
BLIS as a Research Vehicle
Bryan Marker

The University of Texas at Austin

BLIS	
 Retreat	
 2013-­‐1	

Non-Traditional
•  Traditional function interfaces are limiting

•  If you want non-supported behavior
–  You have to write (inefficient) wrapper code to the BLAS operations
–  OR you have to write your own BLAS-like operation and suffer bad

performance or spend A LOT of time porting to each architecture

•  With BLIS, as we know, you have more options for high-level functionality

•  We expect this will allow users to optimize code like never before

•  This will enable new research and code development

BLIS	
 Retreat	
 2013-­‐2	

BLIS	
 Retreat	
 2013-­‐3	

Low-Level Operations!
•  We know all BLAS3 operations are implemented in terms of

–  Loops that partition matrices in specific ways
–  Kernels that copy and permute data into packed buffers
–  Kernels that compute on packed buffer

•  The packing and computation kernels are low-level operations that are hidden from
general BLAS/BLIS users
–  They’re currently only used by the BLAS developer

BLIS	
 Retreat	
 2013-­‐4	

 3

+=

n

n

B Ci mc
kc Ai

kc

nr

mr

mc

kc

B
~ Ai

~ Ci

…

mr

nr

micro-kernel

+=

+=

mc

BLIS	
 Retreat	
 2013-­‐5	

 3

+=

n

n

B Ci mc
kc Ai

kc

nr

mr

mc

kc

B
~ Ai

~ Ci

…

mr

nr

micro-kernel

+=

+=

mc

BLIS	
 Retreat	
 2013-­‐6	

Pack	
 B	

 3

+=

n

n

B Ci mc
kc Ai

kc

nr

mr

mc

kc

B
~ Ai

~ Ci

…

mr

nr

micro-kernel

+=

+=

mc

BLIS	
 Retreat	
 2013-­‐7	

Pack	
 A	

 3

+=

n

n

B Ci mc
kc Ai

kc

nr

mr

mc

kc

B
~ Ai

~ Ci

…

mr

nr

micro-kernel

+=

+=

mc

BLIS	
 Retreat	
 2013-­‐8	

Computa>on	
 kernel	

Low-Level Operations
•  BLAS experts code using calls to these low-level operations

•  Experts know the preconditions/postconditions of these functions
–  Input/output sizes (blocksizes)
–  Expectations on levels of cache in which data reside

•  Operations above a certain level are portable
–  E.g. the entire stack of code for Gemm isn’t ported to each architecture
–  Below some level, architecture-specific code is used
–  Above that level, the same code is used for all architectures
–  E.g. BLIS microkernels are architecture specific, but the macrokernels built

from them are are not

BLIS	
 Retreat	
 2013-­‐9	

 3

+=

n

n

B Ci mc
kc Ai

kc

nr

mr

mc

kc

B
~ Ai

~ Ci

…

mr

nr

micro-kernel

+=

+=

mc

BLIS	
 Retreat	
 2013-­‐10	

Architecture	
 specific	

Low-Level Operations
•  This approach to implementing the BLAS3 is fairly standard across BLAS libraries

•  For closed-source libraries, you can’t see/access the necessary operations

•  For existing open-source libraries the operations are buried and complicated to
understand unless you are an expert or close to an expert
–  Developing good low-level operations was not a design goal
–  No need to export requirements on and interfaces to low-level operations

BLIS	
 Retreat	
 2013-­‐11	

Low-Level Operations
•  The result is that you cannot easily understand the BLAS3 code

–  You have to become an expert in the particular BLAS library

•  You certainly cannot teach the code to students
–  You can understand the general algorithms
–  You cannot point to specific lines of the GotoBLAS or MKL and say “this is how it’s

done in practice”

•  You cannot code and optimize your own BLAS-like operations
–  E.g. Gemm followed by Trsm with the same “B”
–  Combinations of BLAS operations can incur inefficiencies hidden within the library
–  You need low-level operations to optimize this in a portable way
–  You want to be able to implement the algorithm with low-level operations and just

change the microkernels for each architecture – portability!

BLIS	
 Retreat	
 2013-­‐12	

BLIS
•  A major design goal of BLIS is to change traditional BLAS layering

–  FLAME research has demonstrated the performance and pedagogical utility in
exposing low-level kernels – more on this shortly

•  In prototyping our ideas, we used complicated GotoBLAS low-level operations
–  I learned A LOT about the GotoBLAS

•  Now, BLIS improves on GotoBLAS operations
–  Similar computation pattern with more readable code

•  Some BLIS design goals
–  Develop the low-level operations to be understandable and usable without

hindering performance
–  Implement BLAS3 algorithms using these operations in an understandable way
–  Code operations in terms of microkernels to enable easy portability

BLIS	
 Retreat	
 2013-­‐13	

BLIS
•  Now, you have a high-performance library built from low-level operations

–  You can understand the algorithms
–  You can explain the algorithms to novices

•  You can use the low-level kernels for exploring / implementing new BLAS-like
algorithms
–  By replacing micro-kernels with platform-tuned implementation, your algorithms are

portable

•  BLIS’s low-level operations will enable
–  Higher performance, portable code for unique BLAS-like algorithms that show up

repeatedly in DLA libraries
–  New research into DLA software engineering
–  New research into software built on DLA

BLIS	
 Retreat	
 2013-­‐14	

LET’S SHIFT GEARS

BLIS	
 Retreat	
 2013-­‐15	

My Research
•  Encode knowledge about software instead just the result of applying knowledge (code)

–  We shouldn’t just store code because we loose too much information about the
software

•  Many high level goals, including
–  Automatic program generation/derivation
–  Better understood code
–  More trusted code
–  Easier adaptation to changing architectures

•  Dense linear algebra (DLA) is a well-understood domain to start my research and I am
using BLIS as a research vehicle
–  The results contribute to BLIS’s development

BLIS	
 Retreat	
 2013-­‐16	

Design by Transformation
•  Design by Transformation (DxT)

–  Way to encode the expert knowledge about a domain (like dense linear
algebra) and software to implement domain’s functionality

–  Knowledge is encoded as graph transformations where graphs represent
functionality

–  With knowledge encoded, it can be automatically applied to implement and
optimize algorithms for a target architecture

–  I’ll explain the basics

BLIS	
 Retreat	
 2013-­‐17	

DxT
•  DxT was first applied to the distributed-memory library Elemental

•  DxT automatically explores distribution/parallelization options and algorithmic
variants that a person would explore manually

•  There are many cases where DxT-generated code is better performing than hand-
implemented

•  There is one case where the expert made a coding mistake
–  DxT generates correct code by design

•  DxT generated code has been incorporated into the Elemental library

•  Now, DxT is being applied to BLIS

BLIS	
 Retreat	
 2013-­‐18	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

18000	

Gemm	
 NT	
 Symm	
 LL	
 Syr2k	
 LN	
 Syrk	
 LN	
 Trmm	
 LLNN	
 Trsm	
 RLNN	

Pe
rf
or
m
an

ce
	
 (G

FL
O
PS
)	

BLAS3	
 Performance	
 on	
 Intrepid	

ScaLAPACK	

DxTer	
 Op>mized	

iWAPT13-­‐19	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

18000	

Gemm	
 NT	
 Symm	
 LL	
 Syr2k	
 LN	
 Syrk	
 LN	
 Trmm	
 LLNN	
 Trsm	
 RLNN	

Pe
rf
or
m
an

ce
	
 (G

FL
O
PS
)	

BLAS3	
 Performance	
 on	
 Intrepid	

ScaLAPACK	

DxTer	
 Op>mized	

Hand	
 Op>mized	

iWAPT13-­‐20	

Graphs
•  Data-flow, directed acyclic graphs (DAGs) encode algorithms and implementations

•  A box or node represents an operation
–  An interface without implementation details
–  OR a primitive operation that maps to given code

•  A starting algorithm without implementation details is encode as a graph of
interfaces

•  We want to transform it into a graph with complete implementation details
–  Transform into a graph of primitives that represent BLIS low-level kernels
–  Convert the graph to BLIS code, calling low-level kernels

BLIS	
 Retreat	
 2013-­‐21	

Transform with Implementations
•  Refinements replace a box without implementation details

–  Chooses a specific way to implement the box’s functionality
–  E.g. choose a loop-based algorithm to implement Gemm

BLIS	
 Retreat	
 2013-­‐22	

interface	

graph1	

graph2	

primi>ve	

BLIS Implementations
•  Gemm implemented

–  In terms of a loop around smaller Gemm subproblems
–  OR in terms of packing operations and computation kernels

•  BLIS makes these relationships clear (understandable)

•  We can encode such implementation knowledge
•  That knowledge can be used for the BLAS3 and BLAS-like operations

–  Remember: all other BLAS3 operations are built on Gemm

•  Notice that there is DLA knowledge overlap between Elemental code and BLIS
–  Implementing Gemm in terms of small Gemm is useful on any architecture
–  DxT makes this overlap of domain knowledge explicit by reusing architecture-

agnostic transformations

BLIS	
 Retreat	
 2013-­‐23	

Transform to Optimize
•  Optimizations replace a subgraph with another subgraph

–  Same functionality
–  A different way of implementing it

BLIS	
 Retreat	
 2013-­‐24	

ok	

beSer	

Optimizations
•  One does not pack data twice

–  An expert knows that this is unnecessary – get rid of one pack operation
–  Encode such expert knowledge as an optimization
–  This optimizes the Gemm+Trsm algorithm

•  Optimizations can also encode ways to parallelize loops / macrokernels

BLIS	
 Retreat	
 2013-­‐25	

With Knowledge Encoded
•  We can use a mechanical system to explore implementation options and generate

code for the BLAS3
–  Apply transformations to generate a search space of implementation options
–  Use an estimate of implementation costs to rank-order the implementations
–  Choose the “best” graph and output code by mapping each box to a BLIS call

BLIS	
 Retreat	
 2013-­‐26	

DxTer
Input

algorithm
graph

Hardware
knowledge

Domain
transformations

Output
code

BLIS	
 Retreat	
 2013-­‐27	

Results
•  BLAS3 can all be generated by DxTer

–  Basically, this verifies Field’s code

•  Use the same knowledge on more complicated operations (like the BLAS calls in
QR or two-sided Trsm/Trmm)
–  Allow DxTer to fuse loops and remove unnecessary packing automatically
–  Get speedup from removing unnecessary packing

BLIS	
 Retreat	
 2013-­‐28	

Results
•  Tyler has demonstrated how to parallelize Gemm

–  Rules about which loops to parallelize and to what degree
•  Other BLAS3 operations have similar structure to Gemm

–  n-dimension loop
–  k-dimension loop
–  m-dimension loop

•  I have encoded knowledge about Gemm parallelism
–  Take the DxTer-derived sequential code and tags loops/operations with

different amounts of parallelism
•  DxTer applies the same knowledge to parallelize other BLAS3 operations

–  Only does so when “legal”
•  DxTer generates parallel code for all BLAS3 operations automatically

BLIS	
 Retreat	
 2013-­‐29	

Trmm (Left, Lower, Non-Trans)

BLIS	
 Retreat	
 2013-­‐30	

0	

50	

100	

150	

200	

250	

1000	
 2000	
 3000	
 4000	
 5000	
 6000	
 7000	
 8000	
 9000	
 10000	

BLIS	

MKL	

Speedup	
 over	

sequen>al	
 =	
 19.9	

BLIS as a Research Vehicle
•  This work could not have been done with traditional BLAS software

•  With BLIS
–  We can understand the algorithms and how they’re used/implemented
–  We can use the low-level kernels to construct our own BLAS or BLAS-like

operations
–  We can optimize beyond what the traditional BLAS functions allow

•  With software that is so understandable at all layers, we can teach about the
software and we can even automate its construction

BLIS	
 Retreat	
 2013-­‐31	

Questions?

bamarker@cs.utexas.edu

www.cs.utexas.edu/~bamarker
code.google.com/p/dxter/

BLIS	
 Retreat	
 2013-­‐32	

I	
 was	
 funded	
 by	
 NSF	
 and	
 Sandia	
 Graduate	
 Research	
 Fellowships	

Thanks!	

Starting Graph

BLIS	
 Retreat	
 2013-­‐33	

Gemm
NN

Trsm
Left

Trsm
Right Hemm

Right

Her2k
N

Axpy

TwoSided
Trsm

A22

A10

A20

A11

A21

L21

L11

Axpy

A10'

A22'

A11'

A20'

A21'

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000
0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

Problem size (x104)

Sp
ee

du
p

of
 D

xT
er

 o
ve

r l
ib

fla
m

e

TwoSidedTrsm DxTer Speedup over libflame on Stampede

Student Version of MATLAB

BLIS	
 Retreat	
 2013-­‐34	

One Starting Graph

BLIS	
 Retreat	
 2013-­‐35	

Gemm
NN

Trmm
Right

Trmm
Left

Hemm
Left

Her2k
H

Axpy

TwoSided
Trmm

A00

A10

A20

A11

A21

L10

L11

Axpy
A10'

A00'

A11'

A20'

A21'

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000

1

1.1

1.2

1.3

1.4

1.5

1.6

Problem size (x104)

S
p

e
e

d
u

p
 o

f
D

xT
e

r
o

ve
r

lib
fla

m
e

TwoSidedTrmm DxTer Speedup over libflame on Stampede

BLIS	
 Retreat	
 2013-­‐36	

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000
0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

Problem size (x104)

S
p

e
e

d
u

p
 o

f
D

xT
e

r
o

ve
r

lib
fla

m
e

QR DxTer Speedup over libflame on Stampede

BLIS	
 Retreat	
 2013-­‐37	

