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Motivation

BLAS → TLP

LAPACK → TP (runtime)

Nested TLP + TP

Increase number 
of threads 
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Why malleability
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DLA library modification to allow number of threads 
expansion
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LU as an example

b size is important:
- Too small → Low GEMM performance
- Too large → Too many panel                  
                       factorization flops
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Optimal block size
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Optimal block size
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The panel factorization relevance

Less than 2% of the 
flops

17.5% of the time
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Dealing with the panel factorization

Look-ahead:

Overlap the factorization 
of the “next” panel with 
the update of the 
“current” trailing 
submatrix.
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Look Ahead LU
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Our setup

● Intel Xeon E5-2603 v3
● 6 cores  at 1.6 Ghz
● BLIS 0.1.8
● BLIS Loop 4 (jr) parallelized
● Extrae 3.3.0
● Panel factorization via blocked algorithm
● Two block sizes bo and bi
● Inner LU involve small-grained computations and little 

parallelism

10



  

Look Ahead LU Performance
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Look Ahead LU Performance
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Towards malleability

● P threads in the panel factorization
● R threads in the update
● Panel factorization less expensive than update

– P threads will join R team eventually

– BLAS does not allow to modify the number of 
working threads
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Static re-partitioning

● Workaround: split the update into several 
GEMM

● Drawbacks:
– Lower GEMM throughput (packing and suboptimal 

blocks)

– Decision on which loop to parallelize and the 
granularity of the partitioning
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Malleable thread-level BLAS

● Solving static partitioning issues:
– Only one GEMM call → no extra data movements

– BLIS takes care of the partitioning and granularity
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How Malleability behaves
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And the small case...
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What if panel factorization is more 
expensive than the update

● If R finish before P → Stop panel factorization
– RL LU. Keep a copy of the panel

– Use LL LU. Sincronization among threads follows 
the same idea
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Look ahead via runtimes

✔ TP execution
✔ Adaptative-depth look-ahead

✗ Re-packing and data movements (many GEMM 
calls)

✗ Block size fixes the granularity of the tasks
✗ Rarely exploit TP+TLP
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Experimental results

● LU, LU_LA, LU_MB, LU_OS
● Square matrices from n=500 to n=12,000
● bo was tested for values from 32 to 512 in steps 

of 32
● bi was evaluated for 16 and 32
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Performance comparison
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Performance comparison
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Conclusions

● Malleable implementation of DLA library
● Competitive results (small matrices)
● Pending strategies to be applied (Early 

termination)
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THANK YOU
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