Diverges

at Kinks (7)

Winding
Number

Theorem (10)

Gradient of
Length (11)

Inflation
Theorem (12)

2ψi
‖ei−1/2‖+‖ei+1/2‖

Yes No Yes No Yes

4 sin
ψi
2

‖ei−1/2‖+‖ei+1/2‖
Yes No No Yes Maybe?

4 tan
ψi
2

‖ei−1/2‖+‖ei+1/2‖
Yes Yes No No Yes

Table 1: List of formula for discrete curvature, and summary of some of their properties (numbers in
parentheses refer to properties of the smooth curvature κ(s).) Notice that none of the formulas satisfy all
properties. Although we didn’t derive the sine formula from the inflation theorem, we haven’t shown that
there isn’t some interpretation of inflation that does yield that formula.

and inducing yet another definition of discrete curvature:

ki =
4 tan ψi

2

‖ei−1/2‖+ ‖ei+1/2‖
. (4)

As with the formula in equation (3), this discrete curvature violates the turning angle theorem: again, it
suffices to check a regular n-gon, and employ the fact that for small angles θ, tan θ > θ.

One final remark about the discrete area inflation theorem: all of these calculations have implicitly
assumed that Ω is convex – otherwise, the diagrams in the above figures are incorrect. It is interesting to
consider what happens when Ω has vertices of negative curvature.

3.5 Summary

We now have three different formulas for discrete curvature. Table 1 summarizes these formulas and some
their properties. There are several key points to take away from these calcuations:

• It is possible to build up a theory of discrete differential geometry that parallels smooth differential
geometry. The discrete analogues of geometric measures like arc length, gradient, curvature, etc.
can be made to respect the symmetries and relationships of the smooth measures exactly : not just
approximately, and not just in some limit of refinement.

• There is no unique choice of how to discretize geometry. Above we saw three equally principled ways of
defining discrete curvature of curves in the plane, for instance. DDG is all about paying close attention
to what choices lead to what discretizations, and what the consequences are of these choices.

• There is no free lunch. None of the three formulas for curvature respected all of the properties that
are satisfied by smooth curvature – each respects a different subset. As a practical consequence, when
choosing a discretization for computation, one must be aware of the alternatives and their pros and
cons, and select a discretization best suited for the particular task.

3.6 Postscript on Convergence

Suppose you have a sequence of discrete curves Γi converging to a smooth curve γ. For which of the formulas
in table 1 does discrete curvature converge to smooth curvature? Note that this question is imprecise – what
do we mean by convergence of the curves? Convergence of the curvature? If we ask only for pointwise
convergence of Γi to γ, the answer is clearly “none of them”: it is easy to construct a family of increasingly
oscillatory discrete curves converging to a unit circle.

It can be shown that all of the formulas do converge to κ(s) when Γi converges to γ under an appropriate
Sobolev distance

d(Γi, γ) =

∫
‖Γi(s)− γ(s)‖+ ‖Tj(s)− γ′(s)‖ ds
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that takes into account both the positions and tangents of Γi. We won’t concern ourselves too much with
details about convergence results, which tend to be subtle and technical, in this course – all of the discrete
formulas we will see in this course do converge to their smooth counterparts under “nice enough” refinement
of the discrete geometry, which I will occasionally make more precise in passing.

11


