

A Case for Malleable Thread-Level Linear
Algebra Libraries:

The LU Factorization with Partial Pivoting

Sandra Catalán, Jose R. Herrero, Enrique S. Quintana-Ortí,
Rafael Rodríguez-Sánchez, Robert van de Geijn

BLIS Retreat, 19-20th September 2016, Austin (Texas)

Motivation

BLAS → TLP

LAPACK → TP (runtime)

Nested TLP + TP

Increase number
of threads

2

Why malleability

Ta 3th Tb 5th

 . .

 . .

Ta .

 .

 .

 Tb

3

Why malleability

Ta 3th Tb 5th

 . .

 . .

Ta .

 .

 .

 Tb

Ta 3th Tb 5th

 . .

 . .

Ta .

 .

 Tb 8th

DLA library modification to allow number of threads
expansion

3

LU as an example

b size is important:
- Too small → Low GEMM performance
- Too large → Too many panel
 factorization flops

4

Optimal block size

5

Optimal block size

6

The panel factorization relevance

Less than 2% of the
flops

17.5% of the time

7

Dealing with the panel factorization

Look-ahead:

Overlap the factorization
of the “next” panel with
the update of the
“current” trailing
submatrix.

8

Look Ahead LU

9

Our setup

● Intel Xeon E5-2603 v3
● 6 cores at 1.6 Ghz
● BLIS 0.1.8
● BLIS Loop 4 (jr) parallelized
● Extrae 3.3.0
● Panel factorization via blocked algorithm
● Two block sizes bo and bi
● Inner LU involve small-grained computations and little

parallelism

10

Look Ahead LU Performance

11

Look Ahead LU Performance

11

Towards malleability

● P threads in the panel factorization
● R threads in the update
● Panel factorization less expensive than update

– P threads will join R team eventually

– BLAS does not allow to modify the number of
working threads

12

Static re-partitioning

● Workaround: split the update into several
GEMM

● Drawbacks:
– Lower GEMM throughput (packing and suboptimal

blocks)

– Decision on which loop to parallelize and the
granularity of the partitioning

13

Malleable thread-level BLAS

● Solving static partitioning issues:
– Only one GEMM call → no extra data movements

– BLIS takes care of the partitioning and granularity

14

How Malleability behaves

15

And the small case...

15

What if panel factorization is more
expensive than the update

● If R finish before P → Stop panel factorization
– RL LU. Keep a copy of the panel

– Use LL LU. Sincronization among threads follows
the same idea

16

Look ahead via runtimes

✔ TP execution
✔ Adaptative-depth look-ahead

✗ Re-packing and data movements (many GEMM
calls)

✗ Block size fixes the granularity of the tasks
✗ Rarely exploit TP+TLP

17

Experimental results

● LU, LU_LA, LU_MB, LU_OS
● Square matrices from n=500 to n=12,000
● bo was tested for values from 32 to 512 in steps

of 32
● bi was evaluated for 16 and 32

18

Performance comparison

19

Performance comparison

20

Conclusions

● Malleable implementation of DLA library
● Competitive results (small matrices)
● Pending strategies to be applied (Early

termination)

21

THANK YOU

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25

