BLIS as a Research Vehicle

Non-Traditional

Traditional function interfaces are limiting

If you want non-supported behavior
— You have to write (inefficient) wrapper code to the BLAS operations

— OR you have to write your own BLAS-like operation and suffer bad
performance or spend A LOT of time porting to each architecture

With BLIS, as we know, you have more options for high-level functionality
We expect this will allow users to optimize code like never before

This will enable new research and code development

—_

Dx|

BLIS Retreat 2013-3

Low-Level Operations!

» We know all BLAS3 operations are implemented in terms of
— Loops that partition matrices in specific ways
— Kernels that copy and permute data into packed buffers
— Kernels that compute on packed buffer

» The packing and computation kernels are low-level operations that are hidden from
general BLAS/BLIS users

— They're currently only used by the BLAS developer

Dx|

% micro-kernel

m{ A

+=

(@

% micro-kernel

m{ A

+=

DXT BLIS Retreat 2013-6

(@

% micro-kernel

+=

m{ A

DXT BLIS Retreat 2013-7

(@

% micro-kernel

+=

m{ A

DXT BLIS Retreat 2013-8

Low-Level Operations

» BLAS experts code using calls to these low-level operations

 Experts know the preconditions/postconditions of these functions

— Input/output sizes (blocksizes)
— Expectations on levels of cache in which data reside

» Operations above a certain level are portable
— E.g. the entire stack of code for Gemm isn’t ported to each architecture
— Below some level, architecture-specific code is used
— Above that level, the same code is used for all architectures

— E.g. BLIS microkernels are architecture specific, but the macrokernels built
from them are are not

—_

Dx|

(@

% micro-kernel

+=

m{ A

DXT BLIS Retreat 2013-10

Low-Level Operations

This approach to implementing the BLAS3 is fairly standard across BLAS libraries
For closed-source libraries, you can’t see/access the necessary operations

For existing open-source libraries the operations are buried and complicated to
understand unless you are an expert or close to an expert

— Developing good low-level operations was not a design goal
— No need to export requirements on and interfaces to low-level operations

Dx|

Low-Level Operations

» The resultis that you cannot easily understand the BLAS3 code
— You have to become an expert in the particular BLAS library

* You certainly cannot teach the code to students
— You can understand the general algorithms

— You cannot point to specific lines of the GotoBLAS or MKL and say “this is how it's
done in practice”

 You cannot code and optimize your own BLAS-like operations
— E.g. Gemm followed by Trsm with the same “B”
— Combinations of BLAS operations can incur inefficiencies hidden within the library
— You need low-level operations to optimize this in a portable way

— You want to be able to implement the algorithm with low-level operations and just
change the microkernels for each architecture — portability!

—_

Dx|

BLIS

A major design goal of BLIS is to change traditional BLAS layering

— FLAME research has demonstrated the performance and pedagogical utility in
exposing low-level kernels — more on this shortly

In prototyping our ideas, we used complicated GotoBLAS low-level operations
— |learned ALOT about the GotoBLAS

Now, BLIS improves on GotoBLAS operations
— Similar computation pattern with more readable code

Some BLIS design goals

— Develop the low-level operations to be understandable and usable without
hindering performance

— Implement BLAS3 algorithms using these operations in an understandable way
— Code operations in terms of microkernels to enable easy portability

—_

Dx|

BLIS

Now, you have a high-performance library built from low-level operations
— You can understand the algorithms
— You can explain the algorithms to novices

You can use the low-level kernels for exploring / implementing new BLAS-like
algorithms

— By replacing micro-kernels with platform-tuned implementation, your algorithms are
portable

BLIS’s low-level operations will enable

— Higher performance, portable code for unique BLAS-like algorithms that show up
repeatedly in DLA libraries

— New research into DLA software engineering
— New research into software built on DLA

Dx|

My Research

Encode knowledge about software instead just the result of applying knowledge (code)

— We shouldn'’t just store code because we loose too much information about the
software

Many high level goals, including
— Automatic program generation/derivation
— Better understood code
— More trusted code
— Easier adaptation to changing architectures

Dense linear algebra (DLA) is a well-understood domain to start my research and | am
using BLIS as a research vehicle

— The results contribute to BLIS’s development

—_

Dx|

Design by Transformation

 Design by Transformation (DxT)

Way to encode the expert knowledge about a domain (like dense linear
algebra) and software to implement domain’s functionality

Knowledge is encoded as graph transformations where graphs represent
functionality

With knowledge encoded, it can be automatically applied to implement and
optimize algorithms for a target architecture

I'll explain the basics

Dy]

DxT

DxT was first applied to the distributed-memory library Elemental

DxT automatically explores distribution/parallelization options and algorithmic
variants that a person would explore manually

There are many cases where DxT-generated code is better performing than hand-
implemented

There Is one case where the expert made a coding mistake
— DxT generates correct code by design

DxT generated code has been incorporated into the Elemental library

Now, DxT is being applied to BLIS

—_

Dx|

BLAS3 Performance on Intrepid

18000

16000
W ScalAPACK

14000

W DxTer Optimized

12000

10000

8000

6000

Performance (GFLOPS)

4000

2000

Gemm NT Symm LL Syr2k LN Syrk LN Trmm LLNN Trsm RLNN

[>><T iWAPT13-19

BLAS3 Performance on Intrepid

18000

16000 B ScalAPACK

14000 ™ DxTer Optimized

® Hand Optimized

12000

10000

8000

6000

Performance (GFLOPS)

4000

2000

Gemm NT Symm LL Syr2k LN Syrk LN Trmm LLNN Trsm RLNN

DXT iWAPT13-20

Graphs

Data-flow, directed acyclic graphs (DAGs) encode algorithms and implementations

A box or node represents an operation
— An interface without implementation details
— OR a primitive operation that maps to given code

A starting algorithm without implementation details is encode as a graph of
interfaces

We want to transform it into a graph with complete implementation details
— Transform into a graph of primitives that represent BLIS low-level kernels
— Convert the graph to BLIS code, calling low-level kernels

—_

Dx|

Transform with Implementations

« Refinements replace a box without implementation details
— Chooses a specific way to implement the box’s functionality
— E.g. choose a loop-based algorithm to implement Gemm

I
S BN I
N I T [
: I ——+—»
N interface |[— ‘ : . :
: graphl:
l r-r—-—-=====-=-=-=-=-=-=== 1
I I
—l_’ |
I I
—> :
__,| primitive — : :
T I

_—-— O . . . O . S . . . O e e e e —d

BLIS Implementations

Gemm implemented

— In terms of a loop around smaller Gemm subproblems

— ORin terms of packing operations and computation kernels
BLIS makes these relationships clear (understandable)

We can encode such implementation knowledge
That knowledge can be used for the BLAS3 and BLAS-like operations
— Remember: all other BLAS3 operations are built on Gemm

Notice that there is DLA knowledge overlap between Elemental code and BLIS
— Implementing Gemm in terms of small Gemm is useful on any architecture

— DxT makes this overlap of domain knowledge explicit by reusing architecture-
agnostic transformations

—_

Dx|

Transform to Optimize

 Optimizations replace a subgraph with another subgraph
— Same functionality
— Adifferent way of implementing it

I —>
—>: — |
: _______________ ok _:
N R :
T BN
—— :
D e e — - _better _1

Optimizations

* One does not pack data twice
— An expert knows that this is unnecessary — get rid of one pack operation
— Encode such expert knowledge as an optimization
— This optimizes the Gemm+Trsm algorithm

» Optimizations can also encode ways to parallelize loops / macrokernels

Dx|

With Knowledge Encoded

« We can use a mechanical system to explore implementation options and generate
code for the BLAS3

— Apply transformations to generate a search space of implementation options
— Use an estimate of implementation costs to rank-order the implementations
— Choose the “best” graph and output code by mapping each box to a BLIS call

Dx|

Input

algorithm >
graph
Hardware
knowledge

DxTer

Domain
transformations

, Output

code

DXT BLIS Retreat 2013-27

Results

« BLAS3 can all be generated by DxTer
— Basically, this verifies Field’s code

» Use the same knowledge on more complicated operations (like the BLAS calls in
QR or two-sided Trsm/Trmm)

— Allow DxTer to fuse loops and remove unnecessary packing automatically
— Get speedup from removing unnecessary packing

Dx|

Results

Tyler has demonstrated how to parallelize Gemm

— Rules about which loops to parallelize and to what degree
Other BLAS3 operations have similar structure to Gemm

— n-dimension loop

— k-dimension loop

— m-dimension loop

| have encoded knowledge about Gemm parallelism

— Take the DxTer-derived sequential code and tags loops/operations with
different amounts of parallelism

DxTer applies the same knowledge to parallelize other BLAS3 operations
— Only does so when “legal’
DxTer generates parallel code for all BLAS3 operations automatically

—_

Dx|

Trmm (Left, Lower, Non-Trans)

250
Speedup over
sequential = 19.9
e
200 ‘{”'
e ————————

150
@RS
— @\ KL
e
100

50

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

DXT BLIS Retreat 2013-30

BLIS as a Research Vehicle

This work could not have been done with traditional BLAS software

With BLIS
— We can understand the algorithms and how they're used/implemented

— We can use the low-level kernels to construct our own BLAS or BLAS-like
operations

— We can optimize beyond what the traditional BLAS functions allow

With software that is so understandable at all layers, we can teach about the
software and we can even automate its construction

Dx|

Questions?

bamarker@cs.utexas.edu

www.cs.utexas.edu/~bamarker
code.google.com/p/dxter/

| was funded by NSF and Sandia Graduate Research Fellowships
Thanks!

')XT BLIS Retreat 2013-32

Starting Graph

Gemm
NN

- > AL

20

Her2k

AL,

22

Trsm
Right

10

TwoSided
Trsm

Right

AxXpy

" 21

’A11

Speedup of DxTer over libflame

TwoSidedTrsm DxTer Speedup over libflame on Stampede

o o O o
© © © ©
o ~ © ©
| | | |
T

0.95

0 1000 2000 3000 4000 5000 O 1000 2000 3000 4000
Problem size (x104)

DXT BLIS Retreat 2013-34

One Starting Graph

20

21

11

11

10

10

00

»A

Hemm
Left

Trmm
Left

Gemm
NN
Trmm
Right
TwoSided
Trmm
AXpy
AXpy
Her2k
H

»A

00

TwoSidedTrmm DxTer Speedup over libflame on Stampede

1.6

—_ —_ —_ —_
N w IN o
| | | |

Speedup of DxTer over libflame

—_
—_
|

0

T
1000

T
2000

T
3000

I I
4000 5000 0
Problem size (x1 04)

T
1000

T T
2000 3000 4000

DXT BLIS Retreat 2013-36

Speedup of DxTer over libflame

| QR IIDxTer ISpeedlup over Iibfla}me on Stampede

o o o o

© © © ©

o ~ o3 ©
| | | |

0.95

0 1000 2000 3000 4000 5000 O 1000 2000 3000 4000
Problem size (x104)

DXT BLIS Retreat 2013-37

