
1st BLIS Retreat. Austin (Texas)

Porting BLIS to new architectures
Early experiences

Francisco D. Igual

Universidad Complutense de Madrid (Spain)

September 5, 2013

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

BLIS design principles

BLIS = Programmability + Performance + Portability

Share experiences about:

Porting BLIS to different architectures:

Low-power: ARM Cortex A9
General-purpose: Intel Sandy Bridge
Specific-purpose: TI C6678 DSP

Early experiences, results and conclusions

Sequential and parallel results

Some plans on extending BLIS to DMA-enabled architectures

Future porting plans and architectures

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

BLIS design principles

BLIS = Programmability + Performance + Portability

Disclaimer

Based on early versions of BLIS

Not an expert!!

In the target architectures
In BLIS

Report early experiences. Performance can be (will be) improved

The talk will not cover low level details such as micro-kernel
implementations

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Outline

1 ARM Cortex A9

2 Intel Sandy Bridge

3 Texas Instruments C6678 DSP

4 Integration of DMA in BLIS
Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

5 Conclusions

Francisco D. Igual Porting BLIS to new architectures

Outline

1 ARM Cortex A9

2 Intel Sandy Bridge

3 Texas Instruments C6678 DSP

4 Integration of DMA in BLIS
Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

5 Conclusions

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Porting BLIS to ARM Cortex A9

Environment

Tested on a PandaBoard - ARM Cortex A9

Dual-core @ 1 Ghz, 1Gb DDR2 RAM

OMAP4430 - 32 Kb L1, 512 Kb L2

Ubuntu 12.04, GNU Toolchain version 4.6

Only tested double precision, as proof of concept

No NEON capabilities for SIMD

Only tuned implementation: ATLAS
(http://www.vesperix.com/arm/atlas-arm/)

Compilation time: 1 day
No cross-compilation possible

Francisco D. Igual Porting BLIS to new architectures

http://www.vesperix.com/arm/atlas-arm/

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Porting BLIS to ARM Cortex A9. Hands-on

Configuring BLIS for ARM

1 Create a new configuration folder (config/pandaboard)

2 Tune block size parameters and compiler flags (-O3 -march=armv7-a -mtune=cortex-a9

-mfpu=neon -mfloat-abi=hard)

3 Configure, compile and install (./configure pandaboard && make &&

make install)

4 Developed three micro-kernels: naive, assembly and plain C

In the end, plain C with basic optimizations won

Compilation time: around 6 minutes

Cross-compilation possible

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Porting BLIS to ARM Cortex A9. Sequential results

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Porting BLIS to ARM Cortex A9. Parallel results

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Lessons learned

After porting to ARM

BLIS can be ported to architectures other than x86. BLIS seems portable

Beat ATLAS for ARM using a microkernel written in C. BLIS is fast

Fast and cross compilation

After porting to Intel Sandy Bridge

. . .

. . .

After porting to TI C6678

. . .

. . .

Francisco D. Igual Porting BLIS to new architectures

Outline

1 ARM Cortex A9

2 Intel Sandy Bridge

3 Texas Instruments C6678 DSP

4 Integration of DMA in BLIS
Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

5 Conclusions

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Porting BLIS to Intel Sandy/Ivy Bridge

Environment

Quad-core Intel E3-1220 @ 3.1 Ghz, 8 Gb DDR3 RAM

Ubuntu 12.04, GNU Toolchain 4.6

Only tested double precision, as proof of concept

Compared with OpenBLAS, MKL and ATLAS

Configuring BLIS for Intel SBR

1 Create a new configuration folder (config/sandybridge)

2 Tune block size parameters and compiler flags (-O3 -mavx -march=nocona

-mfpmath=sse)

3 Configure, compile and install (./configure sandybridge && make &&

make install)

4 Developed micro-kernel: inline assembly with AVX intrinsics

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Porting BLIS to Intel Sandy/Ivy Bridge. Sequential results

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Porting BLIS to Intel Sandy/Ivy Bridge. Parallel results

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Lessons learned

After porting to ARM

BLIS can be ported to architectures other than x86. BLIS seems portable

Beat ATLAS for ARM using a microkernel written in C. BLIS is fast

Fast and cross compilation

After porting to Intel Sandy Bridge

Beat ATLAS by a wide margin. BLIS is fast

Beated by OpenBLAS and MKL. BLIS can be faster

After porting to TI C6678

. . .

. . .

Francisco D. Igual Porting BLIS to new architectures

Outline

1 ARM Cortex A9

2 Intel Sandy Bridge

3 Texas Instruments C6678 DSP

4 Integration of DMA in BLIS
Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

5 Conclusions

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

TI C6678 architecture. C66x core

TI C6678 highlights

Eight C66x cores, 1 Ghz, 10W power dissipation

512 Kb

4096 Kb

L2 Cache/

CFG Switch

SRAM

C
o

n
tr

o
lle

r
(E

M
C

)
E

x
te

rn
a

l
M

e
m

o
ry

E
x
te

n
d

e
d

 M
e

m
o

ry
C

o
n

tr
o

lle
r

(X
M

C
)

U
n

if
ie

d
 M

e
m

o
ry

C
o

n
tr

o
lle

r
(U

M
C

)

MSM SRAM

DDR3

SRAM

DMA

Switch Fabric

Fabric

Instruction Fetch

In
te

rr
u

p
t

E
x
c
e

p
ti
o

n
 C

o
n

tr
o

lle
r

Program Memory Controller (PMC)

C66x DSP core

16−/32−bit Instruction Dispatch

Control Registers

In−Circuit Emulation

Instruction Decode

Data Path A Data Path B

A Register File B Register File

A31 − A16 B31 − B16

B15 − B0A15 − A0

.L1 .S1 .M1 .D1 .L2 .S2 .M2 .D2

Data Memory Controller (DMC)

32 Kb L1P

32 Kb L1D

x8
(C6678)

8-way VLIW architecture

8 functional units in two sides:

M: multiplication
D: load/store
L and S: addition/branch

SIMD up to 128-bit vectors:

M: 4 SP multiplies/cycle
L and S: 2 SP add/cycle

8 MAC per cycle:

128 GFLOPs @ 1Ghz

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

TI C6678 architecture. C66x core

TI C6678 highlights

Eight C66x cores, 1 Ghz, 10W power dissipation

512 Kb

4096 Kb

L2 Cache/

CFG Switch

SRAM

C
o

n
tr

o
lle

r
(E

M
C

)
E

x
te

rn
a

l
M

e
m

o
ry

E
x
te

n
d

e
d

 M
e

m
o

ry
C

o
n

tr
o

lle
r

(X
M

C
)

U
n

if
ie

d
 M

e
m

o
ry

C
o

n
tr

o
lle

r
(U

M
C

)

MSM SRAM

DDR3

SRAM

DMA

Switch Fabric

Fabric

Instruction Fetch

In
te

rr
u

p
t

E
x
c
e

p
ti
o

n
 C

o
n

tr
o

lle
r

Program Memory Controller (PMC)

C66x DSP core

16−/32−bit Instruction Dispatch

Control Registers

In−Circuit Emulation

Instruction Decode

Data Path A Data Path B

A Register File B Register File

A31 − A16 B31 − B16

B15 − B0A15 − A0

.L1 .S1 .M1 .D1 .L2 .S2 .M2 .D2

Data Memory Controller (DMC)

32 Kb L1P

32 Kb L1D

x8
(C6678)

On-chip memory

L1D + L1P: 32 Kb
L2: 512 Kb
MSMC: 4096 Kb (shared by cores)
Configurable as RAM or cache

Off-chip memory

DDR-3: 64-bit iface @ 1600 Mhz

ECC for L2 and DDR-3

DMA between memory spaces

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

First experiences with BLIS on a DSP

BLIS on a DSP: challenges

1 New architecture (VLIW)

2 New compiler (cl6x)

3 New operating system (SYS/BIOS)

4 New development environment (Code Composer Studio)

Result: another BLIS success story

BLIS runs out of the box!

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

First experiences with BLIS on a DSP

BLIS on a DSP: challenges

1 New architecture (VLIW)

2 New compiler (cl6x)

3 New operating system (SYS/BIOS)

4 New development environment (Code Composer Studio)

Result: another BLIS success story

BLIS runs out of the box!

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

First experiences with BLIS on a DSP

BLIS performance on a single-core DSP: reference BLIS vs. f2c

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200 1400

G
F
L
O
P
S

Problem size (m=n; k=200)

BLIS2 vs. F2C BLAS on C6678

BLIS2 dgemm
F2C dgemm

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Porting BLIS to C6678 DSP. Sequential results

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Porting BLIS to C6678 DSP. Parallel results

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

First experiences with BLIS on a DSP

Performance analysis and future work

Reference BLIS version: unoptimized microkernel

Unoptimized microkernel
No DMA used

Compared with f2c reference Dgemm: 10× improvement

Attain 60% of highly tuned TI’s Dgemm out-of-the-box

Attain 90%-95% after block size tuning

Ongoing and future work

Use of optimized microkernels from TI’s BLAS on BLIS

Integration of DMA and scratchpad buffers into BLIS

The layered approach of BLIS makes it easy to introduce DMA in the framework

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Lessons learned

After porting to ARM

BLIS can be ported to architectures other than x86. BLIS seems portable

Beat ATLAS for ARM using a microkernel written in C. BLIS is fast

Fast and cross compilation

After porting to Intel Sandy Bridge

Beat ATLAS by a wide margin. BLIS is fast

Beated by OpenBLAS and MKL. BLIS can be faster

After porting to TI C6678

BLIS compiles and runs using the TI software infrastructure. BLIS is
portable

Attain 90-95% TI BLAS native implementation, without using DMA.
BLIS is fast

Francisco D. Igual Porting BLIS to new architectures

Outline

1 ARM Cortex A9

2 Intel Sandy Bridge

3 Texas Instruments C6678 DSP

4 Integration of DMA in BLIS
Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

5 Conclusions

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

DMA in BLIS

What we want

Use DMA to overlap communication and computation

Easily decide when to use DMA

Easily decide from which memory level

Easily decide to which memory level

With minimal user intervention

Adapting to different families of DSPs (fully configurable mechanism)

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

Mapping BLIS/GotoBLAS to the C66x DSP core

By adapting block sizes, BLIS/GotoBLAS assume that blocks of A, B
and C will reside in given memory hierarchy levels.

But on the DSP. . .

L1, L2, MSMC memory can be used as scratchpad memories

We can force blocks/panels of A, B and C to reside in a given
hierarchy level during the computation

/* Create .myL1 section mapped on L1 cache */

Program.sectMap[".myL1"] = "L1DSRAM";

/* Create .myL2 section mapped on L2 cache */

Program.sectMap[".myL2"] = "L2SRAM";

/* Create .myMSMC section mapped on MSMC */

Program.sectMap[".myMSMC"] = "MSMCSRAM";

/* L1 allocation */

#pragma DATA_SECTION(pL1, ".myL1");

float pL1[L1_SIZE];

/* L2 allocation */

#pragma DATA_SECTION(pL2, ".myL2");

float pL2[L2_SIZE];

/* MSMC allocation */

#pragma DATA_SECTION(pMSMC, ".myMSMC");

float pMSMC[MSMC_SIZE];

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

Memory requirements and DMA

bi biai ai

MSMC

L2

L1

GEPP GEPP GEBP GEBP

DDR

Overlap computation and communication between memory layers

Goal: hide overhead of data movements between memory spaces

Double-buffering: scratchpad buffers in three memory levels:

L1 Packed sub-block of B̂
L2 Packed sub-block of Â

MSMC Buffers to receive unpacked buffers of A and sub-panels of B̂ from DDR

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

Integrating DMA in BLIS

Can we integrate this mechanism into BLIS?

DMA integration into BLIS. Required changes:

1 Memory manager (Where to DMA?)

2 Control trees (When and How to DMA?)

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

BLIS memory manager

BLIS defines pools for contiguous memory allocation:

1 Buffers for blocks of A (BLIS BUFFER FOR A BLOCK, static)
2 Buffers for panels of B (BLIS BUFFER FOR B PANEL, static)
3 Buffers for panels of C (BLIS BUFFER FOR C PANEL, static)
4 Buffers for general use (BLIS BUFFER FOR GEN USE, dynamic)

These buffers are required as e.g. destination of pack routines

Configurable at installation time (at bli config.h)

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

BLIS memory manager. Accommodating DMA

To accommodate DMA, we can define pools at each level of the memory
hierarchy, e.g.

1 Buffers for blocks of A on L1 (BLIS BUFFER FOR A BLOCK L1, static)
2 Buffers for blocks of A on L2 (BLIS BUFFER FOR A BLOCK L2, static)
3 Buffers for blocks of A on L3 (BLIS BUFFER FOR A BLOCK L3, static)
4 . . .
5 Buffers for general use on L1 (BLIS BUFFER FOR GEN USE L1, dynamic)
6 Buffers for general use on L2 (BLIS BUFFER FOR GEN USE L1, dynamic)
7 Buffers for general use on L3 (BLIS BUFFER FOR GEN USE L3, dynamic)

These buffers are required as e.g. destination of pack or DMA routines

We fix each pool at a given level of the memory hierarchy level

Configurable at installation time (at bli config.h)

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

BLIS memory manager. Accommodating DMA

Full flexibility to adapt to different product families, with different cache
configurations

Full flexibility to decide origin and destination level of packing and DMA
routines

Do we need to rewrite the internal implementations to, e.g.

DMA block of A from DDR to MSMC, and pack it from MSMC to L2? Or. . .

DMA block of A from DDR to L2, and pack it from L2 to L1? Or. . .

DMA block of A from DDR to MSMC, and pack it from MSMC to MSMC?
Or. . .

. . .

We don’t want DMA?

. . .

Complicated!!

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

BLIS memory manager. Accommodating DMA

Full flexibility to adapt to different product families, with different cache
configurations

Full flexibility to decide origin and destination level of packing and DMA
routines

Do we need to rewrite the internal implementations to, e.g.

DMA block of A from DDR to MSMC, and pack it from MSMC to L2? Or. . .

DMA block of A from DDR to L2, and pack it from L2 to L1? Or. . .

DMA block of A from DDR to MSMC, and pack it from MSMC to MSMC?
Or. . .

. . .

We don’t want DMA?

. . .

Complicated!!

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

Control trees (a.k.a. Field’s magic glue)

Control trees: mechanism to encode algorithmic control
information a priori

Passed and processed by internal implementations -
Hidden to the user

Default c.t. are selected when invoking the front-ends

BLIS provides an API to create and manage c.t.

Thus, the developer can tune the algorithmic behavior of
the operation

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

Control trees (a.k.a. Field’s magic glue)

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

Control trees (a.k.a. Field’s magic glue)

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

Control trees (a.k.a. Field’s magic glue)

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

Control trees (a.k.a. Field’s magic glue)

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

Control trees (a.k.a. Field’s magic glue)

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

Control trees (a.k.a. Field’s magic glue)

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

Control trees (a.k.a. Field’s magic glue)

With these modifications, the developer (vendor) can:

Integrate DMA into the framework

Easily evaluate the benefits of using DMA at a given point

Easily manage scratchpad buffers

Fully exploit memory hierarchy

Adapt the DMA mechanism to the specific architecture without modifying
BLIS internals

Not studied yet:

How to adapt this mechanism to other architectures with DMA, e.g.
Parallella

Francisco D. Igual Porting BLIS to new architectures

Outline

1 ARM Cortex A9

2 Intel Sandy Bridge

3 Texas Instruments C6678 DSP

4 Integration of DMA in BLIS
Mapping BLIS/GotoBLAS to the C66x DSP core
Memory requirements. DMA

5 Conclusions

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Conclusions

BLIS is portable (tested on AMD A10, Power7, Power A2, Xeon Phi,
Loongson 3A)

BLIS is fast. Very competitive performance in all architectures tested

BLIS is extensible. DMA mechanism can be easily integrated

BLIS is stable. No big bugs despite alpha versions

Francisco D. Igual Porting BLIS to new architectures

ARM Cortex A9
Intel Sandy Bridge

Texas Instruments C6678 DSP
Integration of DMA in BLIS

Conclusions

Thanks for your attention!

Francisco D. Igual (figual@ucm.es)

Francisco D. Igual Porting BLIS to new architectures

	ARM Cortex A9
	Intel Sandy Bridge
	Texas Instruments C6678 DSP
	Integration of DMA in BLIS
	Mapping BLIS/GotoBLAS to the C66x DSP core
	Memory requirements. DMA

	Conclusions

