Lessons learned from the development of
a parallel sparse direct solver

Kyungjoo Kim

Aerospace Engineering and Engineering Mechanics
The University of Texas at Austin

Sep 6, 2013

BLIS Retreat 2013

BN
Outline

@ Source of sparse matrix: ip-FEM
Q Parallelization strategy
@© Heterogeneous architectures: multi-level matrix blocking

© Discussion

© Summary

K. Kim BLIS Retreat 2013

Source of sparse matrix: ip-FEM

Source of sparse matrix: hp-Finite Element Method (FEM)

WS99, 0.0)whars p =) 1, 2020220

AN OVAV N
éﬁzvmv§%n§§!€%A
A% ‘Tﬁjﬂ 00 42’5"3:% awnlen
% 0 5 soo0]

~
) i -
ol

7000,

ool

WA‘AvA v"'if'%‘ﬁ;
X R

et
o T i o a0 To00 w00 100
2 3524504

Figure : A sparse system of equations is generated based on a FE-mesh .

TN

p =1, vertex p =2, edge p =3, edge p =3, face

Figure : Example of high order basis functions.

The airfoil mesh is obtained from Matlab.
K. Kim BLIS Retreat 2013

Source of sparse matrix: hp-FEM

hp-FEM delivers fast convergence rate

Example: projection of the manufactured solution: Wy = sin(x) cos(y)z

p=4, # of FEs=1, err=1.27% p=1, # of FEs=32,768, err=1.19%

Figure : For a smooth solution, the use of high p delivers a fast convergence rate.

K. Kim BLIS Retreat 2013 Sep 6,2013 4/18

Source of sparse matrix: ip-FEM

Application: wave propagation problems

Figure : Underwater acoustics with a rouch seabed 2, approximated by p=6, # of elements=
1,130 (368 in the domain of interest), # of DOFs= 200k.

2The image is produced by Jeffrey Zitelli.
e SE

Source of sparse matrix: ip-FEM

Application: wave propagation problems

Figure : Underwater acoustics with a rouch seabed *, approximated by p=6, # of elements=

1,130 (368 in the domain of interest), # of DOFs= 200k.

2The image is produced by Jeffrey Zitelli.
e SE

ource of sparse matrix: ip-FEM

Sparse system of equations generated by Ap-FEM

o All operations are essentially dense.

Node Type || Edge | Face | Interior
#of DOFs || O(p) | O(p*) | O(@p?)

1 P-1
P-1
o o1 P-1
(P-1)(P-2)/2
1 p- 1
(a) High order FE (b) Element matrix

Figure : The shape of an unassembled element matrix.

K. Kim BLIS Retreat 2013

Source of sparse matrix: hp-FEM

Sparse system of equations generated by Ap-FEM

o All operations are essentially dense.

Node Type

Edge

Face | Interior

of DOFs

o(p)

op*) | 00’

1000

A sparse matip!, x20y20220

%

2000 s

3000

000
]

5000

6000

7000

2000

000

- e

. oh gy freia:

E h -

IR X S VR e

0 o 20 S0 4000 o0 G000 7000 s o000
e < 226581

(@) p=1, nz=226981

A sparse maticpd, x5y525.

oy
¥
B

(b)p=4,nz=1771,561

Figure : Nonzero patterns keeping the same system DOFs.

K. Kim BLIS Retreat 2013 Sep 6, 2013 6/18

Source of sparse matrix: ip-FEM

Multifrontal factorization in FEM

o Characterized by recursive procedure on the assembly tree.
o Performs supernodal elimination and assembly for each frontal matrix.
o Converts the sparse matrix factorization into multiple dense subproblems.

T R
= -

Figure : The factorization is completed ascending the assembly tree.

K. Kim BLIS Retreat 2013 Sep 6,2013 7118

Parallelization strategy

Two-level parallelism

o High degree tree-level parallelism on leaves.

¢ Increasing opportunity in matrix-level parallelism.

Asynchronous task execution in harmony with two-level parallelism

e [oad imbalance due to irregular task sizes.

e Bandwidth-bounded tasks on leaves vs compute-bounded tasks nearby the root.

K. Kim BLIS Retreat 2013 Sep 6,2013 8/18

Parallelization strategy

Two-level parallelism

o High degree tree-level parallelism on leaves.

¢ Increasing opportunity in matrix-level parallelism.

of fronts vs sizes, p=4 FLOPS vs sizes, p=4
100000 1008415

10000 1006412

1000 1.006409

100 1.008406

10 | 1008403

|| |||| w1l

1
LESLELELLL L ECLEL L LS LS F IS LELELFELLLE SIS S S EEE LSS E IS

Asynchronous task execution in harmony with two-level parallelism

e [oad imbalance due to irregular task sizes.

e Bandwidth-bounded tasks on leaves vs compute-bounded tasks nearby the root.

im BLIS Retreat 2013 Sep 6,2013 8/18

Parallelization strategy

Fine-grained task generation: algorithms-by-blocks

LU | TRSM | TRSM

TRSM | GEMM | GEMM

TRSM | GEMM ! GEMM

LU TRSM

TRSM | GEMM

GEMM | GEMM

TRSM | TRSM

LU

S[olal[s]e[m]=
-
c

LU DAG of tasks
@ E.Chan et al., 2007., Satisfying your dependencies with Supermatrix.

@ G.Quintana-Orti ef al., 2009., Programming matrix algorithms-by-blocks for thread-level Parallelism.

K. Kim BLIS Retreat 2013 Sep 6,2013 9/18

Parallelization strategy

Hierarchical DAG scheduling

Tasks are locally analyzed and globally ordered.
® Tree-level tasks (priori known structure) are generated via parallel post-order tree traversal.
® Fine-grained tasks are generated by using algorithms-by-blocks.

® Tasks are hierarchically ordered together with multiple Directed Acyclic Graph (DAG) schedulers.

K. Kim BLIS Retreat 2013 Sep 6, 2013 10/18

e

Figure : An example of hierarchical DAGs.

BLIS Retreat 2013

Parallelization strategy

Strong scale

T T T T
—m— UHM blocksize 256
20 | —©— MUMPS

—— PARDISO

SPEED-UP

of cores

Figure : Factorization phase for fixed p = 4 with a reference time of the sequential UHM solver.

K. Kim BLIS Retreat 2013

Heterogeneous architectures: multi-level matrix blocking

Scheduling tasks to multiple GPUs

We want to achieve portable performance with manageable programming complexity.

Challenges:
® A large front may not fit into a small device memory (6 GB).
— A large matrix is decomposed of blocks; only computing blocks are transferred to devices.
o Different programming models can be used.
— Blocks are computed via vendor provided libraries (e.g., MKL, CUBLAS).
e Efficient workload balancing among asymmetric computing units.
— Workloads are dynamically partitioned based on device performance.
b
Hexa Core 0 Hexa Core 1
Shared L3 Cache Shared L3 Cache
3 QPI 3
[System memory (NUMA)]
iPCI-express
Device memory Device memory
GPUO GPU 1
Assembly tree Lonestar @ TACC
SEemE B

tectures: multi-level matrix blocl

Scheduling tasks to multiple GPUs

We want to achieve portable performance with manageable programming complexity.

Challenges:
® A large front may not fit into a small device memory (6 GB).
— A large matrix is decomposed of blocks; only computing blocks are transferred to devices.
o Different programming models can be used.
— Blocks are computed via vendor provided libraries (e.g., MKL, CUBLAS).

e Efficient workload balancing among asymmetric computing units.
Workloads are dynamically partitioned based on device performance.

4

: : \ | :

LU [TRSM | TRSM | 7L‘U— TRSM | TRSM |
. iclal

TRSM | GEMM: GEMM | TRSM | GEMM ——
' 1 1G| G

| | 7|1 | |

TRSM | GEMM; GEMM ! TJT GEMM: GEMM |
,,,,,,,,,,,, I A EL P S

Figure : Multi-level matrix blocking improves unit performance and efficiency.

K. Kim BLIS Retreat 2013 Sep 6, 2013 13/18

geneous architectures: multi-level matrix blocking

Task handling: bulk-synchronous approach

Suppose that the target architecture has four computing units and one GPU whereas
their performance ratio is 1:3.

GEMM || GEMM || GEMM TRSM || TRSM || TRSM E> GPU
GEMM || GEMM | GEMM || GEMM || TRsM || TRsM || TRsm || TRsMm |[Lu T
ﬂ“‘ﬂﬂa. e

Ei}] Adaptation
T i 1 I 1
||| E> Host multicore
[0606600600/006)
Taskwait Taskwait

e Dense subproblems are computed within a sequence of supersteps.
e Each superstep consists of tasks that can be executed concurrently.

e Tasks are dispatched to heterogeneous computing units in a round-robin fashion
(easy to exploit multiple GPUs).

K. Kim BLIS Retreat 2013 Sep 6, 2013 14/18

Heterogeneous architectures: multi-level matrix blocking

Dense problems: two Fermi GPUs

400
300
%]
=%
S 200 |-
[
]
100 |- —— Bulk 12 cores + 2 GPUs
—6— Bulk 12 cores + 1 GPU
—4— Bulk 12 cores
0 ! ! ! ! !
0 5 10 15 20 25 30

Dimension N (in thousands)

Figure : Dense LU factorization without pivoting accelerated by multiple GPUs.

K. Kim BLIS Retreat 2013

Heterogeneous architectures: multi-level matrix blocking

Sparse factorization: two Fermi GPUs

Performance Speed-up
Cores GPUs Time [sec] GFLOP/sec vs1core vs 12 cores

1 0 291 11.13 1.00 -

2 0 213 15.21 1.36 -

4 0 85 38.11 342 -

8 0 45 71.98 6.46 -
12 0 33 98.16 8.81 1.00
12 1 23 140.84 12.65 1.43
12 2 19 170.50 15.31 1.69

Table : Sparse LU with partial pivoting accelerated by multiple GPUs .

K. Kim BLIS Retreat 2013 Sep 6, 2013 16/18

Discussion

Discussion: runtime parallelism vs structured parallelism
How can we put runtime parallelism in harmony with structured parallelism ?

time time
|
—
cO0clc2c3cdch cO0clc2c3c4ch
Runtime task parallelism Structured parallelism
Runtime Structured
Granularity Fine Finer

Concurrency Out-of-order scheduling Dependent on algorithms
Locality Data affinity scheduling Predefined data partitions
Parallel overhead High Low

K. Kim BLIS Retreat 2013 Sep 6, 2013 17/18

Discussion

Discussion: runtime parallelism vs structured parallelism
How can we put runtime parallelism in harmony with structured parallelism ?

time

]

cOcl1c2c3c4ch

Requirements in DLA interface:

o DLA algorithms are designed with abstract communicators.
o Tasks are generated from DLA algorithms with light-weight communicators.

e Runtime resource manager dynamically controls resource allocation for given

tasks.

K. Kim BLIS Retreat 2013

Summary

Lessons learned

Increased reliance on DLA libraries.
¢ Application problem is characterized by dense block sparse matrix.
o Supernodal sparse factorization forms a tree of dense problems.

High performance computing in the application context.

o Multi-level tasking effectively combines multifrontal factorization with runtime
task parallelism.
v" high performance of DLA libraries — high performance sparse direct solver.

¢ Dynamic task subdivision approach provide reduce the number of data transfer
to devices and provide a suitalbe granularity to devices.

Can BLIS provide building blocks for users to build their own parallelism ?

Thank you.

K. Kim BLIS Retreat 2013 Sep 6, 2013 18/18

	Source of sparse matrix: hp-FEM
	Parallelization strategy
	Heterogeneous architectures: multi-level matrix blocking
	Discussion
	Summary

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	anm0:

