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N-body Problems
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N-body Problems
N-body problems aim to describe the interaction 
(relation) of N points { X } in a d dimensional space. 

K(xi, xj) = Kij describes the interaction between xi and xj. 

3 operations: Kernel Summation u=Kw, Kernel Inversion 
w=(K+λI)-1u and Nearest-Neighbors. 

2D and 3D applications can be found in computational 
physics, geophysical exploration and medical imaging. 

High dimension applications in computational statistic 
include clustering, classification and regression.
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Outline
Kernel Summation (u=Kw) and Nearest-Neighbors. 

How GEMM is applied in the conventional approach? 

Why GEMM can be memory bound in these operations? 

What insight is required to design an algorithm that 
avoids redundant memory operations but still preserves 
the efficiency? 

How GSKS and GSKNN are inspired by the BLIS 
framework in their design?
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Linear Kernel: 
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Other Kernels
K(xi, xj) = f(xiTxj), e.g. Gaussian kernel
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grows exponentially with k. For high dimensional data analysis problems such as ker-
nel regression and kernel classification, schemes are usually linear or superlinear to
k for the scalability. For example, ASKIT [] takes an nearest-neighbor pruning and a
spatial tree to improve the scalability.

Runtime evaluating instead of reusing K significantly increases the time complex-
ity especially when k is large. How to compute a dense K and it’s summation Kw effi-
ciently is a new bottleneck for all applications that requires the operation. For example,
the floating efficiency of LIBSVM [Chang and Lin 2011] doesn’t scale with k, since the
kernel value is computed element-wise without taking the advantage of the modern
computer architecture. Without the insight of the computer architecture, most of the
software written in pure interpreting or partially compiled language are usually run-
ning with in 3% of the CPU peak performance. Even a pure C/Fortran program, 10%
is usually the average. One of the solution is to take the advantage of the high perfor-
mance level 3 BLAS (Basic Linear Algebra Subroutines) to compute a submatrix of K.
K(x
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, x
j

) is usually a function of the square distance kx
i

� x
j

k22, and its expansion (2)
is mainly a pairwise inner-product xT

i

x
j

.

kx
i

� x
j
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k22 � 2xT

i

x
j
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With expression (2), computing K can rely on a high performance matrix-matrix
multiplication (GEMM) which can usually reach more than 80% peak performance on the
modern CPU architectures with a large k. Level 3 BLAS routines such as GEMM are
highly optimized by domain experts, and the interfaces are standardized to facilitate
users. The kernel value can be accelerated by vectorized math functions (e.g. Intel
Vectorized Math Library), and Kw can be computed by GEMV (General Matrix-Vector
Multiplication) which is also a level 2 subroutine of BLAS. CUKNN [Liang et al. 2009]
computes pairwise distance with (2) to accelerate searching for k-nearest neighbors,
and the same approach is taken in ASKIT [March et al. 2014] [March et al. 2015] a
treecode approach for fast high dimensional kernel summation in both near-field and
far-field evaluation.

Although the BLAS approach works reasonably well on large k, yet there are still
several drawbacks remaining unsolved.

(1) The BLAS approach transform the low dimensional case of (1) from a computation
bound problem to memory bound.

(2) Since GEMM is a memory bound problem for small k. Thus, GEMM needs a large enough
k to reach high performance, yet most of the practical problems have k  32.

(3) To compute a subproblem of (1), coordinates need to be collected to form dense A
and B in order to use GEMM, requiring extra memory space.

(4) The intermediate results �2xT

i

x
j

need to be stored as a dense matrix C which
requires extra memory space.

(5) The temporary spaces A, B and C are also accompanied with extra memory access,
suffering from a serious penalty.

(6) GEMV is a memory bound operation which can hardly reach the peak floating point
performance.

To summarize the BLAS approach, the standardized interface of BLAS limits the pos-
sibility of combining different operations. A new BLAS like subroutine to compute the
kernel summation is inspired by the drawbacks listed above, combining GEMM, GEMV and
vectorized math functions together to exploit the modern CPU architecture.
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ALGORITHM 1: Kernel Summation with GEMM, VEXP and GEMV
X
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same map as B
s

. For example, ASKIT creates skeleton weights w̃ for approximation;
thus, here we use w

s

= w(!
s

) to take care this special situation.
Given the notation above, (1) can be approximate by (3), and GSKS is designed a solve

a dense kernel summation.
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) is usually a function of the square distance kx
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. To be more concise, we take Gaussian kernel as an example for
the rest of the article, and the kernel function is written as:
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)) (4)

where h is the width of the kernel. The square distance can be evaluated directly or
by (2). Precomputing kx

i

k22 = kX
A

k22(i) and reusing the results of kX
A

k22 and kX
B

k22
requires many fewer FMA (Fused Multiply Add) operations than evaluating kx
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k22
directly. Moreover, �2xT
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, (4) and (3) can be computed by GEMM, GEMV and VEXP (vec-
torized exponential function) which provides an opportunity to achieve excellent per-
formance on modern CPU architectures.

The GEMM, VEXP and GEMV combination approach is widely used in the modern kernel
methods to achieve high a performance with the BLAS approach. We summarize the
combination approach in Algorithm 1 by using the same notations we just defined. The
drawback of this approach is that A

s

, B
s

and C
s

need to be formed explicitly in order
to use GEMM, VEXP and GEMV due to the standardized BLAS interface. A

s

and B
s

are
created to collect points from X

A

and X
B

, since GEMM only takes contiguous or uniform
stride inputs. C

s

must be created to output the result of GEMM, and it’s also required by
VEXP and GEMV. These temporary spaces are redundant, and the extra memory accesses
are accompanied. Inspired by the redundant memory operation, we develop a BLAS
like subroutine which embeds Algorithm 1 into a micro-kernel which may avoid these
redundant memory allocations and operations.
2.1. Sequencial General Stride Kernel Summation
We first present the pseudo-code of GSKS with Gaussian kernel in Algorithm 2 for com-
puting a subproblem of (3). Other than GSKS, GEKS is a case of GSKS stands for the
general storage version where ↵(i) = i, �(j) = j and !(j) = j. The algorithm contains
6 layers of loops which are corresponding to different partitioning of m, n and k. The
partitioning scheme is similar to the GEMM implementation in BLIS [Van Zee and Van
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The Big Picture
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Kw takes O(N2) if K is precomputed, otherwise O(dN2). 
The cost is too expensive when N is large. 

Exhaustive search requires O(N2log(k)) if K is 
precomputed, otherwise O(dN2+N2log(k)).  

Divide-and-conquer approximation: Barnes-Hut or FMM 
for kernel summation, and randomized KD-tree or 
locality sensitive hashing for kNN.  

Still the subproblem of all these algorithms is to solve 
several smaller dense kernel summation or kNN. 

Solving the subproblem fast benefits all these methods. 

Copyright @ 2015, The University of Texas at Austin



Subproblem
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Take two subsets Q and R from X. 

Compute K(Q,R) with GEMM using: 

Compute Kw with GEMV or select k entries in each row. 

Rely on BLAS, VML (Vectorized Math Library) and STL. 

What can possibly go wrong?

39:2 C. D. Yu et al.

grows exponentially with k. For high dimensional data analysis problems such as ker-
nel regression and kernel classification, schemes are usually linear or superlinear to
k for the scalability. For example, ASKIT [] takes an nearest-neighbor pruning and a
spatial tree to improve the scalability.

Runtime evaluating instead of reusing K significantly increases the time complex-
ity especially when k is large. How to compute a dense K and it’s summation Kw effi-
ciently is a new bottleneck for all applications that requires the operation. For example,
the floating efficiency of LIBSVM [Chang and Lin 2011] doesn’t scale with k, since the
kernel value is computed element-wise without taking the advantage of the modern
computer architecture. Without the insight of the computer architecture, most of the
software written in pure interpreting or partially compiled language are usually run-
ning with in 3% of the CPU peak performance. Even a pure C/Fortran program, 10%
is usually the average. One of the solution is to take the advantage of the high perfor-
mance level 3 BLAS (Basic Linear Algebra Subroutines) to compute a submatrix of K.
K(x
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) is usually a function of the square distance kx
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k22, and its expansion (2)
is mainly a pairwise inner-product xT
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With expression (2), computing K can rely on a high performance matrix-matrix
multiplication (GEMM) which can usually reach more than 80% peak performance on the
modern CPU architectures with a large k. Level 3 BLAS routines such as GEMM are
highly optimized by domain experts, and the interfaces are standardized to facilitate
users. The kernel value can be accelerated by vectorized math functions (e.g. Intel
Vectorized Math Library), and Kw can be computed by GEMV (General Matrix-Vector
Multiplication) which is also a level 2 subroutine of BLAS. CUKNN [Liang et al. 2009]
computes pairwise distance with (2) to accelerate searching for k-nearest neighbors,
and the same approach is taken in ASKIT [March et al. 2014] [March et al. 2015] a
treecode approach for fast high dimensional kernel summation in both near-field and
far-field evaluation.

Although the BLAS approach works reasonably well on large k, yet there are still
several drawbacks remaining unsolved.

(1) The BLAS approach transform the low dimensional case of (1) from a computation
bound problem to memory bound.

(2) Since GEMM is a memory bound problem for small k. Thus, GEMM needs a large enough
k to reach high performance, yet most of the practical problems have k  32.

(3) To compute a subproblem of (1), coordinates need to be collected to form dense A
and B in order to use GEMM, requiring extra memory space.

(4) The intermediate results �2xT

i

x
j

need to be stored as a dense matrix C which
requires extra memory space.

(5) The temporary spaces A, B and C are also accompanied with extra memory access,
suffering from a serious penalty.

(6) GEMV is a memory bound operation which can hardly reach the peak floating point
performance.

To summarize the BLAS approach, the standardized interface of BLAS limits the pos-
sibility of combining different operations. A new BLAS like subroutine to compute the
kernel summation is inspired by the drawbacks listed above, combining GEMM, GEMV and
vectorized math functions together to exploit the modern CPU architecture.
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Visualization
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Insights
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Q, R and K can’t be stored. 

Collet Q and R from X during packing. 

K(xi, xj) = Kij must be computed in registers. 

Kw or k-select must be completed in registers. 

Only store the output. 

We need a special packing routine. 

Fuse GEMM with distance calculations, special function 
evaluations, Kw or k-select.
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Code Fusion in BLIS
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GSKNN and BLIS (K=QTR)
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Micro-Kernel
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Micro-Kernel
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Micro-Kernel
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Micro-Kernel
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Micro-Kernel with p-norm
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Vectorized Math Functions
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p(x)-exp(x)

0
0 ln2

With a high precision (20 digits in decimal), Remez 
exchange algorithm can generate an 11 order near 
minimax polynomial with 1E-18 relative error.

39:16 C. D. Yu et al.

To derive the backward stability, we move the error term into the square operation.
(1 + ✏)k+2kx

i

� x
j

k22 = k(1 + ✏)
k+2
2 x

i

� (1 + ✏)
k+2
2 x

j

k22.

k(1 + ✏)
k+2
2 x

i

� x
i

k2
kx

i

k2 = (1 + ✏)k+2 � 1  O(k✏) (13)

The expansion computes the square pairwise distance more efficiently by reusing the
result of kX

A

k22 and kX
B

k22. Similar to the direct evaluation, both schemes are backward
stable, and the round-off error is also the same.

In the polynomial approximation part, the roundoff error mainly comes from the
nested polynomial evaluation.

P11(x) = c11 + (...+ (c5 + (c4 + (c3 + (c2 + (c1 + c0x)x)x)x)x)x...)x (14)

The roundoff error of the order-n (n � 1) polynomial summation has the following
closed form: c

n

xn

(1 + ✏)2n +

P0
i=n�1 cix

i

(1 + ✏)2i+1. This polynomial approximation is
forward stable, since exp(b) � 1 for b 2 in[0, ln 2]. The forward stability is derived in
(15) and (16).
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Fig. 5: Error comparison between Remez order eleven polynomial approximation and Intel vdExp() function:
the polynomial is chosen to fit the exponential function with [0, log(2)], and the converging criteria for the
Remez exchange algorithm is the double machine epsilon (2.22E-16).
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Vectorized Max Heap
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GSKS Efficiency Analysis
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GSKNN Efficiency Graphs
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Figure 4 Predicted floating point e�ciency (Gflops). Sequential
parameters: m = n = 8192, k = 16, 512, 2048, ⌧fp = 8 ⇥ 3.54,

⌧cm = 2.2 ⇥ 10�9, ⌧rm = 13.91 ⇥ 10�9, ✏ = 0.5. For the 10-thread
result, ⌧fp = 10⇥8⇥3.10, ⌧cm and ⌧rm are 1

5 to the original value.

real experimented switching point. The predicted switch-
ing point can significantly reduces the time spending on fine
tuning the switching point.
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Figure 5 Predicted floating point e�ciency (Gflops) for di↵erent
k.

4. EXPERIMENTAL SETUP
In this section we give details on the experimental setup

used to test our methods. Our current version of GSKNN con-
tains double precision x86-64 micro-kernels designed for Intel
Sandy-Bridge/Ivy-Bridge architectures. GSKNN can and has
been integrated with other MPI based parallel knn imple-
mentations such as randomized KD-trees and locality sen-
sitive hashing which typically use a BLAS approach to the
local search.

Implementation and hardware: Our GSKNN routine is
implemented in C, SSE2 and AVX intrinsic or assembly. Other
than the micro-kernel, all other parts are written in pure C.
The parallel randomized KD-tree knn is written in C++ and
SSE4.2. The code is compiled with Intel C compiler version
14.0.1.106 and mvapich2 version 2.0b with the -O3 optimiza-
tion flag. We carry out runtime experiments on the Maverick
system at TACC which has two ten-core CPUs. The dual-
CPUs in each node are Intel Xeon E5-2680 v2(Ivy Bridge)
processors (2.8GHz/3.6GHz) with 12.8Gb/core of memory

and a three-level cache: 32KB L1 data cache, 256KB L2
cache and 25.6MB L3 cache. The stable CPU clockrate is
3.54GHz/3.10GHz for 1/10 cores experiments.
GSKNN parameters: We choose parameters as discussed

in §3.4 where m
r

= 8, n
r

= 4 and k
c

= 256. m
c

= 104 and
n
c

= 4096, which make the size of Ac 208 KB and the size of
Bc 8192 KB. For all experiments with k  512, Variant#1
is chosen, otherwise Variant#6 is used instead.

5. NUMERICAL RESULTS
We have shown and discussed our sequential design in

§3.3, and here we report three sets of results: (1) breakdown
analysis, (2) multi-threaded floating e�ciency and (3) the
integrated runtime of the randomize KD-tree knn solver. All
experiments are in double precision, and each result has a
reference kernel implementing Algorithm 3.1 using MKL GEMM

and STL heap.

MKL+STL / GSKNN m = n = 8192, d = 16

k T
coll

+ T
GEMM

+ T
sq2d T

heap

T
total

16 0 + 55 + 24 / 20 13 / 1 92 / 21
128 0 + 55 + 24 / 20 16 / 5 95 / 25
512 0 + 55 + 24 / 20 30 / 33 109 / 53

2048 0 + 55 + 24 / 76 52 / 34 131 / 110

MKL+STL / GSKNN m = n = 8192, d = 64

16 1 + 117 + 24 / 52 13 / 1 155 / 53
128 1 + 122 + 24 / 52 15 / 6 162 / 58
512 1 + 113 + 24 / 52 30 / 35 168 / 87

2048 1 + 126 + 24 / 94 52 / 34 203 / 128

MKL+STL / GSKNN m = n = 8192, d = 256

16 3 + 210 + 24 / 186 13 / 2 250 / 188
128 3 + 209 + 24 / 186 15 / 13 251 / 199
512 3 + 211 + 24 / 186 30 / 38 268 / 224

2048 3 + 213 + 24 / 202 52 / 34 292 / 236

MKL+STL / GSKNN m = n = 8192, d = 1024

16 9 + 702 + 24 / 665 13 / 0 748 / 665
128 9 + 734 + 24 / 665 15 / 11 782 / 676
512 9 + 728 + 24 / 665 30 / 40 791 / 705

2048 9 + 735 + 24 / 673 51 / 34 819 / 707

Table 6 Runtime breakdown analysis (ms): for k = 16, 128, 512
the Variant#1 GSKNN is used, and for k = 2048 Variant#6 is used
instead.

We breakdown the total execute time T
total

= T
coll

+
T
GEMM

+ T
sq2d + T

heap

which represents the time spending on
collecting data from the global table X , X2, computing GEMM,
evaluating the square distance and the heap selection. For
GSKNN, the time spending on individual terms are di�cult to
collective, since the timer will lead to a serious overhead in-
side the 2nd loop. Thus, we report integrated time of GSKNN,
and we estimate the time spending on heap by evaluating
the total execution di↵erence with the k = 1 case . Tak-
ing the first row (k = 16) of Table 6 as an example, GSKNN
spends 21 ms in total. The estimated heap selection time
is computed by 21� 20 = 1 where 20 is the total execution
time of the case k = 1. The breakdown results reflect the
di↵erence of (??) on the memory complexity, and we are
certain that the optimization lead to a smaller coe�cient on
the heap selection part. The performance degrading of Vari-
ant#1 on a larger k can be observed in T

heap

, and we switch
to Variant#6 for k = 2048 to secure the GEMM e�ciency.
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The GEMM approach in N-body problems is a good 
example to show the current BLAS library is lacking 
flexibility for lower level integration. 

The algorithmic innovation of GSKS and GSKNN is to 
break through the interface, seeking for the lowest 
memory complexity.  

We exploit these observations with the help of the BLIS 
framework. 

Ongoing work includes other operations. e.g. kernel 
inversion, k-meaning clustering. Port to GPU and other 
accelerators.
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GSKS GSKNN
github.com/ChenhanYu/rnngithub.com/ChenhanYu/ks

http://github.com/ChenhanYu/rnn
http://github.com/ChenhanYu/ks

