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If you have forgotten how to find the eigenvalues and eigenvectors of 2× 2 and 3× 3 matrices, you may
want to review Linear Algebra: Foundations to Frontiers - Notes to LAFF With.

1 Definition

Definition 1. Let A ∈ Cm×m. Then λ ∈ C and nonzero x ∈ Cm are said to be an eigenvalue and corresponding
eigenvector if Ax = λx. The tuple (λ, x) is said to be an eigenpair. The set of all eigenvalues of A is denoted
by Λ(A) and is called the spectrum of A.

The action of A on an eigenvector x is as if it were multiplied by a scalar. The direction does not change,
only its length is scaled:

Ax = λx.

Theorem 2. Scalar λ is an eigenvalue of A if and only if

(λI −A)



is singular

has a nontrivial null-space

has linearly dependendent columns

det(λI −A) = 0

(λI −A)x = 0 has a nontrivial solution

etc.

The following exercises expose some other basic properties of eigenvalues and eigenvectors:

Exercise 3. Eigenvectors are not unique.

Exercise 4. Let λ be an eigenvalue of A and let Eλ(A) = {x ∈ Cm|Ax = λx} denote the set of all eigenvectors
of A associated with λ (including the zero vector, which is not really considered an eigenvector). Show that
this set is a (nontrivial) subspace of Cm.

Definition 5. Given A ∈ Cm×m, the function pm(λ) = det(λI − A) is a polynomial of degree at most m. This
polynomial is called the characteristic polynomial of A.
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The definition of pm(λ) and the fact that is a polynomial of degree at most m is a consequence of the
definition of the determinant of an arbitrary square matrix. This definition is not particularly enlightening
other than that it allows one to succinctly related eigenvalues to the roots of the characteristic polynomial.

Remark 6. The relation between eigenvalues and the roots of the characteristic polynomial yield a disconcerting
insight: A general formula for the eigenvalues of a m×m matrix with m > 4 does not exist.

The reason is that there is no general formula for the roots of a polynomial of degree m > 4. Given any
polynomial pm(χ) of degree m, an m×m matrix can be constructed such that its characteristic polynomial
is pm(λ). If

pm(χ) = α0 + α1χ+ · · ·+ αm−1χ
m−1 + χm

and

A =



−αn−1 −αn−2 −αn−3 · · · −α1 −α0

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0


then

pm(λ) = det(λI −A)

Hence, we conclude that no general formula can be found for the eigenvalues for m × m matrices when
m > 4. What we will see in future “Notes on ...” is that we will instead create algorithms that converge to
the eigenvalues and/or eigenvalues of matrices.

Theorem 7. Let A ∈ Cm×m and pm(λ) be its characteristic polynomial. Then λ ∈ Λ(A) if and only if pm(λ) = 0.

Proof: This is an immediate consequence of Theorem 2. �
In other words, λ is an eigenvalue of A if and only if it is a root of pm(λ). This has the immediate

consequence that A has at most m eigenvalues and, if one counts multiple roots by their multiplicity, it has
exactly m eigenvalues. (One says “Matrix A ∈ Cm×m has m eigenvalues, multiplicity counted.)

Exercise 8. The eigenvalues of a diagonal matrix equal the values on its diagonal. The eigenvalues of a triangular
matrix equal the values on its diagonal.

Corollary 9. If A ∈ Rm×m is real valued then some or all of its eigenvalues may be complex valued. In this
case, if λ ∈ Λ(A) then so is its conjugate, λ̄.

Proof: It can be shown that if A is real valued, then the coefficients of its characteristic polynomial are all
real valued. Complex roots of a polynomial with real coefficients come in conjugate pairs. �

It is not hard to see that an eigenvalue that is a root of multiplicity k has at most k eigenvectors. It
is, however, not necessarily the case that an eigenvalue that is a root of multiplicity k also has k linearly
independent eigenvectors. In other words, the null space of λI−A may have dimension less then the algebraic
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multiplicity of λ. The prototypical counter example is the k × k matrix

J(µ) =



µ 1 0 · · · 0 0

0 µ 1
. . . 0 0

...
. . .

. . .
. . .

...
...

0 0 0
. . . µ 1

0 0 0 · · · 0 µ


where k > 1. Observe that λI − J(µ) is singular if and only if λ = µ. Since µI − J(µ) has k − 1 linearly
independent columns its null-space has dimension one: all eigenvectors are scalar multiples of each other.
This matrix is known as a Jordan block.

Definition 10. A matrix A ∈ Cm×m that has fewer than m linearly independent eigenvectors is said to be
defective. A matrix that does have m linearly independent eigenvectors is said to be nondefective.

Theorem 11. Let A ∈ Cm×m. There exist nonsingular matrix X and diagonal matrix Λ such that A = XΛX−1

if and only if A is nondefective.

Proof:
(⇒). Assume there exist nonsingular matrix X and diagonal matrix Λ so that A = XΛX−1. Then,
equivalently, AX = XΛ. Partition X by columns so that

A
(
x0 x1 · · · xm−1

)
=

(
x0 x1 · · · xm−1

)


λ0 0 · · · 0

0 λ1 · · · 0
...

. . .
. . .

...

0 0 · · · λm−1


=

(
λ0x0 λ1x1 · · · λm−1xm−1

)
.

Then, clearly, Axj = λjxj so that A has m linearly independent eigenvectors and is thus nondefective.
(⇐). Assume that A is nondefective. Let {x0, · · · , xm−1} equal m linearly independent eigenvectors

corresponding to eigenvalues {λ0, · · · , λm−1}. If X =
(
x0 x1 · · · xm−1

)
then AX = XΛ where

Λ = diag(λ0, . . . , λm−1). Hence A = XΛX−1. �

Definition 12. Let µ ∈ Λ(A) and pm(λ) be the characteristic polynomial of A. Then the algebraic multiplicity
of µ is defined as the multiplicity of µ as a root of pm(λ).

Definition 13. Let µ ∈ Λ(A). Then the geometric multiplicity of µ is defined to be the dimension of Eµ(A). In
other words, the geometric multiplicity of µ equals the number of linearly independent eigenvectors that are
associated with µ.

Theorem 14. Let A ∈ Cm×m. Let the eigenvalues of A be given by λ0, λ1, · · · , λk−1, where an eigenvalue is
listed exactly n times if it has geometric multiplicity n. There exists a nonsingular matrix X such that

A = X


J(λ0) 0 · · · 0

0 J(λ1) · · · 0
...

...
. . .

...

0 0 · · · J(λk−1)

 .
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For our discussion, the sizes of the Jordan blocks J(λi) are not particularly important. Indeed, this decom-
position, known as the Jordan Canonical Form of matrix A, is not particularly interesting in practice. For
this reason, we don’t discuss it further and do not we give its proof.

2 The Schur and Spectral Factorizations

Theorem 15. Let A, Y,B ∈ Cm×m, assume Y is nonsingular, and let B = Y −1AY . Then Λ(A) = Λ(B).

Proof: Let λ ∈ Λ(A) and x be an associated eigenvector. Then Ax = λx if and only if Y −1AY Y −1x =
Y −1λx if and only if B(Y −1x) = λ(Y −1x). �

Definition 16. Matrices A and B are said to be similar if there exists a nonsingular matrix Y such that
B = Y −1AY .

Given a nonsingular matrix Y the transformation Y −1AY is called a similarity transformation of A.
It is not hard to expand the last proof to show that if A is similar to B and λ ∈ Λ(A) has alge-

braic/geometric multiplicity k then λ ∈ Λ(B) has algebraic/geometric multiplicity k.
The following is the fundamental theorem for the algebraic eigenvalue problem:

Theorem 17. Schur Decomposition Theorem Let A ∈ Cm×m. Then there exist a unitary matrix Q and
upper triangular matrix U such that A = QUQH . This decomposition is called the Schur decomposition of
matrix A.

In the above theorem, Λ(A) = Λ(U) and hence the eigenvalues of A can be found on the diagonal of U .
Proof: We will outline how to construct Q so that QHAQ = U , an upper triangular matrix.

Since a polynomial of degree m has at least one root, matrix A has at least one eigenvalue, λ1, and
corresponding eigenvector q1, where we normalize this eigenvector to have length one. Thus Aq1 = λ1q1.

Choose Q2 so that Q =
(
q1 Q1

)
is unitary. Then

QHAQ =
(
q1 Q2

)H
A
(
q1 Q2

)
=

(
qH1 Aq1 qH1 AQ2

QH2 Aq1 QH2 AQ2

)
=

(
λ1 qH1 AQ2

λQH2 q1 QH2 AQ2

)
=

(
λ1 wT

0 B

)
,

where wT = qH1 AQ2 and B = QH2 AQ2. This insight can be used to construct an inductive proof. �
One should not mistake the above theorem and its proof as a constructive way to compute the Schur
decomposition: finding an eigenvalue and/or the eigenvalue associated with it is difficult.

Lemma 18. Let A ∈ Cm×m be of form A =

(
ATL ATR

0 ABR

)
. Assume that QTL and QBR are unitary “of

appropriate size”. Show that

A =

(
QTL 0

0 QBR

)H (
QTLATLQ

H
TL QTLATRQ

H
BR

0 QBRABRQ
H
BR

)(
QTL 0

0 QBR

)
.

Exercise 19. Prove Lemma 18. Then generalize it to a result for block upper triangular matrices:

A =


A0,0 A0,1 · · · A0,N−1

0 A1,1 · · · A1,N−1

0 0
. . .

...

0 0 · · · AN−1,N−1

 .
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Corollary 20. Let A ∈ Cm×m be of for A =

(
ATL ATR

0 ABR

)
. Then Λ(A) = Λ(ATL) ∪ Λ(ABR).

Exercise 21. Prove Corollary 20. Then generalize it to a result for block upper triangular matrices.

A theorem that will later allow the eigenvalues and vectors of a real matrix to be computed (mostly)
without requiring complex arithmetic is given by

Theorem 22. Let A ∈ Rm×m. Then there exist a unitary matrix Q ∈ Rm×m and quasi upper triangular matrix
U ∈ Rm×m such that A = QUQT .

A quasi upper triangular matrix is a block upper triangular matrix where the blocks on the diagonal are
1× 1 or 2× 2. Complex eigenvalues of A are found as the complex eigenvalues of those 2× 2 blocks on the
diagonal.

Theorem 23. Spectral Decomposition Theorem Let A ∈ Cm×m be Hermitian. Then there exist a unitary
matrix Q and diagonal matrix Λ ∈ Rm×m such that A = QΛQH . This decomposition is called the Spectral
decomposition of matrix A.

Proof: From the Schur Decomposition Theorem we know that there exist a matrix Q and upper triangular
matrix U such that A = QUQH . Since A = AH we know that QUQH = QUHQH and hence U = UH . But
a Hermitian triangular matrix is diagonal with real valued diagonal entries. �

What we conclude is that a Hermitian matrix is nondefective and its eigenvectors can be chosen to form
an orthogonal basis.

Exercise 24. Let A be Hermitian and λ and µ be distinct eigenvalues with eigenvectors xλ and xµ, respec-
tively. Then xHλ xµ = 0. (In other words, the eigenvectors of a Hermitian matrix corresponding to distinct
eigenvalues are orthogonal.)

3 Relation Between the SVD and the Spectral Decomposition

Exercise 25. Let A ∈ Cm×m be a Hermitian matrix, A = QΛQH its Spectral Decomposition, and A = UΣV H

its SVD. Relate Q, U , V , Λ, and Σ.

Exercise 26. Let A ∈ Cm×m and A = UΣV H its SVD. Relate the Spectral decompositions of AHA and AAH

to U , V , and Σ.
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