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Iterative algorithms are frequently used to resolve simultaneous impacts
between rigid bodies in physical simulations. However, these algorithms lack
formal guarantees of termination, which is sometimes viewed as potentially
dangerous, so failsafes are used in practical codes to prevent infinite loops.
We show such steps are unnecessary. In particular, we study the broad
class of such algorithms that are conservative and satisfy a minimal set of
physical correctness properties, and which encompasses recent methods like
Generalized Reflections as well as pairwise schemes. We fully characterize
finite termination of these algorithms. The only possible failure cases can
be detected, and we describe a procedure for modifying the algorithms to
provably ensure termination. We also describe modifications necessary to
guarantee termination in the presence of numerical error due to the use
of floating-point arithmetic. Finally, we discuss the challenges dissipation
introduce for finite termination, and describe how dissipation models can
be incorporated while retaining the termination guarantee.
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1 INTRODUCTION
The numerical simulation of collisions between multiple objects in
simultaneous impact is challenging. While conservation of energy
and momentum completely determine the motion of a pair of col-
liding rigid balls, the same conservation laws are not sufficient to
determine the behavior when three or more balls collide [Glocker
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2004]. Additional assumptions are needed about the material prop-
erties of the objects and the way shocks propagate through them in
order to make the contact problem well-posed.
Simultaneous impacts can occur in the time-continuous setting,

but become even more prevalent when time is discretized, and one
attempts to resolve all interferences that occur within the span of a
time integration step. The problem is particularly well studied in the
case of colliding rigid bodies, and it arises naturally in the simulation
of granular media [Nguyen and Brogliato 2014]. This work focuses
on responding to these impacts at one frozen instant in time, at the
velocity level; responding to impact thus entails applying impulses
to the colliding objects so that they are no longer approaching. We
will not discuss the many alternative formulations based on position
corrections, soft (acceleration-level) responses, etc, in detail; see any
of several comprehensive surveys [Bender et al. 2014; Gilardi and
Sharf 2002; Khulief 2012] for an overview.

When multiple objects are touching, resolving collisions between
some of them often creates new collisions between others. For ex-
ample, in a perfect head-on pool break, the cue ball first collides
(only) with the ball at the tip of the pyramid, but a resolution of this
collision in isolation induces new collisions against the two balls
on the next level of the pyramid, and so forth. For this reason, the
usual approach for solving the multiple impact problem is to adopt
an iterative strategy [Han and Gilmore 1993]: a rule R is chosen for
how to modify the velocities of objects to fix some subset of the
collisions (we will call these rules impact operators). Applying the
impact operator fixes some collisions while perhaps causing others;
the operator is thus applied again, repeatedly, until all collisions are
resolved. Algorithm 1 illustrates the general structure of algorithms
that adopt this strategy; we call this structure Gauss-Seidel-like, by
analogy to the iterative splitting method of the same name used to
solve linear complementarity problems [Cottle et al. 1992; Erleben
2007]
A natural question that we must ask is will the iterative algo-

rithm terminate, producing a collision-free solution in finite
time? If not, what are the obstructions to termination? Clearly,
Algorithm 1 is not guaranteed to terminate if the impact opera-
tor R is completely arbitrary. However, the rule R is necessarily
restricted by physical considerations, and we can ask whether phys-
ical assumptions on R are sufficient to guarantee termination. In this
setting termination has been shown for simple geometries (such as
a straight line of balls of different masses, or impacts involving a
limited number of objects [Jia et al. 2013]) but the general question
remains open.
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Algorithm 1 Gauss-Seidel-like impact operator

1: function ResolveImpacts(configuration q, velocity Ûq)
2: N ← ActiveConstraintGradients(q)
3: Ûq0 ← Ûq
4: for i := 0,∞ do
5: if NT Ûqi ≥ 0 then
6: return Ûqi
7: end if
8: Ûqi+1 ← R(Ûqi )
9: end for
10: end function

The lack of full answers to these termination questions has led
to a perception that Gauss-Seidel-like methods are unprincipled or
dangerous, despite them working well in many cases [Uchida et al.
2015]. One common workaround is to abort the loop after a fixed
number of iterations, and proceed by either permitting collisions to
remain unresolved, or performing a gross approximation (called a
failsafe) that introduces artificial dissipation and sticking [Provot
1997]. With a better understanding of when methods for resolving
the multiple impact problem are guaranteed to converge, the need
for these non-physical failsafes decreases.

Overview and Contributions. Wewill first focus on the subspace of
Gauss-Seidel-like algorithms where R is frictionless, elastic (energy-
preserving) and satisfies a minimum set of physical correctness
properties (§2). Our analysis encompasses pairwise operators com-
mon in computational mechanics, as well as the recent General-
ized Reflection operator proposed by Smith et al. [2012].We fully
characterize finite termination of Algorithm 1 for this broad
subspace of impact operators.
We prove that the only possible obstruction to termination for

such R is the presence of certain geometric degeneracies in the set of
contact constraints (implicit equality constraints, §4), and we show
that, surprisingly, absence of these implicit equality constraints
guarantees termination after a finite number of iterations. The key
ingredient of our proof will turn out to be conservation of energy, as
it rules out the possibility of R applying an infinite sequence of dis-
sipative impulses that never fully resolve the collisions (§6.1). More-
over, we describe an algorithm for detecting and directly removing
implicit equality constraints from the multiple impact solver.We ar-
rive at amodified algorithm that provably resolves collisions
in a finite number of iterations. This result places Gauss-Seidel-
like methods on sure theoretical footing, and gives practitioners the
option to pay a small additional computational cost to guarantee
progress and termination of their simulations, without sacrificing
physical correctness at the hands of ad-hoc failsafes (§4.1).

It is often desirable in practice to incorporate dissipation into im-
pact response. Unlike elastic impact, which can be reasoned about
from first physical principles, dissipation is always phenomenologi-
cal: when two objects collide, some of their kinetic energy is lost
due to vibration of the objects, sound generation, internal friction
and heating of the objects, etc; it is intractable to simulate these
small-scale phenomena explicitly, and so dissipation is incorporated

instead using coarse-scale empirical laws like kinetic Coulomb fric-
tion or coefficients of restitution. There are several ways to modify
Algorithm 1 to include such dissipative laws, not all of which are
guaranteed to terminate. We discuss the challenges dissipation intro-
duces to termination, and propose a dissipation model that retains
the termination guarantee (§6).
Finally, finite termination is most useful in practice if the guar-

antees continue to hold in the presence of inexact arithmetic and
numerical noise. We revisit our analysis of finite termination and
prove that termination is guaranteed when Algorithm 1 is
computed using inexact arithmetic (§7).

2 RESOLVING MULTIPLE IMPACTS
We consider physical systems with d-dimensional configuration
spacesQ . As described above, we focus on resolving contact by iter-
atively applying an impact operator which resolves some collisions,
while potential causing others; all of this happens at one instant in
time, when the physical simulation has configuration q ∈ Q . Let
Ûq0 denote the starting configurational velocity. Some numberm of
inequality constraints дi : Q → R, with gradients ni = ∇дi , encode
the fact that no objects in the system are interpenetrating.1 We
will denote by N the set of constraints, and by N the matrix with
columns ni . Typically one differentiates between active constraints
дi (q) ≤ 0 (corresponding to penetrations between objects) and inac-
tive constraints дi (q) > 0 (corresponding to objects far apart whose
interactions can be ignored); however since we are concerned only
with one instant in time we will ignore inactive constraints entirely
and assume all constraints are active. Instead we distinguish be-
tween constraints with Ûq · ni ≥ 0, where no response is needed
since objects are already separating, and constraints with Ûq · ni < 0,
where active intervention is needed to resolve the impact.

Wewill call a configurational tangent vector v feasible with respect
to constraint i if v · ni ≥ 0 (and infeasible with respect to that
constraint or vector otherwise). We will also call a tangent vector
simply feasible if it is feasible with respect to all constraints.
Finally, let Md×d be the system mass matrix, so that 1

2 Ûq
T
0 M Ûq0

is the initial kinetic energy of the system. Since the magnitudes
of the contact constraints дi is arbitrary, we may take the con-
straint gradients to be normalized with respect to the energy metric,
nTi M

−1ni = 1, which simplifies some calculations; we assume this
convention through the remainder of the text.

In the special case of a network of b balls2 in the plane, Q = R2b

and q is the concatenation of the x ,y coordinates of the centers of
the b balls. For each pair of balls that are touching, a constraint дi
enforces positive signed distance between the balls.M is a 2b × 2b
diagonal matrix containing the masses of each ball.
Systems of b rigid bodies also fit into this formulation. Configu-

ration space now includes both translational and rotational degrees
of freedom for each body, but for any q ∈ Q , we can parameterize

1We assume throughout the paper, for clarity of the exposition, that the constraint
gradients ni arise from holonomic constraints, as described in this paragraph. However
since the Gauss-Seidel-like algorithms discussed in this paper run during a single, frozen
instant in time, it is not essential that the ni arise from true inequality constraints. Our
analysis extends without difficulty to settings where the ni are chosen using any other
scheme (by a collision detection algorithm, for instance).
2Here and throughout the paper, we use “ball” to refer to a point particle of finite extent,
which has a position but no orientation or angular velocity.
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the space of configurational velocities at q, consisting of the linear
and angular velocity of each body, by R6b . The system mass matrix
M6b×6b is then block-diagonal, with each rigid body contributing a
diagonal mass matrix and a 3 × 3 inertia tensor toM .
If NT Ûq0 ≥ 0 nothing needs to be done as all objects in contact

are already separating; typically this is not the case, though, and
Ûq0 is infeasible with respect to at least one constraint. Algorithm 1
iteratively applies an impact operator R to modify velocity, until the
velocity is feasible.

Let Ri
N

be a map Ri
N

: TQ → TQ from configuration tangent
space to itself, depending both on the gradients of the active con-
straints N and the current iteration i of Algorithm 1 (so that Ri

N
might act differently on the same velocity during different itera-
tions). For brevity of notation we will elide these implicit parameters
and write simply R.

Absent additional assumptions, this notion of R allows all manner
of non-physical behavior (for example, simply freezing all objects,
R(Ûq) = 0, trivially yields a feasible velocity, but conserves neither en-
ergy nor momentum). We therefore insist that R satisfy a minimum
set of physical correctness criteria:

(NORM) Normal impulses. R acts only by applying impulses
in directions that lie in the span of the constraint normals
ni :

R(Ûq) = Ûq +M−1Nλ,

where λ ∈ Rm . (If a ball collides against a wall, contact
impulses can push the ball away from the wall, but cannot
modify the ball’s tangential velocity.)

(KIN) Energy conservation. Elastic impact conserves kinetic
energy:

1
2
ÛqTM Ûq =

1
2
R(Ûq)TMR(Ûq).

(ONE) One-sided impulses. Impulsesmay push bodies apart
but not pull them together. This condition requires λ ≥ 0
in (NORM).

In addition to imposing these physical restrictions on the behavior
of R, we will also require R to be well-behaved algorithmically:

(VIO) Only violated constraints exert impulses. If Ûq is fea-
sible with respect to constraint i , then λi = 0.

(MOD) Infeasible velocities are modified. An infeasible ve-
locity is not a fixed point, i.e., if R(Ûq) = Ûq, then Ûq is feasible.

Notice that (VIO) disallows a single application of R from ex-
erting an impulse between two objects that are at rest relative to
each other. However, (VIO) does not prevent iterated application
of R from separating initially stationary objects [Smith et al. 2012].
Such separation is required to reproduce Newton’s cradle, where a
stationary line of balls is hit on one end by a moving ball.

The first three desiderata, sometimes termed kinetic and energetic
consistency [Nguyen and Brogliato 2014], bear similarity to and can
be viewed as a sharpening of those proposed by Smith et al. [2012]
as essential to any physically-principled impact operator; for the
sake of generality we have omitted properties like symmetry- or
wave-effect-presevation, which are not germane to our study of
termination.

The above five requirements are all stated with respect to any
single application of R. Our final desideratum is concerned with
iterated application of R:

(FIN) Finite termination. Impact should be fully resolved
after a finite number of applications of R.

Our main result is that the first five properties are sufficient
to guarantee the sixth (§5), except for an implicit equality failure
case which can be fully characterized and detected (§4). We will
present a modification of Algorithm 1 that detects and removes
these implicit equality constraints, and prove that the entire family
of Gauss-Seidel-like impact resolution algorithms, once so modified,
satisfy:

(NORM) + (KIN) + (ONE) + (VIO) + (MOD)⇒ (FIN).

Moreover each of the five properties is essential to termination, in
the sense that removing any one property allows the existence of
a Gauss-Seidel-like impact operator R that satisfies the others yet
never terminates (§5.3).

Relation to Common Operators. The first five properties (NORM)–
(MOD) are not very restrictive, and many existing Gauss-Seidel-like
algorithms for solving the multi-impact problem satisfy all five.
For instance, consider the most straightforward possible impact

operator: select any one constraint дi for which the current velocity
is infeasible, and correct that constraint by applying an impulse.
For this single impact, (NORM) and (KIN) uniquely determine the
impulse applied,

R(Ûq) = Ûq − 2(ÛqT ni )M−1ni . (1)

This formula is the familar reflection of two elastic balls off of each
other. Repeatedly applying R in the case of a network of balls in
the plane can thus be interpreted as treating one pair of collisions
between balls as “happening first,” resolving that impact, and then
repeating the process, stopping when (or if) the configurational
velocity is feasible.

Many possible strategies exist for choosing дi at each iteration,
from simple lexicographic order [d’Alembert 1743; MacLaurin 1742]
(i.e., always select the constraint дj with the least j with respect to
which the current velocity is infeasible) to random order [Crassous
et al. 2007; Ivanov 1995] to more sophisticated selection [Chatterjee
and Ruina 1998; Ivanov 1995; Johnson 1976]. Regardless of the se-
lection process, all variants of this pairwise Gauss-Seidel approach
satisfy the five criteria above.
Gauss-Seidel-like operators can also take into accout more than

one violated constraint at a time, and such global approaches can
avoid the artificial symmetry-breaking present in pairwise methods,
or better handle the wave-like propagation of shocks through a net-
work of touching bodies. Two such operators are Smith et al. [2012]’s
Generalized Reflection (GR) operator and Zhang et al. [2015]’s Qua-
dratic Contact Energy approach, both of which satisfy the five
criteria. Related operators include the PLUS model of Uchida et
al. [2015]; although it is intended primarily for dissipative contact
without (KIN), its approach for selecting an impulse in the presence
of redundant constraints satisfy the criteria.

To our knowledge, no characterization of which of these operators
satisfy (FIN) currently exists. We begin with a simple case where
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understanding termination is straightforward—a line of balls in 1D—
as ideas from this case will guide our general analysis (§3). We then
look at one situation where GS-like operators are known to fail to
terminate: impact in the presence of implicit equality constraints
(§4). We will then prove that this is the only possible failure case; in
the absence of implicit equality constraints, any method satisfying
the five criteria (NORM)–(MOD), including GR and all flavors of
pairwise GS, also have (FIN) (§5).

3 TERMINATION IN 1D
The simplest first example for analyzing termination is Newton’s
cradle in one dimension: a line of balls of unit mass and unit radius,
with each interior ball touching its two neighbors. Suppose we now
assign an arbitrary initial velocity Ûq0 to the balls, and attempt to
solve the multiple impact problem using lexicographic Gauss-Seidel.
Will the algorithm terminate?

The key insight is that in one dimension, in the case of equal
masses, the pairwise reflection (1) amounts to swapping the veloci-
ties of the two colliding balls. Lexicographic GS is thus a bubble sort
of the ball velocities: Ûq0 is infeasible with respect to the constraint
coupling the first two balls if and only if the first ball has greater
velocity than the second, in which case the first iteration of GS
will swap the velocities of these two balls, etc. Since bubble sort
terminates after finitely many iterations, so must GS.

But we can say more: index the d balls from left to right, so that
the first coordinate of Ûq ∈ TQ = Rd is the velocity of the first ball,
etc. Then the energy ÛqT [1 2 · · · d] measures the sortedness of Ûq:
it is maximized when Ûq is sorted, and increases whenever out-of-
order consecutive entries of Ûq are swapped. This energy certifies
convergence and finite termination (since Ûq can be permuted in
only finitely many different ways) of lexicographic GS, as well as
all other flavors of GS.
We will prove termination in higher dimensions using a similar

argument: we will show that there exist energies that measure
how close the configurational velocity is to being feasible, and that
increase each time R is applied. Unfortunately, complications arise
in higher dimensions that are not evident in 1D: balls colliding in
(2+)D at glancing angles do not swap velocities, so that GS can
no longer be interpreted as a sorting algorithm with a finite set of
possible states. In the next section we examine a situation where the
higher-dimensional multiple impact problem can fail to terminate,
then we will return in §5 to prove that this is the only failure case.

4 LINEALITY SUBSPACES
Consider the simple didactic two-dimensional example illustrated
in Fig. 2, left, of a single ball wedged against two parallel vertical
walls. If the velocity of the ball is also exactly vertical, then no
collision occurs and the ball proceeds unobstructed. If the ball’s
velocity has any component in the horizontal direction, however,
lexicographic Gauss-Seidel fails to terminate: resolving one ball-wall
constraint reflects the ball’s horizontal velocity while leaving its
vertical velocity untouched. Resolving the ensuing collision against
the second wall then simply returns the velocity to its starting value
— this cycle repeats with no progress towards convergence.

If we replace the single ball with two smaller horizontally-aligned
balls (Fig. 2, center), the same failure occurs if any of the velocities
have a component in the horizontal direction. Moreover, it is not
necessary to start the simulation from such contrived, effectively in-
feasible initial conditions in order to encounter these “fatal velocity
cycles”; Fig. 2, right, shows how a collision can trigger an infinite
loop at any arbitrary point in an otherwise-uneventful simulation.

Returning to the single wedged ball example, notice that the root
cause of nontermination is the existence of two constraint gradi-
ents that point in opposing (configurational) directions. Reflecting
velocity along one direction and then the other, not surprisingly,
returns velocity to its original state.
Similarly, the two-ball example in Fig. 2, center, has a subset of

constraint gradients that are also opposing, although in a more
general sense that these gradients form a subset B of N whose
combined application as linear inequality constraints NT

B
Ûq ≥ 0

is equivalent to applying them as equality constraints NT
B
Ûq = 0.

In particular, numbering constraints in Fig. 2, center, from left to
right and writing the configuration as q = (x1,y1,x2,y2)T , we have
n1 ∝ (1, 0, 0, 0)T , n2 ∝ (−1, 0, 1, 0)T , and n3 ∝ (0, 0,−1, 0)T . The
combined enforcement of nT2 Ûq ≥ 0 and nT3 Ûq ≥ 0 then requires
that (−1, 0, 0, 0)T Ûq ≥ 0, which is directly opposed to the constraint
nT1 Ûq ≥ 0. This direct opposition then reduces (as in the simpler case)
to a system that implicitly enforces linear equality constraints, in
this case of the form nT1 Ûq = 0 and nT3 Ûq = 0.

Characterizing Implicit Equality Constraints. There are several
conditions we can check to discover whether or not N contains
any such implicit equality constraints. One equivalent condition
is that some positive combination of constraint gradients sums to
zero: suppose k constraints M ⊂ N have this property, so that
0 =

∑k
i=0 λimi with λi > 0. Then for any feasible velocity v,

0 ≤ λ0m0 · v = −
k∑
i=1

λimi · v ≤ 0,

so that the only way the inequalities are satisfied is if v · mi = 0.
Conversely, if all feasible velocities v satisfyw ·v = 0, some positive
linear combination of constraint gradients must sum tow and some
other combination to −w, and hence w + −w = 0 is a positive
combination of constraint gradients.
Therefore N contains implicit equality constraints if and only if

the kernel of N intersects the positive orthant; i.e. if there exists
a λ ≥ 0, with λ , 0, and Nλ = 0. Notice that this condition is
stronger than simple linear dependence of the constraint gradients:
consider for instance the trio of constraint gradients n1 = (1, 1)T ,
n2 = (−1, 1)T , and n3 = (0, 1). These constraint gradients are lin-
early dependent and redundant (the third constraints imposes no
additional restrictions on feasible velocities) but they do not oppose,
and so do not form an implicit equality constraint.
Finally, another equivalent condition to the presence of implicit

equality constraints, which will be useful in our proof of termination,
is that the set of all feasible velocities lies in a proper linear subspace
(of dimension < d) of Rd . This condition is exactly the geometric
interpretation of an equality constraint on v.
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Subspace determination. To help eliminate potential nontermina-
tion, we can detect these implicit equality constraints and ensure
that they are explicitly enforced at every iteration of impact response,
by projecting out from all constraint gradients their component in
the direction of the implicit equality constraints.

The problem of finding a maximal set of equality constraints im-
plied by a set of inequalities, or equivalently of finding the lineality
space – the maximal linear subspace of the normal cone formed by
a positive span of vectors – is a well-studied problem in numerical
optimization [Caire et al. 2008; López 2011; Telgen 1983; ten Dam
1997; Wets and Witzgall 1967].

One solution involves solving a series of linear programming
problems. For instance, we can employ the Support and Shave algo-
rithm [López 2011] that finds the lineality space with at most 2m
linear programming solves of size d . In the best and by far most
common case, when no implicit equalities exist, only a single linear
programming solve is required.

Algorithm 2 GS-like operator with anti-locking

1: function ResolveImpacts(configuration q, velocity Ûq)
2: N ← ActiveConstraintGradients(q)
3: E ← ImplicitEqalityGradients(N )
4: Ûq0 ← argminÛq0

∥ Ûq − Ûq0∥2M s.t. ET Ûq0 = 0
5: for i := 1,m do
6: xi ← argminx ∥x − ni ∥2M s.t. ET x = 0
7: if ∥xi ∥M = 0 then
8: remove ni from N
9: else
10: ni ← xi/∥xi ∥M
11: end if
12: end for
13: for i := 0,∞ do
14: if NT Ûqi ≥ 0 then
15: return Ûqi
16: end if
17: Ûqi+1 ← R(Ûqi )
18: end for
19: end function

4.1 Handling implicit equality constraints
When a lineality subspace is detected in the constraint set, a minor
modification of Algorithm 1 can guarantee that each iteration of the
impact operator respects the induced equality constraints:Q should
be replaced by the subspace Q̄ of the configuration space that re-
spects the linear equality constraints, and each inequality constraint
дi should be restricted to Q̄ . This modification amounts to projecting
out from Ûq0 and all constraint gradients ni their components in the
direction of the implicit equality constraints. Algorithm 2 outlines
this modification. The function ImplicitEqualityGradients an-
alyzes N and extracts a basis for the implicit equality constraints
in N . Notice that if N is free of implicit equality constraints, the
algorithm reduces to the unmodifed Algorithm 1.

Termination with lineality. Without implicit equality constraint
detection and handling, (FIN) is not guaranteed. Systems contain-
ing degrees of freedom confined to tight spaces are more likely to
experience these termination difficulties. In Fig. 1 we simulate one
such example: a ball fired along a shaft collides with a plug of sta-
tionary balls. On impact, both Gauss-Seidel and GR without lineality
detection fail to terminate. Both succeed with lineality detection.

Fig. 1. Ball Geyser: A ball fired along a shaft should dislodge the plug made of
stationary balls (left). Without Lineality detection, however, Gauss-Seidel and GR
algorithms are not able terminate for the initial impact resolution solve. GR with
Lineality detection resolves the multi-impact problem and generates a trajectory that
retains all physical, desiderata (right).

5 TERMINATION IN ND
We now turn to the problem of termination in arbitrary dimension.
We know that the presence of implicit equality constraints can pre-
clude termination. In the remainder of this section, we will show
that this is the only possible failure: that any impact operator satisfy-
ing (NORM)–(MOD), and free of implicit equality constraints, will
terminate in finitely many iterations given any set of constraints and
initial velocities in any dimension. We will do so in two steps: first
we will show convergence: that in the limit of applying an impact
operator infinitely many times, the velocity approaches some (pos-
sibly infeasible) limit velocity (§5.1). We will prove that the number
of iterations needed is in fact finite, and that the final velocity is
feasible (§5.2).

5.1 Convergence proof
First, let us characterize the geometry of the constraints in config-
uration tangent space. For any configurational velocity v and any
constraint дi , one of three things must be true:

Fig. 2. Failure of pairwise impulse methods to terminate: Gauss-Seidel and GR
fail to terminate for a single ball (left) or two horizontally-aligned balls (center) wedged
between vertical walls, if the balls’ velocities have any component in the horizontal
direction. Even if the system’s initial conditions are feasible (right), an impact later in
the simulation can cause it to enter a nonterminating state.
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• the velocity is strictly feasiblewith respect to that constraint:
vT ni > 0. The velocity doesn’t violate the constraint, and
won’t start violating the constraint even under infinitesimal
perturbations;

• the velocity is tangent to the constraint: vT ni = 0;
• the velocity violates (is infeasible with respect to) the con-

straint: vT ni < 0.

We can partition configuration tangent space TQ into up to 3m sets
that differ as to whether v is strictly feasible, tangent, or infeasible
with respect to each constraint. Two other important regions of
tangent space are the feasible set F containing all feasible tangent
vectors and the strictly feasible set FI (containing all tangent vectors
v whose inner product ⟨v,ni ⟩ is strictly positive for all constraints).
The strictly feasible set is the intersection of half-spaces passing
through the origin and so is a convex cone. Furthermore FI is empty
if and only if N contains implicit equality constraints. If there are
implicit equality constraints, F is a subset of the linear space of
dimension less than d that satisfies the implicit equality constraint,
so has no interior FI . Conversely, if FI is empty, then since F is
convex it is contained in a hyperplane of dimension d − 1. The
fact that all feasible velocities lie in this hyperplane is an equality
constraint that the feasible velocities satisfy.

As in Algorithm 1, let Ûqi be the velocity after i application of the
impact operator R on Ûq0. We will now prove a higher-dimensional
analogue of the bubble-sort result from 1D:

Lemma 5.1. Let w be any feasible velocity (w ∈ F ). Then for an
impact operator satisfying (NORM), (KIN), (ONE), and (VIO), and
any initial velocity Ûq0, ⟨w, Ûqi ⟩M converges to a real number kw as
i →∞.

Since energy is conserved, the velocity Ûqi after every iteration
can be interpreted as a point on the ellipsoid {v ∈ TQ | ⟨v, v⟩M =
⟨Ûq0, Ûq0⟩M }. Geometrically, the lemma then states that for any fea-
sible velocity w, the velocity Ûqi after repeated applications of the
iteration map, interpreted as a point on the ellipsoid of constant
energy, approaches some hyperplane perpendicular to the vector w
(see Fig. 4), with distance to this hyperplane decreasing monotoni-
caly (see Fig. 3).

Unfortunately, this fact alone is not enough for convergence, since
the hyperplane will generally intersect the ellipsoid in an ellipsoid
of one lower dimension, and it is conceivable the velocity Ûqi might
bounce infinitely around this intersection ellipsoid without ever
settling at a single point; we will address this detail later in the
section.
Note that when d = 1, we recover the picture of a Newton’s

cradle with n balls in a row. In that case,w is an increasing sequence
of numbers (for instance, (1, 2, . . . ,n)), and the amount that kw
increases during each reflection is bounded away from zero, so that
Ûqi cannot bounce around infinitely on a lower-dimensional ellipsoid.

Proof. Suppose that Ûqm is feasible for some integerm. Then by
(VIO), R(Ûqm ) = Ûqm and Ûqi = Ûqm for all i ≥ m, so kw = ⟨w, Ûqm⟩M .
The other case is where Ûqi is infeasible for all i . By (KIN),

⟨w, Ûqi ⟩M ≤ ∥w∥M ∥ Ûqi ∥M = ∥w∥M ∥ Ûq0∥M

and so is bounded above. It therefore suffices to show that ⟨w, Ûqi ⟩M
increases monotonically at every iteration. And indeed, by (NORM)

⟨w, Ûqi+1⟩M = ⟨w, Ûqi +M−1Nλ⟩M

= ⟨w, Ûqi ⟩M +wTNλ

= ⟨w, Ûqi ⟩M +
∑

λiwT ni ,

and sincew ∈ F ,wT ni ≥ 0. By (ONE), λi ≥ 0 aswell, so
∑
λiwT ni ≥

0, completing the proof. �

The above lemma guarantees that Ûqi approaches some hyperplane
in tangent space, but as remarked above this is not enough for
convergence (and note that the above did not assume the lack of
implicit equality constraints). The key idea is that we can now pick
a different w1 and repeat the above argument: the velocity must
now approach two different hyperplanes, and so must approach
their intersection. If there are no implicit equality constraints, the
strictly feasible region FI is nonempty, and we can pick a cluster of
feasible vectorswj from FI so that their corresponding hyperplanes
intersect at a single point. The velocity must then converge to that
point. The following proof formalizes this argument.

Lemma 5.2. Suppose FI is nonempty. Then it contains d linearly
independent vectors w1, . . . ,wd .

Proof. From the definition of FI it is clear that it is an open
subset of tangent space. Since FI is nonempty, it contains a ball with
center c and radius r . The vectors c+min(r/2, ∥c∥1)ei (where ei are
the Euclidean coordinate basis functions) are linearly independent,
and contained within this ball, and so within FI . �

Theorem 5.3. If N is free of implicit equality constraints and R
is an impact operator satisfying (NORM), (KIN), and (ONE), then
limi→∞ Ûqi = Ûq∞ exists.

Proof. By the above lemmas, we can find d linearly indepen-
dent vectors wj in FI with ⟨wj , Ûqi ⟩M converging to kwj . There is
therefore a unique solution r to the linear system

⟨wj , r⟩M = kwj j = 1, . . . ,d,

and we will show that Ûqi converges to r. LetW be the matrix whose
rows are wj , so that

WMr = k
for k =

(
kw1 ,kw2 , . . . ,kwd

)T . SinceW andM are nonsingular, so is
WM , and soWM has a singular value with least magnitude σ > 0.

We know that ⟨wj , Ûqi ⟩M converges to kwj , so for any ϵ > 0 there
exist integers c j with��⟨wj , Ûqi ⟩M − kwj

�� ≤ σϵ

d
for i ≥ c j . Setting C = maxj c j , for i ≥ C we then have that

∥ Ûqi − r∥ = ∥ Ûqi − (WM)−1k∥

≤ σ−1∥WM Ûqi − k∥

≤ σ−1
d∑
j=1
|⟨wj , Ûqi ⟩M − kwj |

≤ ϵ,

and so Ûqi converges to r. �
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Fig. 3. A ball hits a wedge in the plane made of two constraints with normals (0, 1) and (sin θ, − cos θ ) and the impact is resolved using lexicographic
Gauss-Seidel. The smaller θ becomes, the closer the two constraints are to being an implicit equality constraint, and the more iterations are required for
termination. For a given value of θ , two feasible velocities are wi = [cos(iθ/3), sin(iθ/3)] for i ∈ {1, 2} , and these can be used as certificates of convergence
in Lemma 5.1. With each application of the impact operator, their inner product kwi with the ball’s velocity is guaranteed to increase; once this inner product
is sufficiently close to 1.0, the ball is heading in the direction of the opening of the wedge and impact response terminates. The plots show kw1 (blue) and kw2
(yellow) as functions of the number of iterations. In each case the algorithm terminates at the last iteration shown.

w

FI

Ûq0

Ûq1

Ûq2

Ûq3

Ûq4n1n2

w

FI

Ûq0

Ûq1

Ûq2

Ûq3 Ûq4

n1n2

Fig. 4. An iteration map applied in two-dimensional tangent space with
two constraints. The initial velocity Ûq0 violates both constraints. The chosen
feasible velocity w can be interpreted as a vector from the origin; under
this interpretation, with each application of the iteration map the veloc-
ity Ûqi approaches a hyperplane (line) perpendicular to w. If the velocity
ever enters the feasible region, the impact operator terminates (left) but
termination, and even convergence, is not guaranteed from looking at w
alone: the velocity could plausibly oscillate near the hyperplane without
ever converging to a single point (right).

5.2 Termination proof
We will now show a stronger result: not only does the impact op-
erator converge, it does so in only finitely many iterations, and
always to a feasible velocity. The main idea is to look at the limit
velocity Ûq∞, which by the previous theorem must exist. If this ve-
locity is strictly feasible, Ûqi must enter the feasible region in finitely
many iterations since FI is open. The problematic cases are when
Ûq∞ violates some constraints, or is tangent to constraints: could
the velocity hover for infinitely many iterations right outside the
feasible region (see figure 5)? We now show that (KIN) disallows
this latter possibility: the impact operator cannot take a velocity
that violates a constraint to one that is tangent to that constraint

FI

Ûq∞

FI

Ûq∞

Ûq0

Fig. 5. Left: If the limit velocity Ûq∞ is strictly feasible, then convergence is
guaranteed since the velocity Ûqi must enter into a ball around Ûq∞ in finite
interations. Right: the tricky case is where Ûq∞ is feasible but tangent to
some of the constraints. Could the velocity remain infeasible for infinitely
many iterations? We show this is not possible, given (KIN).

Ûq0

Ûq∞

n2
n1

Fig. 6. Two constraints visualized as a trough in three dimensions. If the
initial velocity violates both constraints, it is impossible for repeated ap-
plications of the impact operator to converge to a final velocity tangent
to both constraints (Ûq∞) by applying impulses only along the n1 and n2
directions without dissipating energy.

(see figure 5, right, and figure 6). Feasibility of the final velocity will
then follows from (MOD).

Theorem 5.4. If N is free of implicit equality constraints and R
satisfies the five conditions (NORM)–(MOD), then Ûqi is feasible after
a finite number of applications of the impact operator, i.e., (FIN) is
satisfied.
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Proof. We know that Ûq∞ exists, but is possibly infeasible.We can
thus partition the constraints into two sets: a “violated or tangent
set” T , and an “ultimately strictly feasible” setU = N \T ,

T = {n ∈ N | ÛqT∞n ≤ 0}

U = {n ∈ N | ÛqT∞n > 0}.

We can then define the set FU of velocities that are strictly feasible
with respect to all constraints inU :

FU = {v ∈ Rd | vT n > 0,n ∈ U }.

Notice that if U contains all of the constraints, then FU = FI , and if
U is empty, FU contains the entire tangent space TQ . Moreover by
construction of U , Ûq∞ ∈ FU . FU is also clearly open, so there exists
some ϵ > 0 withw ∈ FU for allw with ∥w− Ûq∞∥ < ϵ . In particular,
since Ûqi converges to Ûq∞, Ûqi is in FU for all i ≥ k for some integer
k .

Now consider the affine subspace

A =
{
Ûqk +M

−1Tλ | λ ∈ R |T |
}
.

By (VIO), Ûqi ∈ A for all i ≥ k , and so is Ûq∞ since A is closed.
Therefore

Ûq∞ = Ûqk +M
−1Tλ

for some λ, and by (KIN),

∥ Ûq∞∥2M = ∥ Ûqk ∥
2
M

= ∥ Ûq∞ −M−1Tλ∥2M

= ∥ Ûq∞∥2M − 2⟨Ûq∞,M−1Tλ⟩M + ∥M
−1Tλ∥2M .

It follows that

0 = −2⟨Ûq∞,M−1Tλ⟩M + ∥M
−1Tλ∥2M

=

|T |∑
j=1
−2λj ÛqT∞nj + ∥M

−1Tλ∥2M ,

and since −ÛqT∞nj ≥ 0 and λj > 0 (thanks to (ONE)), both terms are
nonnegative and so must each be zero. ThereforeM−1Tλ = 0 and
Ûqk = Ûq∞. Finally, since then R(Ûqk ) = Ûqk , Ûqk must be feasible by
(MOD). �

5.3 Necessity of the Desiderata
It is instructive to trace where the above chain of reasoning breaks
down in the presence of implicit equality constraints: Lemma 5.1
still holds, but it is no longer possible to find d different hyperplanes
in general position; instead, the implicit equality constraints force
all hyperplanes to intersect in a common line, plane, or other higher-
dimensional linear space, depending on the degree of degeneracy of
the constraint gradients, and the velocity might wander around this
linear space instead of converging to a point. Note also that each of
the five properties (NORM)–(MOD) is essential to termination, in
the sense that removing any one of the desiderata while keeping
the others allows for the existence of a impact operator R for which
Algorithm 1 does not terminate. For each of the properties, we now
show that it is essential, and highlight the portions of the proof that
rely on it.

• Without (NORM), two other desiderata ((ONE) and (VIO))
are ill-posed, and both of these are required for guaran-
teed termination (see below); this dependence also means
(NORM) is essential for both convergence and termination
proofs.

• If (ONE) is removed and sticking is allowed, the velocity
of the system can alternate between two infeasible values
even without the presence of implicit equality constraints.
Consider the case of a ball flying into a corner, shown in
Fig. 7 with normals n1 = (0, 1) and n2 = (−1, 0). If the ball
hits the corner with initial velocity (2,−1), taking λ1 = ∓1
and λ2 = ±1 each time R is applied will cause the veloc-
ity to alternate between (2,−1) and (1,−2), both of which
have the same kinetic energy and both of which violate the
constraints.

The convergence proof must fail for this example, and
indeed without (ONE) our Lemma 5.1 no longer holds, since
an application of R might decrease an energy kw.

x

1

-1-2

2
y

n1  = ( 0, 1 )

n2  = ( -1, 0 )

Fig. 7. (ONE) is necessary. A colliding ball flying into a corner without (ONE) can
cycle between infeasible velocities as demonstrated with the purple colliding velocities
here.

• To see (VIO) is essential, consider a three-ball Newton’s
cradle, with initial ball velocities 0, 1, 0 from left to right.
Only the constraint between the right two balls is violated,
but if the left constraint is also allowed to apply a (pushing)
impulse, it is possible to infinitesimally perturb the veloci-
ties of the three balls (so that the left velocity is now slightly
negative, and the right ball’s, slighly positive) while keep-
ing the configurational velocity infeasible. This process can
be repeated, with the size of the perturbation shrinking
during every iteration, so that Algorithm 1 converges, in
the limit of infinitely many iterations, to a set of veloci-
ties where the middle ball is still moving faster than its
rightmost neighbor.

In terms of our proof, (VIO) is needed in Theorem 5.4
to rule out convergence to an infeasible velocity; without
(VIO) there is no guarantee that after sufficiently many
iterations of applying R, all intermediate velocities lie in
the affine subspace A.

• Obviously, if R violates (MOD) and never modifies some in-
feasible initial velocity, (FIN) is impossible. In Theorem 5.4
(MOD) was required at the very end to argue that any limit
velocity must be feasible.
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• Finally (KIN) is an especially interesting case. It is known
that if R is allowed to dissipate energy during every ap-
plication, failure cases exist where Algorithm 1 does not
terminate. This phenomenon is known as inelastic collapse,
and in these cases the velocity does converge, but only in
the limit of infinitely many applications of R.

In the proofs, (KIN) is required for convergence, but
the proof still holds even if (KIN) is replaced by a weaker
energy non-increase condition. On the other hand, (KIN) is
an essential ingredient in proving (FIN), since it allowed
us to argue that once the set of violated constraints stops
changing, the velocity cannot change.

We summarize inelastic collapse in the next section,
and discuss in more depth how our analysis of termination
extends to the inelastic setting.

6 DISSIPATION
We have so far explored termination of Gauss-Seidel-like impact
operators in the conservative setting, but for modeling practical
physical systems, dissipation is often critical. Many modifications
to the Gauss-Seidel-like framework of Algorithm 1 are possible for
incorporating dissipation, but it is important to note that there is no
single physically-correct approach to doing so. Dissipation models
are merely phenomenological heuristics that try to capture, at a
coarse scale, a wide variety of small-scale effects, such as internal
heating of the colliding objects, transient formation and breaking
of chemical bonds, etc. (many of them poorly-understood) that in
aggregate yield dissipative impact [Brogliato 1999].

One popular model of dissipation during impact is the coefficient
of restitution

cr = −
relative velocity after

relative velocity before
,

with cr = 1 corresponding to the perfectly elastic case, and cr = 0
to perfectly inelastic impact (such as when a bean-bag is dropped
on the ground). A possible strategy for modeling cr in the iterative
setting is to require each application of R to dissipate energy (so
that (KIN) no longer holds). This approach is tempting given its
simplicity, but suffers from several drawbacks: first, the amount of
energy dissipated during each impact event depends on the number
of iterations taken in Algorithm 1, so that the effective cr of the
overall algorithm will depend not only on the geometry of the
impact, but also the specific choice of impact operator R. More
significantly, this modified algorithm is not guaranteed to terminate,
due to the inelastic collapse phenomenon.

6.1 Inelastic collapse
Pairwise iterative methods are well- known to suffer from poor
convergence whenever cr < 1; in some cases, they do not converge
in a finite number of iterations at all [Baraff 1989; McNamara and
Young 1994]. A simple example is resolving a five-ball Newton’s
Cradle using lexicographic GS with cr = 0: each iteration halves
the relative velocity of one pair of balls, inducing a Zeno’s Paradox
(“Achilles and the tortoise”) where the velocity remains infeasible
for any finite number of iterations of GS. This is illustrated in Fig. 8.
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Fig. 8. Inelastic collapse: The velocity of each of 5 balls in a 1D Newton’s cradle
after successive iterations of Gauss-Seidel with cr = 0. Initially all the balls except the
leftmost are at rest, while the leftmost ball is given an initial velocity of 1. To reach
a feasible solution, the order of the curves would have to be reversed such that the
righmost ball would end up with the highest velocity.

Inelastic collapse can occur even for positive cr < 1. Indeed, the
range of cr for which inelastic collapse can occur increases as the
size of the impact problem grows, and quickly approaches unity as
the number of colliding bodies becomes sufficiently large [Bernu
and Mazighi 1990; McNamara and Young 1994]. Thus inelastic col-
lapse is effectively unavoidable for any large-scale colliding systems
whenever cr < 1. As a practical matter, numerical round-off error
somewhat ameliorates this issue and the iterative process generally
terminates [Chatterjee and Ruina 1998], though relying on round-
off is not very satisfying, and convergence behavior consistently
worsens in proportion to the decrease in cr .

6.2 Energetic Restitution Revisited
Alternative methods are possible for incorporating cr into Algo-
rithm 1 without building cr into R itself, thereby avoiding inelastic
collapse. For example, when cr = 0 it is common to replace the
entire algorithm by a one-step formulation based on solving a linear
complementary problem (LCP) [Anitescu and Potra 1997; Moreau
1985; Stewart 2000]. Dissipative restitution models with 0 < cr < 1
remains an open and active area of research [Chatterjee and Ruina
1998; Glocker 2004; Liu et al. 2008; Stewart 2011; Stoianovici and
Hurmuzlu 1996]; naive attempts to incorporate cr > 0 into LCP
formulations suffer from sticking artifacts and failure to converge
to a feasible solution [Smith et al. 2012].

Smith et al. [2012] propose another simple restitution model that
avoids inelastic collapse across all cr values. Here we quickly review
the model and show that it inherits (FIN) from the elastic case.
First, observe that purely inelastic (cr = 0) multi-impact is well-
posed and solvable using the standard inelastic LCP formulation
mentioned above, yielding an inelastic, feasible post-impact velocity
Ûq0. Similarly, elastic multi-impact is unaffected by collapse: applying
Algorithm 1 using any impact operator satisfying (NORM)–(MOD),
we obtain Ûq1 in finite iterations. Then cr can be viewed as the
interpolant between the two to obtain

Ûq = (1 − cr )Ûq0 + cr Ûq1.

Notice that this definition of cr now allows any amount of dissi-
pation between the maximum (physically) allowable dissipation at
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cr = 0 and total conservation of energy at cr = 1 while retaining
all properties, including (FIN), for all cr ∈ [0, 1].

6.3 Friction
While friction plays an obvious key role in persistent contact, it can
also be critical in transient collisions [Brogliato 1999]. A standard
way of incorporating friction into iterative contact response algo-
rithms like Algorithm 1 is to add frictional impulses fk at contacts
k , where these impulses are chosen to satisfy a maximal dissipation
principle [Drumwright and Shell 2011; Goyal et al. 1991] that maxi-
mally resists tangential sliding up to a bound given by Coulomb-type
constraints, e.g. ∥ fk ∥ ≤ µλk . In cases of complex contact geometry
these frictional impulses might themselves cause additional colli-
sions with their own frictional impulses, etc, so that in principle
the frictional impulses must be solved for simultaneously with the
contact impulses [Kaufman et al. 2005; Uchida et al. 2015]. However
in practice it is often sufficient to assume that frictional impulses
depend on the contact impulses, and not vice-versa. This approx-
imation is implemented by solving for and applying friction after
computing the frictionless post-impact response. Smith et al. [2012]
presented one such friction model whose solution is guaranteed to
terminate. Composing this operation with Algorithm 1 (using any
impact operator satisfying (NORM)–(MOD)) thus allows simulating
friction while retaining (FIN).

7 INEXACT ARITHMETIC
All of the above analysis has assumed that arithmetic is exact; but
in a practical implementation of Algorithm 1 the question remains
whether floating-point errors could lead to nontermination? To be-
gin to study this question, we need to revisit the impact operator
desiderata, and rebuild them from the ground up with inexact arith-
metic in mind. We will then show that the pairwise Gauss-Seidel
methods and Generalized Reflections, with minor modifications, all
satisfy all of these desiderata.

The key idea is that inexact arithmetic requires some amount of
tolerance when evaluating constraint violation. For example, sup-
pose a tangent vector v satisfies n · v = −µ for a tiny µ (on the order
of the machine epsilon). Although v is technically infeasible with
respect to n, it could well be that no impulse satisfying (NORM) and
(KIN) can possibly modify v, stymying termination. We can avoid
this situation by declaring a velocity as tangent to a constraint if
their inner product is approximately zero; more specifically, we relax
the definition of feasibility3 of v with respect to n to the condition

⟨v,n⟩ ≥ −ϵ ∥v∥M

for a chosen unitless tolerance parameter ϵ ≪ 1.
We now revisit the desiderata, beginning with (NORM): in the

inexact setting, the impulse applied by R will still lie in the span of
the constraint gradients, but now we allow some error in both the

3This relaxation might raise concerns about constraint drift. In the exact case, advancing
the configuration along a finite-size step in the direction of the post-response velocity
Ûq∞ does not necessarily stay within the feasible region of configuration space; this is
because Ûq∞ was computed using only first-order information about the constraints,
and the constraint manifold can curve into Ûq∞ . In the inexact setting, the drift can be
linear, instead of second-order, thanks to the tolerance; however this first-order drift
is on the order of ϵ , and so for ϵ not too large relative to the time step size, does not
introduce significant additional error.

magnitude and direction of this impulse. For the tolerance threshold
ϵ < 1, we approximate (NORM) by:

(ϵNORM) Normal impulses.

R(Ûq) = Ûq +M−1Nλ + c,

with ∥c∥M ≤ ϵ ∥λ∥1 and ∥c∥M ≤ ϵ
2 ∥ Ûq∥M ,

which allows some error c in each application of the impact opera-
tor. The first inequality ensures that the amount of noise added to
the velocity at each iteration does not overshadow the impulse
being applied (otherwise it is not possible to make meaningful
progress). Since the allowed error in the constraint satisfaction
is scale-invariant, the allowed error in (NORM) must also be scale-
invariant, hence the need for c to be small with respect to q.

Kinetic energy must also be conserved, up to this error:
(ϵKIN) Energy conservation. Elastic impact conserves ki-

netic energy approximately: for the λ corresponding to R(Ûq)
in (ϵNORM),

1
2
∥ Ûq∥M =

1
2
∥ Ûq +M−1Nλ∥M .

(Contrast to exact kinetic energy conservation, which would require
a c on the right-hand side.) We round out the list of requirements
with

(ϵDRIFT) No unbounded energy drift. In addition to ap-
proximate energy conservation, the approximate impact
operator R does not cause energy to drift arbitrarily far over
multiple iterations. For all Ûq there exists aC ∈ R so that for
all k ∈ Z > 0,����12 ∥ Ûq∥2M − 1

2
∥Rk (Ûq)∥2M

���� < C .

(ϵVIO) Only significantly violated constraints exert any
impulses. If nTi Ûq ≥ −ϵ ∥ Ûq∥M , then λi = 0.

(ϵMOD) Infeasible velocities are always modifed. R(Ûq) =
Ûq only if nTi Ûq ≥ −ϵ ∥ Ûq∥M for all constraints i .

(ϵFIN) Finite termination. After a finite number of applica-
tions of R, nTi Ûq ≥ −ϵ ∥ Ûq∥M for all constraints i .

Algorithm 3 Inexact GS-like impact operator

1: function ResolveImpactsApprox(q, Ûq, ϵ)
2: N ← ActiveConstraintGradients(q)
3: Ûq0 ← Ûq
4: for i := 0,∞ do
5: if NT Ûqi + ϵ ∥ Ûqi ∥M1 ≥ 0 then
6: return Ûqi
7: end if
8: Ûqtentative

i+1 ← R(Ûqi )

9: Ûqi+1 ←
∥ Ûq0 ∥M

∥ Ûqtentative
i+1 ∥M

Ûqtentative
i+1

10: end for
11: end function

With some care, pairwise Gauss-Seidel can be modified so that it
satisfies these six properties when its computations are performed
with floating-point arithmetic; it can be shown (see supplemental
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material) that Algortihm 3 obeys (ϵNORM)–(ϵMOD), and General-
ized Reflections [Smith et al. 2012] can be so modified as well. Notice
that the key difference in Algorithm 3, other than the addition of a
tolerance when checking for convergence (or choosing a violated
constraint, within R) is the renormalization of Ûq at every iteration,
in order to ensure (ϵDRIFT).

In the remainder of this section we will show the following gen-
eralized termination result: in the absence of implicit equality con-
straints and for every ϵ > 0
(ϵNORM) + (ONE) + (ϵKIN) +(ϵDRIFT) +(ϵVIO) +(ϵMOD) ⇒

(ϵFIN).
We now reproduce the lemmas and theorems of §5 and §5.2 in

the inexact case, starting with convergence.

Lemma 7.1. Let w be any velocity with wT ni ≥ ϵ ∥w∥M for every
constraint gradient ni . For an impact operator satisfying (ϵNORM),
(ϵKIN), and (ONE), and any initial velocity Ûq0, ⟨w, Ûqi ⟩M converges
to a real number kw as i →∞.

Proof. By (ϵDRIFT),

∥ Ûqi ∥M <
√
∥ Ûq0∥2M + 2C,

so

⟨w, Ûqi ⟩M ≤ ∥w∥M ∥ Ûqi ∥M ≤ ∥w∥M
√
∥ Ûq0∥2M + 2C

and so is bounded above. It therefore suffices to show that ⟨w, Ûqi ⟩M
increasesmonotonically at every iteration. And indeed, by (ϵNORM),

⟨w, Ûqi+1⟩M = ⟨w, Ûqi +M−1Nλ + c⟩M

= ⟨w, Ûqi ⟩M +wTNλ + ⟨w, c⟩M

= ⟨w, Ûqi ⟩M +
∑

λiwT ni + ⟨w, c⟩M ,

and since wT ni ≥ ϵ ∥w∥M ,∑
λiwT ni + ⟨w, c⟩M ≥

∑
λiwT ni − ∥w∥M ∥c∥M

≥ ϵ ∥w∥M ∥λ∥1 − ϵ ∥w∥M ∥λ∥1
= 0,

where the inequality in the first line is by Cauchy-Schwarz, com-
pleting the proof. �

Lemma 7.1 suggests that the notion of implicit equality constraint
must be modified in the inexact setting, and indeed, a set of con-
straints that nearly form an implicit equality constraint must now
be treated as an equality constraint. Define the approximate lineal-
ity subspace Lϵ of N to be the largest linear subspace of TQ with
nTi v ≤ ϵ ∥v∥M for all ni ∈ N and v ∈ Lϵ ; the set of approximate
implicit equality constraints in N is then any basis E of Lϵ .

Theorem 7.2. If N is free of approximate implicit equality con-
straints and R is an impact operator satisfying (ϵNORM), (ϵKIN),
and (ONE), then a limit configurational velocity limi→∞ Ûqi = Ri (Ûq0)
exists (but may be infeasible).

Proof. The proof from the exact arithmetic case applies essen-
tially unmodified. �

Theorem 7.3. If N is free of approximate implicit equality con-
straints and R satisfies the six conditions (ϵNORM)–(ϵMOD), then
ÛqTi nj ≥ −ϵ ∥ Ûqi ∥M for all constraint gradients nj after a finite number
of applications of the impact operator (ϵFIN).

Proof. We follow the same general line of argument as in the ex-
act case, except here the error allowed in the conservation of energy
is accounted for by allowing slight violation of the constraints in
the final configurational velocity. As in the exact case, we partition
the constraints into two sets: a “violated or approximately tangent”
set T , and an “ultimately almost-feasible” setU = N \T ,

T = {n ∈ N | ÛqT∞n ≤ −ϵ ∥ Ûq∞∥M }

U = {n ∈ N | ÛqT∞n > −ϵ ∥ Ûq∞∥M }.

We can then define the set A of velocities that are almost-feasible
with respect to all constraints inU , are are close to violating all of
the constraints in T :

A =

{
v ∈ Rn : vT ni > −ϵ ∥v∥M ,ni ∈ U

vT ni < − ϵ2 ∥v∥M ,ni ∈ T

}
.

A is clearly open, and by construction contains the limit velocity
Ûq∞ as an element (since − ϵ2 > −ϵ). Since Ûqi converges to Ûq∞, Ûqi is
in A for all i ≥ k for some integer k and

Ûqk+1 = Ûqk +M
−1Tλ + c

for some λ, which we can rewrite in two ways:

Ûqk+1 − c = Ûqk +M
−1Tλ

Ûqk+1 −M
−1Tλ − c = Ûqk .

By (ϵKIN), the right-hand sides have equal norms, and so

∥ Ûqk+1 − c∥
2
M = ∥ Ûqk+1 −M

−1Tλ − c∥2M
= ∥ Ûqk+1 − c∥

2
M − 2⟨Ûqk+1 − c,M

−1Tλ⟩M

+ ∥M−1Tλ∥2M .

Since Ûqk+1 ∈ A,

−2⟨Ûqk+1,M
−1Tλ⟩M ≥ ϵ ∥ Ûqk+1∥M ∥λ∥1,

and the above bound can be written as

0 ≥ ϵ ∥ Ûqk+1∥M ∥λ∥1 + 2⟨c,M−1Tλ⟩M + ∥M
−1Tλ∥2M . (2)

By the triangle inequality and (ϵKIN),

∥ Ûqk+1∥M ≥ ∥ Ûqk +M
−1Tλ∥M − ∥c∥M

= ∥ Ûqk ∥M − ∥c∥M ,

and now since ∥c∥M ≤ ϵ
2 ∥ Ûqk ∥M , when ϵ < 1 we have that ∥c∥M ≤

1
2 ∥ Ûqk ∥M and

ϵ ∥ Ûqk+1∥M ∥λ∥1 ≥ ϵ(∥ Ûqk ∥M − ∥c∥M )∥λ∥1

≥
ϵ

2
∥ Ûqk ∥M ∥λ∥1

≥ ϵ ∥λ∥1∥c∥M .

Finally since ∥c∥M ≤ ϵ ∥λ∥1,

ϵ ∥ Ûqk+1∥M ∥λ∥1 ≥ ∥c∥
2
M . (3)

Combining (2) and (3) yields

0 ≥ ∥M−1Tλ + c∥2M .
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This inequality is satisfied only when ∥M−1Tλ + c∥M = 0. But then
Ûqk+1 = Ûqk and so ÛqTk nj ≥ −ϵ ∥ Ûqk ∥M for all constraint gradients nj
by (ϵMOD). �

Notice that as in the proof for exact arithmetic, conservation of
energy plays a crucial role here.

8 DISCUSSION
We have shown that Gauss-Seidel-like algorithms for resolving mul-
tiple elastic impacts are guaranteed to terminate, without the need
for failsafes, provided that they satisfy a minimum set of physical
and algorithmic properties (NORM)–(MOD). In particular, the many
different flavors of pairwise Gauss-Seidel, as well as Smith et al.’s
Generalized Reflections [2012], all terminate. The only exceptions
occur due to geometric degeneracies in the constraints—implicit
equality constraints—which can be detected and removed to pre-
serve termination. These algorithms can be modified to include
dissipation, without giving up termination, and we have shown
that termination continues to hold even when the algorithms are
computed using floating-point arithmetic. Several avenues remain
for further investigation:

Iterations Needed for Termination. Although we have proven that
Algorithm 1 terminates for well-posed impact operators, in practice
it would be useful to be able to predict how many iterations will
be required to resolve the impact event. This would open the door
to appoximate high-performance impact response schemes, which
could choose to ignore collisions, or artifically rigidify parts of a
physical system to prevent collisions, in cases where a fully-correct
response is estimated to be very expensive.
Our experiments with a wedge in figure 3 suggest that the diffi-

culty should depend on the“diameter” of the feasible cone in con-
figuration tangent space, and some analytic results exist for simple
contact geometries [de Felicio and Redondo 1981; Jia et al. 2013;
Nguyen and Brogliato 2014]. Unfortunately, it is not immediately
obvious from the current proofs how to estimate in general the
number of iterations required to terminate: our convergence proof
(Theorem 5.3) is constructive, but the termination proof is not. The
proof of Theorem 5.4 suggests that the number of iterations required
should depend on how far away the final, post-impact velocity is
from the constraint boundary; estimating this distance, without ex-
plicitly computing the limit velocity, is a chicken-and-egg problem.

Coupled Friction. While Smith et al. [2012] show that one-way
coupled frictional response predictively captures a wide range of
impact behaviors, it is desirable and important to allow frictional
response to be two-way coupled with iterated impact operators so
that the interactions between normal and tangential responses can
be balanced. Friction impulses are applied in tangential directions
and so directly violate our assumption of (NORM). Can we maintain
a guarantee of (FIN) with dissipative tangential impulses? Can we
appropriately generalize (NORM)? Moreover, we do not know if
directly incorporating a coupled frictional response into an impact
operator guarantees that a fixed-point solution exists, much less
whether iterating with such an operator will converge. Constructing

a meaningful, iterated physical impact model with proof of termi-
nation, that includes fully coupled, dissipative, tangential response
remains a challenging and important open problem.

Alternative Desiderata. In addition to reformulating (NORM) to
allow friction, other modifications to the desiderata might be pos-
sible while still maintaining a termination guarantee, and might
permit use of more sophisticated methods for modeling coefficients
of restitution other than 1.0, and other dissipative phenomena. For
instance, Mosterman [2001] analyzed dissipative impact of multiple
bodies and proposed a two-phase scheme for resolving them; the
method as described does not obey (KIN) and (VIO) and so our
proof does not currently apply to it. We showed that removing any
one desideratum allows for impact operators that do not terminate,
but that argument does not rule out termination if the removed
conditions are replaced with new ones.

Need for Anti-Locking. In §4 we established that implicit equal-
ity constraints can prevent the termination of Algorithm 1. We
therefore described an algorithm for detecting and removing such
implicit equality constraints from N . Critically, we proved that im-
plicit equality constraints are the only obstruction to termination of
Algorithm 1.We now interpret this proof from two different perspec-
tives, corresponding to two mutually exclusive conjectures—that
implicit equality constraints do, or do not, arise in practice.
In the absence of a proof to the contrary, the safest conjecture

is that implicit equality constraints arise in practice. In this case,
Algorithm 1 may fail to terminate (§4), whereas the improved Al-
gorithm 2 guarantees termination. Certainly it is possible to create
examples that contain implicit equality constraints (see Fig. 1, for
instance), supporting this viewpoint.
On the other hand, all such examples we have found so far are

special in the following sense: an infinitesimal perturbation of the
geometry of the system removes the possibility of encountering
implicit equality constraints completely (for the geyser, notice that
slightly shrinking the radius of all of the balls accomplishes this).
Does there exist a “generic” physical system that will encounter
implicit inequality constraints, even if perturbed? More simply, we
can look at a box filledwithmultiple slightly-deformed instances of a
single type of rigid bodyO : is it possible to choose anO complicated
enough that the bodies will self-jam, forming clusters that lose
degrees of freedom due to implicit equality constraints, just by
shaking the box?
This question is closely related to that of computing the contact

number of a rigid body: in a random packing of multiple instances
of O , how many other rigid bodies, on average, does each rigid
body touch? A naive counting of degrees of freedom and constraints
suggests that the higher the contact number, the more likely implicit
equality constraints are to occur (with 12 being the threshold where
constraints begin to outnumber DOFs). The contact number has
been studied for simple geometries, such as spheres, rods [Wouterse
et al. 2009], ellipsoids [Donev et al. 2004], etc, but tends to be small.
It is possible to construct an O so that arbitrarily many copies of O
can be placed in contact with each other [Erickson and Kim 2003],
but like the geyser, this geometry is special: the construction fails if
the copies are perturbed. A full investigation into the possibility of
self-jamming is an interesting topic for future research.
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Given these observations, we conjecture instead that implicit
equality constraints do not arise in practice. In that case, we have
proved that Algorithms 1 and 2 are equivalent and both terminate.
Our proof of convergence (§5.1) informs us that any artifacts intro-
duced by non-physical failsafes can be mitigated simply by carrying
out additional Gauss-Seidel iterations before applying the failsafes.
Our proof of termination (§5.2) further empowers us to discard fail-
safes altogether, trading additional computational cost for simplicity,
elegance, guaranteed progress, and physical correctness.
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All’s Well That Ends Well: Supplementary Proofs

This document complements the paper “All’s Well That Ends
Well: Guaranteed Resolution of Simultaneous Rigid Body Impact”
and provides detailed proofs of several claims therein: that pairwise
Gauss-Seidel-like algorithms and Generalized Reflections, when
modified according to the template shown in Algorithm 3, satisfy all
the inexact impact operator desiderata, and hence are guaranteed
to terminate, just as are their exact arithmetic counterparts.

A DETAILED INEXACT ARITHMETIC PROOFS
Here we will prove the claims in §7: that both the inexact pairwise
Gauss-Seidel method described in Algorithm 3, as well as the Smith
et al.’s Generalized Reflections algorithm [2012], satisfy the inexact
impact operator axioms (ϵNORM)–(ϵMOD). We will assume the
following computation model: real numbers are approximated using
floating-point arithmetic, with machine epsilon ε < 1 and minimum
representable magnitude η < ε . We assume that no intermediate
calculation overflows; we then have an associated rounding operator
fl[x], so that for every exact quantity x ,

x − |x |ε − η ≤ fl[x] ≤ x + |x |ε + η.

For calculations we will make use of the weaker, more convenient
bound

x − |x |ε − ε ≤ fl[x] ≤ x + |x |ε + ε .

Arithmetic operations and square roots are assumed to take place
in infinite precision, and then rounded; we will write fl[E] to denote
that every operation in the expression E is performed in this way,
e.g. fl[x + y] = fl[fl[x] + fl[y]]. Finally, we will assume that Ûqi and
small integer constants are represented exactly, but that M , M−1,
and N must be rounded.

If ε is too large, the properties (ϵNORM), (ϵDRIFT), and (ϵMOD) can-
not be guaranteed. We will prove that both pairwise Gauss-Seidel
and Generalized Reflections satisfy these properties for ε sufficiently
small, and give a constructive bound for ε in terms of the magnitudes
of input quantities like Ûq0,M , N , etc. For both algorithms, we will
first look at drift, and construct aC which is used in the definition of
(ϵDRIFT) as a certificate that energy cannot grow unbounded over
the course of several iterations. The proof of no drift will already
impose a bound on ε ; intuitively, if the machine precision is too
large, the renormalization of the velocity after every iteration in
Algorithms 3 and 4 itself introduces so much error into the compu-
tation of Ûqi+1 that despite the renomalization, its magnitude cannot
be bounded.
Once we have constructed a C , we also need an ϵ . We will show

that (ϵNORM) imposes a lower bound of ϵ , and that this lower bound
decreases to zero as ε decreases. We end by proving (ϵMOD) hold,
provided that ϵ is not too large. The upper bound is constant, and
the lower bound shrinks as ε shrinks, so that it is always possible to
find an ϵ if ε is sufficiently small.

A.1 Pairwise Gauss-Seidel
In this section, we derive an ϵ and C for which the modified pair-
wise GS algorithm described in section 7 satisfies the six criteria
(ϵNORM)–(ϵMOD). Three of these, (ϵKIN), (ONE) and (ϵVIO), are
obvious from the construction of the algorithm. We first prove
(ϵDRIFT) by induction on the iteration i: suppose it holds for the
first i iterations of Algorithm 3. Then

1
2
∥ Ûqi ∥2M ≤

1
2
∥ Ûq0∥

2
M +C

∥ Ûqi ∥2M ≤ ∥ Ûq0∥
2
M + 2C

λmin∥ Ûqi ∥22 ≤ λmax∥ Ûq0∥
2
2 + 2C

∥ Ûqi ∥2 ≤ α1 + β1
√
C,

for

α1 =

√
λmax
λmin

∥ Ûq0∥2

β1 =
√

2.

where λmin and λmax are the minimum and maximum eigenvalue
ofM , respectively. Since ∥ Ûqi ∥∞ ≤ ∥ Ûqi ∥2 we also have that

∥ Ûqi ∥∞ ≤ α1 + β1
√
C .

We now bound p̄ = fl[Ûqi − 2⟨Ûqi ,n⟩M−1n], where n is some con-
straint gradient selected by Algorithm 3. The following fact will be
useful: for a sequence of numbers x1, . . . ,xd , it can be shown by
induction on d that������fl


d∑
j=1

xi

 −
d∑
j=1

fl[xi ]

������ ≤ ©«d +
d∑
j=1
|fl[xi ]|

ª®¬ ε(1 + ε)d−1.

We now proceed to bound p̄. First,���fl[Ûqjinj ] − Ûqjinj ��� ≤ (���Ûqji ��� ��fl[nj ]�� + 1
)
ε

where nj denotes the jth coordinates of the vector n. We can write
these bounds as ���fl[Ûqjinj ] − Ûqjinj ��� ≤ ε

(
α2 + β2

√
C
)

where

α2 = α1(∥n∥∞(1 + ε) + ε) + 1
β2 = β1(∥n∥∞(1 + ε) + ε).

Since ���Ûqjinj ��� ≤ ∥qi ∥∞∥n∥∞ ≤ ∥n∥∞(α1 + β1
√
C),

summing over j gives

|fl [⟨Ûqi ,n⟩] − ⟨Ûqi ,n⟩| ≤ ε
(
α3 + β3

√
C
)

where

α3 = (1 + ∥n∥α1 + 2εα2)d(1 + ε)d−1

β3 = (∥n∥β1 + 2εβ2)d(1 + ε)d−1.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 151. Publication date: July 2017.



151:2 • E. Vouga et. al.

Switching gears,����fl [(
M−1

)k j ]
−

(
M−1

)k j ���� ≤ M−1
∞
ε + ε

and ��fl [
nj

]
− nj

�� ≤ (∥n∥∞ + 1)ε,
so that ����fl [(

M−1
)k j

nj
]
−

(
M−1

)k j
nj

���� ≤ εα4

where

α4 = 7
M−1

∞
∥n∥∞ + 4

M−1
∞
+ 4∥n∥∞ + 3.

Summing again over j we can bound����fl [(
M−1n

)k ]
−

(
M−1n

)k ���� ≤ εα5

where
α5 =

(
1 +

M−1
∞
∥n∥∞ + 2εα4

)
(1 + ε)d−1.

Now since ����fl [(
M−1n

)k ] ���� ≤ d
M−1

∞
∥n∥∞ + εα5

we have that����fl [
⟨Ûqi ,n⟩

(
M−1n

) j ]
− ⟨Ûqi ,n⟩

(
M−1n

) j ���� ≤ ε(α6 + β6
√
C)

for

α6 = 1 + (1 + 2α3)d
M−1

∞
∥n∥∞ + 2α5d ∥n∥∞α1 + 2α3α5

β6 = 2β3d
M−1

∞
∥n∥∞ + 2α5d ∥n∥∞β1 + 2α5β3,

where we have made liberal use of the fact that ε2 < ε to simplify
the above expressions. Then����fl [

−2⟨Ûqi ,n⟩
(
M−1n

) j ]
+ 2⟨Ûqi ,n⟩

(
M−1n

) j ����
≤ε(α7 + β7

√
C)

where

α7 = 1 + 4α6 + 2d
M−1

∞
∥n∥2∞α1

β7 = 4β6 + 2d
M−1

∞
∥n∥2∞β1.

Finally, we bound p̄ in terms of p = Ûqi − 2⟨Ûqi ,n⟩M−1n. We have
that ��p̄j − pj �� ≤ ε(α8 + β8

√
C) (4)

for

α8 = 1 + α1 + 2α7 + 2d
M−1

∞
∥n∥2∞α1

β8 = β1 + 2β7 + 2d
M−1

∞
∥n∥2∞β1.

Next, we need to bound the norm fl [∥p̄∥M ] in the denominator
of the coefficient of the velocity update step. We can use the fact
that ��pj �� ≤ ∥p∥∞ ≤ ∥p∥M√

λmin
=
∥ Ûqi ∥M√
λmin

≤
∥ Ûq0∥M +

√
2C√

λmin
to get ���fl [

Mk j p̄j
]
−Mk jpj

��� ≤ ε(α9 + β9
√
C)

for

α9 = 1 + (2 + 3∥M ∥∞)

(
α8 +

∥ Ûq0∥M√
λmin

)
β9 = (2 + 3∥M ∥∞)

(
β8 +

√
2

λmin

)
.

The summation formula then gives���fl [
(M p̄)k

]
− (Mp)k

��� ≤ ε(α10 + β10
√
C)

where

α10 = dα9 +

(
1 + d ∥M ∥∞

∥ Ûq0∥M√
λmin

+ εα9

)
d(1 + ε)d−1

β10 = dβ9 +

(
d ∥M ∥∞

√
2

λmin
+ εβ9

)
d(1 + ε)d−1

Next, combining the last several bounds,��fl [
p̄j (M p̄)j

]
− pj (Mp)j

�� ≤ ε(α11 + β11
√
C + γ11C)

for

α11 = 1 +
d ∥M ∥∞∥ Ûq0∥2M

λmin
+ 2α8α10

+ 2(α10 + α8d ∥M ∥∞)
∥ Ûq0∥M√
λmin

β11 = 2d ∥M ∥∞
∥ Ûq0∥M

√
2

λmin
+ 2α8β10 + 2α10β8

+ 2(β10 + β8d ∥M ∥∞)
∥ Ûq0∥M√
λmin

+ 2(α10 + α8d ∥M ∥∞)

√
2

λmin

γ11 =
2d ∥M ∥∞
λmin

+ 2β8β10 + 2(β10 + β8d ∥M ∥∞)

√
2

λmin
.

We apply the summation formula a second time to get the squared
norm, ���fl [

p̄TM p̄
]
− pTMp

��� ≤ ε
(
α12 + β12

√
C + γ12C)

)
,

for

α12 = dα11 + (1 + d ∥ Ûq0∥M + dεα11)d(1 + ε)d−1

β12 = dβ11 + (d
√

2 + dεβ11)d(1 + ε)d−1

γ12 = dγ11 + d
2εγ11(1 + ε)d−1.

We can rewrite this bound in more convenient form, by completing
the square, in anticipation of taking the square root:���fl [

p̄TM p̄
]
− pTMp

���
≤ε

(
β12

2√γ12
+
√
γ12
√
C

)2
+ ε

(
α12 −

β2
12

4γ12

)
.

Finally, we have a bound on the norm of p:

|fl [∥p̄∥M ] − ∥p∥M | ≤ ε(α13 + β13
√
C), (5)
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where

α13 = 1 + ∥ Ûq0∥M +
1 + ε
√
ε

©«
√√√�����α12 −

β2
12

4γ12

����� + β12
2√γ12

ª®¬
β13 =

1 + ε
√
ε

√
γ12.

Notice that since ∥M ∥∞ ≥ λmin, γ12 > 1 and so the denominators
in α13 are bounded well away from zero.
The last piece we need for computing Ûqi+1 is the norm of the

initial velocity, ∥ Ûq0∥M . To begin with,���fl [
Mk j Ûqj0

]
−Mk j Ûqj0

��� ≤ εα14

where
α14 = 2∥M ∥∞∥ Ûq0∥∞ + ∥ Ûq0∥∞ + 1.

Since
���Mk j Ûqj0

��� ≤ d ∥M ∥∞∥ Ûq0∥∞, applying the summation formula
yields ��fl [

(M Ûq0)
j ] − (M Ûq0)

j �� ≤ εα15

for

α15 = dα14 + (1 + d ∥M ∥∞∥ Ûq0∥∞ + εα14)d(1 + ε)d−1

Then ���fl [
Ûqj0(M Ûq0)

j
]
− Ûqj0(M Ûq0)

j
��� ≤ εα16

for
α16 = d ∥M ∥∞∥ Ûq0∥

2
∞ + ∥ Ûq

j
0∥α15 + 1.

Applying the summation formula a second time gives��fl [
∥ Ûq0∥

2
M

]
− ∥ Ûq0∥

2
M

�� ≤ εα17

for
α17 = dα16 +

(
1 + ∥ Ûq0∥

2
M + εα16

)
d(1 + ε)d−1.

Finally
|fl [∥ Ûq0∥M ] − ∥ Ûq0∥M | ≤ εα18 (6)

with
α18 = 1 + ∥q̄0∥M +

1 + ε
√
ε

√
α17.

Combining equations (4) and (6) gives��fl [
∥ Ûq0∥M p̄ j

]
− ∥ Ûq0∥Mp j

�� ≤ ε(α19 + β19
√
C)

where

α19 = 1 +
∥ Ûq0∥2M√
λmin

+ 2α18
∥ Ûq0∥M√
λmin

+ 2∥ Ûq0∥α8 + 2α18α8

β19 = ∥ Ûq0∥M

√
2

λmin
+ 2α18

√
2

λmin
+ 2∥ Ûq0∥M β8 + 2α18β8.

Now, we are at last prepared to bound the next velocity iterate

Ûqji+1 = fl
[
∥ Ûq0∥M p̄j

∥p̄∥M

]
.

Suppose that ∥p∥M > ε(α13 + β13
√
C). Then by the previous

bound, and equation (5),����Ûqji+1 −
∥ Ûq0∥Mpj

∥p∥M

���� ≤ ε
α20 + β20

√
C

∥p∥M − ε(α13 + β13
√
C)

(7)

for

α20 =
∥ Ûq0∥M√
λmin

α13 + 2α19 +
∥ Ûq0∥2M√
λmin

+ ∥ Ûq0∥M

β20 =
∥ Ûq0∥M√
λmin

β13 + 2β19 +
∥ Ûq0∥M

√
2√

λmin
+
√

2.

Therefore ��∥ Ûqi+1∥
2
M − ∥ Ûq0∥

2
M ∥

��
≤ 2∥ Ûq0∥λmax

√
dε

α20 + β20
√
C

∥p∥M − ε(α13 + β13
√
C)

+ ελmaxd

(
α20 + β20

√
C

∥p∥M − ε(α13 + β13
√
C)

)2

.

Let

α21 = 4λmax
√
dα20 +

1
∥ Ûq0∥2M

4λmaxdα
2
20

β21 = 4λmax
√
dβ20 +

1
∥ Ûq0∥2M

8λmaxdα20β20

γ21 =
1

∥ Ûq0∥2M
4λmaxdβ

2
20.

Lemma A.1. If ε < ∥ Ûq0 ∥M
2α13

, ε < 2
γ21

, and

εβ21 +
√
ε2β2

21 + 4εα21(2 − εγ21)

4 − 2εγ21
≤
(∥ Ûq0∥M − 2εα13)2

4(
√

2 + εβ13)2
,

then pairwise Gauss-Seidel satisfies (ϵDRIFT). Notice that these condi-
tions are satisfied if ε is sufficiently small.

Proof. Take

C =
1
2

(
(∥ Ûq0∥M − 2εα13)2

4(
√

2 + εβ13)2

+
εβ21 +

√
ε2β2

21 + 4εα21(2 − εγ21)

4 − 2εγ21

ª®®¬ .
Since ε < ∥ Ûq0 ∥M

2α13
,

∥ Ûq0∥M −
√

2C − ε(α13 + β13
√
C) ≥

1
2
∥ Ûq0∥M

and
∥p∥M − ε(α13 + β13

√
C) ≥

1
2
∥ Ûq0∥M ,

hence the bound in equation (7) is valid. Moreover we can substitute
this inequality into the bound on ∥ Ûqi+1∥2M to get��∥ Ûqi+1∥

2
M − ∥ Ûq0∥

2
M ∥

�� ≤ ε(α21 + β21
√
C + γ21C).

Then Ûqi+1 satisfies (ϵDRIFT) whenever

(2 − εγ21)C − εβ21 − εα21 ≤ 0,

and in particular, whenever

C ≥
εβ21 +

√
ε2β2

21 + 4εα21(2 − εγ21)

4 − 2εγ21
.
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�

We now prove the remaining properties, which are relatively
straightforward. First, we have that

Lemma A.2. Let C be as in the previous lemma, and suppose

ϵ >

√
ε
λmax
√
d(α20 + β20

√
C)

∥ Ûq0∥(∥ Ûq0∥ +
√

2C)
and

ϵ ≥ 2ελmax
√
d

2α20 + 2β20
√
C

∥ Ûq0∥M (∥ Ûq0M −
√

2C)
.

Then pairwise Gauss-Seidel satisfies (ϵNORM). Notice that both right-
hand sides vanish as ε decreases.

Proof. Let C be as in the previous lemma. By construction of
the algorithm and (ϵVIO) we know that the value of λ is

λ = −2⟨Ûqi ,n⟩ > 2ϵ ∥ Ûqi ∥M ≥ 2ϵ(∥ Ûq0∥M +
√

2C)

where the last inequality follows from (ϵDRIFT).
From the bound (7) on the components of c, we have that

∥c∥M ≤ ελmax
√
d

2α20 + 2β20
√
C

∥ Ûq0∥M
and this is less than ϵλ when

ελmax
√
d

2α20 + 2β20
√
C

∥ Ûq0∥M
≤ 2ϵ2(∥ Ûq0∥M +

√
2C).

Lastly since ∥ Ûqi ∥M ≥ ∥ Ûq0∥M −
√

2C , we have that ∥c∥M ≤ ϵ
2 ∥ Ûqi ∥

whenever

ϵ ≥ 2ελmax
√
d

2α20 + 2β20
√
C

∥ Ûq0∥M (∥ Ûq0M −
√

2C)
.

�

Lemma A.3. Pairwise Gauss-Seidel satisfies (ϵMOD) when ϵ < 1.

Proof. At every iteration where a constraint with gradient n is
violated,

∥ Ûqi+1 − Ûqi ∥M = ∥λM−1n + c∥M
≥ |λ | − ∥c∥M
≥ (1 − ϵ)|λ |
> 0.

�

A.2 Generalized Reflections
The generalized reflection operator of Smith et al. [2012] improves on
pairwise Gauss-Seidel by guaranteeing preservation of symmetries
and more accurately modeling shock propagations, at the cost of
an R that is more expensive to compute. Algorithm 4 shows how
to modify it so that it satisfies all the inexact desiderata required
for guaranteed termination. Notice that these modifications mirror
those of Gauss-Seidel: constraints whose violation does not exceed
a threshold are pruned from consideration every time a reflection
is applied, and the velocity is renormalized every step to prevent
energy drift.

Computing λ at each iteration of Algorithm 4 requires solving a
quadratic program (QP). Let λ be the exact solution to this QP, ξ the

Algorithm 4 Inexact Generalized Reflections

1: function ResolveImpactsApprox(q, Ûq, ϵ)
2: N ← ActiveConstraintGradients(q)
3: Ûq0 ← Ûq
4: for i := 1,∞ do
5: NV ← ViolatedN(Ûqi ) // ÛqTi NV < −ϵ ∥ Ûqi ∥M1
6: if NV = ∅ then
7: return Ûqi
8: end if
9: λ← argminλ ∥M−1NV λ + 2Ûqi ∥2M s.t. λ ≥ 0
10: Ûqi+1 ←

∥ Ûq0 ∥M
∥ Ûqi+M−1NV λ ∥M

(
Ûqi +M−1NV λ

)
11: end for
12: end function

corresponding positivity constraint Lagrange multipliers, and λ̄, ξ̄
the computed solution. We assume that λ̄ approximately satisfies
the KKT conditions of the QP,NT

VM−1NV λ̄ + 2NT
V Ûqi − ξ̄


∞
≤ ε2κ1∥ Ûqi ∥M

λ̄ ≥ 0

ξ̄ ≥ 0

λ̄ ⊥ ξ̄ ,

where κ1 is an accuracy parameter independent of Ûqi ; notice that
this condition is a standard relative error termination criterion in
numerical QP codes.

The goal now will be to bound the intermediate step

p̄ = fl
[
Ûqi +M−1NV λ̄

]
in terms of the true step p = Ûqi+M−1NV λ; the proof of (ϵDRIFT)will
then follow directly from identical calculations to that in pairwise
Gauss-Seidel. Once we have a value ofC , we will prove that inexact
GR satisfies (ϵNORM) and (ϵMOD). As in the case of Gauss-Seidel,
(ϵKIN), (ONE), and (ϵVIO) all hold by construction of Algortihm 4.
Let NA ⊂ NV be the set of constraints that are active in the

inexact QP solution, and λ̄A the corresponding parts of λ̄. The matrix
NT
VM−1NV has ones along the diagonal, and off-diagonal entries of

magnitude at most one; therefore by the Gershgorin Circle Theorem
its maximum eigenvalue is at mostm, the number of total constraints
in N . Then we have the following useful bound on λ̄:

∥λ̄∥∞ = ∥λ̄A∥∞ ≤
∥NT

AM
−1NAλ̄A∥2

m

≤

√
d ∥NT

AM
−1NAλ̄A∥2

m

≤

√
d

m
(∥2NT

A Ûqi ∥∞ + εκ1∥ Ûqi ∥M )

≤

√
d

m

(
2m
λmax

∥ Ûqi ∥M + εκ1∥ Ûqi ∥M

)
≤ κ2 + µ2

√
C,

ACM Transactions on Graphics, Vol. 36, No. 4, Article 151. Publication date: July 2017.



All’s Well That Ends Well: Guaranteed Resolution of Simultaneous Rigid Body Impact • 151:5

with

κ2 =

(
2
√
d

λmax
+
εκ1
m

)
∥ Ûq0∥M

µ2 =

(
2
√
d

λmax
+
εκ1
m

)
√

2,

where as usual we have used ϵ2 < ϵ to simplify expressions.
Now for nj the jth row of NV , we have the bound���fl [

nkj λ̄
k
]
− nkj λ̄

k
��� ≤ ε(κ3 + µ3

√
C)

where

κ3 = 3∥N ∥∞κ2 + 2κ2 + 1
µ3 = 3∥N ∥∞µ2 + 2µ2,

so applying the summation formula gives���fl [ (
NV λ̄

) j ]
−

(
NV λ̄

) j ��� ≤ ε(κ4 + µ4
√
C)

for

κ4 = (2κ3 + 1 +m∥N ∥∞κ2)d(1 + ε)d−1

µ4 = (2µ3 +m∥N ∥∞µ2)d(1 + ε)d−1.

Then ����fl [(
M−1

)k j (
NV λ̄

) j ]
−

(
M−1

)k j (
NV λ̄

) j ����
≤ ε(κ5 + µ5

√
C)

for

κ5 = 1 + (5∥M−1∥∞ + 2)κ4 + 2(∥M−1∥∞ + 1)∥N ∥∞κ2

µ5 = (5∥M−1∥∞ + 2)µ4 + 2(∥M−1∥∞ + 1)∥N ∥∞µ2,

so that applying the summation formula gives����fl [(
M−1NV λ̄

) j ]
−

(
M−1NV λ̄

) j ���� ≤ ε(κ6 + µ6
√
C)

for

κ6 = dκ5 + (1 + d ∥M−1∥∞∥N ∥∞κ2 + κ5)d(1 + ε)d−1

µ6 = dµ5 + (µ5 + d ∥M
−1∥∞∥N ∥∞µ2)d(1 + ε)d−1.

Before we can bound p̄, we need to relate the impulse using the
approximate multipliers λ̄ to that using the exact multipliers. We
can do so by making use of the fact that the QP’s KKT conditions
are nearly satisfied for λ̄:

∥M−1NV λ −M
−1NV λ̄V ∥

2
M

= (λ − λ̄)T (NT
VM−1NV λ − N

T
VM−1NV λ̄)

≤ −⟨λ, ξ̄ ⟩ − ⟨λ̄, ξ ⟩ + ∥λ − λ̄∥∞
√
dκ1ε

2∥ Ûqi ∥M

≤ ∥λ − λ̄∥∞
√
dκ1ε

2∥ Ûqi ∥M

≤ (∥λ∥∞ + ∥λ̄∥∞)
√
dκ1ε

2(∥ Ûq0∥M +
√

2C)

≤ 2(κ2 + µ2
√
C)
√
dκ1ε

2(∥ Ûq0∥M +
√

2C)

≤ ε2(κ7 + µ7
√
C + ν7C)

for

κ7 = 2∥ Ûq0∥M
√
dκ2κ1

µ7 = 2
√

2dκ2κ1 + 2∥ Ûq0∥M
√
dκ1µ2

ν7 = 2
√

2dκ1µ2.

Completing the square gives

∥M−1NV λ −M
−1NV λ̄∥∞

≤
1

λmax
∥M−1NV λ −M

−1NV λ̄∥M

≤ ε(κ8 + µ8
√
C)

with

κ8 =
1

λmax

©« µ7
2√ν7

+

√√√�����κ7 −
µ2

7
4ν7

�����ª®¬
µ8 =

√
ν7

λmax
.

Therefore����fl [(
M−1NV λ̄

) j ]
−

(
M−1NV λ

) j ���� ≤ ε(κ9 + µ9
√
C)

where simply κ9 = κ6 + κ8 and µ9 = µ6 + µ8. We then have��p̄j − pj �� ≤ ε(κ10 + µ10
√
C)

for

κ10 = 2κ9 + d
2∥M−1∥∞∥NV ∥∞κ2 + α1 + 1

µ10 = 2µ9 + d
2∥M−1∥∞∥NV ∥∞µ2 + β1.

The proof of (ϵDRIFT) now follows identically the arguments for
pairwise Gauss-Seidel, with κ10 and µ10 taking the place of α8
and β8. As in the pairwise GS case, construction of a C certifying
(ϵDRIFT) requires that ε be sufficiently small.

We nowprove that GR satisfies the remaining properties, (ϵNORM) and
(ϵMOD).

Lemma A.4. Let C be as in the proof of (ϵDRIFT), and suppose that

ϵ ≥
a +
√
a2 + b

2
,

where

a =
ϵ2

2
κ1(∥ Ûq0∥M +

√
2C)

b = 4mελmax
α20 + β20

√
C

√
d ∥ Ûq0∥M

,

and

ϵ ≥ 2ελmax
√
d

2α20 + 2β20
√
C

∥ Ûq0∥M (∥ Ûq0M −
√

2C)
.

Then Generalized Reflections satisfies (ϵNORM). Notice that both right-
hand sides vanish as ε decreases.

Proof. Since at least one constraint must be violated, by (ϵVIO),

∥NT
VM−1NV λ̄∥2 ≥ 2ϵ ∥ Ûqi ∥M − ε2κ1∥ Ûqi ∥M

and

λ ≥
2ϵ − ε2κ1

m
(∥ Ûq0∥M +

√
2C),

ACM Transactions on Graphics, Vol. 36, No. 4, Article 151. Publication date: July 2017.



151:6 • E. Vouga et. al.

where we have used (ϵDRIFT) and again the fact that the largest
eigenvalue of NT

VM−1NV is at mostm.
From the bound (7) on the components of c, we have that

∥c∥M ≤ ελmax
√
d

2α20 + 2β20
√
C

∥ Ûq0∥M
and this is less than ϵ ∥λ∥1 when

ελmax
√
d

2α20 + 2β20
√
C

∥ Ûq0∥M
≤ ϵd

2ϵ − ε2κ1
m

(∥ Ûq0∥M +
√

2C).

Rearranging gives

ϵ2 − ϵ
ε2

2
κ1(∥ Ûq0∥M +

√
2C) −mελmax

α20 + β20
√
C

√
d ∥ Ûq0∥M

≥ 0

and the first inequality above. Lastly since ∥ Ûqi ∥M ≥ ∥ Ûq0∥M −
√

2C ,
we have that ∥c∥M ≤ ϵ

2 ∥ Ûqi ∥ whenever

ϵ ≥ 2ελmax
√
d

2α20 + 2β20
√
C

∥ Ûq0∥M (∥ Ûq0M −
√

2C)
,

as in the case of pairwise Gauss-Seidel. �

At last we end with

LemmaA.5. If ϵ < 4, then Generalized Reflections satisfies (ϵMOD).

Proof. At every iteration where a constraint is violated,

∥ Ûqi+1 − Ûqi ∥M = ∥M−1NV λ + c∥M

≥ ∥M−1Nvλ∥M − ∥c∥M

≥
√

2∥λ∥1ϵ ∥ Ûqi ∥M − ∥c∥M

≥
√

2∥λ∥1ϵ ∥ Ûqi ∥M − ϵ
√
∥λ∥1∥ Ûqi ∥M /2

≥
√

2∥λ∥1ϵ ∥ Ûqi ∥M − ϵ
√
∥λ∥1∥ Ûqi ∥M /2.

The right-hand side is positive when ϵ < 4. �
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