
Scalable Dense Matrix Multiplication
on Multi-Socket Many-Core Systems
with Fast Shared Memory
Ricardo Magana, Natalia Vassilieva

Acknowledgment

Ricardo Magaña
magania@gmail.com

And also many thanks to prof. Robert Van De Geijn,
Field Van Zee and Tyler Smith!

2

mailto:magania@gmail.com

Outline

– Motivation and The Machine pitch

– NUMA-aware extension of BLIS for multi-socket systems

– Experimental results

3

4

The Machine

5

I/O

Copper

6

Copper

7

Copper

8

9

Processor-centric computing

10

Memory

M
em

ory

Memory

M
em

or
y

GPU
A

S
IC

Quantum

R
IS

C
V

Open
Architecture

CPU

C
P

U

CPU

C
P

U

Memory-Driven Computing

The Machine in context

11

Shared nothing

SoC

SoC

Local DRAM

Local DRAM

Local NVM

Local NVM

SoC

SoC

Local DRAM

Local DRAM

Local NVM

Local NVM

N
et

w
or

k

Shared everything

SoC
Local DRAM

Local NVM

SoC
Local DRAM

Local NVM

N
et

w
or

k

Physical
Server

C
oh

er
en

t
In

te
rc

on
ne

ct

Physical
Server

Physical
Server

The Machine in context

12
C

om
m

un
ic

at
io

ns
 a

nd
 m

em
or

y
fa

br
ic

SoC

SoC

Local DRAM

Local DRAM

SoC

SoC

Local DRAM

Local DRAM

Shared something

NVM

NVM

NVM

NVM

Memory Pool

Shared nothing

SoC

SoC

Local DRAM

Local DRAM

Local NVM

Local NVM

SoC

SoC

Local DRAM

Local DRAM

Local NVM

Local NVM

N
et

w
or

k

Shared everything

SoC
Local DRAM

Local NVM

SoC
Local DRAM

Local NVM

N
et

w
or

k

Physical
Server

C
oh

er
en

t
In

te
rc

on
ne

ct

Physical
Server

Physical
Server

Our goal: efficient linear algebra library for The Machine

– Fast GEMM is crucial for fast machine learning (deep learning in particular)

– BLAS is essential for many problems in scientific computing, pattern recognition and optimization

– The ratio of compute/bandwidth on The Machine enables efficient scaling of GEMM for matrices of
moderate sizes (up to 100000000 elements)

13

Linear algebra on The Machine: aspiration

14

Typical sizes
of matrices

for deep
learning

What do we need to be true:
– High-performing single-node

multi-core GEMM for small
matrices

– Scalable multi-node GEMM

Existing BLAS libraries

Proprietary Open Source
– ATLAS

– OpenBLAS

– BLIS

– Armadillo

– Eigen

– ScaLAPACK

– PLAPACK

– PLASMA

– DPLASMA

– Elemental

15

– Intel MKL

– AMD ACML

– IBM ESSL and PESSL

– NVIDIA cuBLAS and NVBLAS

Existing BLAS libraries

Proprietary Open Source
– ATLAS

– OpenBLAS

– BLIS

– Armadillo

– Eigen

– ScaLAPACK

– PLAPACK

– PLASMA

– DPLASMA

– Elemental

16

– Intel MKL

– AMD ACML

– IBM ESSL and PESSL

– NVIDIA cuBLAS and NVBLAS

Single-node
• Access shared coherent memory
• Threads don’t share data, only

synchronization messages
Multi-node
• Distributed memory
• Different processes transfer data and

synchronization messages
Multi-socket with shared memory

In The Machine we have different processes that can access shared memory

Existing BLAS libraries

Proprietary Open Source
– ATLAS

– OpenBLAS

– BLIS

– Armadillo

– Eigen

– ScaLAPACK

– PLAPACK

– PLASMA

– DPLASMA

– Elemental

17

– Intel MKL

– AMD ACML

– IBM ESSL and PESSL

– NVIDIA cuBLAS and NVBLAS

– Open Source

– Different ways of parallelization

– Easier to optimize for a new CPU

Multi-socket systems today: NUMA
The ones we used

Superdome X
– 16 sockets

– 18 haswell cores per socket (288 cores total)

– Theoretical peak: ~20 TFLOPS

DL580
– 4 sockets

– 15 ivybridge/haswell cores per socket (60 cores total)

– Theoretical peak: ~2.6/5.2 TFLOPS

NUMA node 1

CPU

Memory

NUMA node 2

CPU

Memory
QPI

32 GB/s

NUMA node 3

CPU

Memory

NUMA node 4

CPU

Memory
QPI

32 GB/s

Crossbar fabric

NUMA node 1

CPU

Memory

NUMA node 1

CPU

Memory

NUMA node 1

CPU

Memory

NUMA node 1

CPU

Memory

…

…

NUMA-aware extension of BLIS (1)
Cannon Like

=

A B

SoC 1 Compute

=

SoC 2 Compute

=

SoC 3 Compute

Node 1
Node 2
Node 3

• Matrix A is composed of horizontal
panels

• Matrix B is composed of vertical
panels

• Panels are distributed in SoC
memory

• Each SoC own one panel of A and
one of B

• GEMM is distributed, each SoC
compute 3 blocks, each block is
obtained by panel times panel

• At every step one read from one
remote SoC

• Resulting matrix have “A” format.

NUMA-aware extension of BLIS (2)
Blocks

=

A B

SoC 1 Compute

=

SoC 2 Compute

=

SoC 3 Compute

• A and B have the same format

• As previous every SoC reads from
only one other SoC

• Unlike previous switch reading
SoC after each block.

Node 1
Node 2
Node 3

Other tricks

– Support for different memory pools (for different panels)
– The entry point (bli_gemm) receives an array of obj_t that represent the panels of the matrix

– MCS barrier instead of linear

– Support for multiple thread entry points
– To do not spawn new set of threads at every iteration (in every bli_gemm call)

– Affinity of threads
– We pre-launch the threads, pin them to particular CPU cores using a #pragma omp (outside of blis), and then use

multiple threads entry points

SGEMM performance on Superdome X,
comparison with a GPU system (2 NVIDIA Tesla K80)

22

0

2000

4000

6000

8000

10000

12000

14000

16000

0 10000 20000 30000 40000 50000 60000 70000

S
G

E
M

M
 P

E
R

FO
R

M
A

N
C

E
 (

G
FL

O
P

S
)

MATRIX DIMENSION (M=N=K)

DISTRIBUTED SGEMM PERFORMANCE

Intel ScaLAPACK
PLASMA+OpenBLAS
Custom+BLIS
cuBLAS (1 GPU nocopy)
cuBLAS (4 GPUs)
cuBLAS (2 GPUs)

NUMA-BLIS v1

SGEMM performance on Superdome X

23

0

2000

4000

6000

8000

10000

12000

14000

16000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
G

E
M

M
 P

E
R

FO
R

M
A

N
C

E
 (

G
FL

O
P

S
)

MATRIX DIMENSION (M=N=K)

DISTRIBUTED SGEMM PERFORMANCE

nvBLAS (4 GPUs)
nvBLAS (2 GPUs)
nvBLAS (1 GPU no copy)
Custom + BLIS
nvBLAS (1 GPU)
NUMA-BLIS v1

Improved usability and performance for small matrices (v2)
Distributed SGEMM on Superdome X

NUMA-BLIS v1

NUMA-BLIS v2

Conclusion

– Done (almost): Extended BLIS (GEMM so far…) for multi-socket systems with shared memory
– Matrix data is accessed directly
– Synchronization via barriers
– NUMA-aware

– In progress: Extended BLIS for The Machine
– Matrix data is accessed directly
– Matrix data is in NVM
– Synchronization via MPI/RVMA

Thank you!
nvassilieva@hpe.com

	Scalable Dense Matrix Multiplication on Multi-Socket Many-Core Systems with Fast Shared Memory
	Acknowledgment
	Outline
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	The Machine in context
	The Machine in context
	Our goal: efficient linear algebra library for The Machine
	Linear algebra on The Machine: aspiration
	Existing BLAS libraries
	Existing BLAS libraries
	Existing BLAS libraries
	Multi-socket systems today: NUMA
	NUMA-aware extension of BLIS (1)
	NUMA-aware extension of BLIS (2)
	Other tricks
	SGEMM performance on Superdome X, �comparison with a GPU system (2 NVIDIA Tesla K80)
	SGEMM performance on Superdome X
	Improved usability and performance for small matrices (v2)
	Conclusion
	Thank you!

