

geKs
 GSKNN

BLIS-Based High Performance Computing Kernels in N-body Problems

Chenhan D. Yu

The 3rd BLIS Retreat
Sep 28, 2015

N-body Problems

N-body Problems

- N -body problems aim to describe the interaction (relation) of N points $\{\mathrm{X}\}$ in a d dimensional space.
- $\mathcal{K}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\mathrm{K}_{\mathrm{ij}}$ describes the interaction between X_{i} and x_{j}.
- 3 operations: Kernel Summation $\mathbf{u}=\mathrm{Kw}$, Kernel Inversion $\mathbf{w}=(\mathbf{K}+\lambda \mathbf{l})^{-1} \mathbf{u}$ and Nearest-Neighbors.
- 2D and 3D applications can be found in computational physics, geophysical exploration and medical imaging.
- High dimension applications in computational statistic include clustering, classification and regression.

Outline

- Kernel Summation (u=Kw) and Nearest-Neighbors.
- How GEMM is applied in the conventional approach?
- Why GEMM can be memory bound in these operations?
- What insight is required to design an algorithm that avoids redundant memory operations but still preserves the efficiency?
- How çSKS and GSKNN are inspired by the BLIS framework in their design?

Linear Kernel: $\mathcal{K}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\mathrm{x}_{\mathrm{i}}{ }^{\top} \mathrm{x}_{\mathrm{j}}$

$\mathbf{X}_{1}{ }^{\top}$	1	1	2	0	1
$\mathbf{X}_{2}{ }^{\top}$	0	0	0	0	0
$\mathbf{X}_{3}{ }^{\text {T }}$	1	0	1	0	1

1 \begin{tabular}{|l|l|l|}
\hline 2 \& 0 \& 1

0 \& 0 \& 0

1 \& 0 \& 1

\hline

\quad

\hlineX_{2} \& X_{3}

\hlineX_{1} \& X_{2}

\hlineX_{2} \& X_{1}

\hline
\end{tabular}

Other Kernels

$\mathcal{K}\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{j}}\right)=\mathrm{f}\left(\mathbf{x}_{\mathrm{i}}{ }^{\mathbf{T}} \mathbf{x}_{\mathrm{j}}\right)$, e.g. Gaussian kernel

$$
\mathcal{K}\left(x_{i}, x_{j}\right)=\exp \left(-\left\|x_{i}-x_{j}\right\|_{2}^{2} /\left(2 h^{2}\right)\right)
$$

The expansion exposes GEMM operations:

$$
\left\|x_{i}-x_{j}\right\|_{2}^{2}=\left\|x_{i}\right\|_{2}^{2}+\left\|x_{j}\right\|_{2}^{2}-2 x_{i}^{T} x_{j}
$$

$\mathbf{X}_{1}{ }^{\top} \mathbf{X}_{1}$	2
$\mathbf{X}_{2}{ }^{\top} \mathbf{X}_{2}$	$\mathbf{0}$
$\mathbf{X}_{3}{ }^{\top} \mathbf{X}_{3}$	$\mathbf{1}$

The Big Picture

- Kw takes $\mathrm{O}\left(\mathrm{N}^{2}\right)$ if K is precomputed, otherwise $\mathrm{O}\left(\mathrm{dN}^{2}\right)$. The cost is too expensive when \mathbf{N} is large.
- Exhaustive search requires $\mathrm{O}\left(\mathrm{N}^{2} \log (\mathbf{k})\right)$ if K is precomputed, otherwise $\mathrm{O}\left(\mathrm{dN}^{2}+\mathrm{N}^{2} \log (\mathrm{k})\right)$.
- Divide-and-conquer approximation: Barnes-Hut or FMM for kernel summation, and randomized KD-tree or locality sensitive hashing for kNN.
- Still the subproblem of all these algorithms is to solve several smaller dense kernel summation or kNN.
- Solving the subproblem fast benefits all these methods.

Subproblem

- Take two subsets Q and R from X.
- Compute $\mathcal{K}(Q, R)$ with GEMM using:

$$
\left\|x_{i}-x_{j}\right\|_{2}^{2}=\left\|x_{i}\right\|_{2}^{2}+\left\|x_{j}\right\|_{2}^{2}-2 x_{i}^{T} x_{j}
$$

- Compute Kw with Gemv or select k entries in each row.
- Rely on BLAS, VML (Vectorized Math Library) and STL.
- What can possibly go wrong?

Visualization

Insights

- Q, R and K can't be stored.
- Collet Q and R from X during packing.
- $\mathcal{K}\left(\mathbf{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\mathrm{K}_{\mathrm{ij}}$ must be computed in registers.
- Kw or k-select must be completed in registers.
- Only store the output.
- We need a special packing routine.
- Fuse GEMM with distance calculations, special function evaluations, Kw or k-select.

Code Fusion in BLIS slice and Dicel

Code fusion is done in micro-kernel, and the BLIS framework is maintained.

GSKNN and BLIS (K=QTR)

Micro-Kernel

LOAD
 LOAD

FMA
SHUFFLE
FMA
PERMUTE2F128
FMA
SHUFFLE
FMA

Q
 R

Q, R, C03_0

Q, R, C03_1

Q, R, C03_2
Q, $R, C 03 _3$

Micro-Kernel

LOAD	Q
LOAD	R
FMA	Q, R, C03_0
SHUFFLE	
FMA	Q, R, C03_1
PERMUTE2F128	
FMA	Q, $\mathrm{R}, \mathrm{C03}$ _2
SHUFFLE	
FMA	Q, $\mathrm{R}, \mathrm{C03}$ _3

Micro-Kernel

LOAD	Q
LOAD	R
FMA	Q, R, C03_0
SHUFFLE	
FMA	Q, R, C03_1
PERMUTE2F128	
FMA	Q, R, C03_2
SHUFFLE	
FMA	Q, R, C03_3

Micro-Kernel

LOAD	Q
LOAD	R
FMA	Q, R, C03_0
SHUFF'LE	
FMA	Q, R, C03_1
PERMUTE2F128	
FMA	Q, R, C03_2
SHUFFLE	
FMA	Q, R, C03_3

Micro-Kernel with p-norm

LOAD
LOAD
FMA
SHUFFLE
FMA
PERMUTE2F128
FMA
SHUFFLE
FMA

Q
R
Q, R, C03_0
Q, R, C03_1

Q, R, C03_2

Q, $R, C 03 _3$

1-norm
SUB
AND (flip signed bit) ADD
inf-norm
SUB
AND (flip signed bit)
MAX
p-norm
SUB
POW (SVML)
ADD

Vectorized Math Functions

- With a high precision (20 digits in decimal), Remez exchange algorithm can generate an 11 order near minimax polynomial with 1E-18 relative error.

$$
\begin{gathered}
P_{11}(x)=c_{11}+\left(\ldots+\left(c_{5}+\left(c_{4}+\left(c_{3}+\left(c_{2}+\left(c_{1}+c_{0} x\right) x\right) x\right) x\right) x\right) x \ldots\right) x \\
=\text { 1ADD + 11FMA }
\end{gathered}
$$

$$
p(x)-\exp (x)
$$

Vectorized Max Heap

Find the max child
C: $[1,3,4,2]->[4,3,4,3]->[4,4,4,4]$
D: $[4,2,1,3] \quad[3,4,3,4]$

ÇKS Efficiency Analysis

$T_{B L A S}=T_{G S K S}+T_{R}+T_{Q}+T_{K}$

mn(2d+36)
Tgsks
$m n(2 d+36) \stackrel{?}{=}$
TBLAS

GSKNN Efficiency Graphs

Conclusion

- The GEMM approach in N-body problems is a good example to show the current BLAS library is lacking flexibility for lower level integration.
- The algorithmic innovation of ĢSK and GSKNN is to break through the interface, seeking for the lowest memory complexity.
- We exploit these observations with the help of the BLIS framework.
- Ongoing work includes other operations. e.g. kernel inversion, k-meaning clustering. Port to GPU and other accelerators.

Question?

github.com/ChenhanYu/ks github.com/ChenhanYu/rnn

