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Outline

– Motivation and The Machine pitch

– NUMA-aware extension of BLIS for multi-socket systems

– Experimental results
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The Machine
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Processor-centric computing
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The Machine in context
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The Machine in context
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Our goal: efficient linear algebra library for The Machine

– Fast GEMM is crucial for fast machine learning (deep learning in particular)

– BLAS is essential for many problems in scientific computing, pattern recognition and optimization

– The ratio of compute/bandwidth on The Machine enables efficient scaling of GEMM for matrices of 
moderate sizes (up to 100000000 elements)
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Linear algebra on The Machine: aspiration
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Typical sizes 
of matrices 

for deep 
learning

What do we need to be true:
– High-performing single-node 

multi-core GEMM for small 
matrices 

– Scalable multi-node GEMM



Existing BLAS libraries

Proprietary Open Source
– ATLAS

– OpenBLAS

– BLIS

– Armadillo

– Eigen

– ScaLAPACK

– PLAPACK

– PLASMA

– DPLASMA

– Elemental
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– Intel MKL

– AMD ACML

– IBM ESSL and PESSL

– NVIDIA cuBLAS and NVBLAS
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– Intel MKL

– AMD ACML

– IBM ESSL and PESSL

– NVIDIA cuBLAS and NVBLAS

Single-node
• Access shared coherent memory
• Threads don’t share data, only 

synchronization messages
Multi-node
• Distributed memory
• Different processes transfer data and 

synchronization messages
Multi-socket with shared memory

In The Machine we have different processes that can access shared memory



Existing BLAS libraries

Proprietary Open Source
– ATLAS

– OpenBLAS

– BLIS

– Armadillo

– Eigen

– ScaLAPACK

– PLAPACK

– PLASMA

– DPLASMA

– Elemental
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– Intel MKL

– AMD ACML

– IBM ESSL and PESSL

– NVIDIA cuBLAS and NVBLAS

– Open Source

– Different ways of parallelization

– Easier to optimize for a new CPU



Multi-socket systems today: NUMA
The ones we used

Superdome X
– 16 sockets

– 18 haswell cores per socket (288 cores total)

– Theoretical peak: ~20 TFLOPS

DL580
– 4 sockets

– 15 ivybridge/haswell cores per socket (60 cores total)

– Theoretical peak: ~2.6/5.2 TFLOPS

NUMA node 1

CPU

Memory

NUMA node 2

CPU

Memory
QPI

32 GB/s

NUMA node 3

CPU
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NUMA node 4

CPU

Memory
QPI

32 GB/s

Crossbar fabric
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NUMA-aware extension of BLIS (1)
Cannon Like

=

A B

SoC 1 Compute

=

SoC 2 Compute

=

SoC 3 Compute

Node 1 
Node 2
Node 3

• Matrix A is composed of horizontal 
panels

• Matrix B is composed of vertical 
panels

• Panels are distributed in SoC
memory

• Each SoC own one panel of A and 
one of B

• GEMM is distributed, each SoC
compute 3 blocks, each block is 
obtained by panel times panel

• At every step one read from one 
remote SoC

• Resulting matrix have “A” format. 



NUMA-aware extension of BLIS (2)
Blocks

=

A B

SoC 1 Compute

=

SoC 2 Compute

=

SoC 3 Compute

• A and B have the same format

• As previous every SoC reads from 
only one other SoC

• Unlike previous switch reading 
SoC after each block. 

Node 1 
Node 2
Node 3



Other tricks

– Support for different memory pools (for different panels)
– The entry point (bli_gemm) receives an array of obj_t that represent the panels of the matrix

– MCS barrier instead of linear

– Support for multiple thread entry points
– To do not spawn new set of threads at every iteration (in every bli_gemm call)

– Affinity of threads
– We pre-launch the threads, pin them to particular CPU cores using a #pragma omp (outside of blis), and then use 

multiple threads entry points



SGEMM performance on Superdome X, 
comparison with a GPU system (2 NVIDIA Tesla K80)
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SGEMM performance on Superdome X
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Improved usability and performance for small matrices (v2)
Distributed SGEMM on Superdome X

NUMA-BLIS v1

NUMA-BLIS v2



Conclusion

– Done (almost): Extended BLIS (GEMM so far…) for multi-socket systems with shared memory
– Matrix data is accessed directly
– Synchronization via barriers
– NUMA-aware

– In progress: Extended BLIS for The Machine
– Matrix data is accessed directly
– Matrix data is in NVM
– Synchronization via MPI/RVMA



Thank you!
nvassilieva@hpe.com
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