BLIS-Based High Performance Computing Kernels in N-body Problems

Chenhan D. Yu

The 3rd BLIS Retreat Sep 28, 2015

Copyright @ 2015, The University of Texas at Austin

N-body Problems

Hellstorm Astronomy and 3D https://youtu.be/bLLWkx_MRfk

Copyright @ 2015, The University of Texas at Austin

N-body Problems

- N-body problems aim to describe the interaction (relation) of N points { X } in a d dimensional space.
- $\mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{K}_{ij}$ describes the interaction between \mathbf{x}_i and \mathbf{x}_j .
- 3 operations: Kernel Summation u=Kw, Kernel Inversion w=(K+λI)⁻¹u and Nearest-Neighbors.
- 2D and 3D applications can be found in computational physics, geophysical exploration and medical imaging.
- High dimension applications in computational statistic include clustering, classification and regression.

Outline

- Kernel Summation (u=Kw) and Nearest-Neighbors.
- How GEMM is applied in the conventional approach?
- Why **GEMM** can be memory bound in these operations?
- What insight is required to design an algorithm that avoids redundant memory operations but still preserves the efficiency?
- How GSKS and GSKNN are inspired by the BLIS framework in their design?

Linear Kernel: <u>K(xi, xj) = xi^Txj</u>

Other Kernels

 $\mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{f}(\mathbf{x}_i^T \mathbf{x}_j), e.g.$ Gaussian kernel

$$\mathcal{K}(x_i, x_j) = \exp(-\|x_i - x_j\|_2^2 / (2h^2))$$

The expansion exposes **GEMM** operations:

$$\|x_i - x_j\|_2^2 = \|x_i\|_2^2 + \|x_j\|_2^2 - 2x_i^T x_j$$

GEMM

The Big Picture

- Kw takes O(N²) if K is precomputed, otherwise O(dN²).
 The cost is too expensive when N is large.
- Exhaustive search requires O(N²log(k)) if K is precomputed, otherwise O(dN²+N²log(k)).
- Divide-and-conquer approximation: Barnes-Hut or FMM for kernel summation, and randomized KD-tree or locality sensitive hashing for kNN.
- Still the subproblem of all these algorithms is to solve several smaller dense kernel summation or kNN.
- Solving the subproblem fast benefits all these methods.

Subproblem

- Take two subsets Q and R from X.
- Compute K(Q,R) with GEMM using:

$$||x_i - x_j||_2^2 = ||x_i||_2^2 + ||x_j||_2^2 - 2x_i^T x_j$$

- Compute Kw with GEMV or select k entries in each row.
- Rely on BLAS, VML (Vectorized Math Library) and STL.
- What can possibly go wrong?

Visualization

Insights

- Q, R and K can't be stored.
- Collet Q and R from X during packing.
- $\mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{K}_{ij}$ must be computed in registers.
- Kw or k-select must be completed in registers.
- Only store the output.

i.e.

- We need a special packing routine.
- Fuse GEMM with distance calculations, special function evaluations, Kw or k-select.

Code Fusion in BLIS Slice and Dice!

Code fusion is done in micro-kernel, and the BLIS framework is maintained.

GSKNN and BLIS (K=Q^TR)

LOAD	Q				R0 R1	R2 R3
LOAD	R					
FMA	Q,	R,	C03_0	Q0	00	
SHUFFLE						
FMA	Q,	R,	C03_1	Q1	11	
PERMUTE2F128						
FMA	Q,	R,	C03_2	Q2		22
SHUFFLE						
FMA	Q,	R,	C03_3	Q3		33

LOAD	Q				RO	R1	R2
LOAD	R						
FMA	Q,	R,	C03_0	QO	00	01_	
SHUFFLE							
FMA	Q,	R,	C03_1	Q1	10	11	
PERMUTE2F128							
FMA	Q,	R,	C03_2	Q2			22
SHUFFLE							
FMA	Q,	R,	C03_3	Q3			32

R3

23

33

LOAD	Q		
LOAD	R		
FMA	Q,	R,	C03_0
SHUFFLE			
FMA	Q,	R,	C03_1
PERMUTE2F128			
FMA	Q,	R,	C03_2
SHUFFLE			
FMA	Q,	R,	C03 3

LOAD	Q		
LOAD	R		
FMA	Q,	R,	C03_0
SHUFFLE			
FMA	Q,	R,	C03_1
PERMUTE2F128			
FMA	Q,	R,	C03_2
SHUFFLE			
FMA	Q,	R,	C03_3

Micro-Kernel with p-norm

LOAD LOAD	Q R		
FMA	Q,	R,	C03_0
SHUFFLE			
FMA	Q,	R,	C03_1
PERMUTE2F128			
FMA	Q,	R,	C03_2
SHUFFLE			
FMA	Q,	R,	C03_3

1-norm SUB (flip signed bit) AND ADD inf-norm SUB **AND** (flip signed bit) MAX p-norm SUB **POW** (SVML) ADD

Vectorized Math Functions

With a high precision (20 digits in decimal), Remezence exchange algorithm can generate an 11 order near minimax polynomial with 1E-18 relative error.

Vectorized Max Heap

Find the max child

C: $[1, 3, 4, 2] \rightarrow [4, 3, 4, 3] \rightarrow [4, 4, 4, 4]$ D: [4, 2, 1, 3] [3, 4, 3, 4]

GSKS Efficiency Analysis

T_{BLAS}=T_{GSKS}+T_R+T_Q+T_K

GSKNN Efficiency Graphs

Austin

Conclusion

- The **GEMM** approach in N-body problems is a good example to show the current BLAS library is lacking flexibility for lower level integration.
- The algorithmic innovation of GSKS and GSKNN is to break through the interface, seeking for the lowest memory complexity.
- We exploit these observations with the help of the BLIS framework.
- Ongoing work includes other operations. e.g. kernel inversion, k-meaning clustering. Port to GPU and other accelerators.

Question?

GSKS GSKNN

github.com/ChenhanYu/ks github.com/ChenhanYu/rnn