


Advanced Linear Algebra

Foundations to Frontiers





Advanced Linear Algebra
Foundations to Frontiers

Robert van de Geijn
The University of Texas at Austin

Margaret Myers
The University of Texas at Austin

October 11, 2023



Edition: October 11, 2023

Website: ulaff.net

©2019–2022 Robert van de Geijn and Margaret Myers

ISBN 978-1-716-04142-6

http:/\penalty \exhyphenpenalty {}/\penalty \exhyphenpenalty {}ulaff.net


Acknowledgements

• We start by thanking the people who created PreTeXt, the authoring and publishing system
used to typeset these materials. We applaud you!

• Beta testers and numerous learners reported (and continue to report) typos and other prob-
lems as they worked through ALAFF. We thank them for their patience and contributions.

• This project was partially funded by a HornRaiser (crowd funding) campaign. We thank
all who contributed for their generosity. Additional support came from the National Science
Foundation (Award CSSI-2003921).

v



Preface

Linear algebra is one of the fundamental tools for computational and data scientists. This docu-
ment, titled "Advanced Linear Algebra: Foundations to Frontiers" (ALAFF) is an alternative to a
traditional text for a graduate course on advanced linear algebra for computing. The focus is on
numerical linear algebra, the study of how theory, algorithms, and computer arithmetic interact.
These materials keep the learner engaged by intertwining text, videos, exercises, and programming
activities in consumable chunks.

We have used these materials in different settings. It is the primary resource for our course
at UT-Austin titled "Numerical Analysis: Linear Algebra" offered through the departments of
Computer Science, Mathematics, Statistics and Data Sciences, and Mechanical Engineering, as
well as the Computational Science, Engineering, and Mathematics graduate program. This course
is also offered as "Advanced Linear Algebra for Computing" through the UT-Austin Masters in
Computer Science Online program. Finally, it is the basis for the Massive Open Onine Course
(MOOC) also titled "Advanced Linear Algebra: Foundations to Frontiers" on the edX platform. It
is our hope that others will repurpose the ALAFF materials for other learning settings, either in
its entirety or in part.

So as not to overwhelm learners, we have taken the traditional topics of a numerical linear
algebra course and organized these into three parts. Orthogonality, Solving Linear Systems, and
the Algebraic Eigenvalue Problem.

• Part I: Orthogonality explores orthogonality (which includes a treatment of norms, orthogonal
spaces, the Singular Value Decomposition (SVD), and solving linear least squares problems).
We start with with these topics since they are prerequisite knowledge for other courses that
students often pursue in parallel with (or even before) advanced linear algebra.

• Part II: Solving Linear Systems focuses on so-called direct and iterative methods while also
introducing the notion of numerical stability, which quantifies and qualifies how error that is
introduced in the original statement of the problem and/or roundoff that occurs in computer
arithmetic impacts the correctness of a computation.

• Part III: The Algebraic Eigenvalue Problem focuses on the theory and practice of computing
the eigenvalues and eigenvectors of a matrix. This is closely related to the diagonazing a
matrix. Practical algorithms for solving the eigenvalue problem are extended so they can be
used to compute the SVD. This part, and the course, ends with a discussion of how to achieve
high performance on modern computers when performing matrix computations.

While this represents only a selection of advanced topics in linear algebra, we believe that this
course leaves you equipped to pursue further related subjects.

vi
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ALAFF is part of a collection of learning artifacts that we have developed over the years.

• Linear Algebra: Foundations to Frontiers (LAFF) [27] [28] a full semester undergraduate
introduction to linear algebra. For those whose linear algebra fluency is a bit rusty, this is a
good resource for brushing up.

• LAFF-On Programming for Correctness [29] [30] is a six-week course that shares our tech-
niques for systematic discovery of families of algorithms for matrix operations from which the
best (e.g., highest performing) can be chosen in a context.

• LAFF-On Programming for High Performance [42] [43] is a four-week course in which matrix-
matrix multiplication is used to illustrate fundamental techniques for achieving high perfor-
mance on modern CPUs. In Week 12 of ALAFF, we give you a flavor of how high performance
can be achieved for matrix computations.

There is a MOOC on edX associated with each of these materials. Together, they form a loosely-
coupled learning experience. For more information, visit ulaff.net.

You should use the pretest we have created, "Advanced Linear Algebra: Are You Ready?", [40]
to self-assess whether you are ready for ALAFF. It consists of about a dozen questions. When
taking it, realize that it is not about whether you can answer those questions. Rather, you should
look carefully look at the solutions to the questions, which discuss how some of the more concrete
exercises translate to more abstract insights. How the topic of the question fits into ALAFF is
discussed as is where to review.

Robert van de Geijn
Maggie Myers
Austin, 2020

http://ulaff.net
http://www.cs.utexas.edu/users/flame/laff/alaff/ALAFF-pretest.html
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Week 0

Getting Started

0.1 Opening Remarks

0.1.1 Welcome

YouTube: https://www.youtube.com/watch?v=KzCTMlvxtQA
Linear algebra is one of the fundamental tools for computational and data scientists. In Ad-

vanced Linear Algebra: Foundations to Frontiers (ALAFF), you build your knowledge, understand-
ing, and skills in linear algebra, practical algorithms for matrix computations, and how floating-
point arithmetic, as performed by computers, affects correctness.

The materials are organized into Weeks that correspond to a chunk of information that is
covered in a typical on-campus week. These weeks are arranged into three parts:

Part I: Orthogonality
The Singular Value Decomposition (SVD) is pos-
sibly the most important result in linear algebra,
yet too advanced to cover in an introductory un-
dergraduate course. To be able to get to this topic
as quickly as possible, we start by focusing on or-
thogonality, which is at the heart of image com-
pression, Google’s page rank algorithm, and linear
least-squares approximation.

1

https://www.youtube.com/watch?v=KzCTMlvxtQA
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Part II: Solving Linear Systems
Solving linear systems, via direct or iterative
methods, is at the core of applications in com-
putational science and machine learning. We also
leverage these topics to introduce numerical sta-
bility of algorithms: the classical study that qual-
ifies and quantifies the "correctness" of an algo-
rithm in the presence of floating point computa-
tion and approximation. Along the way, we dis-
cuss how to restructure algorithms so that they
can attain high performance on modern CPUs.

Part III: Eigenvalues and Eigenvectors
Many problems in science have the property that
if one looks at them in just the right way (in the
right basis), they greatly simplify and/or decouple
into simpler subproblems. Eigenvalue and eigen-
vectors are the key to discovering how to view a
linear transformation, represented by a matrix, in
that special way. Algorithms for computing them
also are the key to practical algorithms for com-
puting the SVD

It is important for you to evaluate and perpare yourself for this course. For this, we have created
a pretest, Advanced Linear Algebra: Are you ready? , that also points you to materials that you
can use to get prepared.

Homework 0.1.1.1 Take the pretest Advanced Linear Algebra: Are you ready?.
In this week (Week 0), we walk you through some of the basic course information and help you

set up for learning. The week itself is structured like future weeks, so that you become familiar
with that structure.

0.1.2 Outline Week 0
Each week is structured so that we give the outline for the week immediately after the "launch:"

• 0.1 Opening Remarks

◦ 0.1.1 Welcome
◦ 0.1.2 Outline Week 0

https://www.cs.utexas.edu/users/flame/laff/alaff/ALAFF-pretest.html
https://www.cs.utexas.edu/users/flame/laff/alaff/ALAFF-pretest.html
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◦ 0.1.3 What you will learn

• 0.2 Setting Up For ALAFF

◦ 0.2.1 Accessing these notes
◦ 0.2.2 Cloning the ALAFF repository
◦ 0.2.3 MATLAB
◦ 0.2.4 Setting up to implement in C (optional)

• 0.3 Enrichments

◦ 0.3.1 Ten surprises from numerical linear algebra
◦ 0.3.2 Best algorithms of the 20th century

• 0.4 Wrap Up

◦ 0.4.1 Additional Homework
◦ 0.4.2 Summary

0.1.3 What you will learn
The third unit of each week informs you of what you will learn. This describes the knowledge and
skills that you can expect to acquire. If you return to this unit after you complete the week, you
will be able to use the below to self-assess.

Upon completion of this week, you should be able to

• Navigate the materials.

• Access additional materials from GitHub.

• Track your homework and progress.

• Register for MATLAB online.

• Recognize the structure of a typical week.

0.2 Setting Up For ALAFF

0.2.1 Accessing these notes
For information regarding these and our other materials, visit http://ulaff.net.

These notes are available in a number of formats:

• As an online book authored with https://pretextbook.org at http://www.cs.utexas.edu/users/
flame/laff/alaff/.

• As a PDF at http://www.cs.utexas.edu/users/flame/laff/alaff/ALAFF.pdf.
If you download this PDF and place it in just the right folder of the materials you will clone
from GitHub (see next unit), the links in the PDF to the downloaded material will work.
We will be updating the materals frequently as people report typos and we receive feedback
from learners. Please consider the environment before you print a copy...

http://ulaff.net
https://pretextbook.org
http://www.cs.utexas.edu/users/flame/laff/alaff/
http://www.cs.utexas.edu/users/flame/laff/alaff/
http://www.cs.utexas.edu/users/flame/laff/alaff/ALAFF.pdf
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• Eventually, if we perceive there is demand, we may offer a printed copy of these notes from
http://www.lulu.com, a self-publishing service. This will not happen until Summer 2020, at
the earliest.

0.2.2 Cloning the ALAFF repository
We have placed all materials on GitHub, a development environment for software projects. In our
case, we use it to disseminate the various activities associated with this course.

On the computer on which you have chosen to work, "clone" the GitHub repository for this
course:

• Visit https://github.com/ULAFF/ALAFF

• Click on

and copy https://github.com/ULAFF/ALAFF.git.

• On the computer where you intend to work, in a terminal session on the command line in the
directory where you would like to place the materials, execute

git clone https://github.com/ULAFF/ALAFF.git

This will create a local copy (clone) of the materials.

• Sometimes we will update some of the files from the repository. When this happens you will
want to execute, in the cloned directory,

git stash save

which saves any local changes you have made, followed by

git pull

which updates your local copy of the repository, followed by

git stash pop

which restores local changes you made. This last step may require you to "merge" files that
were changed in the repository that conflict with local changes.

Upon completion of the cloning, you will have a directory structure similar to that given in Fig-
ure 0.2.2.1.

http://www.lulu.com
https://github.com/ULAFF/ALAFF
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Figure 0.2.2.1 Directory structure for your ALAFF materials. In this example, we cloned the
repository in Robert’s home directory, rvdg.

0.2.3 MATLAB
We will use Matlab to translate algorithms into code and to experiment with linear algebra.

There are a number of ways in which you can use Matlab:

• Via MATLAB that is installed on the same computer as you will execute your performance
experiments. This is usually called a "desktop installation of Matlab."

• Via https://matlab.mathworks.com/. You will have to transfer files from the computer where
you are performing your experiments to MATLAB Online. You could try to set up https://

www.mathworks.com/products/matlab-drive.html, which allows you to share files easily between
computers and with MATLAB Online. Be warned that there may be a delay in when files
show up, and as a result you may be using old data to plot if you aren’t careful!

If you are using these materials as part of an offering of the Massive Open Online Course (MOOC)
titled "Advanced Linear Algebra: Foundations to Frontiers," you will be given a temporary license
to Matlab, courtesy of MathWorks. In this case, there will be additional instructions on how to set
up MATLAB Online, in the Unit on edX that corresponds to this section.

You need relatively little familiarity with MATLAB in order to learn what we want you to learn
in this course. So, you could just skip these tutorials altogether, and come back to them if you find
you want to know more about MATLAB and its programming language (M-script).

Below you find a few short videos that introduce you to MATLAB. For a more comprehen-
sive tutorial, you may want to visit https://www.mathworks.com/academia/student_center/tutorials/
mltutorial_launchpad.html?confirmation_page# at MathWorks and click "Launch Tutorial".

https://matlab.mathworks.com/
https://www.mathworks.com/products/matlab-drive.html
https://www.mathworks.com/products/matlab-drive.html
https://www.mathworks.com/academia/student_center/tutorials/mltutorial_launchpad.html?confirmation_page#
https://www.mathworks.com/academia/student_center/tutorials/mltutorial_launchpad.html?confirmation_page#


WEEK 0. GETTING STARTED 6

What is MATLAB?

https://www.youtube.com/watch?v=2sB-NMD9Qhk

Getting Started with MATLAB
Online

https://www.youtube.com/watch?v=4shp284pGc8

MATLAB Variables

https://www.youtube.com/watch?v=gPIsIzHJA9I

MATLAB as a Calculator

https://www.youtube.com/watch?v=K9xy5kQHDBo

Managing Files with MATLAB
Online

https://www.youtube.com/watch?v=mqYwMnM-x5Q

Remark 0.2.3.1 Some of you may choose to use MATLAB on your personal computer while others
may choose to use MATLAB Online. Those who use MATLAB Online will need to transfer some
of the downloaded materials to that platform.

0.2.4 Setting up to implement in C (optional)
You may want to return to this unit later in the course. We are still working on adding programming
exercises that require C implementation.

In some of the enrichments in these notes and the final week on how to attain performance,
we suggest implementing algorithms that are encounted in C. Those who intend to pursue these
activities will want to install a Basic Linear Algebra Subprograms (BLAS) library and our libflame
library ( which not only provides higher level linear algebra functionality, but also allows one to
program in a manner that mirrors how we present algorithms.)

https://www.youtube.com/watch?v=2sB-NMD9Qhk
https://www.youtube.com/watch?v=4shp284pGc8
https://www.youtube.com/watch?v=gPIsIzHJA9I
https://www.youtube.com/watch?v=K9xy5kQHDBo
https://www.youtube.com/watch?v=mqYwMnM-x5Q
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0.2.4.1 Installing the BLAS

The Basic Linear Algebra Subprograms (BLAS) are an interface to fundamental linear algebra
operations. The idea is that if we write our software in terms of calls to these routines and vendors
optimize an implementation of the BLAS, then our software can be easily ported to different
computer architectures while achieving reasonable performance.

A popular and high-performing open source implementation of the BLAS is provided by our
BLAS-like Library Instantiation Software (BLIS). The following steps will install BLIS if you are
using the Linux OS (on a Mac, there may be a few more steps, which are discussed later in this
unit.)

• Visit the https://github.com/flame/blis.

• Click on

and copy https://github.com/flame/blis.git.

• In a terminal session, in your home directory, enter

git clone https://github.com/flame/blis.git

(to make sure you get the address right, you will want to paste the address you copied in the
last step.)

• Change directory to blis:

cd blis

• Indicate a specific version of BLIS so that we all are using the same release:

git checkout pfhp

• Configure, build, and install with OpenMP turned on.

./configure -p ~/blis auto
make -j8
make check -j8
make install

The -p ~/blis installs the library in the subdirectory ~/blis of your home directory, which is
where the various exercises in the course expect it to reside.

• If you run into a problem while installing BLIS, you may want to consult https://github.com/
flame/blis/blob/master/docs/BuildSystem.md.

On Mac OS-X

• You may need to install Homebrew, a program that helps you install various software on you
mac. Warning: you may need "root" privileges to do so.

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

https://github.com/flame/blis
https://github.com/flame/blis/blob/master/docs/BuildSystem.md
https://github.com/flame/blis/blob/master/docs/BuildSystem.md
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Keep an eye on the output to see if the “Command Line Tools” get installed. This may not
be installed if you already have Xcode Command line tools installed. If this happens, post in
the "Discussion" for this unit, and see if someone can help you out.

• Use Homebrew to install the gcc compiler:

$ brew install gcc

Check if gcc installation overrides clang:

$ which gcc

The output should be /usr/local/bin. If it isn’t, you may want to add /usr/local/bin to "the
path." I did so by inserting

export PATH="/usr/local/bin:$PATH"

into the file .bash_profile in my home directory. (Notice the "period" before "bash_profile"

• Now you can go back to the beginning of this unit, and follow the instructions to install BLIS.

0.2.4.2 Installing libflame

Higher level linear algebra functionality, such as the various decompositions we will discuss in this
course, are supported by the LAPACK library [1]. Our libflame library is an implementation of
LAPACK that also exports an API for representing algorithms in code in a way that closely reflects
the FLAME notation to which you will be introduced in the course.

The libflame library can be cloned from

• https://github.com/flame/libflame.

by executing

git clone https://github.com/flame/libflame.git

in the command window.
Instructions on how to install it are at

• https://github.com/flame/libflame/blob/master/INSTALL.

Here is what I had to do on my MacBook Pro (OSX Catalina):

./configure --disable-autodetect-f77-ldflags --disable-autodetect-f77-name-mangling --prefix=$HOME/libflame
make -j8
make install

This will take a while!

0.3 Enrichments
In each week, we include "enrichments" that allow the participant to go beyond.

https://github.com/flame/libflame
https://github.com/flame/libflame/blob/master/INSTALL
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0.3.1 Ten surprises from numerical linear algebra
You may find the following list of insights regarding numerical linear algebra, compiled by John D.
Cook, interesting:

• John D. Cook. https://www.johndcook.com/blog/2010/01/20/ten-surprises-from-numerical-linear-algebra/.
2010.

0.3.2 Best algorithms of the 20th century
An article published in SIAM News, a publication of the Society for Industrial and Applied Math-
ermatics, lists the ten most important algorithms of the 20th century [10]:

1. 1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific
Laboratory, cook up the Metropolis algorithm, also known as the Monte Carlo method.

2. 1947: George Dantzig, at the RAND Corporation, creates the simplex method for linear
programming.

3. 1950: Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the Institute for
Numerical Analysisat the National Bureau of Standards, initiate the development of Krylov
subspace iteration methods.

4. 1951: Alston Householder of Oak Ridge National Laboratory formalizes the decompositional
approach to matrix computations.

5. 1957: John Backus leads a team at IBM in developing the Fortran optimizing compiler.

6. 1959–61: J.G.F. Francis of Ferranti Ltd., London, finds a stable method for computing
eigenvalues, known as the QR algorithm.

7. 1962: Tony Hoare of Elliott Brothers, Ltd., London, presents Quicksort.

8. 1965: James Cooley of the IBM T.J. Watson Research Center and John Tukey of Princeto-
nUniversity and AT&T Bell Laboratories unveil the fast Fourier transform.

9. 1977: Helaman Ferguson and Rodney Forcade of Brigham Young University advance an
integer relation detection algorithm.

10. 1987: Leslie Greengard and Vladimir Rokhlin of Yale University invent the fast multipole
algorithm.

Of these, we will explicitly cover three: the decomposition method to matrix computations, Krylov
subspace methods, and the QR algorithm. Although not explicitly covered, your understanding of
numerical linear algebra will also be a first step towards understanding some of the other numerical
algorithms listed.

0.4 Wrap Up

0.4.1 Additional Homework
For a typical week, additional assignments may be given in this unit.

https://www.johndcook.com/blog/2010/01/20/ten-surprises-from-numerical-linear-algebra/
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0.4.2 Summary
In a typical week, we provide a quick summary of the highlights in this unit.



Part I

Orthogonality

11



Week 1

Norms

1.1 Opening Remarks

1.1.1 Why norms?

YouTube: https://www.youtube.com/watch?v=DKX3TdQWQ90
The following exercises expose some of the issues that we encounter when computing.
We start by computing b = Ux, where U is upper triangular.

Homework 1.1.1.1 Compute  1 −2 1
0 −1 −1
0 0 2


 −1

2
1

 =

[Solution]
Next, let’s examine the slightly more difficult problem of finding a vector x that satisfies Ux = b.

Homework 1.1.1.2 Solve  1 −2 1
0 −1 −1
0 0 2


 χ0
χ1
χ2

 =

 −4
−3

2


[Solution]

The point of these two homework exercises is that if one creates a (nonsingular) n× n matrix
U and vector x of size n, then computing b = Ux followed by solving Ux̂ = b should leave us with
a vector x̂ such that x = x̂.

12

https://www.youtube.com/watch?v=DKX3TdQWQ90
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Remark 1.1.1.1 We don’t "teach" Matlab in this course. Instead, we think that Matlab is intuitive
enough that we can figure out what the various commands mean. We can always investigate them
by typing
help <command>

in the command window. For example, for this unit you may want to execute

help format
help rng
help rand
help triu
help *
help \
help diag
help abs
help min
help max

If you want to learn more about Matlab, you may want to take some of the tutorials offered by
Mathworks at https://www.mathworks.com/support/learn-with-matlab-tutorials.html.

Let us see if Matlab can compute the solution of a triangular matrix correctly.

Homework 1.1.1.3 In Matlab’s command window, create a random upper triangular matrix U :
format long

rng( 0 );
n = 3
U = triu( rand( n,n ) )
x = rand( n,1 )

Report results in long format. Seed the random
number generator so that we all create the same
random matrix U and vector x.

b = U * x; Compute right-hand side b from known solution
x.

xhat = U \ b; Solve Ux̂ = b.
xhat - x Report the difference between x̂ and x.
What do we notice?
Next, check how close Ux̂ is to b = Ux:

b - U * xhat
This is known as the residual.
What do we notice? [Solution]
To be able to compare more easily, we will compute the Euclidean length of x̂−x instead using

the Matlab command norm( xhat - x ). By adding a semicolon at the end of Matlab commands,
we suppress output.

Homework 1.1.1.4 Execute

https://www.mathworks.com/support/learn-with-matlab-tutorials.html
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format long

rng( 0 );
n = 100;
U = triu( rand( n,n ) );
x = rand( n,1 );

Report results in long format.
Seed the random number generator so that we all
create the same random matrix U and vector x.

b = U * x; Compute right-hand side b from known solution
x.

xhat = U \ b; Solve Ux̂ = b

norm( xhat - x ) Report the Euclidean length of the difference be-
tween x̂ and x.

What do we notice?
Next, check how close Ux̂ is to b = Ux, again using the Euclidean length:

norm( b - U * xhat )

What do we notice? [Solution]
The next exercise helps us gain insight into what is going on.

Homework 1.1.1.5 Continuing with the U, x, b, and xhat from Homework 1.1.1.4, consider
• When is an upper triangular matrix singular?

• How large is the smallest element on the diagonal of the U from Homework 1.1.1.4? (min(
abs( diag( U ) ) ) returns it!)

• If U were singular, how many solutions to Ux̂ = b would there be? How can we characterize
them?

• What is the relationship between x̂− x and U?

What have we learned? [Solution]
To mathematically qualify and quantify all this, we need to be able to talk about "small" and

"large" vectors, and "small" and "large" matrices. For that, we need to generalize the notion of
length. By the end of this week, this will give us some of the tools to more fully understand what
we have observed.

YouTube: https://www.youtube.com/watch?v=2ZEtcnaynnM

1.1.2 Overview
• 1.1 Opening Remarks

◦ 1.1.1 Why norms?

https://www.youtube.com/watch?v=2ZEtcnaynnM
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◦ 1.1.2 Overview
◦ 1.1.3 What you will learn

• 1.2 Vector Norms

◦ 1.2.1 Absolute value
◦ 1.2.2 What is a vector norm?
◦ 1.2.3 The vector 2-norm (Euclidean length)
◦ 1.2.4 The vector p-norms
◦ 1.2.5 Unit ball
◦ 1.2.6 Equivalence of vector norms

• 1.3 Matrix Norms

◦ 1.3.1 Of linear transformations and matrices
◦ 1.3.2 What is a matrix norm?
◦ 1.3.3 The Frobenius norm
◦ 1.3.4 Induced matrix norms
◦ 1.3.5 The matrix 2-norm
◦ 1.3.6 Computing the matrix 1-norm and ∞-norm
◦ 1.3.7 Equivalence of matrix norms
◦ 1.3.8 Submultiplicative norms
◦ 1.3.9 Summary

• 1.4 Condition Number of a Matrix

◦ 1.4.1 Conditioning of a linear system
◦ 1.4.2 Loss of digits of accuracy
◦ 1.4.3 The conditioning of an upper triangular matrix

• 1.5 Enrichments

◦ 1.5.1 Condition number estimation

• 1.6 Wrap Up

◦ 1.6.1 Additional homework
◦ 1.6.2 Summary
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1.1.3 What you will learn
Numerical analysis is the study of how the perturbation of a problem or data affects the accuracy
of computation. This inherently means that you have to be able to measure whether changes are
large or small. That, in turn, means we need to be able to quantify whether vectors or matrices
are large or small. Norms are a tool for measuring magnitude.

Upon completion of this week, you should be able to

• Prove or disprove that a function is a norm.

• Connect linear transformations to matrices.

• Recognize, compute, and employ different measures of length, which differ and yet are equiv-
alent.

• Exploit the benefits of examining vectors on the unit ball.

• Categorize different matrix norms based on their properties.

• Describe, in words and mathematically, how the condition number of a matrix affects how
a relative change in the right-hand side can amplify into relative change in the solution of a
linear system.

• Use norms to quantify the conditioning of solving linear systems.

1.2 Vector Norms

1.2.1 Absolute value
Remark 1.2.1.1 Don’t Panic!

In this course, we mostly allow scalars, vectors, and matrices to be complex-valued. This means
we will use terms like "conjugate" and "Hermitian" quite liberally. You will think this is a big deal,
but actually, if you just focus on the real case, you will notice that the complex case is just a natural
extension of the real case.

YouTube: https://www.youtube.com/watch?v=V5ZQmR4zTeU
Recall that | · | : C → R is the function that returns the absolute value of the input. In other

words, if α = αr + αci, where αr and αc are the real and imaginary parts of α, respectively, then

|α| =
√
α2
r + α2

c .

The absolute value (magnitude) of a complex number can also be thought of as the (Euclidean)
distance from the point in the complex plane to the origin of that plane, as illustrated below for
the number 3 + 2i.

https://www.youtube.com/watch?v=V5ZQmR4zTeU
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Alternatively, we can compute the absolute value as

|α|
=√
α2
r + α2

c

=√
α2
r − αcαri+ αrαci+ α2

c

=√
(αr − αci)(αr + αci)
=√
αα ,

where α denotes the complex conjugate of α:

α = αr + αci = αr − αci.

The absolute value function has the following properties:

• α 6= 0⇒ |α| > 0 (| · | is positive definite),

• |αβ| = |α||β| (| · | is homogeneous), and

• |α+ β| ≤ |α|+ |β| (| · | obeys the triangle inequality).

Norms are functions from a domain to the real numbers that are positive definite, homogeneous,
and obey the triangle inequality. This makes the absolute value function an example of a norm.

The below exercises help refresh your fluency with complex arithmetic.

Homework 1.2.1.1
1. (1 + i)(2− i) =

2. (2− i)(1 + i) =

3. (1− i)(2− i) =

4. (1− i)(2− i) =

5. (2− i)(1− i) =
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6. (1− i)(2− i) =

[Solution]

Homework 1.2.1.2 Let α, β ∈ C.
1. ALWAYS/SOMETIMES/NEVER: αβ = βα.

2. ALWAYS/SOMETIMES/NEVER: αβ = βα.

[Hint] [Answer] [Solution]

Homework 1.2.1.3 Let α, β ∈ C.
ALWAYS/SOMETIMES/NEVER: αβ = βα. [Hint] [Answer] [Solution]

Homework 1.2.1.4 Let α ∈ C.
ALWAYS/SOMETIMES/NEVER: αα ∈ R [Answer] [Solution]

Homework 1.2.1.5 Prove that the absolute value function is homogeneous: |αβ| = |α||β| for all
α, β ∈ C. [Solution]

Homework 1.2.1.6 Let α ∈ C.
ALWAYS/SOMETIMES/NEVER: |α| = |α|. [Answer] [Solution]

1.2.2 What is a vector norm?

YouTube: https://www.youtube.com/watch?v=CTrUVfLGcNM
A vector norm extends the notion of an absolute value to vectors. It allows us to measure

the magnitude (or length) of a vector. In different situations, a different measure may be more
appropriate.

Definition 1.2.2.1 Vector norm. Let ν : Cm → R. Then ν is a (vector) norm if for all
x, y ∈ Cm and all α ∈ C

• x 6= 0⇒ ν(x) > 0 (ν is positive definite),

• ν(αx) = |α|ν(x) (ν is homogeneous), and

• ν(x+ y) ≤ ν(x) + ν(y) (ν obeys the triangle inequality).

♦

Homework 1.2.2.1 TRUE/FALSE: If ν : Cm → R is a norm, then ν(0) = 0. [Hint] [Answer]
[Solution]

Remark 1.2.2.2 We typically use ‖ · ‖ instead of ν(·) for a function that is a norm.

https://www.youtube.com/watch?v=CTrUVfLGcNM
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1.2.3 The vector 2-norm (Euclidean length)

YouTube: https://www.youtube.com/watch?v=bxDDpUZEqBs
The length of a vector is most commonly measured by the "square root of the sum of the squares

of the elements," also known as the Euclidean norm. It is called the 2-norm because it is a member
of a class of norms known as p-norms, discussed in the next unit.

Definition 1.2.3.1 Vector 2-norm. The vector 2-norm ‖ · ‖2 : Cm → R is defined for x ∈ Cm
by

‖x‖2 =
√
|χ0|2 + · · ·+ |χm−1|2 =

√√√√m−1∑
i=0
|χi|2.

Equivalently, it can be defined by
‖x‖2 =

√
xHx

or

‖x‖2 =
√
χ0χ0 + · · ·+ χm−1χm−1 =

√√√√m−1∑
i=0

χiχi.

♦

Remark 1.2.3.2 The notation xH requires a bit of explanation. If

x =

 χ0
...
χm


then the row vector

xH =
(
χ0 · · · χm

)
is the Hermitian transpose of x (or, equivalently, the Hermitian transpose of the vector x that is
viewed as a matrix) and xHy can be thought of as the dot product of x and y or, equivalently, as
the matrix-vector multiplication of the matrix xH times the vector y.

To prove that the 2-norm is a norm (just calling it a norm doesn’t mean it is, after all), we need
a result known as the Cauchy-Schwarz inequality. This inequality relates the magnitude of the dot
product of two vectors to the product of their 2-norms: if x, y ∈ Rm, then |xT y| ≤ ‖x‖2‖y‖2. To
motivate this result before we rigorously prove it, recall from your undergraduate studies that the
component of x in the direction of a vector y of unit length is given by (yTx)y, as illustrated by

https://www.youtube.com/watch?v=bxDDpUZEqBs
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The length of the component of x in the direction of y then equals

‖(yTx)y‖2
= < definition >√

(yTx)T yT (yTx)y
= < zα = αz >√

(xT y)2yT y

= < y has unit length >
|yTx|

= < definition >
|xT y|.

Thus |xT y| ≤ ‖x‖2 (since a component should be shorter than the whole). If y is not of unit length
(but a nonzero vector), then |xT y

‖y‖2
| ≤ ‖x‖2 or, equivalently, |xT y| ≤ ‖x‖2‖y‖2.

We now state this result as a theorem, generalized to complex valued vectors:

Theorem 1.2.3.3 Cauchy-Schwarz inequality. Let x, y ∈ Cm. Then |xHy| ≤ ‖x‖2‖y‖2.
Proof. Assume that x 6= 0 and y 6= 0, since otherwise the inequality is trivially true. We can then
choose x̂ = x/‖x‖2 and ŷ = y/‖y‖2. This leaves us to prove that |x̂H ŷ| ≤ 1 since ‖x̂‖2 = ‖ŷ‖2 = 1.

Pick
α =

{
1 if xHy = 0
ŷH x̂/|x̂H ŷ| otherwise.

so that |α| = 1 and αx̂H ŷ is real and nonnegative. Note that since it is real we also know that

αx̂H ŷ
= < β = β if β is real >

αx̂H ŷ
= < property of complex conjugation >

αŷH x̂

.
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Now,
0
≤ < ‖ · ‖2 is nonnegative definite >

‖x̂− αŷ‖22
= < ‖z‖22 = zHz >

(x̂− αŷ)H(x̂− αŷ)
= < multiplying out >

x̂H x̂− αŷH x̂− αx̂H ŷ + ααŷH ŷ
= < above assumptions and observations >

1− 2αx̂H ŷ + |α|2
= < αx̂H ŷ = |x̂H ŷ|; |α| = 1 >

2− 2|x̂H ŷ|.

Thus |x̂H ŷ| ≤ 1 and therefore |xHy| ≤ ‖x‖2‖y‖2. �

The proof of Theorem 1.2.3.3 does not employ any of the intuition we used to motivate it in the
real valued case just before its statement. We leave it to the reader to prove the Cauchy-Schartz
inequality for real-valued vectors by modifying (simplifying) the proof of Theorem 1.2.3.3.

Ponder This 1.2.3.1 Let x, y ∈ Rm. Prove that |xT y| ≤ ‖x‖2‖y‖2 by specializing the proof of
Theorem 1.2.3.3.

The following theorem states that the 2-norm is indeed a norm:

Theorem 1.2.3.4 The vector 2-norm is a norm.
We leave its proof as an exercise.

Homework 1.2.3.2 Prove Theorem 1.2.3.4. [Solution]
Throughout this course, we will reason about subvectors and submatrices. Let’s get some

practice:

Homework 1.2.3.3 Partition x ∈ Cm into subvectors:

x =


x0
x1
...

xM−1

 .

ALWAYS/SOMETIMES/NEVER: ‖xi‖2 ≤ ‖x‖2. [Answer] [Solution]

1.2.4 The vector p-norms

YouTube: https://www.youtube.com/watch?v=WGBMnmgJek8

https://www.youtube.com/watch?v=WGBMnmgJek8
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A vector norm is a measure of the magnitude of a vector. The Euclidean norm (length) is
merely the best known such measure. There are others. A simple alternative is the 1-norm.

Definition 1.2.4.1 Vector 1-norm. The vector 1-norm, ‖ · ‖1 : Cm → R, is defined for x ∈ Cm
by

‖x‖1 = |χ0|+ |χ1|+ · · ·+ |χm−1| =
m−1∑
i=0
|χi|.

♦

Homework 1.2.4.1 Prove that the vector 1-norm is a norm. [Solution]
The vector 1-norm is sometimes referred to as the "taxi-cab norm". It is the distance that a

taxi travels, from one point on a street to another such point, along the streets of a city that has
square city blocks.

Another alternative is the infinity norm.

Definition 1.2.4.2 Vector ∞-norm. The vector ∞-norm, ‖ · ‖∞ : Cm → R, is defined for
x ∈ Cm by

‖x‖∞ = max(|χ0|, . . . , |χm−1) = m−1max
i=0
|χi|.

♦
The infinity norm simply measures how large the vector is by the magnitude of its largest entry.

Homework 1.2.4.2 Prove that the vector ∞-norm is a norm. [Solution]
In this course, we will primarily use the vector 1-norm, 2-norm, and∞-norms. For completeness,

we briefly discuss their generalization: the vector p-norm.

Definition 1.2.4.3 Vector p-norm. Given p ≥ 1, the vector p-norm ‖ · ‖p : Cm → R is defined
for x ∈ Cm by

‖x‖p = p

√
|χ0|p + · · ·+ |χm−1|p =

(
m−1∑
i=0
|χi|p

)1/p

.

♦

Theorem 1.2.4.4 The vector p-norm is a norm.
The proof of this result is very similar to the proof of the fact that the 2-norm is a norm. It

depends on Hölder’s inequality, which is a generalization of the Cauchy-Schwarz inequality:

Theorem 1.2.4.5 Hölder’s inequality. Let 1 ≤ p, q ≤ ∞ with 1
p + 1

q = 1. If x, y ∈ Cm then
|xHy| ≤ ‖x‖p‖y‖q.

We skip the proof of Hölder’s inequality and Theorem 1.2.4.4. You can easily find proofs for
these results, should you be interested.

Remark 1.2.4.6 The vector 1-norm and 2-norm are obviously special cases of the vector p-norm.
It can be easily shown that the vector ∞-norm is also related:

lim
p→∞

‖x‖p = ‖x‖∞.

Ponder This 1.2.4.3 Consider Homework 1.2.3.3. Try to elegantly formulate this question in the
most general way you can think of. How do you prove the result?
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Ponder This 1.2.4.4 Consider the vector norm ‖ · ‖ : Cm → R, the matrix A ∈ Cm×n and the
function f : Cn → R defined by f(x) = ‖Ax‖. For what matrices A is the function f a norm?

1.2.5 Unit ball

YouTube: https://www.youtube.com/watch?v=aJgrpp7uscw
In 3-dimensional space, the notion of the unit ball is intuitive: the set of all points that are

a (Euclidean) distance of one from the origin. Vectors have no position and can have more than
three components. Still the unit ball for the 2-norm is a straight forward extension to the set of all
vectors with length (2-norm) one. More generally, the unit ball for any norm can be defined:

Definition 1.2.5.1 Unit ball. Given norm ‖ · ‖ : Cm → R, the unit ball with respect to ‖ · ‖
is the set {x | ‖x‖ = 1} (the set of all vectors with norm equal to one). We will use ‖x‖ = 1 as
shorthand for {x | ‖x‖ = 1}. ♦

Homework 1.2.5.1 Although vectors have no position, it is convenient to visualize a vector x ∈ R2

by the point in the plane to which it extends when rooted at the origin. For example, the vector

x =
(

2
1

)
can be so visualized with the point (2, 1). With this in mind, match the pictures on the

right corresponding to the sets on the left:
(a) ‖x‖2 = 1. (1)

(b) ‖x‖1 = 1. (2)

https://www.youtube.com/watch?v=aJgrpp7uscw
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(c) ‖x‖∞ = 1. (3)

[Solution]

YouTube: https://www.youtube.com/watch?v=Ov77sE90P58

1.2.6 Equivalence of vector norms

YouTube: https://www.youtube.com/watch?v=qjZyKHvL13E

Homework 1.2.6.1 Fill out the following table:

x ‖x‖1 ‖x‖∞ ‖x‖2 1
0
0

 1
1
1

 1
−2
−1


[Solution]

In this course, norms are going to be used to reason that vectors are "small" or "large". It would
be unfortunate if a vector were small in one norm yet large in another norm. Fortunately, the
following theorem excludes this possibility:

https://www.youtube.com/watch?v=Ov77sE90P58
https://www.youtube.com/watch?v=qjZyKHvL13E
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Theorem 1.2.6.1 Equivalence of vector norms. Let ‖ · ‖ : Cm → R and ||| · ||| : Cm → R both
be vector norms. Then there exist positive scalars σ and τ such that for all x ∈ Cm

σ‖x‖ ≤ |||x||| ≤ τ‖x‖.
Proof. The proof depends on a result from real analysis (sometimes called "advanced calculus")
that states that supx∈S f(x) is attained for some vector x ∈ S as long as f is continuous and S is
a compact (closed and bounded) set. For any norm ‖ · ‖, the unit ball ‖x‖ = 1 is a compact set.
When a supremum is an element in S, it is called the maximum instead and supx∈S f(x) can be
restated as maxx∈S f(x).

Those who have not studied real analysis (which is not a prerequisite for this course) have to
take this on faith. It is a result that we will use a few times in our discussion.

We prove that there exists a τ such that for all x ∈ Cm

|||x||| ≤ τ‖x‖,

leaving the rest of the proof as an exercise.
Let x ∈ Cm be an arbitary vector. W.l.o.g. assume that x 6= 0. Then

|||x|||
= < algebra >

|||x|||
‖x‖ ‖x‖
≤ < algebra >(

supz 6=0
|||z|||
‖z‖

)
‖x‖

= < change of variables: y = z/‖z‖ >(
sup‖y‖=1 |||y|||

)
‖x‖

= < the set ‖y‖ = 1 is compact >(
max‖y‖=1 |||y|||

)
‖x‖

The desired τ can now be chosen to equal max‖y‖=1 |||y|||. �

YouTube: https://www.youtube.com/watch?v=I1W6ErdEyoc

Homework 1.2.6.2 Complete the proof of Theorem 1.2.6.1. [Solution]

Example 1.2.6.2
• Let x ∈ R2. Use the picture

https://www.youtube.com/watch?v=I1W6ErdEyoc
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to determine the constant C such that ‖x‖1 ≤ C‖x‖∞. Give a vector x for which ‖x‖1 =
C‖x‖∞.

• For x ∈ R2 and the C you determined in the first part of this problem, prove that ‖x‖1 ≤
C‖x‖∞.

• Let x ∈ Cm. Extrapolate from the last part the constant C such that ‖x‖1 ≤ C‖x‖∞ and
then prove the inequality. Give a vector x for which ‖x‖1 = C‖x‖∞.

Solution.

• Consider the picture

◦ The red square represents all vectors such that ‖x‖∞ = 1 and the white square represents
all vectors such that ‖x‖1 = 2.
◦ All points on or outside the red square represent vectors y such that ‖y‖∞ ≥ 1. Hence
if ‖y‖1 = 2 then ‖y‖∞ ≥ 1.
◦ Now, pick any z 6= 0. Then ‖2z/‖z‖1‖1 = 2). Hence

‖2z/‖z‖1‖∞ ≥ 1

which can be rewritten as
‖z‖1 ≤ 2‖z‖∞.

Thus, C = 2 works.

◦ Now, from the picture it is clear that x =
(

1
1

)
has the property that ‖x‖1 = 2‖x‖∞.

Thus, the inequality is "tight."
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• We now prove that ‖x‖1 ≤ 2‖x‖∞ for x ∈ R2:

‖x‖1
= < definition >

|χ0|+ |χ1|
≤ < algebra >

max(|χ0|, |χ1|) + max(|χ0|, |χ1|)
= < algebra >

2 max(|χ0|, |χ1|)
= < definition >

2‖x‖∞.

• From the last part we extrapolate that ‖x‖1 ≤ m‖x‖∞.

‖x‖1
= < definition >∑m−1
i=0 |χi|
≤ < algebra >∑m−1
i=0

(
maxm−1

j=0 |χj |
)

= < algebra >
mmaxm−1

j=0 |χj |
= < definition >

m‖x‖∞.

Equality holds (i.e., ‖x‖1 = m‖x‖∞) for x =


1
1
...
1

.
Some will be able to go straight for the general result, while others will want to seek inspiration

from the picture and/or the specialized case where x ∈ R2. �

Homework 1.2.6.3 Let x ∈ Cm. The following table organizes the various bounds:

‖x‖1 ≤ C1,2‖x‖2 ‖x‖1 ≤ C1,∞‖x‖∞
‖x‖2 ≤ C2,1‖x‖1 ‖x‖2 ≤ C2,∞‖x‖∞
‖x‖∞ ≤ C∞,1‖x‖1 ‖x‖∞ ≤ C∞,2‖x‖2

For each, determine the constant Cx,y and prove the inequality, including that it is a tight inequality.
Hint: look at the hint! [Hint] [Solution]

Remark 1.2.6.3 The bottom line is that, modulo a constant factor, if a vector is "small" in one
norm, it is "small" in all other norms. If it is "large" in one norm, it is "large" in all other norms.
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1.3 Matrix Norms

1.3.1 Of linear transformations and matrices

YouTube: https://www.youtube.com/watch?v=xlkiZEbYh38
We briefly review the relationship between linear transformations and matrices, which is key to

understanding why linear algebra is all about matrices and vectors.

Definition 1.3.1.1 Linear transformations and matrices. Let L : Cn → Cm. Then L is said
to be a linear transformation if for all α ∈ C and x, y ∈ Cn

• L(αx) = αL(x). That is, scaling first and then transforming yields the same result as trans-
forming first and then scaling.

• L(x + y) = L(x) + L(y). That is, adding first and then transforming yields the same result
as transforming first and then adding.

♦
The importance of linear transformations comes in part from the fact that many problems in

science boil down to, given a function F : Cn → Cm and vector y ∈ Cm, find x such that F (x) = y.
This is known as an inverse problem. Under mild conditions, F can be locally approximated with
a linear transformation L and then, as part of a solution method, one would want to solve Lx = y.

The following theorem provides the link between linear transformations and matrices:

Theorem 1.3.1.2 Let L : Cn → Cm be a linear transformation, v0, v1, · · · , vk−1 ∈ Cn, and x ∈ Ck.
Then

L(χ0v0 + χ1v1 + · · ·+ χk−1vk−1) = χ0L(v0) + χ1L(v1) + · · ·+ χk−1L(vk−1),

where

x =

 χ0
...

χk−1

 .
Proof. A simple inductive proof yields the result. For details, see Week 2 of Linear Algebra:
Foundations to Frontiers (LAFF) [27]. �

The following set of vectors ends up playing a crucial role throughout this course:

Definition 1.3.1.3 Standard basis vector. In this course, we will use ej ∈ Cm to denote the

https://www.youtube.com/watch?v=xlkiZEbYh38
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standard basis vector with a "1" in the position indexed with j. So,

ej =



0
...
0
1
0
...
0


←− j

♦
Key is the fact that any vector x ∈ Cn can be written as a linear combination of the standard

basis vectors of Cn:

x =


χ0
χ1
...

χn−1

 = χ0


1
0
...
0

+ χ1


0
1
...
0

+ · · ·+ χn−1


0
0
...
1


= χ0e0 + χ1e1 + · · ·+ χn−1en−1.

Hence, if L is a linear transformation,

L(x) = L(χ0e0 + χ1e1 + · · ·+ χn−1en−1)
= χ0 L(e0)︸ ︷︷ ︸

a0

+ χ1 L(e1)︸ ︷︷ ︸
a1

+ · · ·+ χn−1 L(en−1)︸ ︷︷ ︸
an−1

.

If we now let aj = L(ej) (the vector aj is the transformation of the standard basis vector ej and
collect these vectors into a two-dimensional array of numbers:

A =
(
a0 a1 · · · an−1

)
(1.3.1)

then we notice that information for evaluating L(x) can be found in this array, since L can then
alternatively be computed by

L(x) = χ0a0 + χ1a1 + · · ·+ χn−1an−1.

The array A in (1.3.1) we call a matrix and the operation Ax = χ0a0 + χ1a1 + · · ·+ χn−1an−1 we
call matrix-vector multiplication. Clearly

Ax = L(x).

Remark 1.3.1.4 Notation. In these notes, as a rule,
• Roman upper case letters are used to denote matrices.

• Roman lower case letters are used to denote vectors.

• Greek lower case letters are used to denote scalars.

Corresponding letters from these three sets are used to refer to a matrix, the row or columns of
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that matrix, and the elements of that matrix. If A ∈ Cm×n then

A
= < partition A by columns and rows >

(
a0 a1 · · · an−1

)
=


ãT0
ãT1
...

ãTm−1


= < expose the elements of A >

α0,0 α0,1 · · · α0,n−1
α1,0 α1,1 · · · α1,n−1
...

...
...

...
αm−1,0 αm−1,1 · · · αm−1,n−1


We now notice that the standard basis vector ej ∈ Cm equals the column of the m×m identity

matrix indexed with j:

I =


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 =
(
e0 e1 · · · em−1

)
=


ẽT0
ẽT1
...

ẽTm−1

 .
Remark 1.3.1.5 The important thing to note is that a matrix is a convenient representation of
a linear transformation and matrix-vector multiplication is an alternative way for evaluating that
linear transformation.

YouTube: https://www.youtube.com/watch?v=cCFAnQmwwIw
Let’s investigate matrix-matrix multiplication and its relationship to linear transformations.

Consider two linear transformations

LA : Ck → Cm represented by matrix A
LB : Cn → Ck represented by matrix B

and define
LC(x) = LA(LB(x)),

as the composition of LA and LB. Then it can be easily shown that LC is also a linear transfor-
mation. Let m × n matrix C represent LC . How are A, B, and C related? If we let cj equal the
column of C indexed with j, then because of the link between matrices, linear transformations, and
standard basis vectors

cj = LC(ej) = LA(LB(ej)) = LA(bj) = Abj ,

https://www.youtube.com/watch?v=cCFAnQmwwIw
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where bj equals the column of B indexed with j. Now, we say that C = AB is the product of A
and B defined by(

c0 c1 · · · cn−1
)

= A
(
b0 b1 · · · bn−1

)
=
(
Ab0 Ab1 · · · Abn−1

)
and define the matrix-matrix multiplication as the operation that computes

C := AB,

which you will want to pronounce "C becomes A times B" to distinguish assignment from equality.
If you think carefully how individual elements of C are computed, you will realize that they equal
the usual "dot product of rows of A with columns of B."

YouTube: https://www.youtube.com/watch?v=g_9RbA5EOIc
As already mentioned, throughout this course, it will be important that you can think about

matrices in terms of their columns and rows, and matrix-matrix multiplication (and other operations
with matrices and vectors) in terms of columns and rows. It is also important to be able to think
about matrix-matrix multiplication in three different ways. If we partition each matrix by rows
and by columns:

C =
(
c0 · · · cn−1

)
=


c̃T0
...

c̃Tm−1

 , A =
(
a0 · · · ak−1

)
=


ãT0
...

ãTm−1

 ,
and

B =
(
b0 · · · bn−1

)
=


b̃T0
...

b̃Tk−1

 ,
then C := AB can be computed in the following ways:

1. By columns:(
c0 · · · cn−1

)
:= A

(
b0 · · · bn−1

)
=
(
Ab0 · · · Abn−1

)
.

In other words, cj := Abj for all columns of C.

2. By rows: 
c̃T0
...

c̃Tm−1

 :=


ãT0
...

ãTm−1

B =


ãT0 B
...

ãTm−1B

 .
In other words, c̃Ti = ãTi B for all rows of C.

https://www.youtube.com/watch?v=g_9RbA5EOIc
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3. One you may not have thought about much before:

C :=
(
a0 · · · ak−1

)
b̃T0
...

b̃Tk−1

 = a0b̃
T
0 + · · ·+ ak−1b̃

T
k−1,

which should be thought of as a sequence of rank-1 updates, since each term is an outer
product and an outer product has rank of at most one.

These three cases are special cases of the more general observation that, if we can partition C,
A, and B by blocks (submatrices),

C =


C0,0 · · · C0,N−1
...

...
CM−1,0 · · · CM−1,N−1

 ,


A0,0 · · · A0,K−1
...

...
AM−1,0 · · · AM−1,K−1

 ,
and 

B0,0 · · · B0,N−1
...

...
BK−1,0 · · · BK−1,N−1

 ,
where the partitionings are "conformal", then

Ci,j =
K−1∑
p=0

Ai,pBp,j .

Remark 1.3.1.6 If the above review of linear transformations, matrices, matrix-vector multipli-
cation, and matrix-matrix multiplication makes you exclaim "That is all a bit too fast for me!"
then it is time for you to take a break and review Weeks 2-5 of our introductory linear algebra
course "Linear Algebra: Foundations to Frontiers." Information, including notes [27] (optionally
downloadable for free) and a link to the course on edX [28] (which can be audited for free) can be
found at http://ulaff.net.

1.3.2 What is a matrix norm?

YouTube: https://www.youtube.com/watch?v=6DsBTz1eU7E
A matrix norm extends the notions of an absolute value and vector norm to matrices:

Definition 1.3.2.1 Matrix norm. Let ν : Cm×n → R. Then ν is a (matrix) norm if for all
A,B ∈ Cm×n and all α ∈ C

• A 6= 0⇒ ν(A) > 0 (ν is positive definite),

http://ulaff.net
https://www.youtube.com/watch?v=6DsBTz1eU7E


WEEK 1. NORMS 33

• ν(αA) = |α|ν(A) (ν is homogeneous), and

• ν(A+B) ≤ ν(A) + ν(B) (ν obeys the triangle inequality).

♦

Homework 1.3.2.1 Let ν : Cm×n → R be a matrix norm.
ALWAYS/SOMETIMES/NEVER: ν(0) = 0. [Hint] [Answer] [Solution]

Remark 1.3.2.2 As we do with vector norms, we will typically use ‖·‖ instead of ν(·) for a function
that is a matrix norm.

1.3.3 The Frobenius norm

YouTube: https://www.youtube.com/watch?v=0ZHnGgrJXa4

Definition 1.3.3.1 The Frobenius norm. The Frobenius norm ‖ · ‖F : Cm×n → R is defined
for A ∈ Cm×n by

‖A‖F =

√√√√m−1∑
i=0

n−1∑
j=0
|αi,j |2 =

√√√√√√√
|α0,0|2 + · · · + |α0,n−1|2 +

...
...

...
...

...
|αm−1,0|2 + · · · + |αm−1,n−1|2.

♦
One can think of the Frobenius norm as taking the columns of the matrix, stacking them on

top of each other to create a vector of size m× n, and then taking the vector 2-norm of the result.

Homework 1.3.3.1 Partition m× n matrix A by columns:

A =
(
a0 · · · an−1

)
.

Show that

‖A‖2F =
n−1∑
j=0
‖aj‖22.

[Solution]

Homework 1.3.3.2 Prove that the Frobenius norm is a norm. [Solution]

https://www.youtube.com/watch?v=0ZHnGgrJXa4
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Homework 1.3.3.3 Partition m× n matrix A by rows:

A =


ãT0
...

ãTm−1

 .
Show that

‖A‖2F =
m−1∑
i=0
‖ãi‖22,

where ãi = ãTi
T . [Solution]

Let us review the definition of the transpose of a matrix (which we have already used when
defining the dot product of two real-valued vectors and when identifying a row in a matrix):

Definition 1.3.3.2 Transpose. If A ∈ Cm×n and

A =



α0,0 α0,1 · · · α0,n−1
α1,0 α1,1 · · · α1,n−1
...

...
...

...
αm−1,0 αm−1,1 · · · αm−1,n−1


then its transpose is defined by

AT =



α0,0 α1,0 · · · αm−1,0
α0,1 α1,1 · · · αm−1,1
...

...
...

...
α0,n−1 α1,n−1 · · · αm−1,n−1


.

♦
For complex-valued matrices, it is important to also define the Hermitian transpose of a

matrix:
Definition 1.3.3.3 Hermitian transpose. If A ∈ Cm×n and

A =



α0,0 α0,1 · · · α0,n−1
α1,0 α1,1 · · · α1,n−1
...

...
...

...
αm−1,0 αm−1,1 · · · αm−1,n−1


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then its Hermitian transpose is defined by

AH = A
T



α0,0 α1,0 · · · αm−1,0
α0,1 α1,1 · · · αm−1,1
...

...
...

...
α0,n−1 α1,n−1 · · · αm−1,n−1


,

where A denotes the conjugate of a matrix, in which each element of the matrix is conjugated.
♦

We note that

• A
T = AT .

• If A ∈ Rm×n, then AH = AT .

• If x ∈ Cm, then xH is defined consistent with how we have used it before.

• If α ∈ C, then αH = α.
(If you view the scalar as a matrix and then Hermitian transpose it, you get the matrix with
as only element α.)

Don’t Panic!. While working with complex-valued scalars, vectors, and matrices may appear a bit
scary at first, you will soon notice that it is not really much more complicated than working with
their real-valued counterparts.

Homework 1.3.3.4 Let A ∈ Cm×k and B ∈ Ck×n. Using what you once learned about matrix
transposition and matrix-matrix multiplication, reason that (AB)H = BHAH . [Solution]

Definition 1.3.3.4 Hermitian. A matrix A ∈ Cm×m is Hermitian if and only if A = AH . ♦

Obviously, if A ∈ Rm×m, then A is a Hermitian matrix if and only if A is a symmetric matrix.

Homework 1.3.3.5 Let A ∈ Cm×n.
ALWAYS/SOMETIMES/NEVER: ‖AH‖F = ‖A‖F . [Answer] [Solution]
Similarly, other matrix norms can be created from vector norms by viewing the matrix as a

vector. It turns out that, other than the Frobenius norm, these aren’t particularly interesting in
practice. An example can be found in Homework 1.6.1.6.

Remark 1.3.3.5 The Frobenius norm of a m × n matrix is easy to compute (requiring O(mn)
computations). The functions f(A) = ‖A‖F and f(A) = ‖A‖2F are also differentiable. However,
you’d be hard-pressed to find a meaningful way of linking the definition of the Frobenius norm
to a measure of an underlying linear transformation (other than by first transforming that linear
transformation into a matrix).
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1.3.4 Induced matrix norms

YouTube: https://www.youtube.com/watch?v=M6ZVBRFnYcU
Recall from Subsection 1.3.1 that a matrix, A ∈ Cm×n, is a 2-dimensional array of numbers

that represents a linear transformation, L : Cn → Cm, such that for all x ∈ Cn the matrix-vector
multiplication Ax yields the same result as does L(x).

The question "What is the norm of matrix A?" or, equivalently, "How ’large’ is A?" is the same as
asking the question "How ’large’ is L?" What does this mean? It suggests that what we really want
is a measure of how much linear transformation L or, equivalently, matrix A "stretches" (magnifies)
the "length" of a vector. This observation motivates a class of matrix norms known as induced
matrix norms.
Definition 1.3.4.1 Induced matrix norm. Let ‖ · ‖µ : Cm → R and ‖ · ‖ν : Cn → R be vector
norms. Define ‖ · ‖µ,ν : Cm×n → R by

‖A‖µ,ν = sup
x ∈ Cn
x 6= 0

‖Ax‖µ
‖x‖ν

.

♦
Matrix norms that are defined in this way are said to be induced matrix norms.

Remark 1.3.4.2 In context, it is obvious (from the column size of the matrix) what the size of
vector x is. For this reason, we will write

‖A‖µ,ν = sup
x ∈ Cn
x 6= 0

‖Ax‖µ
‖x‖ν

as ‖A‖µ,ν = sup
x 6=0

‖Ax‖µ
‖x‖ν

.

Let us start by interpreting this. How "large" A is, as measured by ‖A‖µ,ν , is defined as the
most that A magnifies the length of nonzero vectors, where the length of the vector, x, is measured
with norm ‖ · ‖ν and the length of the transformed vector, Ax, is measured with norm ‖ · ‖µ.

Two comments are in order. First,

sup
x 6=0

‖Ax‖µ
‖x‖ν

= sup
‖x‖ν=1

‖Ax‖µ.

https://www.youtube.com/watch?v=M6ZVBRFnYcU
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This follows from the following sequence of equivalences:

supx 6=0
‖Ax‖µ
‖x‖ν

= < homogeneity >

supx 6=0 ‖ Ax
‖x‖ν ‖µ

= < norms are associative >
supx 6=0 ‖A x

‖x‖ν ‖µ
= < substitute y = x/‖x‖ν >

sup‖y‖ν=1 ‖Ay‖µ.

Second, the "sup" (which stands for supremum) is used because we can’t claim yet that there
is a nonzero vector x for which

sup
x 6=0

‖Ax‖µ
‖x‖ν

is attained or, alternatively, a vector, x, with ‖x‖ν = 1 for which

sup
‖x‖ν=1

‖Ax‖µ

is attained. In words, it is not immediately obvious that there is a vector for which the supremum
is attained. The fact is that there is always such a vector x. The proof again depends on a result
from real analysis, also employed in Proof 1.2.6.1, that states that supx∈S f(x) is attained for some
vector x ∈ S as long as f is continuous and S is a compact set. For any norm, ‖x‖ = 1 is a compact
set. Thus, we can replace sup by max from here on in our discussion.

We conclude that the following two definitions are equivalent definitions to the one we already
gave:

Definition 1.3.4.3 Let ‖ · ‖µ : Cm → R and ‖ · ‖ν : Cn → R be vector norms. Define ‖ · ‖µ,ν :
Cm×n → R by

‖A‖µ,ν = max
x 6=0

‖Ax‖µ
‖x‖ν

.

or, equivalently,
‖A‖µ,ν = max

‖x‖ν=1
‖Ax‖µ.

♦

Remark 1.3.4.4 In this course, we will often encounter proofs involving norms. Such proofs are
much cleaner if one starts by strategically picking the most convenient of these two definitions.
Until you gain the intuition needed to pick which one is better, you may have to start your proof
using one of them and then switch to the other one if the proof becomes unwieldy.

Theorem 1.3.4.5 ‖ · ‖µ,ν : Cm×n → R is a norm.
Proof. To prove this, we merely check whether the three conditions are met:

Let A,B ∈ Cm×n and α ∈ C be arbitrarily chosen. Then

• A 6= 0⇒ ‖A‖µ,ν > 0 (‖ · ‖µ,ν is positive definite):
Notice that A 6= 0 means that at least one of its columns is not a zero vector (since at least
one element is nonzero). Let us assume it is the jth column, aj , that is nonzero. Let ej equal
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the column of I (the identity matrix) indexed with j. Then

‖A‖µ,ν
= < definition >

maxx 6=0
‖Ax‖µ
‖x‖ν

≥ < ej is a specific vector >
‖Aej‖µ
‖ej‖ν

= < Aej = aj >
‖aj‖µ
‖ej‖ν
> < we assumed that aj 6= 0 >

0.

• ‖αA‖µ,ν = |α|‖A‖µ,ν (‖ · ‖µ,ν is homogeneous):

‖αA‖µ,ν
= < definition >

maxx 6=0
‖αAx‖µ
‖x‖ν

= < homogeneity >
maxx 6=0 |α|‖Ax‖µ‖x‖ν

= < algebra >
|α|maxx 6=0

‖Ax‖µ
‖x‖ν

= < definition >
|α|‖A‖µ,ν .

• ‖A+B‖µ,ν ≤ ‖A‖µ,ν + ‖B‖µ,ν (‖ · ‖µ,ν obeys the triangle inequality).

‖A+B‖µ,ν
= < definition >

maxx 6=0
‖(A+B)x‖µ
‖x‖ν

= < distribute >

maxx 6=0
‖Ax+Bx‖µ
‖x‖ν

≤ < triangle inequality >

maxx 6=0
‖Ax‖µ+‖Bx‖µ

‖x‖ν
= < algebra >

maxx 6=0
(
‖Ax‖µ
‖x‖ν + ‖Bx‖µ

‖x‖ν

)
≤ < algebra >

maxx 6=0
‖Ax‖µ
‖x‖ν + maxx 6=0

‖Bx‖µ
‖x‖ν

= < definition >
‖A‖µ,ν + ‖B‖µ,ν .

�
When ‖·‖µ and ‖·‖ν are the same norm (but possibly for different sizes of vectors), the induced

norm becomes
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Definition 1.3.4.6 Define ‖ · ‖µ : Cm×n → R by

‖A‖µ = max
x 6=0

‖Ax‖µ
‖x‖µ

or, equivalently,
‖A‖µ = max

‖x‖µ=1
‖Ax‖µ.

♦

Homework 1.3.4.1 Consider the vector p-norm ‖ · ‖p : Cn → R and let us denote the induced
matrix norm by ||| · ||| : Cm×n → R for this exercise: |||A||| = maxx 6=0

‖Ax‖p
‖x‖p .

ALWAYS/SOMETIMES/NEVER: |||y||| = ‖y‖p for y ∈ Cm. [Answer] [Solution]
This last exercise is important. One can view a vector x ∈ Cm as an m× 1 matrix. What this

last exercise tells us is that regardless of whether we view x as a matrix or a vector, ‖x‖p is the
same.

We already encountered the vector p-norms as an important class of vector norms. The matrix
p-norm is induced by the corresponding vector norm, as defined by

Definition 1.3.4.7 Matrix p-norm. For any vector p-norm, define the corresponding matrix
p-norm ‖ · ‖p : Cm×n → R by

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

or, equivalently, ‖A‖p = max
‖x‖p=1

‖Ax‖p.

♦

Remark 1.3.4.8 The matrix p-norms with p ∈ {1, 2,∞} will play an important role in our course,
as will the Frobenius norm. As the course unfolds, we will realize that in practice the matrix 2-norm
is of great theoretical importance but difficult to evaluate, except for special matrices. The 1-norm,
∞-norm, and Frobenius norms are straightforward and relatively cheap to compute (for an m× n
matrix, computing these costs O(mn) computation).

1.3.5 The matrix 2-norm

YouTube: https://www.youtube.com/watch?v=wZAlH_K9XeI
Let us instantiate the definition of the vector p norm for the case where p = 2, giving us a

matrix norm induced by the vector 2-norm or Euclidean norm:

Definition 1.3.5.1 Matrix 2-norm. Define the matrix 2-norm ‖ · ‖2 : Cm×n → R by

‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

= max
‖x‖2=1

‖Ax‖2.

https://www.youtube.com/watch?v=wZAlH_K9XeI
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♦

Remark 1.3.5.2 The problem with the matrix 2-norm is that it is hard to compute. At some point
later in this course, you will find out that if A is a Hermitian matrix (A = AH), then ‖A‖2 = |λ0|,
where λ0 equals the eigenvalue of A that is largest in magnitude. You may recall from your prior
linear algebra experience that computing eigenvalues involves computing the roots of polynomials,
and for polynomials of degree three or greater, this is a nontrivial task. We will see that the matrix
2-norm plays an important role in the theory of linear algebra, but less so in practical computation.
Example 1.3.5.3 Show that ∥∥∥∥∥

(
δ0 0
0 δ1

)∥∥∥∥∥
2

= max(|δ0|, |δ1|).

Solution.

YouTube: https://www.youtube.com/watch?v=B2rz0i5BB3A
Handouts/Week1/1.3.5TwoNormOf2x2DiagMatrix.pdf] Handouts/Week1/1.3.5TwoNormOf2x2DiagMatrix.

tex �

Remark 1.3.5.4 The proof of the last example builds on a general principle: Showing that
maxx∈D f(x) = α for some function f : D → R can be broken down into showing that both

max
x∈D

f(x) ≤ α

and
max
x∈D

f(x) ≥ α.

In turn, showing that maxx∈D f(x) ≥ α can often be accomplished by showing that there exists
a vector y ∈ D such that f(y) = α since then

α = f(y) ≤ max
x∈D

f(x).

We will use this technique in future proofs involving matrix norms.

Homework 1.3.5.1 Let D ∈ Cm×m be a diagonal matrix with diagonal entries δ0, . . . , δm−1. Show
that

‖D‖2 = m−1max
j=0
|δj |.

[Solution]

Homework 1.3.5.2 Let y ∈ Cm and x ∈ Cn.
ALWAYS/SOMETIMES/NEVER: ‖yxH‖2 = ‖y‖2‖x‖2. [Hint] [Answer] [Solution]

https://www.youtube.com/watch?v=B2rz0i5BB3A
Handouts/Week1/1.3.5TwoNormOf2x2DiagMatrix.pdf
Handouts/Week1/1.3.5TwoNormOf2x2DiagMatrix.tex
Handouts/Week1/1.3.5TwoNormOf2x2DiagMatrix.tex
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Homework 1.3.5.3 Let A ∈ Cm×n and aj its column indexed with j. ALWAYS/SOMETIMES/
NEVER: ‖aj‖2 ≤ ‖A‖2. [Hint] [Answer] [Solution]

Homework 1.3.5.4 Let A ∈ Cm×n. Prove that
• ‖A‖2 = max‖x‖2=‖y‖2=1 |yHAx|.

• ‖AH‖2 = ‖A‖2.

• ‖AHA‖2 = ‖A‖22.

[Hint] [Solution]

Homework 1.3.5.5 Partition A =


A0,0 · · · A0,N−1
...

...
AM−1,0 · · · AM−1,N−1

 .
ALWAYS/SOMETIMES/NEVER: ‖Ai,j‖2 ≤ ‖A‖2. [Hint] [Solution]

1.3.6 Computing the matrix 1-norm and ∞-norm

YouTube: https://www.youtube.com/watch?v=QTKZdGQ2C6w
The matrix 1-norm and matrix ∞-norm are of great importance because, unlike the matrix

2-norm, they are easy and relatively cheap to compute.. The following exercises show how to
practically compute the matrix 1-norm and ∞-norm.

Homework 1.3.6.1 Let A ∈ Cm×n and partition A =
(
a0 a1 · · · an−1

)
. ALWAYS/

SOMETIMES/NEVER: ‖A‖1 = max0≤j<n ‖aj‖1. [Hint] [Answer] [Solution]

Homework 1.3.6.2 Let A ∈ Cm×n and partition A =


ãT0
ãT1
...

ãTm−1

.
ALWAYS/SOMETIMES/NEVER:

‖A‖∞ = max
0≤i<m

‖ãi‖1(= max
0≤i<m

(|αi,0|+ |αi,1|+ · · ·+ |αi,n−1|))

Notice that in this exercise ãi is really (ãTi )T since ãTi is the label for the ith row of matrix A.
[Hint] [Answer] [Solution]

Remark 1.3.6.1 The last homework provides a hint as to how to remember how to compute the
matrix 1-norm and ∞-norm: Since ‖x‖1 must result in the same value whether x is considered

https://www.youtube.com/watch?v=QTKZdGQ2C6w
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as a vector or as a matrix, we can remember that the matrix 1-norm equals the maximum of the
1-norms of the columns of the matrix: Similarly, considering ‖x‖∞ as a vector norm or as matrix
norm reminds us that the matrix ∞-norm equals the maximum of the 1-norms of vectors that
become the rows of the matrix.

1.3.7 Equivalence of matrix norms

YouTube: https://www.youtube.com/watch?v=Csqd4AnH7ws

Homework 1.3.7.1 Fill out the following table:

A ‖A‖1 ‖A‖∞ ‖A‖F ‖A‖2 1 0 0
0 1 0
0 0 1


1 1 1
1 1 1
1 1 1
1 1 1

 0 1 0
0 1 0
0 1 0


[Hint] [Solution]

We saw that vector norms are equivalent in the sense that if a vector is "small" in one norm, it
is "small" in all other norms, and if it is "large" in one norm, it is "large" in all other norms. The
same is true for matrix norms.
Theorem 1.3.7.1 Equivalence of matrix norms. Let ‖ · ‖ : Cm×n → R and ||| · ||| : Cm×n → R
both be matrix norms. Then there exist positive scalars σ and τ such that for all A ∈ Cm×n

σ‖A‖ ≤ |||A||| ≤ τ‖A‖.
Proof. The proof again builds on the fact that the supremum over a compact set is achieved and
can be replaced by the maximum.

We will prove that there exists a τ such that for all A ∈ Cm×n

|||A||| ≤ τ‖A‖

leaving the rest of the proof to the reader.

https://www.youtube.com/watch?v=Csqd4AnH7ws
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Let A ∈ Cm×n be an arbitary matrix. W.l.o.g. assume that A 6= 0 (the zero matrix). Then

|||A|||
= < algebra >

|||A|||
‖A‖ ‖A‖
≤ < definition of suppremum >(

supZ 6=0
|||Z|||
‖Z‖

)
‖A‖

= < homogeneity >(
supZ 6=0 ||| Z‖Z‖ |||

)
‖A‖

= < change of variables B = Z/‖Z‖ >(
sup‖B‖=1 |||B|||

)
‖A‖

= < the set ‖B‖ = 1 is compact >(
max‖B‖=1 |||B|||

)
‖A‖

The desired τ can now be chosen to equal max‖B‖=1 |||B|||. �

Remark 1.3.7.2 The bottom line is that, modulo a constant factor, if a matrix is "small" in one
norm, it is "small" in any other norm.

Homework 1.3.7.2 Given A ∈ Cm×nshow that ‖A‖2 ≤ ‖A‖F . For what matrix is equality
attained?

Hmmm, actually, this is really easy to prove once we know about the SVD... Hard to prove
without it. So, this problem will be moved... [Solution]

Homework 1.3.7.3 Let A ∈ Cm×n. The following table summarizes the equivalence of various
matrix norms:

‖A‖1 ≤
√
m‖A‖2 ‖A‖1 ≤ m‖A‖∞ ‖A‖1 ≤

√
m‖A‖F

‖A‖2 ≤
√
n‖A‖1 ‖A‖2 ≤

√
m‖A‖∞ ‖A‖2 ≤ ‖A‖F

‖A‖∞ ≤ n‖A‖1 ‖A‖∞ ≤
√
n‖A‖2 ‖A‖∞ ≤

√
n‖A‖F

‖A‖F ≤
√
n‖A‖1 ‖A‖F ≤?‖A‖2 ‖A‖F ≤

√
m‖A‖∞

For each, prove the inequality, including that it is a tight inequality for some nonzero A.
(Skip ‖A‖F ≤?‖A‖2: we will revisit it in Week 2.) [Solution]

1.3.8 Submultiplicative norms

YouTube: https://www.youtube.com/watch?v=TvthvYGt9x8
There are a number of properties that we would like for a matrix norm to have (but not all

norms do have). Recalling that we would like for a matrix norm to measure by how much a vector

https://www.youtube.com/watch?v=TvthvYGt9x8
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is "stretched," it would be good if for a given matrix norm, ‖ · · · ‖ : Cm×n → R, there are vector
norms ‖ · ‖µ : Cm → R and ‖ · ‖ν : Cn → R such that, for arbitrary nonzero x ∈ Cn, the matrix
norm bounds by how much the vector is stretched:

‖Ax‖µ
‖x‖ν

≤ ‖A‖

or, equivalently,
‖Ax‖µ ≤ ‖A‖‖x‖ν

where this second formulation has the benefit that it also holds if x = 0. When this relationship
between the involved norms holds, the matrix norm is said to be subordinate to the vector norms:

Definition 1.3.8.1 Subordinate matrix norm. A matrix norm ‖ · ‖ : Cm×n → R is said to be
subordinate to vector norms ‖ · ‖µ : Cm → R and ‖ · ‖ν : Cn → R if, for all x ∈ Cn,

‖Ax‖µ ≤ ‖A‖‖x‖ν .

If ‖ · ‖µ and ‖ · ‖ν are the same norm (but perhaps for different m and n), then ‖ · ‖ is said to be
subordinate to the given vector norm. ♦

Fortunately, all the norms that we will employ in this course are subordinate matrix norms.

Homework 1.3.8.1 ALWAYS/SOMETIMES/NEVER: The matrix 2-norm is subordinate to the
vector 2-norm.

ALWAYS/SOMETIMES/NEVER: The Frobenius norm is subordinate to the vector 2-norm.
[Answer] [Solution]

Theorem 1.3.8.2 Induced matrix norms, ‖ · ‖µ,ν : Cm×n → R, are subordinate to the norms, ‖ · ‖µ
and ‖ · ‖ν , that induce them.
Proof. W.l.o.g. assume x 6= 0. Then

‖Ax‖µ = ‖Ax‖µ
‖x‖ν

‖x‖ν ≤ max
y 6=0

‖Ay‖µ
‖y‖ν

‖x‖ν = ‖A‖µ,ν‖x‖ν .

�

Corollary 1.3.8.3 Any matrix p-norm is subordinate to the corresponding vector p-norm.
Another desirable property that not all norms have is that

‖AB‖ ≤ ‖A‖‖B‖.

This requires the given norm to be defined for all matrix sizes..

Definition 1.3.8.4 Consistent matrix norm. A matrix norm ‖ · ‖ : Cm×n → R is said to be a
consistent matrix norm if it is defined for all m and n, using the same formula for all m and n. ♦

Obviously, this definition is a bit vague. Fortunately, it is pretty clear that all the matrix norms
we will use in this course, the Frobenius norm and the p-norms, are all consistently defined for all
matrix sizes.
Definition 1.3.8.5 Submultiplicative matrix norm. A consistent matrix norm ‖·‖ : Cm×n →
R is said to be submultiplicative if it satisfies

‖AB‖ ≤ ‖A‖‖B‖.
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♦

Theorem 1.3.8.6 Let ‖ · ‖ : Cn → R be a vector norm defined for all n. Define the corresponding
induced matrix norm as

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

= max
‖x‖=1

‖Ax‖.

Then for any A ∈ Cm×k and B ∈ Ck×n the inequality ‖AB‖ ≤ ‖A‖‖B‖ holds.
In other words, induced matrix norms are submultiplicative. To prove this theorem, it helps to

first prove a simpler result:

Lemma 1.3.8.7 Let ‖ · ‖ : Cn → R be a vector norm defined for all n and let ‖ · ‖ : Cm×n → R be
the matrix norm it induces. Then ‖Ax‖ ≤ ‖A‖‖x‖..
Proof. If x = 0, the result obviously holds since then ‖Ax‖ = 0 and ‖x‖ = 0. Let x 6= 0. Then

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

≥ ‖Ax‖
‖x‖

.

Rearranging this yields ‖Ax‖ ≤ ‖A‖‖x‖. �

We can now prove the theorem:
Proof.

‖AB‖
= < definition of induced matrix norm >

max‖x‖=1 ‖ABx‖
= < associativity >

max‖x‖=1 ‖A(Bx)‖
≤ < lemma >

max‖x‖=1(‖A‖‖Bx‖)
≤ < lemma >

max‖x‖=1(‖A‖‖B‖‖x‖)
= < ‖x‖ = 1 >

‖A‖‖B‖.

�

Homework 1.3.8.2 Show that ‖Ax‖µ ≤ ‖A‖µ,ν‖x‖ν for all x. [Solution]

Homework 1.3.8.3 Show that ‖AB‖µ ≤ ‖A‖µ,ν‖B‖ν,µ. [Solution]

Homework 1.3.8.4 Show that the Frobenius norm, ‖ · ‖F , is submultiplicative. [Solution]

Homework 1.3.8.5 For A ∈ Cm×n define

‖A‖ = m−1max
i=0

n−1max
j=0
|αi,j |.

1. TRUE/FALSE: This is a norm.

2. TRUE/FALSE: This is a consistent norm.

[Answer] [Solution]
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Remark 1.3.8.8 The important take-away: The norms we tend to use in this course, the p-norms
and the Frobenius norm, are all submultiplicative.

Homework 1.3.8.6 Let A ∈ Cm×n.
ALWAYS/SOMETIMES/NEVER: There exists a vector

x =

 χ0
...

χn−1

 with |χi| = 1 for i = 0, . . . , n− 1

such that ‖A‖∞ = ‖Ax‖∞. [Answer] [Solution]

1.4 Condition Number of a Matrix

1.4.1 Conditioning of a linear system

YouTube: https://www.youtube.com/watch?v=QwFQNAPKIwk
A question we will run into later in the course asks how accurate we can expect the solution of

a linear system to be if the right-hand side of the system has error in it.
Formally, this can be stated as follows: We wish to solve Ax = b, where A ∈ Cm×m but the

right-hand side has been perturbed by a small vector so that it becomes b+ δb.

Remark 1.4.1.1 Notice how the δ touches the b. This is meant to convey that this is a symbol
that represents a vector rather than the vector b that is multiplied by a scalar δ.

The question now is how a relative error in b is amplified into a relative error in the solution x.
This is summarized as follows:

Ax = b exact equation
A(x+ δx) = b+ δb perturbed equation

We would like to determine a formula, κ(A, b, δb), that gives us a bound on how much a relative
error in b is potentially amplified into a relative error in the solution x:

‖δx‖
‖x‖

≤ κ(A, b, δb)‖δb‖
‖b‖

.

We assume that A has an inverse since otherwise there may be no solution or there may be an
infinite number of solutions. To find an expression for κ(A, b, δb), we notice that

Ax+Aδx = b+ δb
Ax = b −

Aδx = δb

https://www.youtube.com/watch?v=QwFQNAPKIwk
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and from this we deduce that
Ax = b
δx = A−1δb.

If we now use a vector norm ‖ · ‖ and its induced matrix norm ‖ · ‖, then

‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖
‖δx‖ = ‖A−1δb‖ ≤ ‖A−1‖‖δb‖

since induced matrix norms are subordinate.
From this we conclude that

1
‖x‖
≤ ‖A‖ 1

‖b‖
and

‖δx‖ ≤ ‖A−1‖‖δb‖

so that
‖δx‖
‖x‖

≤ ‖A‖‖A−1‖‖δb‖
‖b‖

.

Thus, the desired expression κ(A, b, δb) doesn’t depend on anything but the matrix A:

‖δx‖
‖x‖

≤ ‖A‖‖A−1‖︸ ︷︷ ︸
κ(A)

‖δb‖
‖b‖

.

Definition 1.4.1.2 Condition number of a nonsingular matrix. The value κ(A) = ‖A‖‖A−1‖
is called the condition number of a nonsingular matrix A. ♦

A question becomes whether this is a pessimistic result or whether there are examples of b and
δb for which the relative error in b is amplified by exactly κ(A). The answer is that, unfortunately,
the bound is tight.

• There is an x̂ for which
‖A‖ = max

‖x‖=1
‖Ax‖ = ‖Ax̂‖,

namely the x for which the maximum is attained. This is the direction of maximal magnifi-
cation. Pick b̂ = Ax̂.

• There is an δ̂b for which

‖A−1‖ = max
‖x‖6=0

‖A−1x‖
‖x‖

= ‖A
−1δ̂b‖
‖δ̂b‖

,

again, the x for which the maximum is attained.

It is when solving the perturbed system

A(x+ δx) = b̂+ δ̂b

that the maximal magnification by κ(A) is observed.

Homework 1.4.1.1 Let ‖ · ‖ be a vector norm and corresponding induced matrix norm.
TRUE/FALSE: ‖I‖ = 1. [Answer] [Solution]



WEEK 1. NORMS 48

Homework 1.4.1.2 Let ‖ · ‖ be a vector norm and corresponding induced matrix norm, and A a
nonsingular matrix.

TRUE/FALSE: κ(A) = ‖A‖‖A−1‖ ≥ 1. [Answer] [Solution]

Remark 1.4.1.3 This last exercise shows that there will always be choices for b and δb for which the
relative error is at best directly translated into an equal relative error in the solution (if κ(A) = 1).

1.4.2 Loss of digits of accuracy

YouTube: https://www.youtube.com/watch?v=-5l9Ov5RXYo

Homework 1.4.2.1 Let α = −14.24123 and α̂ = −14.24723. Compute
• |α| =

• |α− α̂| =

• |α−α̂|
|α| =

• log10

(
|α−α̂|
|α|

)
=

[Solution]
Be sure to read the solution to the last homework!

1.4.3 The conditioning of an upper triangular matrix

YouTube: https://www.youtube.com/watch?v=LGBFyjhjt6U
We now revisit the material from the launch for the semester. We understand that when solving

Lx = b, even a small relative change to the right-hand side b can amplify into a large relative change
in the solution x̂ if the condition number of the matrix is large.

Homework 1.4.3.1 Change the script Assignments/Week01/matlab/Test_Upper_triangular_solve_

100.m to also compute the condition number of matrix U , κ(U). Investigate what happens to the
condition number as you change the problem size n.

https://www.youtube.com/watch?v=-5l9Ov5RXYo
https://www.youtube.com/watch?v=LGBFyjhjt6U
Assignments/Week01/matlab/Test_Upper_triangular_solve_100.m
Assignments/Week01/matlab/Test_Upper_triangular_solve_100.m
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Since in the example the upper triangular matrix is generated to have random values as its
entries, chances are that at least one element on its diagonal is small. If that element were zero,
then the triangular matrix would be singular. Even if it is not exactly zero, the condition number
of U becomes very large if the element is small.

1.5 Enrichments

1.5.1 Condition number estimation
It has been observed that high-quality numerical software should not only provide routines for
solving a given problem, but, when possible, should also (optionally) provide the user with feedback
on the conditioning (sensitivity to changes in the input) of the problem. In this enrichment, we
relate this to what you have learned this week.

Given a vector norm ‖ · ‖ and induced matrix norm ‖ · ‖, the condition number of matrix A
using that norm is given by κ(A) = ‖A‖‖A−1‖. When trying to practically compute the condition
number, this leads to two issues:

• Which norm should we use? A case has been made in this week that the 1-norm and∞-norm
are canditates since they are easy and cheap to compute.

• It appears that A−1 needs to be computed. We will see in future weeks that this is costly:
O(m3) computation when A is m×m. This is generally considered to be expensive.

This leads to the question "Can a reliable estimate of the condition number be cheaply computed?"
In this unit, we give a glimpse of how this can be achieved and then point the interested learner to
related papers.

Partition m×m matrix A:

A =

 ãT0
...

ãTm−1

 .
We recall that

• The ∞-norm is defined by
‖A‖∞ = max

‖x‖∞=1
‖Ax‖∞.

• From Homework 1.3.6.2, we know that the ∞-norm can be practically computed as

‖A‖∞ = max
0≤i<m

‖ãi‖1,

where ãi = (ãTi )T . This means that ‖A‖∞ can be computed in O(m2) operations.

• From the solution to Homework 1.3.6.2, we know that there is a vector x with |χj | = 1 for
0 ≤ j < m such that ‖A‖∞ = ‖Ax‖∞. This x satisfies ‖x‖∞ = 1.
More precisely: ‖A‖∞ = ‖ãk‖1 for some k. For simplicity, assume A is real valued. Then

‖A‖∞ = |αk,0|+ · · ·+ |αk,m−1|
= αk,0χ0 + · · ·+ αk,m−1χm−1,

where each χj = ±1 is chosen so that χjαk,j = |αk,j |. That vector x then has the property
that ‖A‖∞ = ‖ãk‖1 = ‖Ax‖∞.
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From this we conclude that
‖A‖∞ = max

x∈S
‖Ax‖∞,

where S is the set of all vectors x with |χj | = 1, 0 ≤ j < n.
We will illustrate the techniques that underly efficient condition number estimation by looking

at the simpler case where we wish to estimate the condition number of a real-valued nonsingular
upper triangular m × m matrix U , using the ∞-norm. Since U is real-valued, |χi| = 1 means
χi = ±1. The problem is that it appears we must compute ‖U−1‖∞. Computing U−1 when U is
dense requires O(m3) operations (a topic we won’t touch on until much later in the course).

Our observations tell us that

‖U−1‖∞ = max
x∈S
‖U−1x‖∞,

where S is the set of all vectors x with elements χi ∈ {−1, 1}. This is equivalent to

‖U−1‖∞ = max
z∈T
‖z‖∞,

where T is the set of all vectors z that satisfy Uz = y for some y with elements ψi ∈ {−1, 1}. So,
we could solve Uz = y for all vectors y ∈ S, compute the ∞-norm for all those vectors z, and pick
the maximum of those values. But that is not practical.

One simple solution is to try to construct a vector y that results in a large amplification (in the
∞-norm) when solving Uz = y, and to then use that amplification as an estimate for ‖U−1‖∞. So
how do we do this? Consider

... . . . ...
...

0 · · · υm−2,m−2 υm−2,m−1
0 · · · 0 υm−1,m−1


︸ ︷︷ ︸

U


...

ζm−2
ζm−1


︸ ︷︷ ︸

z

=


...

ψm−2
ψm−1


︸ ︷︷ ︸

y

.

Here is a heuristic for picking y ∈ S:

• We want to pick ψm−1 ∈ {−1, 1} in order to construct a vector y ∈ S. We can pick ψm−1 = 1
since picking it equal to −1 will simply carry through negation in the appropriate way in the
scheme we are describing.
From this ψm−1 we can compute ζm−1.

• Now,
υm−2,m−2ζm−2 + υm−2,m−1ζm−1 = ψm−2

where ζm−1 is known and ψm−2 can be strategically chosen. We want z to have a large ∞-
norm and hence a heuristic is to now pick ψm−2 ∈ {−1, 1} in such a way that ζm−2 is as large
as possible in magnitude.
With this ψm−2 we can compute ζm−2.

• And so forth!

When done, the magnification equals ‖z‖∞ = |ζk|, where ζk is the element of z with largest
magnitude. This approach provides an estimate for ‖U−1‖∞ with O(m2) operations.

The described method underlies the condition number estimator for LINPACK, developed in
the 1970s [16], as described in [11]:
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• A.K. Cline, C.B. Moler, G.W. Stewart, and J.H. Wilkinson, An estimate for the condition
number of a matrix, SIAM J. Numer. Anal., 16 (1979).

The method discussed in that paper yields a lower bound on ‖A−1‖∞ and with that on κ∞(A).

Remark 1.5.1.1 Alan Cline has his office on our floor at UT-Austin. G.W. (Pete) Stewart was
Robert’s Ph.D. advisor. Cleve Moler is the inventor of Matlab. John Wilkinson received the Turing
Award for his contributions to numerical linear algebra.

More sophisticated methods are discussed in [22]:

• N. Higham, A Survey of Condition Number Estimates for Triangular Matrices, SIAM Review,
1987.

His methods underlie the LAPACK [1] condition number estimator and are remarkably accurate:
most of the time they provides an almost exact estimate of the actual condition number.

1.5.2 Practical computation of the vector 2-norm

Consider the computation γ =
√
α2 + β2 where α, β ∈ R. When computing this with floating point

numbers, a fundamental problem is that the intermediate values α2 and β2 may overflow (become
larger than the largest number that can be stored) or underflow (become smaller than the smallest
positive number that can be stored), even if the resulting γ itself does not overflow or underflow.

The solution is to first determine the largest value, µ = max(|α|, |β|) and then compute

γ = µ

√(
α

µ

)2
+
(
β

µ

)2

instead. A careful analysis shows that if γ does not overflow, neither do any of the intermediate
values encountered during it computation. While one of the terms

(
α
µ

)2
or
(
β
µ

)2
may underflow,

the other one equals one and hence the overall result does not underflow. A complete discussion of
all the intracacies go beyond this note.

This insight generalizes to the computation of ‖x‖2 where x ∈ Cn. Rather than computing it
as

‖x‖2 =
√
|χ0|2 + |χ1|2 + · · ·+ |χn−1|2

and risk overflow or underflow, instead the following computation is used:

µ = ‖x‖∞

‖x‖2 = µ

√(
|χ0|
µ

)2
+
(
|χ1|
µ

)2
+ · · ·+

(
|χn−1|
µ

)2
.

What we describe avoids overflow and underflow when not required. The problem is that is
not efficient because most of the cost in performing such vector operations is in bringing data from
main memory into registers so that computation can occur.

The described method requires the vector to be read from mainn memory three times:

• Once to determine µ.

• Once to compute the sum of the squares of the elements of x/µ.
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In a recent talk at an annual workshop we organize, the BLIS Retreat 2023, how to implement
the computation of the norm in a way that requires the data to only be read once was discussed
by Eleni Vlachopoulou from AMD. We believe you may enjoy her talk!

YouTube: https://www.youtube.com/watch?v=oX1pSyBGd3U

1.6 Wrap Up

1.6.1 Additional homework
Homework 1.6.1.1 For ej ∈ Rn (a standard basis vector), compute

• ‖ej‖2 =

• ‖ej‖1 =

• ‖ej‖∞ =

• ‖ej‖p =

Homework 1.6.1.2 For I ∈ Rn×n (the identity matrix), compute
• ‖I‖1 =

• ‖I‖∞ =

• ‖I‖2 =

• ‖I‖p =

• ‖I‖F =

Homework 1.6.1.3 Let D =


δ0 0 · · · 0
0 δ1 · · · 0
... . . . . . . 0
0 0 · · · δn−1

 (a diagonal matrix). Compute

• ‖D‖1 =

• ‖D‖∞ =

• ‖D‖p =

• ‖D‖F =

https://www.youtube.com/watch?v=oX1pSyBGd3U
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Homework 1.6.1.4 Let x =


x0
x1
...

xN−1

 and 1 ≤ p <∞ or p =∞.

ALWAYS/SOMETIMES/NEVER: ‖xi‖p ≤ ‖x‖p.

Homework 1.6.1.5 For
A =

(
1 2 −1
−1 1 0

)
.

compute
• ‖A‖1 =

• ‖A‖∞ =

• ‖A‖F =

Homework 1.6.1.6 For A ∈ Cm×n define

‖A‖ =
m−1∑
i=0

n−1∑
j=0
|αi,j | =

∑ |α0,0|, · · · , |α0,n−1|,
...

...
|αm−1,0|, · · · , |αm−1,n−1|

 .
• TRUE/FALSE: This function is a matrix norm.

• How can you relate this norm to the vector 1-norm?

• TRUE/FALSE: For this norm, ‖A‖ = ‖AH‖.

• TRUE/FALSE: This norm is submultiplicative.

Homework 1.6.1.7 Let A ∈ Cm×n. Partition

A =
(
a0 a1 · · · an−1

)
=


ãT0
ãT1
...

ãTm−1

 .

Prove that
• ‖A‖F = ‖AT ‖F .

• ‖A‖F =
√
‖a0‖22 + ‖a1‖22 + · · ·+ ‖an−1‖22.

• ‖A‖F =
√
‖ã0‖22 + ‖ã1‖22 + · · ·+ ‖ãm−1‖22.

Note that here ãi = (ãTi )T .

Homework 1.6.1.8 Let x ∈ Rm with ‖x‖1 = 1.
TRUE/FALSE: ‖x‖2 = 1 if and only if x = ±ej for some j. [Solution]



WEEK 1. NORMS 54

Homework 1.6.1.9 Prove that if ‖x‖ν ≤ β‖x‖µ is true for all x, then ‖A‖ν ≤ β‖A‖µ,ν .

1.6.2 Summary
If α, β ∈ C with α = αr + αci and β = βr + iβc, where αr, αc, βr, βc ∈ R, then

• Conjugate: α = αr − αci.

• Product: αβ = (αrβr − αcβc) + (αrβc + αcβr)i.

• Absolute value: |α| =
√
α2
r + α2

c =
√
αα.

Let x, y ∈ Cm with x =

 χ0
...

χm−1

 and y =

 ψ0
...

ψm−1

 . Then
• Conjugate:

x =

 χ0
...

χm−1

 .
• Transpose of vector:

xT =
(
χ0 · · · χm−1

)
• Hermitian transpose (conjugate transpose) of vector:

xH = xT = xT =
(
χ0 · · · χm−1

)
.

• Dot product (inner product): xHy = xT y = xT y = χ0ψ0 + · · ·+ χm−1ψm−1 =
∑m−1
i=0 χiψi.

Definition 1.6.2.1 Vector norm. Let ‖ · ‖ : Cm → R. Then ‖ · ‖ is a (vector) norm if for all
x, y ∈ Cm and all α ∈ C

• x 6= 0⇒ ‖x‖ > 0 (‖ · ‖ is positive definite),

• ‖αx‖ = |α|‖x‖ (‖ · ‖ is homogeneous), and

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (‖ · ‖ obeys the triangle inequality).

♦

• 2-norm (Euclidean length): ‖x‖2 =
√
xHx =

√
|χ0|2 + · · ·+ |χm−1|2 =

√
χ0χ0 + · · ·+ χm−1χm−1

=
√∑m−1

i=0 |χi|2.

• p-norm: ‖x‖p = p
√
|χ0|p + · · ·+ |χm−1|p = p

√∑m−1
i=0 |χi|p.

• 1-norm: ‖x‖1 = |χ0|+ · · ·+ |χm−1| =
∑m−1
i=0 |χi|.

• ∞-norm: ‖x‖∞ = max(|χ0|, . . . , |χm−1|) = maxm−1
i=0 |χi| = limp→∞ ‖x‖p.

• Unit ball: Set of all vectors with norm equal to one. Notation: ‖x‖ = 1.
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Theorem 1.6.2.2 Equivalence of vector norms. Let ‖ · ‖ : Cm → R and ||| · ||| : Cm → R both
be vector norms. Then there exist positive scalars σ and τ such that for all x ∈ Cm

σ‖x‖ ≤ |||x||| ≤ τ‖x‖.
‖x‖1 ≤

√
m‖x‖2 ‖x‖1 ≤ m‖x‖∞

‖x‖2 ≤ ‖x‖1 ‖x‖2 ≤
√
m‖x‖∞

‖x‖∞ ≤ ‖x‖1 ‖x‖∞ ≤ ‖x‖2
Definition 1.6.2.3 Linear transformations and matrices. Let L : Cn → Cm. Then L is said
to be a linear transformation if for all α ∈ C and x, y ∈ Cn

• L(αx) = αL(x). That is, scaling first and then transforming yields the same result as trans-
forming first and then scaling.

• L(x + y) = L(x) + L(y). That is, adding first and then transforming yields the same result
as transforming first and then adding.

♦

Definition 1.6.2.4 Standard basis vector. In this course, we will use ej ∈ Cm to denote the
standard basis vector with a "1" in the position indexed with j. So,

ej =



0
...
0
1
0
...
0


←− j

♦
If L is a linear transformation and we let aj = L(ej) then

A =
(
a0 a1 · · · an−1

)
is the matrix that represents L in the sense that Ax = L(x).

Partition C, A, and B by rows and columns

C =
(
c0 · · · cn−1

)
=


c̃T0
...

c̃Tm−1

 , A =
(
a0 · · · ak−1

)
=


ãT0
...

ãTm−1

 ,
and

B =
(
b0 · · · bn−1

)
=


b̃T0
...

b̃Tk−1

 ,
then C := AB can be computed in the following ways:
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1. By columns:(
c0 · · · cn−1

)
:= A

(
b0 · · · bn−1

)
=
(
Ab0 · · · Abn−1

)
.

In other words, cj := Abj for all columns of C.

2. By rows: 
c̃T0
...

c̃Tm−1

 :=


ãT0
...

ãTm−1

B =


ãT0 B
...

ãTm−1B

 .
In other words, c̃Ti = ãTi B for all rows of C.

3. As the sum of outer products:

C :=
(
a0 · · · ak−1

)
b̃T0
...

b̃Tk−1

 = a0b̃
T
0 + · · ·+ ak−1b̃

T
k−1,

which should be thought of as a sequence of rank-1 updates, since each term is an outer
product and an outer product has rank of at most one.

Partition C, A, and B by blocks (submatrices),

C =


C0,0 · · · C0,N−1
...

...
CM−1,0 · · · CM−1,N−1

 ,


A0,0 · · · A0,K−1
...

...
AM−1,0 · · · AM−1,K−1

 ,
and 

B0,0 · · · B0,N−1
...

...
BK−1,0 · · · BK−1,N−1

 ,
where the partitionings are "conformal." Then

Ci,j =
K−1∑
p=0

Ai,pBp,j .

Definition 1.6.2.5 Matrix norm. Let ‖ · ‖ : Cm×n → R. Then ‖ · ‖ is a (matrix) norm if for all
A,B ∈ Cm×n and all α ∈ C

• A 6= 0⇒ ‖A‖ > 0 (‖ · ‖ is positive definite),

• ‖αA‖ = |α|‖A‖ (‖ · ‖ is homogeneous), and

• ‖A+B‖ ≤ ‖A‖+ ‖B‖ (‖ · ‖ obeys the triangle inequality).

♦
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Let A ∈ Cm×n and

A =

 α0,0 · · ·α0,n−1
...

...
αm−1,0 · · ·αm−1,n−1

 =
(
a0 · · · an−1

)
=


ãT0
...

ãTm−1

 .
Then

• Conjugate of matrix:

A =

 α0,0 · · · α0,n−1
...

...
αm−1,0 · · · αm−1,n−1

 .
• Transpose of matrix:

AT =

 α0,0 · · · αm−1,0
...

...
α0,n−1 · · · αm−1,n−1

 .
• Conjugate transpose (Hermitian transpose) of matrix:

AH = A
T = AT =

 α0,0 · · · αm−1,0
...

...
α0,n−1 · · · αm−1,n−1

 .

• Frobenius norm: ‖A‖F =
√∑m−1

i=0
∑n−1
j=0 |αi,j |2 =

√∑n−1
j=0 ‖aj‖22 =

√∑m−1
i=0 ‖ãi‖22

• matrix p-norm: ‖A‖p = maxx 6=0
‖Ax‖p
‖x‖p = max‖x‖p=1 ‖Ax‖p.

• matrix 2-norm: ‖A‖2 = maxx 6=0
‖Ax‖2
‖x‖2

= max‖x‖2=1 ‖Ax‖2 = ‖AH‖2.

• matrix 1-norm: ‖A‖1 = maxx 6=0
‖Ax‖1
‖x‖1

= max‖x‖1=1 ‖Ax‖1 = max0≤j<n ‖aj‖1 = ‖AH‖∞.

• matrix ∞-norm: ‖A‖∞ = maxx 6=0
‖Ax‖∞
‖x‖∞ = max‖x‖∞=1 ‖Ax‖∞ = max0≤i<m ‖ãi‖1 = ‖AH‖1.

Theorem 1.6.2.6 Equivalence of matrix norms. Let ‖ · ‖ : Cm×n → R and ||| · ||| : Cm×n → R
both be matrix norms. Then there exist positive scalars σ and τ such that for all A ∈ Cm×n

σ‖A‖ ≤ |||A||| ≤ τ‖A‖.
‖A‖1 ≤

√
m‖A‖2 ‖A‖1 ≤ m‖A‖∞ ‖A‖1 ≤

√
m‖A‖F

‖A‖2 ≤
√
n‖A‖1 ‖A‖2 ≤

√
m‖A‖∞ ‖A‖2 ≤ ‖A‖F

‖A‖∞ ≤ n‖A‖1 ‖A‖∞ ≤
√
n‖A‖2 ‖A‖∞ ≤

√
n‖A‖F

‖A‖F ≤
√
n‖A‖1 ‖A‖F ≤ rank(A)‖A‖2 ‖A‖F ≤

√
m‖A‖∞

Definition 1.6.2.7 Subordinate matrix norm. A matrix norm ‖ · ‖ : Cm×n → R is said to be
subordinate to vector norms ‖ · ‖µ : Cm → R and ‖ · ‖ν : Cn → R if, for all x ∈ Cn,

‖Ax‖µ ≤ ‖A‖‖x‖ν .

If ‖ · ‖µ and ‖ · ‖ν are the same norm (but perhaps for different m and n), then ‖ · ‖ is said to be
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subordinate to the given vector norm. ♦

Definition 1.6.2.8 Consistent matrix norm. A matrix norm ‖ · ‖ : Cm×n → R is said to be a
consistent matrix norm if it is defined for all m and n, using the same formula for all m and n. ♦

Definition 1.6.2.9 Submultiplicative matrix norm. A consistent matrix norm ‖·‖ : Cm×n →
R is said to be submultiplicative if it satisfies

‖AB‖ ≤ ‖A‖‖B‖.

♦
Let A,∆A ∈ Cm×m, x, δx, b, δb ∈ Cm, A be nonsingular, and ‖·‖ be a vector norm and corresponding
subordinate matrix norm. Then

‖δx‖
‖x‖

≤ ‖A‖‖A−1‖︸ ︷︷ ︸
κ(A)

‖δb‖
‖b‖

.

Definition 1.6.2.10 Condition number of a nonsingular matrix. The value κ(A) =
‖A‖‖A−1‖ is called the condition number of a nonsingular matrix A. ♦



Week 2

The Singular Value Decomposition

2.1 Opening Remarks

2.1.1 Low rank approximation

YouTube: https://www.youtube.com/watch?v=12K5aydB9cQ
Consider this picture of the Gates Dell Complex that houses our Department of Computer

Science:

It consists of an m × n array of pixels, each of which is a numerical value. Think of the jth
column of pixels as a vector of values, bj , so that the whole picture is represented by columns as

B =
(
b0 b1 · · · bn−1

)
,

where we recognize that we can view the picture as a matrix. What if we want to store this picture
with fewer than m×n data? In other words, what if we want to compress the picture? To do so, we

59

https://www.youtube.com/watch?v=12K5aydB9cQ
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might identify a few of the columns in the picture to be the "chosen ones" that are representative
of the other columns in the following sense: All columns in the picture are approximately linear
combinations of these chosen columns.

Let’s let linear algebra do the heavy lifting: what if we choose k roughly equally spaced columns
in the picture:

a0 = b0
a1 = bn/k−1
...

...
ak−1 = b(k−1)n/k−1,

where for illustration purposes we assume that n is an integer multiple of k. (We could instead
choose them randomly or via some other method. This detail is not important as we try to gain
initial insight.) We could then approximate each column of the picture, bj , as a linear combination
of a0, . . . , ak−1:

bj ≈ χ0,ja0 + χ1,ja1 + · · ·+ χk−1,jak−1 =
(
a0 · · · ak−1

)
χ0,j
...

χk−1,j

 .
We can write this more concisely by viewing these chosen columns as the columns of matrix A so
that

bj ≈ Axj , where A =
(
a0 · · · ak−1

)
and xj =


χ0,j
...

χk−1,j

 .
If A has linearly independent columns, the best such approximation (in the linear least squares
sense) is obtained by choosing

xj = (ATA)−1AT bj ,

where you may recognize (ATA)−1AT as the (left) pseudo-inverse of A, leaving us with

bj ≈ A(ATA)−1AT bj .

This approximates bj with the orthogonal projection of bj onto the column space of A. Doing this
for every column bj leaves us with the following approximation to the picture:

B ≈

 A (ATA)−1AT b0︸ ︷︷ ︸
x0

· · · A (ATA)−1AT bn−1︸ ︷︷ ︸
xn−1

 ,
which is equivalent to

B ≈ A (ATA)−1AT
(
b0 · · · bn−1

)
︸ ︷︷ ︸(

x0 · · · xn−1
) = A (ATA)−1ATB︸ ︷︷ ︸

X

= AX.

Importantly, instead of requiring m× n data to store B, we now need only store A and X.
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Homework 2.1.1.1 If B is m × n and A is m × k, how many entries are there in A and X ?
[Solution]

Homework 2.1.1.2 AX is called a rank-k approximation of B. Why? [Solution]
Let’s have a look at how effective this approach is for our picture:

original: k = 1

k = 2 k = 10

k = 25 k = 50

Now, there is no reason to believe that picking equally spaced columns (or restricting ourselves
to columns in B) will yield the best rank-k approximation for the picture. It yields a pretty good
result here in part because there is quite a bit of repetition in the picture, from column to column.
So, the question can be asked: How do we find the best rank-k approximation for a picture or, more
generally, a matrix? This would allow us to get the most from the data that needs to be stored. It
is the Singular Value Decomposition (SVD), possibly the most important result in linear algebra,
that provides the answer.

Remark 2.1.1.1 Those who need a refresher on this material may want to review Week 11 of Linear
Algebra: Foundations to Frontiers [27]. We will discuss solving linear least squares problems further
in Week 4.

2.1.2 Overview
• 2.1 Opening Remarks
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◦ 2.1.1 Low rank approximation
◦ 2.1.2 Overview
◦ 2.1.3 What you will learn

• 2.2 Orthogonal Vectors and Matrices

◦ 2.2.1 Orthogonal vectors
◦ 2.2.2 Component in the direction of a vector
◦ 2.2.3 Orthonormal vectors and matrices
◦ 2.2.4 Unitary matrices
◦ 2.2.5 Examples of unitary matrices
◦ 2.2.6 Change of orthonormal basis
◦ 2.2.7 Why we love unitary matrices choice

• 2.3 The Singular Value Decomposition

◦ 2.3.1 The Singular Value Decomposition Theorem
◦ 2.3.2 Geometric interpretation
◦ 2.3.3 An "algorithm" for computing the SVD
◦ 2.3.4 The Reduced Singular Value Decomposition
◦ 2.3.5 The SVD of nonsingular matrices
◦ 2.3.6 Best rank-k approximation

• 2.4 Enrichments

◦ 2.4.1 Principle Component Analysis (PCA)

• 2.5 Wrap Up

◦ 2.5.1 Additional homework
◦ 2.5.2 Summary

2.1.3 What you will learn
This week introduces two concepts that have theoretical and practical importance: unitary matrices
and the Singular Value Decomposition (SVD).

Upon completion of this week, you should be able to

• Determine whether vectors are orthogonal.

• Compute the component of a vector in the direction of another vector.

• Relate sets of orthogonal vectors to orthogonal and unitary matrices.

• Connect unitary matrices to the changing of orthonormal basis.

• Identify transformations that can be represented by unitary matrices.
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• Prove that multiplying with unitary matrices does not amplify relative error.

• Use norms to quantify the conditioning of solving linear systems.

• Prove and interpret the Singular Value Decomposition.

• Link the Reduced Singular Value Decomposition to the rank of the matrix and determine the
best rank-k approximation to a matrix.

• Determine whether a matrix is close to being nonsingular by relating the Singular Value
Decomposition to the condition number.

2.2 Orthogonal Vectors and Matrices

2.2.1 Orthogonal vectors

YouTube: https://www.youtube.com/watch?v=3zpdTfwZSEo
At some point in your education you were told that vectors are orthogonal (perpendicular)

if and only if their dot product (inner product) equals zero. Let’s review where this comes from.
Given two vectors u, v ∈ Rm, those two vectors, and their sum all exist in the same two dimensional
(2D) subspace. So, they can be visualized as

where the page on which they are drawn is that 2D subspace. Now, if they are, as drawn,
perpendicular and we consider the lengths of the sides of the triangle that they define

https://www.youtube.com/watch?v=3zpdTfwZSEo
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then we can employ the first theorem you were probably ever exposed to, the Pythagorean
Theorem, to find that

‖u‖22 + ‖v‖22 = ‖u+ v‖22.
Using what we know about the relation between the two norm and the dot product, we find that

uTu+ vT v = (u+ v)T (u+ v)
⇔ < multiply out >

uTu+ vT v = uTu+ uT v + vTu+ vT v
⇔ < uT v = vTu if u and v are real-valued >

uTu+ vT v = uTu+ 2uT v + vT v
⇔ < delete common terms >

0 = 2uT v

so that we can conclude that uT v = 0.
While we already encountered the notation xHx as an alternative way of expressing the length

of a vector, ‖x‖2 =
√
xHx, we have not formally defined the inner product (dot product), for

complex-valued vectors:

Definition 2.2.1.1 Dot product (Inner product). Given x, y ∈ Cm their dot product (inner
product) is defined as

xHy = xT y = xT y = χ0ψ0 + χ1ψ1 + · · ·+ χm−1ψm−1 =
m−1∑
i=0

χiψi.

♦
The notation xH is short for xT , where x equals the vector x with all its entries conjugated. So,

xHy
= < expose the elements of the vectors > χ0

...
χm−1


H  ψ0

...
ψm−1


= < xH = xT > χ0

...
χm−1


T  ψ0

...
ψm−1


= < conjugate the elements of x > χ0

...
χm−1


T  ψ0

...
ψm−1


= < view x as a m× 1 matrix and transpose >

(
χ0 · · · χm−1

) ψ0
...

ψm−1


= < view xH as a matrix and perform matrix-vector multiplication >∑m−1
i=0 χiψi.
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Homework 2.2.1.1 Let x, y ∈ Cm.
ALWAYS/SOMETIMES/NEVER: xHy = yHx. [Answer] [Solution]

Homework 2.2.1.2 Let x ∈ Cm.
ALWAYS/SOMETIMES/NEVER: xHx is real-valued. [Answer] [Solution]
The following defines orthogonality of two vectors with complex-valued elements:

Definition 2.2.1.2 Orthogonal vectors. Let x, y ∈ Cm. These vectors are said to be orthogonal
(perpendicular) iff xHy = 0. ♦

2.2.2 Component in the direction of a vector

YouTube: https://www.youtube.com/watch?v=CqcJ6Nh1QWg
In a previous linear algebra course, you may have learned that if a, b ∈ Rm then

b̂ = aT b

aTa
a = aaT

aTa
b

equals the component of b in the direction of a and

b⊥ = b− b̂ = (I − aaT

aTa
)b

equals the component of b orthogonal to a, since b = b̂ + b⊥ and b̂T b⊥ = 0. Similarly, if a, b ∈ Cm
then

b̂ = aHb

aHa
a = aaH

aHa
b

equals the component of b in the direction of a and

b⊥ = b− b̂ = (I − aaH

aHa
)b

equals the component of b orthogonal to a.

Remark 2.2.2.1 The matrix that (orthogonally) projects the vector to which it is applied onto
the vector a is given by

aaH

aHa

while
I − aaH

aHa

is the matrix that (orthogonally) projects the vector to which it is applied onto the space orthogonal
to the vector a.

https://www.youtube.com/watch?v=CqcJ6Nh1QWg
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Homework 2.2.2.1 Let a ∈ Cm.
ALWAYS/SOMETIMES/NEVER>:(

aaH

aHa

)(
aaH

aHa

)
= aaH

aHa
.

Interpret what thi s means about a matrix that projects onto a vector. [Answer] [Solution]

Homework 2.2.2.2 Let a ∈ Cm.
ALWAYS/SOMETIMES/NEVER:(

aaH

aHa

)(
I − aaH

aHa

)
= 0

(the zero matrix). Interpret what this means. [Answer] [Solution]

Homework 2.2.2.3 Let a, b ∈ Cn, b̂ = aaH

aHa
b, and b⊥ = b− b̂.

ALWAYS/SOMETIMES/NEVER: b̂Hb⊥ = 0. [Answer] [Solution]

2.2.3 Orthonormal vectors and matrices

YouTube: https://www.youtube.com/watch?v=GFfvDpj5dzw
A lot of the formulae in the last unit become simpler if the length of the vector equals one: If

‖u‖2 = 1 then

• the component of v in the direction of u equals

uHv

uHu
u = uHvu.

• the matrix that projects a vector onto the vector u is given by

uuH

uHu
= uuH .

• the component of v orthogonal to u equals

v − uHv

uHu
u = v − uHvu.

• the matrix that projects a vector onto the space orthogonal to u is given by

I − uuH

uHu
= I − uuH .

https://www.youtube.com/watch?v=GFfvDpj5dzw
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Homework 2.2.3.1 Let u 6= 0 ∈ Cm.
ALWAYS/SOMETIMES/NEVER u/‖u‖2 has unit length. [Answer] [Solution]

This last exercise shows that any nonzero vector can be scaled (normalized) to have unit length.

Definition 2.2.3.1 Orthonormal vectors. Let u0, u1, . . . , un−1 ∈ Cm. These vectors are said
to be mutually orthonormal if for all 0 ≤ i, j < n

uHi uj =
{

1 if i = j
0 otherwise .

♦
The definition implies that ‖ui‖2 =

√
uHi ui = 1 and hence each of the vectors is of unit length

in addition to being orthogonal to each other.
The standard basis vectors (Definition 1.3.1.3)

{ej}m−1
i=0 ⊂ Cm,

where

ej =



0
...
0
1
0
...
0


←− entry indexed with j

are mutually orthonormal since, clearly,

eHi ej =
{

1 if i = j
0 otherwise.

Naturally, any subset of the standard basis vectors is a set of mutually orthonormal vectors.

Remark 2.2.3.2 For n vectors of size m to be mutually orthonormal, n must be less than or equal
to m. This is because n mutually orthonormal vectors are linearly independent and there can be
at most m linearly independent vectors of size m.

A very concise way of indicating that a set of vectors are mutually orthonormal is to view them
as the columns of a matrix, which then has a very special property:

Definition 2.2.3.3 Orthonormal matrix. Let Q ∈ Cm×n (with n ≤ m). Then Q is said to be
an orthonormal matrix iff QHQ = I. ♦

The subsequent exercise makes the connection between mutually orthonormal vectors and an
orthonormal matrix.

Homework 2.2.3.2 Let Q ∈ Cm×n (with n ≤ m). Partition Q =
(
q0 q1 · · · qn−1

)
.

TRUE/FALSE: Q is an orthonormal matrix if and only if q0, q1, . . . , qn−1 are mutually orthonor-
mal. [Answer] [Solution]

Homework 2.2.3.3 Let Q ∈ Cm×n.
ALWAYS/SOMETIMES/NEVER: If QHQ = I then QQH = I. [Answer] [Solution]
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2.2.4 Unitary matrices

YouTube: https://www.youtube.com/watch?v=izONEmO9uqw

Homework 2.2.4.1 Let Q ∈ Cm×n be an orthonormal matrix.
ALWAYS/SOMETIMES/NEVER: Q−1 = QH and QQH = I. [Answer] [Solution]
If an orthonormal matrix is square, then it is called a unitary matrix.

Definition 2.2.4.1 Unitary matrix. Let U ∈ Cm×m. Then U is said to be a unitary matrix if
and only if UHU = I (the identity). ♦

Remark 2.2.4.2 Unitary matrices are always square. Sometimes the term orthogonal matrix
is used instead of unitary matrix, especially if the matrix is real valued.

Unitary matrices have some very nice properties, as captured by the following exercises.

Homework 2.2.4.2 Let Q ∈ Cm×m be a unitary matrix.
ALWAYS/SOMETIMES/NEVER: Q−1 = QH and QQH = I. [Answer] [Solution]

Homework 2.2.4.3 TRUE/FALSE: If U is unitary, so is UH . [Answer] [Solution]

Homework 2.2.4.4 Let U0, U1 ∈ Cm×m both be unitary.
ALWAYS/SOMETIMES/NEVER: U0U1, is unitary. [Answer] [Solution]

Homework 2.2.4.5 Let U0, U1, . . . , Uk−1 ∈ Cm×m all be unitary.
ALWAYS/SOMETIMES/NEVER: Their product, U0U1 · · ·Uk−1, is unitary. [Answer] [Solution]

Remark 2.2.4.3 Many algorithms that we encounter in the future will involve the application of
a sequence of unitary matrices, which is why the result in this last exercise is of great importance.

Perhaps the most important property of a unitary matrix is that it preserves length.

Homework 2.2.4.6 Let U ∈ Cm×m be a unitary matrix and x ∈ Cm. Prove that ‖Ux‖2 = ‖x‖2.
[Solution]

The converse is true as well:
Theorem 2.2.4.4 If A ∈ Cm×m preserves length (‖Ax‖2 = ‖x‖2 for all x ∈ Cm), then A is
unitary.
Proof. We first prove that (Ax)H(Ay) = xHy for all x, y by considering ‖x − y‖22 = ‖A(x − y)‖22.
We then use that to evaluate eHi AHAej .

https://www.youtube.com/watch?v=izONEmO9uqw
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Let x, y ∈ Cm. Then

‖x− y‖22 = ‖A(x− y)‖22
⇔ < alternative definition >

(x− y)H(x− y) = (A(x− y))HA(x− y)
= < (Bz)H = zHBH >

(x− y)H(x− y) = (x− y)HAHA(x− y)
⇔ < multiply out >

xHx− xHy − yHx+ yHy = xHAHAx− xHAHAy − yHAHAx+ yHAHAy

⇔ < alternative definition ;xHy = yHx >

‖x‖22 − (xHy + xHy) + ‖y‖22 = ‖Ax‖22 − (xHAHAy + xHAHAy) + ‖Ay‖22
⇔ < ‖Ax‖2 = ‖x‖2 and ‖Ay‖2 = ‖y‖2;α+ α = 2Re(α) >

Re
(
xHy

)
= Re

(
(Ax)HAy

)
One can similarly show that Im

(
xHy

)
= Im

(
(Ax)HAy

)
by considering A(ix− y).

Conclude that (Ax)H(Ay) = xHy.
We now use this to show that AHA = I by using the fact that the standard basis vectors have

the property that

eHi ej =
{

1 if i = j
0 otherwise

and that the i, j entry in AHA equals eHi AHAej .
Note: I think the above can be made much more elegant by choosing α such that αxHy is

real and then looking at ‖x + αy‖2 = ‖A(x + αy)‖2 instead, much like we did in the proof of the
Cauchy-Schwartz inequality. Try and see if you can work out the details. �

Homework 2.2.4.7 Prove that if U is unitary then ‖U‖2 = 1. [Solution]
(The above can be really easily proven with the SVD. Let’s point that out later.)

Homework 2.2.4.8 Prove that if U is unitary then κ2(U) = 1. [Solution]
The preservation of length extends to the preservation of norms that have a relation to the

2-norm:d
Homework 2.2.4.9 Let U ∈ Cm×m and V ∈ Cn×n be unitary and A ∈ Cm×n. Show that

• ‖UHA‖2 = ‖A‖2.

• ‖AV ‖2 = ‖A‖2.

• ‖UHAV ‖2 = ‖A‖2.

[Hint] [Solution]

Homework 2.2.4.10 Let U ∈ Cm×m and V ∈ Cn×n be unitary and A ∈ Cm×n. Show that
• ‖UHA‖F = ‖A‖F .

• ‖AV ‖F = ‖A‖F .

• ‖UHAV ‖F = ‖A‖F .

[Hint] [Solution]
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In the last two exercises we consider UHAV rather than UAV because it sets us up better for
future discussion.

2.2.5 Examples of unitary matrices
In this unit, we will discuss a few situations where you may have encountered unitary matrices
without realizing. Since few of us walk around pointing out to each other "Look, another matrix!",
we first consider if a transformation (function) might be a linear transformation. This allows us
to then ask the question "What kind of transformations we see around us preserve length?" After
that, we discuss how those transformations are represented as matrices. That leaves us to then
check whether the resulting matrix is unitary.

2.2.5.1 Rotations

YouTube: https://www.youtube.com/watch?v=C0mlDZ28Ohc
A rotation in 2D, Rθ : R2 → R2, takes a vector and rotates that vector through the angle θ:

If you think about it,

• If you scale a vector first and then rotate it, you get the same result as if you rotate it first
and then scale it.

• If you add two vectors first and then rotate, you get the same result as if you rotate them
first and then add them.

Thus, a rotation is a linear transformation. Also, the above picture captures that a rotation
preserves the length of the vector to which it is applied. We conclude that the matrix that represents
a rotation should be a unitary matrix.

https://www.youtube.com/watch?v=C0mlDZ28Ohc
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Let us compute the matrix that represents the rotation through an angle θ. Recall that if
L : Cn → Cm is a linear transformation and A is the matrix that represents it, then the jth column
of A, aj , equals L(ej). The pictures

and

illustrate that
Rθ(e0) =

(
cos(θ)
sin(θ)

)
and Rθ(e1) =

(
− sin(θ)
cos(θ)

)
.

Thus,

Rθ(x) =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
χ0
χ1

)
.

Homework 2.2.5.1 Show that (
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
is a unitary matrix. (Since it is real valued, it is usually called an orthogonal matrix instead.) [Hint]
[Solution]

Homework 2.2.5.2 Prove, without relying on geometry but using what you just discovered, that
cos(−θ) = cos(θ) and sin(−θ) = − sin(θ) [Solution]

2.2.5.2 Reflections

YouTube: https://www.youtube.com/watch?v=r8S04qqcc-o

https://www.youtube.com/watch?v=r8S04qqcc-o
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Picture a mirror with its orientation defined by a
unit length vector, u, that is orthogonal to it.

We will consider how a vector, x, is reflected by
this mirror.

The component of x orthogonal to the mirror
equals the component of x in the direction of u,
which equals (uTx)u.
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The orthogonal projection of x onto the mirror
is then given by the dashed vector, which equals
x− (uTx)u.

To get to the reflection of x, we now need to go
further yet by −(uTx)u.

We conclude that the transformation that mirrors
(reflects) x with respect to the mirror is given by
M(x) = x− 2(uTx)u.

The transformation described above preserves the length of the vector to which it is applied.

Homework 2.2.5.3 (Verbally) describe why reflecting a vector as described above is a linear
transformation. [Solution]

Homework 2.2.5.4 Show that the matrix that represents M : R3 → R3 in the above example is
given by I − 2uuT . [Hint] [Solution]

Homework 2.2.5.5 (Verbally) describe why (I − 2uuT )−1 = I − 2uuT if u ∈ R3 and ‖u‖2 = 1.
[Solution]

Homework 2.2.5.6 Let M : R3 → R3 be defined by M(x) = (I − 2uuT )x, where ‖u‖2 = 1. Show
that the matrix that represents it is unitary (or, rather, orthogonal since it is in R3×3). [Solution]
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Remark 2.2.5.1 Unitary matrices in general, and rotations and reflections in particular, will play
a key role in many of the practical algorithms we will develop in this course.

2.2.6 Change of orthonormal basis

YouTube: https://www.youtube.com/watch?v=DwTVkdQKJK4

Homework 2.2.6.1 Consider the vector x =
(
−2

1

)
and the following picture that depicts a

rotated basis with basis vectors u0 and u1.

What are the coordinates of the vector x in this rotated system? In other words, find x̂ =(
χ̂0
χ̂1

)
such that χ̂0u0 + χ̂1u1 = x. [Solution]

Below we compare side-by-side how to describe a vector x using the standard basis vectors
e0, . . . , em−1 (on the left) and vectors u0, . . . , um−1 (on the right):

https://www.youtube.com/watch?v=DwTVkdQKJK4


WEEK 2. THE SINGULAR VALUE DECOMPOSITION 75

The vector x =

 χ0
...

χm−1

 describes the vec-

tor x in terms of the standard basis vectors
e0, . . . , em−1:

x
= < x = Ix = IIx = IITx >

IITx
= < expose columns of I >

(
e0 · · · em−1

)
eT0
...

eTm−1

x
= < evaluate >

(
e0 · · · em−1

)
eT0 x
...

eTm−1x


= < eTj x = χj >(
e0 · · · em−1

)
χ0
...

χm−1


= < evaluate >

χ0e0 + χ1e1 + · · ·+ χm−1em−1.

Illustration:

The vector x̂ =

 uT0 x
...

uTm−1x

 describes the

vector x in terms of the orthonormal basis
u0, . . . , um−1:

x
= < x = Ix = UUHx >

UUHx
= < expose columns of U >

(
u0 · · · um−1

)
uH0
...

uHm−1

x
= < evaluate >

(
u0 · · · um−1

)
uH0 x
...

uHm−1x



= < evaluate >
uH0 xu0 + uH1 xu1 + · · ·+ uHm−1xum−1.

Illustration (q should be u here):

Another way of looking at this is that if u0, u1, . . . , um−1 is an orthonormal basis for Cm, then
any x ∈ Cm can be written as a linear combination of these vectors:

x = α0u0 + α1u1 + · · ·+ αm−1um−1.
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Now,

uHi x = uHi (α0u0 + α1u1 + · · ·+ αi−1ui−1 + αiui + αi+1ui+1 + · · ·+ αm−1um−1)
= α0 uHi u0︸ ︷︷ ︸

0

+ α1 uHi u1︸ ︷︷ ︸
0

+ · · ·+ αi−1 uHi ui−1︸ ︷︷ ︸
0

+ αi u
H
i ui︸ ︷︷ ︸
1

+ αi+1 uHi ui+1︸ ︷︷ ︸
0

+ · · ·+ αm−1 uHi um−1︸ ︷︷ ︸
0

= αi.

Thus uHi x = αi, the coefficient that multiplies ui.

Remark 2.2.6.1 The point is that given vector x and unitary matrix U , UHx computes the
coefficients for the orthonormal basis consisting of the columns of matrix U . Unitary matrices
allow one to elegantly change between orthonormal bases.

2.2.7 Why we love unitary matrices

YouTube: https://www.youtube.com/watch?v=d8-AeC3Q8Cw
In Subsection 1.4.1, we looked at how sensitive solving

Ax = b

is to a change in the right-hand side

A(x+ δx) = b+ δb

when A is nonsingular. We concluded that

‖δx‖
‖x‖

≤ ‖A‖‖A−1‖︸ ︷︷ ︸
κ(A)

‖δb‖
‖b‖

,

when an induced matrix norm is used. Let’s look instead at how sensitive matrix-vector multipli-
cation is.
Homework 2.2.7.1 Let A ∈ Cn×n be nonsingular and x ∈ Cn a nonzero vector. Consider

y = Ax and y + δy = A(x+ δx).

Show that
‖δy‖
‖y‖

≤ ‖A‖‖A−1‖︸ ︷︷ ︸
κ(A)

‖δx‖
‖x‖

,

https://www.youtube.com/watch?v=d8-AeC3Q8Cw
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where ‖ · ‖ is an induced matrix norm. [Solution]
There are choices of x and δx for which the bound is tight.
What does this mean? It means that if as part of an algorithm we use matrix-vector or matrix-

matrix multiplication, we risk amplifying relative error by the condition number of the matrix by
which we multiply. Now, we saw in Section 1.4 that 1 ≤ κ(A). So, if there are algorithms that only
use matrices for which κ(A) = 1, then those algorithms don’t amplify relative error.

Remark 2.2.7.1 We conclude that unitary matrices, which do not amplify the 2-norm of a vector
or matrix, should be our tool of choice, whenever practical.

2.3 The Singular Value Decomposition

2.3.1 The Singular Value Decomposition Theorem

YouTube: https://www.youtube.com/watch?v=uBo3XAGt24Q
The following is probably the most important result in linear algebra:

Theorem 2.3.1.1 Singular Value Decomposition Theorem. Given A ∈ Cm×n there exist
unitary U ∈ Cm×m, unitary V ∈ Cn×n, and Σ ∈ Rm×n such that A = UΣV H . Here

Σ =
(

ΣTL 0
0 0

)
with ΣTL =


σ0 0 · · · 0
0 σ1 · · · 0
...

... . . . ...
0 0 · · · σr−1

 (2.3.1)

and σ0 ≥ σ1 ≥ · · · ≥ σr−1 > 0. The values σ0, . . . , σr−1 are called the singular values of matrix A.
The columns of U and V are called the left and right singular vectors, respectively.

Recall that in our notation a 0 indicates a matrix of vector "of appropriate size" and that in this
setting the zero matrices in (2.3.1) may be 0× 0, (m− r)× 0, and/or 0× (n− r).

Before proving this theorem, we are going to put some intermediate results in place.

Remark 2.3.1.2 As the course progresses, we will notice that there is a conflict between the
notation that explicitly exposes indices, e.g.,

U =
(
u0 u1 · · · un−1

)
and the notation we use to hide such explicit indexing, which we call the FLAME notation, e.g.,

U =
(
U0 u1 U2

)
.

https://www.youtube.com/watch?v=uBo3XAGt24Q
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The two linked by  u0 uk−1︸ ︷︷ ︸
U0

uk︸︷︷︸
u1

uk+1 un−1︸ ︷︷ ︸
U2

 .
In algorithms that use explicit indexing, k often is the loop index that identifies where in the matrix
or vector the algorithm currently has reached. In the FLAME notation, the index 1 identifies that
place. This creates a conflict for the two distinct items that are both indexed with 1, e.g., u1 in our
example here. It is our experience that learners quickly adapt to this and hence have not tried to
introduce even more notation that avoids this conflict. In other words: you will almost always be
able to tell from context what is meant. The following lemma and its proof illustrate this further.

Lemma 2.3.1.3 Given A ∈ Cm×n, with 1 ≤ n ≤ m and A 6= 0 (the zero matrix), there exist
unitary matrices Ũ ∈ Cm×m and Ṽ ∈ Cn×n such that

A = Ũ

(
σ1 0
0 B

)
Ṽ H , where σ1 = ‖A‖2.

Proof. In the below proof, it is really imporant to keep track of when a line is part of the partitioning
of a matrix or vector, and when it denotes scalar division.

Choose σ1 and ṽ1 ∈ Cn such that

• ‖ṽ1‖2 = 1; and

• σ1 = ‖Aṽ1‖2 = ‖A‖2.

In other words, ṽ1 is the vector that maximizes max‖x‖2=1 ‖Ax‖2.
Let ũ1 = Aṽ1/σ1. Then

‖ũ1‖2 = ‖Aṽ1‖2/σ1 = ‖Aṽ1‖2/‖A‖2 = ‖A‖2/‖A‖2 = 1.

Choose Ũ2 ∈ Cm×(m−1) and Ṽ2 ∈ Cn×(n−1) so that

Ũ =
(
ũ1 Ũ2

)
and Ṽ =

(
ṽ1 Ṽ2

)
are unitary. Then

ŨHAṼ
= < instantiate >(
ũ1 Ũ2

)H
A
(
ṽ1 Ṽ2

)
= < multiply out >(
ũH1 Aṽ1 ũH1 AṼ2
ŨH2 Aṽ1 ŨH2 AṼ2

)
= < Aṽ1 = σ1ũ1 >(
σ1ũ

H
1 ũ1 ũH1 AṼ2

σ1Ũ
H
2 ũ1 ŨH2 AṼ2

)
= < ũH1 ũ1 = 1; ŨH2 ũ1 = 0; pick w = Ṽ H

2 AH ũ1 and B = ŨH2 AṼ2 >(
σ1 wH

0 B

)
,

where w = Ṽ H
2 AH ũ1 and B = ŨH2 AṼ2.
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We will now argue that w = 0, the zero vector of appropriate size:

σ2
1

= < assumption >
‖A‖22

= < 2-norm is invariant under multiplication by unitary matrix >

‖ŨHAṼ ‖22
= < definition of ‖ · ‖2 >

maxx 6=0
‖ŨHAṼ x‖2

2
‖x‖2

2
= < see above >

maxx 6=0

∥∥∥∥∥
(
σ1 wH

0 B

)
x

∥∥∥∥∥
2

2
‖x‖2

2
≥ < x replaced by specific vector >∥∥∥∥∥
(
σ1 wH

0 B

)(
σ1
w

)∥∥∥∥∥
2

2∥∥∥∥∥
(
σ1
w

)∥∥∥∥∥
2

2
= < multiply out numerator >∥∥∥∥∥
(
σ2

1 + wHw

Bw

)∥∥∥∥∥
2

2∥∥∥∥∥
(
σ1
w

)∥∥∥∥∥
2

2

≥ <

∥∥∥∥∥
(
ψ1
y2

)∥∥∥∥∥
2

2
= ‖ψ1‖22 + ‖y2‖22 ≥ ‖ψ1‖22;

∥∥∥∥∥
(
σ1
w

)∥∥∥∥∥
2

2
= σ2

1 + wHw >

(σ2
1 + wHw)2/(σ2

1 + wHw)
= < algebra >

σ2
1 + wHw.

Thus σ2
1 ≥ σ2

1 +wHw which means that w = 0 (the zero vector) and ŨHAṼ =
(
σ1 0
0 B

)
so that

A = Ũ

(
σ1 0
0 B

)
Ṽ H . �
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Hopefully you can see where this is going: If one can recursively find that B = UBΣBV
H
B , then

A = Ũ

(
σ1 0
0 B

)
Ṽ H

= Ũ

(
σ1 0
0 UBΣBV

H
B

)
Ṽ H

= Ũ

(
1 0
0 UB

)(
σ1 0
0 ΣB

)(
1 0
0 V H

B

)
Ṽ H

= Ũ

(
1 0
0 UB

)
︸ ︷︷ ︸

U

(
σ1 0
0 ΣB

)
︸ ︷︷ ︸

Σ

(
Ṽ

(
1 0
0 VB

))H
.︸ ︷︷ ︸

V H

.

The next exercise provides the insight that the values on the diagonal of Σ will be ordered from
largest to smallest.

Homework 2.3.1.1 Let A ∈ Cm×n with A =
(
σ1 0
0 B

)
and assume that ‖A‖2 = σ1.

ALWAYS/SOMETIMES/NEVER: ‖B‖2 ≤ σ1. [Solution]
We are now ready to prove the Singular Value Decomposition Theorem.

Proof of Singular Value Decomposition Theorem for n ≤ m. We will prove this for m ≥ n, leaving
the case where m ≤ n as an exercise.

Proof by induction: Since m ≥ n, we select m to be arbritary and induct on n.

• Base case: n = 1.
In this case A =

(
a1
)
where a1 ∈ Cm is its only column.

Case 1: a1 = 0 (the zero vector).
Then

A =
(

0
)

= Im×m︸ ︷︷ ︸
U

(
0

)
I1×1︸︷︷︸
V H

so that U = Im×m, V = I1×1, and ΣTL is an empty matrix.
Case 2: a1 6= 0.
Then

A =
(
a1
)

=
(
u1

)
(‖a1‖2)

where u1 = a1/‖a1‖2. Choose U2 ∈ Cm×(m−1) so that U =
(
u1 U2

)
is unitary. Then

A =
(
a1
)

=
(
u1

)
(‖a1‖2)

=
(
u1 U2

)( ‖a1‖2
0

)(
1
)H

= UΣV H ,

where
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◦ U =
(
u1 U2

)
,

◦ Σ =
(

ΣTL

0

)
with ΣTL =

(
σ1

)
and σ1 = ‖a1‖2 = ‖A‖2

◦ V =
(

1
)
.

• Inductive step:
Assume the result is true for matrices with 1 ≤ k columns. Show that it is true for matrices
with k + 1 columns.
Let A ∈ Cm×(k+1) with 1 ≤ k < n.
Case 1: A = 0 (the zero matrix)
Then

A = Im×m

(
0m×(k+1)

)
I(k+1)×(k+1)

so that U = Im×m, V = I(k+1)×(k+1), and ΣTL is an empty matrix.
Case 2: A 6= 0.
Then ‖A‖2 6= 0. By Lemma 2.3.1.3, we know that there exist unitary Ũ ∈ Cm×m and

Ṽ ∈ C(k+1)×(k+1) such that A = Ũ

(
σ1 0
0 B

)
Ṽ H with σ1 = ‖A‖2.

By the inductive hypothesis, there exist unitary ǓB ∈ C(m−1)×(m−1), unitary V̌B ∈ Ck×k, and

Σ̌B ∈ R(m−1)×k such thatB = ǓBΣ̌BV̌
H
B where Σ̌B =

(
Σ̌TL 0

0 0

)
, Σ̌TL = diag(σ2, · · · , σr−1),

and σ2 ≥ · · · ≥ σr−1 > 0.
Now, let

U = Ũ

(
1 0
0 ǓB

)
, V = Ṽ

(
1 0
0 V̌B

)
, and Σ =

(
σ1 0
0 Σ̌B

)
.

(There are some really tough to see "checks" in the definition of U , V , and Σ!!) Then A =
UΣV H where U , V , and Σ have the desired properties. Key here is that σ1 = ‖A‖2 ≥ ‖B‖2
which means that σ1 ≥ σ2.

• By the Principle of Mathematical Induction the result holds for all matrices A ∈ Cm×n with
m ≥ n.

�

Homework 2.3.1.2 Let Σ = diag(σ0, . . . , σn−1). ALWAYS/SOMETIMES/NEVER: ‖Σ‖2 =
maxn−1

i=0 |σi|. [Answer] [Solution]

Homework 2.3.1.3 Assume that U ∈ Cm×m and V ∈ Cn×n are unitary matrices. Let A,B ∈
Cm×n with B = UAV H . Show that the singular values of A equal the singular values of B.
[Solution]

Homework 2.3.1.4 Let A ∈ Cm×n with n ≤ m and A = UΣV H be its SVD.
ALWAYS/SOMETIMES/NEVER: AH = V ΣTUH . [Answer] [Solution]



WEEK 2. THE SINGULAR VALUE DECOMPOSITION 82

Homework 2.3.1.5 Prove the Singular Value Decomposition Theorem form ≤ n. [Hint] [Solution]
I believe the following video has material that is better presented in second video

of 2.3.2.

YouTube: https://www.youtube.com/watch?v=ZYzqTC5LeLs

2.3.2 Geometric interpretation

YouTube: https://www.youtube.com/watch?v=XKhCTtX1z6A
We will now illustrate what the SVD Theorem tells us about matrix-vector multiplication (linear

transformations) by examining the case where A ∈ R2×2. Let A = UΣV T be its SVD. (Notice that
all matrices are now real valued, and hence V H = V T .) Partition

A =
(
u0 u1

)( σ0 0
0 σ1

)(
v0 v1

)T
.

Since U and V are unitary matrices, {u0, u1} and {v0, v1} form orthonormal bases for the range
and domain of A, respectively:

R2: Domain of A: R2: Range (codomain) of A:

https://www.youtube.com/watch?v=ZYzqTC5LeLs
https://www.youtube.com/watch?v=XKhCTtX1z6A


WEEK 2. THE SINGULAR VALUE DECOMPOSITION 83

Let us manipulate the decomposition a little:

A =
(
u0 u1

)( σ0 0
0 σ1

)(
v0 v1

)T
=

[(
u0 u1

)( σ0 0
0 σ1

)](
v0 v1

)T
=

(
σ0u0 σ1u1

) (
v0 v1

)T
.

Now let us look at how A transforms v0 and v1:

Av0 =
(
σ0u0 σ1u1

) (
v0 v1

)T
v0 =

(
σ0u0 σ1u1

)( 1
0

)
= σ0u0

and similarly Av1 = σ1u1. This motivates the pictures in Figure 2.3.2.1.
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R2: Domain of A: R2: Range (codomain) of A:

R2: Domain of A: R2: Range (codomain) of A:

Figure 2.3.2.1 Illustration of how orthonormal vectors v0 and v1 are transformed by matrix
A = UΣV .

Next, let us look at how A transforms any vector with (Euclidean) unit length. Notice that

x =
(
χ0
χ1

)
means that

x = χ0e0 + χ1e1,

where e0 and e1 are the unit basis vectors. Thus, χ0 and χ1 are the coefficients when x is expressed
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using e0 and e1 as basis. However, we can also express x in the basis given by v0 and v1:

x = V V T︸ ︷︷ ︸
I

x =
(
v0 v1

) (
v0 v1

)T
x =

(
v0 v1

)( vT0 x

vT1 x

)

= vT0 x︸︷︷︸
α0

v0 + vT1 x︸︷︷︸
α1

v1 = α0v0 + α1v1 =
(
v0 v1

)( α0
α1

)
.

Thus, in the basis formed by v0 and v1, its coefficients are α0 and α1. Now,

Ax =
(
σ0u0 σ1u1

) (
v0 v1

)T
x

=
(
σ0u0 σ1u1

) (
v0 v1

)T (
v0 v1

)( α0
α1

)

=
(
σ0u0 σ1u1

)( α0
α1

)
= α0σ0u0 + α1σ1u1.

This is illustrated by the following picture, which also captures the fact that the unit ball is
mapped to an oval with major axis equal to σ0 = ‖A‖2 and minor axis equal to σ1, as illustrated
in Figure 2.3.2.1 (bottom).

Finally, we show the same insights for general vector x (not necessarily of unit length):

R2: Domain of A: R2: Range (codomain) of A:

Another observation is that if one picks the right basis for the domain and codomain, then
the computation Ax simplifies to a matrix multiplication with a diagonal matrix. Let us again
illustrate this for nonsingular A ∈ R2×2 with

A =
(
u0 u1

)
︸ ︷︷ ︸

U

(
σ0 0
0 σ1

)
︸ ︷︷ ︸

Σ

(
v0 v1

)
︸ ︷︷ ︸

V

T
.
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Now, if we chose to express y using u0 and u1 as the basis and express x using v0 and v1 as the
basis, then

UUT︸ ︷︷ ︸
I

y = U UT y︸ ︷︷ ︸
ŷ

= (uT0 y)u0 + (uT1 y)u1

=
(
u0 u1

)( uT0 y

uT1 y

)
= U

(
ψ̂0
ψ̂1

)
︸ ︷︷ ︸

ŷ

V V T︸ ︷︷ ︸
I

x = V V Tx︸ ︷︷ ︸
x̂

= (vT0 x)v0 + (vT1 x)v1

=
(
v0 v1

)( vT0 x

vT1 x

)
= V

(
χ̂0
χ̂1.

)
︸ ︷︷ ︸

x̂

.

If y = Ax then
U UT y︸ ︷︷ ︸

ŷ

= UΣV Tx︸ ︷︷ ︸
Ax

= UΣx̂

so that
ŷ = Σx̂

and (
ψ̂0
ψ̂1.

)
=
(

σ0χ̂0
σ1χ̂1.

)
.

Remark 2.3.2.2 The above discussion shows that if one transforms the input vector x and output
vector y into the right bases, then the computation y := Ax can be computed with a diagonal
matrix instead: ŷ := Σx̂. Also, solving Ax = y for x can be computed by multiplying with the
inverse of the diagonal matrix: x̂ := Σ−1ŷ.

These observations generalize to A ∈ Cm×n: If

y = Ax

then
UHy = UHA V V H︸ ︷︷ ︸

I

x

so that
UHy︸ ︷︷ ︸
ŷ

= Σ V Hx︸ ︷︷ ︸
x̂

(Σ is a rectangular "diagonal" matrix.)

https://www.youtube.com/watch?v=1LpK0dbFX1g
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YouTube: https://www.youtube.com/watch?v=1LpK0dbFX1g

2.3.3 An "algorithm" for computing the SVD
We really should have created a video for this section. Those who have taken our "Programming for
Correctness" course will recognize what we are trying to describe here. Regardless, you can safely
skip this unit without permanent (or even temporary) damage to your linear algebra understanding.

In this unit, we show how the insights from the last unit can be molded into an "algorithm"
for computing the SVD. We put algorithm in quotes because while the details of the algorithm
mathematically exist, they are actually very difficult to compute in practice. So, this is not a
practical algorithm. We will not discuss a practical algorithm until the very end of the course, in
Week 11.

We observed that, starting with matrix A, we can compute one step towards the SVD. If we
overwrite A with the intermediate results, this means that after one step(

α11 aT12
a21 A22

)
=
(
ũ1 Ũ2

)H ( α̂11 âT12
â21 Â22

)(
ṽ1 Ṽ2

)
=
(
σ11 0
0 B

)
,

where Â allows us to refer to the original contents of A.
In our proof of Theorem 2.3.1.1, we then said that the SVD of B, B = UBΣBV

H
B could be

computed, and the desired U and V can then be created by computing U = ŨUB and V = Ṽ VB.
Alternatively, one can accumulate U and V every time a new singular value is exposed. In this

approach, you start by setting U = Im×m and V = In×n. Upon completing the first step (which
computes the first singular value), one multiplies U and V from the right with the computed Ũ
and Ṽ :

U := UŨ

V := V Ṽ .

Now, every time another singular value is computed in future steps, the corresponding unitary
matrices are similarly accumulated into U and V .

To explain this more completely, assume that the process has proceeded for k steps to the point
where

U =
(
UL UR

)
∈ Cm×m with UL ∈ Cm×k

V =
(
VL VR

)
∈ Cn×n with VL ∈ Cn×k

A =
(
ATL ATR
ABL ABR

)
with ATL ∈ Ck×k,

where the current contents of A are(
ATL ATR
ABL ABR

)
=

(
UL UR

)H ( ÂTL ÂTR
ÂBL ÂBR

)(
VL VR

)
=

(
ΣTL 0

0 B

)
.

This means that in the current step we need to update the contents of ABR with

ŨHAṼ =
(
σ11 0
0 B̃

)
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and update (
UL UR

)
:=

(
UL UR

)( Ik×k 0
0 Ũ

)
(
VL VR

)
:=

(
VL VR

)( Ik×k 0
0 Ṽ

)
,

which simplify to
UBR := UBRŨ and VBR := VBRṼ .

At that point, ATL is expanded by one row and column, and the left-most columns of UR and
VR are moved to UL and VL, respectively. If ABR ever contains a zero matrix, the process com-
pletes with A overwritten with Σ = UH V̂ . These observations, with all details, are captured in
Figure 2.3.3.1. In that figure, the boxes in yellow are assertions that capture the current contents
of the variables. Those familiar with proving loops correct will recognize the first and last such box
as the precondition and postcondition for the operation and(

ATL ATR
ABL ABR

)
=

(
UL UR

)H ( ÂTL ÂTR
ÂBL ÂBR

)(
VL VR

)
=

(
ΣTL 0

0 B

)

as the loop-invariant that can be used to prove the correctness of the loop via a proof by induction.
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Figure 2.3.3.1 Algorithm for computing the SVD of A, overwriting A with Σ. In the yellow boxes
are assertions regarding the contents of the various matrices.



WEEK 2. THE SINGULAR VALUE DECOMPOSITION 90

The reason this algorithm is not practical is that many of the steps are easy to state mathe-
matically, but difficult (computationally expensive) to compute in practice. In particular:

• Computing ‖ABR‖2 is tricky and as a result, so is computing ṽ1.

• Given a vector, determining a unitary matrix with that vector as its first column is compu-
tationally expensive.

• Assuming for simplicity that m = n, even if all other computations were free, computing
the product A22 := ŨH2 ABRṼ2 requires O((m − k)3) operations. This means that the entire
algorithm requires O(m4) computations, which is prohibitively expensive when n gets large.
(We will see that most practical algorithms discussed in this course cost O(m3) operations or
less.)

Later in this course, we will discuss an algorithm that has an effective cost of O(m3) (when m = n).

Ponder This 2.3.3.1 An implementation of the "algorithm" in Figure 2.3.3.1, using our FLAME
API for Matlab (FLAME@lab) [5] that allows the code to closely resemble the algorithm as we
present it, is given in mySVD.m (Assignments/Week02/matlab/mySVD.m). This implemention
depends on routines in subdirectory Assignments/flameatlab being in the path. Examine this code.
What do you notice? Execute it with
m = 5;
n = 4;
A = rand( m, n ); % create m x n random matrix
[ U, Sigma, V ] = mySVD( A )

Then check whether the resulting matrices form the SVD:

norm( A - U * Sigma * V' )

and whether U and V are unitary

norm( eye( n,n ) - V' * V )
norm( eye( m,m ) - U' * U )

2.3.4 The Reduced Singular Value Decomposition

YouTube: https://www.youtube.com/watch?v=HAAh4IsIdsY

Corollary 2.3.4.1 Reduced Singular Value Decomposition. Let A ∈ Cm×n and r = rank(A).
There exist orthonormal matrix UL ∈ Cm×r, orthonormal marix VL ∈ Cn×r, and matrix ΣTL ∈ Rr×r
with ΣTL = diag(σ0, . . . , σr−1) and σ0 ≥ σ1 ≥ · · · ≥ σr−1 > 0 such that A = ULΣTLV

H
L .

https://www.youtube.com/watch?v=HAAh4IsIdsY
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Homework 2.3.4.1 Prove the above corollary. [Solution]

Corollary 2.3.4.2 Let A = ULΣTLV
H
L be the Reduced SVD with UL =

(
u0 · · · ur−1

)
, VL =

(
v0 · · · vr−1

)
, and ΣTL =


σ0

. . .
σr−1

. Then

A = σ0u0v
H
0 + · · ·+ σr−1ur−1v

H
r−1.

Remark 2.3.4.3 This last result establishes that any matrix A with rank r can be written as a
linear combination of r outer products:

A = σ0u0v
H
0︸ ︷︷ ︸

σ0

+ σ1u1v
H
1︸ ︷︷ ︸

σ1

+ · · ·+ σr−1ur−1v
H
r−1︸ ︷︷ ︸

σr−1

.

2.3.5 SVD of nonsingular matrices

YouTube: https://www.youtube.com/watch?v=5Gvmtll5T3k

Homework 2.3.5.1 Let A ∈ Cm×m and A = UΣV H be its SVD.
TRUE/FALSE: A is nonsingular if and only if Σ is nonsingular. [Answer] [Solution]

Homework 2.3.5.2 Let A ∈ Cm×m and A = UΣV H be its SVD with

Σ =


σ0 0 · · · 0
0 σ1 · · · 0
...

... . . . ...
0 0 · · · σm−1


TRUE/FALSE: A is nonsingular if and only if σm−1 6= 0. [Answer] [Solution]

Homework 2.3.5.3 Let A ∈ Cm×m be nonsingular and A = UΣV H be its SVD.
ALWAYS/SOMETIMES/NEVER: The SVD of A−1 equals V Σ−1UH . [Answer] [Solution]

https://www.youtube.com/watch?v=5Gvmtll5T3k
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Homework 2.3.5.4 Let A ∈ Cm×m be nonsingular and

A = UΣV H

=
(
u0 · · · um−1

)
σ0 · · · 0
... . . . ...
0 · · · σm−1

( v0 · · · vm−1
)H

be its SVD.
The SVD of A−1 is given by (indicate all correct answers):

1. V Σ−1UH .

2.
(
v0 · · · vm−1

)
1/σ0 · · · 0
... . . . ...
0 · · · 1/σm−1

( u0 · · · um−1
)H

3.
(
vm−1 · · · v0

)
1/σm−1 · · · 0

... . . . ...
0 · · · 1/σ0

( um−1 · · · u0
)H

.

4. (V PH)(PΣ−1PH)(UPH)H where P =


0 · · · 0 1
0 · · · 1 0
...

...
...

1 · · · 0 0


[Answer] [Solution]

Homework 2.3.5.5 Let A ∈ Cm×m be nonsingular.
TRUE/FALSE: ‖A−1‖2 = 1/min‖x‖2=1 ‖Ax‖2. [Answer] [Solution]
In Subsection 2.3.2, we discussed the case where A ∈ R2×2. Letting A = UΣV T and partitioning

A =
(
u0 u1

)( σ0 0
0 σ1

)(
v0 v1

)T
yielded the pictures

R2: Domain of A: R2: Range (codomain) of A:
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This captures what the condition number κ2(A) = σ0/σn−1 captures: how elongated the oval
that equals the image of the unit ball is. The more elongated, the greater the ratio σ0/σn−1, and
the worse the condition number of the matrix. In the limit, when σn−1 = 0, the unit ball is mapped
to a lower dimensional set, meaning that the transformation cannot be "undone."

Ponder This 2.3.5.6 For the 2D problem discussed in this unit, what would the image of the unit
ball look like as κ2(A)→∞? When is κ2(A) =∞?

2.3.6 Best rank-k approximation

YouTube: https://www.youtube.com/watch?v=sN0DKG8vPhQ
We are now ready to answer the question "How do we find the best rank-k approximation for a

picture (or, more generally, a matrix)? " posed in Subsection 2.1.1.

Theorem 2.3.6.1 Given A ∈ Cm×n, let A = UΣV H be its SVD. Assume the entries on the
main diagonal of Σ are σ0, · · · , σmin(m,n)−1 with σ0 ≥ · · · ≥ σmin(m,n)−1 ≥ 0. Given k such that
0 ≤ k ≤ min(m,n), partition

U =
(
UL UR

)
, V =

(
VL VR

)
, and Σ =

(
ΣTL 0

0 ΣBR

)
,

where UL ∈ Cm×k, VL ∈ Cn×k, and ΣTL ∈ Rk×k. Then

B = ULΣTLV
H
L

https://www.youtube.com/watch?v=sN0DKG8vPhQ
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is the matrix in Cm×n closest to A in the following sense:

‖A−B‖2 = min
C ∈ Cm×n

rank(C) ≤ k

‖A− C‖2.

In other words, B is the matrix with rank at most k that is closest to A as measured by the 2-norm.
Also, for this B,

‖A−B‖2 =
{
σk if k < min(m,n)
0 otherwise.

The proof of this theorem builds on the following insight:

Homework 2.3.6.1 Given A ∈ Cm×n, let A = UΣV H be its SVD. Show that

Avj = σjuj for 0 ≤ j < min(m,n),

where uj and vj equal the columns of U and V indexed by j, and σj equals the diagonal element
of Σ indexed with j. [Solution]
Proof of Theorem 2.3.6.1. First, if B is as defined, then ‖A−B‖2 = σk:

‖A−B‖2
= < multiplication with unitary matrices preserves 2-norm >

‖UH(A−B)V ‖2
= < distribute >

‖UHAV − UHBV ‖2
= < use SVD of A and partition >∥∥∥∥Σ− ( UL UR

)H
B
(
VL VR

)∥∥∥∥
2

= < how B was chosen >∥∥∥∥∥
(

ΣTL 0
0 ΣBR

)
−
(

ΣTL 0
0 0

)∥∥∥∥∥
2

= < partitioned subtraction >∥∥∥∥∥
(

0 0
0 ΣBR

)∥∥∥∥∥
2

= <>
‖ΣBR‖2

= < ΣTL is k × k >
σk

(Obviously, this needs to be tidied up for the case where k > rank(A).)
Next, assume that C has rank r ≤ k and ‖A− C‖2 < ‖A− B‖2. We will show that this leads

to a contradiction.

• The null space of C has dimension at least n− k since dim(N (C)) = n− r.

• If x ∈ N (C) then

‖Ax‖2 = ‖(A− C)x‖2 ≤ ‖A− C‖2‖x‖2 < σk‖x‖2.
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• Partition U =
(
u0 · · · um−1

)
and V =

(
v0 · · · vn−1

)
. Then ‖Avj‖2 = ‖σjuj‖2 =

σj ≥ σk for j = 0, . . . , k.

• Now, let y be any linear combination of v0, . . . , vk: y = α0v0 + · · ·+ αkvk. Notice that

‖y‖22 = ‖α0v0 + · · ·+ αkvk‖22 = |α0|2 + · · · |αk|2

since the vectors vj are orthonormal. Then

‖Ay‖22
= < y = α0v0 + · · ·+ αkvk >

‖A(α0v0 + · · ·+ αkvk)‖22
= < distributivity >

‖α0Av0 + · · ·+ αkAvk‖22
= < Avj = σjuj >

‖α0σ0u0 + · · ·+ αkσkuk‖22
= < this works because the uj are orthonormal >

‖α0σ0u0‖22 + · · ·+ ‖αkσkuk‖22
= < norms are homogeneous and ‖uj‖2 = 1 >

|α0|2σ2
0 + · · ·+ |αk|2σ2

k

≥ < σ0 ≥ σ1 ≥ · · · ≥ σk ≥ 0 >
(|α0|2 + · · ·+ |αk|2)σ2

k

= < ‖y‖22 = |α0|2 + · · ·+ |αk|2 >
σ2
k‖y‖22.

so that ‖Ay‖2 ≥ σk‖y‖2. In other words, vectors in the subspace of all linear combinations
of {v0, . . . , vk} satisfy ‖Ax‖2 ≥ σk‖x‖2. The dimension of this subspace is k + 1 (since
{v0, · · · , vk} form an orthonormal basis).

• Both these subspaces are subspaces of Cn. One has dimension k+1 and the other n−k. This
means that if you take a basis for one (which consists of n− k linearly independent vectors)
and add it to a basis for the other (which has k + 1 linearly independent vectors), you end
up with n+ 1 vectors. Since these cannot all be linearly independent in Cn, there must be at
least one nonzero vector z that satisfies both ‖Az‖2 < σk‖z‖2 and ‖Az‖2 ≥ σk‖z‖2, which is
a contradiction.

�
Theorem 2.3.6.1 tells us how to pick the best approximation to a given matrix of a given desired

rank. In Section Subsection 2.1.1 we discussed how a low rank matrix can be used to compress
data. The SVD thus gives the best such rank-k approximation. Let us revisit this.

Let A ∈ Rm×n be a matrix that, for example, stores a picture. In this case, the i, j entry in A
is, for example, a number that represents the grayscale value of pixel (i, j).

Homework 2.3.6.2 In Assignments/Week02/matlab execute
IMG = imread( 'Frida.jpg' );
A = double( IMG( :,:,1 ) );
imshow( uint8( A ) )
size( A )
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to generate the picture of Mexican artist Frida Kahlo

Although the picture is black and white, it was read as if it is a color image, which means a
m × n × 3 array of pixel information is stored. Setting A = IMG( :,:,1 ) extracts a single matrix
of pixel information. (If you start with a color picture, you will want to approximate IMG( :,:,1),
IMG( :,:,2), and IMG( :,:,3) separately.)

Next, compute the SVD of matrix A

[ U, Sigma, V ] = svd( A );

and approximate the picture with a rank-k update, starting with k = 1:

k = 1
B = uint8( U( :, 1:k ) * Sigma( 1:k,1:k ) * V( :, 1:k )' );
imshow( B );

Repeat this with increasing k.

r = min( size( A ) )
for k=1:r
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imshow( uint8( U( :, 1:k ) * Sigma( 1:k,1:k ) * V( :, 1:k )' ) );
input( strcat( num2str( k ), " press return" ) );

end

To determine a reasonable value for k, it helps to graph the singular values:

figure
r = min( size( A ) );
plot( [ 1:r ], diag( Sigma ), 'x' );

Since the singular values span a broad range, we may want to plot them with a log-log plot

loglog( [ 1:r ], diag( Sigma ), 'x' );

For this particular matrix (picture), there is no dramatic drop in the singular values that makes it
obvious what k is a natural choice. [Solution]

2.4 Enrichments

2.4.1 Principle Component Analysis (PCA)
Principle Component Analysis (PCA) is a standard technique in data science related to the SVD.
You may enjoy the article

• [31] J. Novembre, T. Johnson, K. Bryc, Z. Kutalik, A.R. Boyko, A. Auton, A. Indap, K.S.
King, S. Bergmann, M.. Nelson, M. Stephens, C.D. Bustamante, , Nature, 2008.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735096/

In that article, PCA is cast as an eigenvalue problem rather than a singular value problem. Later
in the course, in Week 11, we will link these.

2.5 Wrap Up

2.5.1 Additional homework

Homework 2.5.1.1 U ∈ Cm×m is unitary if and only if (Ux)H(Uy) = xHy for all x, y ∈ Cm.
[Hint]

Homework 2.5.1.2 Let A,B ∈ Cm×n. Furthermore, let U ∈ Cm×m and V ∈ Cn×n be unitary.
TRUE/FALSE: UAV H = B iff UHBV = A. [Answer]

Homework 2.5.1.3 Prove that nonsingular A ∈ Cn×n has condition number κ2(A) = 1 if and
only if A = σQ where Q is unitary and σ ∈ R is positive. [Hint]

Homework 2.5.1.4 Let U ∈ Cm×m and V ∈ Cn×n be unitary.

ALWAYS/SOMETIMES/NEVER: The matrix
(
U 0
0 V

)
is unitary. [Answer]

Homework 2.5.1.5 Matrix A ∈ Rm×m is a stochastic matrix if and only if it is nonnegative (all
its entries are nonnegative) and the entries in its columns sum to one:

∑
0≤i<m αi,j = 1. Such

matrices are at the core of Markov processes. Show that a matrix A is both unitary matrix and a

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735096/
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stochastic matrix if and only if it is a permutation matrix.

Homework 2.5.1.6 Show that if ‖ · · · ‖ is a norm and A is nonsingular, then ‖ · · · ‖A−1 defined by
‖x‖A−1 = ‖A−1x‖ is a norm.

Interpret this result in terms of the change of basis of a vector.

Homework 2.5.1.7 Let A ∈ Cm×m be nonsingular and A = UΣV H be its SVD with

Σ =


σ0 0 · · · 0
0 σ1 · · · 0
...

... . . . ...
0 0 · · · σm−1


The condition number of A is given by (mark all correct answers):

1. κ2(A) = ‖A‖2‖A−1‖2.

2. κ2(A) = σ0/σm−1.

3. κ2(A) = uH0 Av0/u
H
m−1Avm−1.

4. κ2(A) = max‖x‖2=1 ‖Ax‖2/min‖x‖2=1 ‖Ax‖2.

(Mark all correct answers.)

Homework 2.5.1.8 Theorem 2.2.4.4 stated: If A ∈ Cm×m preserves length (‖Ax‖2 = ‖x‖2 for all
x ∈ Cm), then A is unitary.Give an alternative proof using the SVD.

Homework 2.5.1.9 In Homework 1.3.7.2 you were asked to prove that ‖A‖2 ≤ ‖A‖F given
A ∈ Cm×n. Give an alternative proof that leverages the SVD.
Homework 2.5.1.10 In Homework 1.3.7.3, we skipped how the 2-norm bounds the Frobenius
norm. We now have the tools to do so elegantly: Prove that, given A ∈ Cm×n,

‖A‖F ≤
√
r‖A‖2,

where r is the rank of matrix A.

2.5.2 Summary
Given x, y ∈ Cm

• their dot product (inner product) is defined as

xHy = xT y = xT y = χ0ψ0 + χ1ψ1 + · · ·+ χm−1ψm−1 =
m−1∑
i=0

χiψi.

• These vectors are said to be orthogonal (perpendicular) iff xHy = 0.

• The component of y in the direction of x is given by

xHy

xHx
x = xxH

xHx
y.
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The matrix that projects a vector onto the space spanned by x is given by

xxH

xHx
.

• The component of y orthogonal to x is given by

y − xHy

xHx
x =

(
I − xxH

xHx

)
y.

Thus, the matrix that projects a vector onto the space orthogonal to x is given by

I − xxH

xHx
.

Given u, v ∈ Cm with u of unit length

• The component of v in the direction of u is given by

uHvu = uuHv.

• The matrix that projects a vector onto the space spanned by u is given by

uuH

• The component of v orthogonal to u is given by

v − uHvu =
(
I − uuH

)
v.

• The matrix that projects a vector onto the space that is orthogonal to x is given by

I − uuH

Let u0, u1, . . . , un−1 ∈ Cm. These vectors are said to be mutually orthonormal if for all 0 ≤
i, j < n

uHi uj =
{

1 if i = j
0 otherwise .

Let Q ∈ Cm×n (with n ≤ m). Then Q is said to be

• an orthonormal matrix iff QHQ = I.

• a unitary matrix iff QHQ = I and m = n..

• an orthogonal matrix iff it is a unitary matrix and is real-valued.

Let Q ∈ Cm×n (with n ≤ m). Then Q =
(
q0 · · · qn−1

)
is orthonormal iff {q0, . . . , qn−1 are

mutually orthonormal.

Definition 2.5.2.1 Unitary matrix. Let U ∈ Cm×m. Then U is said to be a unitary matrix if
and only if UHU = I (the identity). ♦

If U, V ∈ Cm×m are unitary, then
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• UHU = I.

• UUH = I.

• U−1 = UH .

• UH is unitary.

• UV is unitary.

If U ∈ Cm×m and V ∈ Cn×n are unitary, x ∈ Cm, and A ∈ Cm×n, then

• ‖Ux‖2 = ‖x‖2.

• ‖UHA‖2 = ‖UA‖2 = ‖AV ‖2 = ‖AV H‖2 = ‖UHAV ‖2 = ‖UAV H‖2 = ‖A‖2.

• ‖UHA‖F = ‖UA‖F = ‖AV ‖F = ‖AV H‖F = ‖UHAV ‖F = ‖UAV H‖F = ‖A‖F .

• ‖U‖2 = 1

• κ2(U) = 1

Examples of unitary matrices:

• Rotation in 2D:
(
c −s
s c

)
.

• Reflection: I − 2uuH where u ∈ Cm and ‖u‖2 = 1.

Change of orthonormal basis: If x ∈ Cm and U =
(
u0 · · · um−1

)
is unitary, then

x = (uH0 x)u0 + · · ·+ (uHm−1x)um−1 =
(
u0 · · · um−1

)  uH0 x
...

uHm−1x


︸ ︷︷ ︸

UHx

= UUHx.

Let A ∈ Cn×n be nonsingular and x ∈ Cn a nonzero vector. Consider

y = Ax and y + δy = A(x+ δx).

Then
‖δy‖
‖y‖

≤ ‖A‖‖A−1‖︸ ︷︷ ︸
κ(A)

‖δx‖
‖x‖

,

where ‖ · ‖ is an induced matrix norm.

Theorem 2.5.2.2 Singular Value Decomposition Theorem. Given A ∈ Cm×n there exist
unitary U ∈ Cm×m, unitary V ∈ Cn×n, and Σ ∈ Rm×n such that A = UΣV H . Here Σ =
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(
ΣTL 0

0 0

)
with

ΣTL =


σ0 0 · · · 0
0 σ1 · · · 0
...

... . . . ...
0 0 · · · σr−1

 and σ0 ≥ σ1 ≥ · · · ≥ σr−1 > 0.

The values σ0, . . . , σr−1 are called the singular values of matrix A. The columns of U and V are
called the left and right singular vectors, respectively.

Let A ∈ Cm×n and A = UΣV H its SVD with

U =
(
UL UR

)
=
(
u0 · · · um−1

)
,

V =
(
VL VR

)
=
(
v0 · · · vn−1

)
,

and

Σ =
(

ΣTL 0
0 0

)
, where ΣTL =


σ0 0 · · · 0
0 σ1 · · · 0
...

... . . . ...
0 0 · · · σr−1

 and σ0 ≥ σ1 ≥ · · · ≥ σr−1 > 0.

Here UL ∈ Cm×r, VL ∈ Cn×r and ΣTL ∈ Rr×r. Then

• ‖A‖2 = σ0. (The 2-norm of a matrix equals the largest singular value.)

• rank(A) = r.

• C(A) = C(UL).

• N (A) = C(VR).

• R(A) = C(VL).

• Left null-space of A = C(UR).

• AH = V ΣTUH .

• SVD: AH = V ΣUH .

• Reduced SVD: A = ULΣTLV
H
L .

•

A = σ0u0v
H
0︸ ︷︷ ︸

σ0

+ σ1u1v
H
1︸ ︷︷ ︸

σ1

+ · · ·+ σr−1ur−1v
H
r−1︸ ︷︷ ︸

σr−1

.

• Reduced SVD: AH = VLΣUHL .



WEEK 2. THE SINGULAR VALUE DECOMPOSITION 102

• If m×m matrix A is nonsingular: A−1 = V Σ−1UH .

• If A ∈ Cm×m then A is nonsingular if and only if σm−1 6= 0.

• If A ∈ Cm×m is nonsingular then κ2(A) = σ0/σm−1.

• (Left) pseudo inverse: if A has linearly independent columns, then A† = (AHA)−1AH =
V Σ−1

TLU
H
L .

• v0 is the direction of maximal magnification.

• vn−1 is is the direction of minimal magnification.

• If n ≤ m, then Avj = σjuj , for 0 ≤ j < n.

Theorem 2.5.2.3 Given A ∈ Cm×n, let A = UΣV H be its SVD. Assume the entries on the
main diagonal of Σ are σ0, · · · , σmin(m,n)−1 with σ0 ≥ · · · ≥ σmin(m,n)−1 ≥ 0. Given k such that
0 ≤ k ≤ min(m,n), partition

U =
(
UL UR

)
, V =

(
VL VR

)
, and Σ =

(
ΣTL 0

0 ΣBR

)
,

where UL ∈ Cm×k, VL ∈ Cn×k, and ΣTL ∈ Rk×k. Then

B = ULΣTLV
H
L

is the matrix in Cm×n closest to A in the following sense:

‖A−B‖2 = min
C ∈ Cm×n

rank(C) ≤ k

‖A− C‖2.

In other words, B is the matrix with rank at most k that is closest to A as measured by the 2-norm.
Also, for this B,

‖A−B‖2 =
{
σk if k < min(m,n)
0 otherwise.



Week 3

The QR Decomposition

3.1 Opening Remarks

3.1.1 Choosing the right basis

YouTube: https://www.youtube.com/watch?v=5lEm5gZo27g
A classic problem in numerical analysis is the approximation of a function, f : R → R, with a

polynomial of degree n − 1. (The n − 1 seems cumbersome. Think of it as a polynomial with n
terms.)

f(χ) ≈ γ0 + γ1χ+ · · ·+ γn−1χ
n−1.

∗ Now, often we know f only "sampled" at points χ0, . . . , χm−1:

f(χ0) = φ0
...

...
...

f(χm−1) = φm−1.

In other words, input to the process are the points

(χ0, φ0), · · · , (χm−1, φm−1)

and we want to determine the polynomal that approximately fits these points. This means that

γ0 + γ1χ0 + · · · + γn−1χ
n−1
0 ≈ φ0

...
...

...
...

...
...

...
...

γ0 + γ1χm−1 + · · · + γn−1χ
n−1
m−1 ≈ φm−1.

103

https://www.youtube.com/watch?v=5lEm5gZo27g
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This can be reformulated as the approximate linear system
1 χ0 · · · χn−1

0
1 χ1 · · · χn−1

1
...

...
...

1 χm−1 · · · χn−1
m−1




γ0
γ1
...

γn−1

 ≈


φ0
φ1
...

φm−1

 .
which can be solved using the techniques for linear least-squares in Week 4. The matrix in the
above equation is known as a Vandermonde matrix.

Homework 3.1.1.1 Choose χ0, χ1, · · · , χm−1 to be equally spaced in the interval [0, 1]: for i =
0, . . . ,m− 1, χi = ih ,where h = 1/(m− 1). Write a Matlab code to create the matrix

X =


1 χ0 · · · χn−1

0
1 χ1 · · · χn−1

1
...

...
...

1 χm−1 · · · χn−1
m−1


as a function of n with m = 5000. Plot the condition number of X, κ2(X), as a function of n
(Matlab’s function for computing κ2(X) is cond( X ).) [Hint] [Solution]

YouTube: https://www.youtube.com/watch?v=cBFt2dmXbu4
An alternative set of polynomials that can be used are known as Legendre polynomials. A

shifted version (appropriate for the interval [0, 1]) can be inductively defined by

P0(χ) = 1
P1(χ) = 2χ− 1

... =
...

Pn+1(χ) = ((2n+ 1)(2χ− 1)Pn(χ)− nPn−1(χ)) /(n+ 1).

The polynomials have the property that∫ 1

0
Ps(χ)Pt(χ)dχ =

{
Cs if s = t for some nonzero constant Cs
0 otherwise

which is an orthogonality condition on the polynomials.
The function f : R→ R can now instead be approximated by

f(χ) ≈ γ0P0(χ) + γ1P1(χ) + · · ·+ γn−1Pn−1(χ).

and hence given points
(χ0, φ0), · · · , (χm−1, φm−1)

https://www.youtube.com/watch?v=cBFt2dmXbu4


WEEK 3. THE QR DECOMPOSITION 105

we can determine the polynomial from

γ0P0(χ0) + γ1P1(χ0) + · · · + γn−1Pn−1(χ0) = φ0
...

...
...

...
...

...
...

...
γ0P0(χm−1) + γ1P1(χm−1) + · · · + γn−1Pn−1(χm−1) = φm−1.

This can be reformulated as the approximate linear system
1 P1(χ0) · · · Pn−1(χ0)
1 P1(χ1) · · · Pn−1(χ1)
...

...
...

1 P1(χm−1) · · · Pn−1(χm−1)




γ0
γ1
...

γn−1

 ≈


φ0
φ1
...

φm−1

 .
which can also be solved using the techniques for linear least-squares in Week 4. Notice that
now the columns of the matrix are (approximately) orthogonal: Notice that if we "sample" x as
χ0, . . . , χn−1, then ∫ 1

0
Ps(χ)Pt(χ)dχ ≈

n−1∑
i=0

Ps(χi)Pt(χi),

which equals the dot product of the columns indexed with s and t.

Homework 3.1.1.2 Choose χ0, χ1, · · · , χm−1 to be equally spaced in the interval [0, 1]: for i =
0, . . . ,m− 1, χi = ih, where h = 1/(m− 1). Write a Matlab code to create the matrix

X =


1 P1(χ0) · · · Pn−1(χ0)
1 P1(χ1) · · · Pn−1(χ1)
...

...
...

1 P1(χm−1) · · · Pn−1(χm−1)


as a function of n with m = 5000. Plot κ2(X) as a function of n. To check whether the columns of
X are mutually orthogonal, report ‖XTX −D‖2 where D equals the diagonal of XTX. [Solution]

YouTube: https://www.youtube.com/watch?v=syq-jOKWqTQ

Remark 3.1.1.1 The point is that one ideally formulates a problem in a way that already captures
orthogonality, so that when the problem is discretized ("sampled"), the matrices that arise will likely
inherit that orthogonality, which we will see again and again is a good thing. In this chapter, we
discuss how orthogonality can be exposed if it is not already part of the underlying formulation of
the problem.

3.1.2 Overview Week 3
• 3.1 Opening Remarks

https://www.youtube.com/watch?v=syq-jOKWqTQ
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◦ 3.1.1 Choosing the right basis
◦ 3.1.2 Overview Week 3
◦ 3.1.3 What you will learn

• 3.2 3.2 Gram-Schmidt Orthogonalization

◦ 3.2.1 Classical Gram-Schmidt (CGS)
◦ 3.2.2 Gram-Schmidt and the QR factorization
◦ 3.2.3 Classical Gram-Schmidt algorithm
◦ 3.2.4 Modified Gram-Schmidt (MGS)
◦ 3.2.5 In practice, MGS is more accurate
◦ 3.2.6 Cost of Gram-Schmidt algorithms

• 3.3 Householder QR Factorization

◦ 3.3.1 Using unitary matrices
◦ 3.3.2 Householder transformation
◦ 3.3.3 Practical computation of the Householder vector
◦ 3.3.4 Householder QR factorization algorithm
◦ 3.3.5 Forming Q
◦ 3.3.6 Applying QH
◦ 3.3.7 Orthogonality of resulting Q

• 3.4 Enrichments

◦ 3.4.1 Blocked Householder QR factorization

• 3.5 Wrap Up

◦ 3.5.1 Additional homework
◦ 3.5.2 Summary

3.1.3 What you will learn
This chapter focuses on the QR factorization as a method for computing an orthonormal basis for
the column space of a matrix.

Upon completion of this week, you should be able to

• Relate Gram-Schmidt orthogonalization of vectors to the QR factorization of a matrix.

• Show that Classical Gram-Schmidt and Modified Gram-Schmidt yield the same result (in
exact arithmetic).

• Compare and contrast the Classical Gram-Schmidt and Modified Gram-Schmidt methods
with regard to cost and robustness in the presence of roundoff error.

• Derive and explain the Householder transformations (reflections).
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• Decompose a matrix to its QR factorization via the application of Householder transforma-
tions.

• Analyze the cost of the Householder QR factorization algorithm.

• Explain why Householder QR factorization yields a matrix Q with high quality orthonormal
columns, even in the presence of roundoff error.

3.2 Gram-Schmidt Orthogonalization

3.2.1 Classical Gram-Schmidt (CGS)

YouTube: https://www.youtube.com/watch?v=CWhBZB-3kg4
Given a set of linearly independent vectors {a0, . . . , an−1} ⊂ Cm, the Gram-Schmidt process

computes an orthonormal basis {q0, . . . , qn−1} that spans the same subspace as the original vectors,
i.e.

Span({a0, . . . , an−1}) = Span({q0, . . . , qn−1}).

The process proceeds as follows:

• Compute vector q0 of unit length so that Span({a0}) = Span({q0}):

◦ ρ0,0 = ‖a0‖2
Computes the length of vector a0.
◦ q0 = a0/ρ0,0
Sets q0 to a unit vector in the direction of a0.

Notice that a0 = q0ρ0,0

• Compute vector q1 of unit length so that Span({a0, a1}) = Span({q0, q1}):

◦ ρ0,1 = qH0 a1
Computes ρ0,1 so that ρ0,1q0 = qH0 a1q0 equals the component of a1 in the direction of
q0.
◦ a⊥1 = a1 − ρ0,1q0

Computes the component of a1 that is orthogonal to q0.
◦ ρ1,1 = ‖a⊥1 ‖2

Computes the length of vector a⊥1 .
◦ q1 = a⊥1 /ρ1,1

Sets q1 to a unit vector in the direction of a⊥1 .

https://www.youtube.com/watch?v=CWhBZB-3kg4
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Notice that (
a0 a1

)
=
(
q0 q1

)( ρ0,0 ρ0,1
0 ρ1,1

)
.

• Compute vector q2 of unit length so that Span({a0, a1, a2}) = Span({q0, q1, q2}):

◦ ρ0,2 = qH0 a2
ρ1,2 = qH1 a2

or, equivalently,
(
ρ0,2
ρ1,2

)
=
(
q0 q1

)H
a2

Computes ρ0,2 so that ρ0,2q0 = qH0 a2q0 and ρ1,2q1 = qH1 a2q1 equal the components of a2
in the directions of q0 and q1.

Or, equivalently,
(
q0 q1

)( ρ0,2
ρ1,2

)
is the component in Span({q0, q1}).

◦ a⊥2 = a2 − ρ0,2q0 − ρ1,2q1 = a2 −
(
q0 q1

)( ρ0,2
ρ1,2

)
Computes the component of a2 that is orthogonal to q0 and q1.
◦ ρ2,2 = ‖a⊥2 ‖2
Computes the length of vector a⊥2 .
◦ q2 = a⊥2 /ρ2,2

Sets q2 to a unit vector in the direction of a⊥2 .

Notice that (
a0 a1 a2

)
=
(
q0 q1 q2

) ρ0,0 ρ0,1 ρ0,2
0 ρ1,1 ρ1,2
0 0 ρ2,2

 .
• And so forth.

YouTube: https://www.youtube.com/watch?v=AvXe0MfKl_0
Yet another way of looking at this problem is as follows.

YouTube: https://www.youtube.com/watch?v=OZelM7YUwZo

https://www.youtube.com/watch?v=AvXe0MfKl_0
https://www.youtube.com/watch?v=OZelM7YUwZo
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Consider the matrices

A =
(
a0 · · · ak−1 ak ak+1 · · · an−1

)
and

Q =
(
q0 · · · qk−1 qk qk+1 · · · qn−1

)
We observe that

• Span({a0}) = Span({q0})
Hence a0 = ρ0,0q0 for some scalar ρ0,0.

• Span({a0, a1}) = Span({q0, q1})
Hence

a1 = ρ0,1q0 + ρ1,1q1

for some scalars ρ0,1, ρ1,1.

• In general, Span({a0, . . . , ak−1, ak}) = Span({q0, . . . , qk−1, qk})
Hence

ak = ρ0,kq0 + · · ·+ ρk−1,kqk−1 + ρk,kqk

for some scalars ρ0,k, · · · , ρk,k.

Let’s assume that q0, . . . , qk−1 have already been computed and are mutually orthonormal.
Consider

ak = ρ0,kq0 + · · ·+ ρk−1,kqk−1 + ρk,kqk.

Notice that
qHk ak = qHk (ρ0,kq0 + · · ·+ ρk−1,kqk−1 + ρk,kqk)

= ρ0,k q
H
k q0︸ ︷︷ ︸
0

+ · · ·+ ρk−1,k q
H
k qk−1︸ ︷︷ ︸

0

+ ρk,k q
H
k qk︸ ︷︷ ︸
1

so that
ρi,k = qHi ak,

for i = 0, . . . , k − 1. Next, we can compute

a⊥k = ak − ρ0,kq0 − · · · − ρk−1,kqk−1

and, since ρk,kqk = a⊥k , we can choose
ρk,k = ‖a⊥k ‖2

and
qk = a⊥k /ρk,k

Remark 3.2.1.1 For a review of Gram-Schmidt orthogonalization and exercises orthogonalizing
real-valued vectors, you may want to look at Linear Algebra: Foundations to Frontiers (LAFF) [27]
Week 11.
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3.2.2 Gram-Schmidt and the QR factorization

YouTube: https://www.youtube.com/watch?v=tHj20PSBCek
The discussion in the last unit motivates the following theorem:

Theorem 3.2.2.1 QR Decomposition Theorem. Let A ∈ Cm×n have linearly independent
columns. Then there exists an orthonormal matrix Q and upper triangular matrix R such that
A = QR, its QR decomposition. If the diagonal elements of R are taken to be real and positive,
then the decomposition is unique.

In order to prove this theorem elegantly, we will first present the Gram-Schmidt orthogonaliza-
tion algorithm using FLAME notation, in the next unit.

Ponder This 3.2.2.1 What happens in the Gram-Schmidt algorithm if the columns of A are NOT
linearly independent? How might one fix this? How can the Gram-Schmidt algorithm be used to
identify which columns of A are linearly independent? [Solution]

3.2.3 Classical Gram-Schmidt algorithm

YouTube: https://www.youtube.com/watch?v=YEEEJYp8snQ

Remark 3.2.3.1 If the FLAME notation used in this unit is not intuitively obvious, you may
want to review some of the materials in Weeks 3-5 of Linear Algebra: Foundations to Frontiers
(http://www.ulaff.net).

An alternative for motivating that algorithm is as follows:

• Consider A = QR.

• Partition A, Q, and R to yield

(
A0 a1 A2

)
=
(
Q0 q1 Q2

) R00 r01 R02
0 ρ11 rT12
0 0 R22

 .
• Assume that Q0 and R00 have already been computed.

https://www.youtube.com/watch?v=tHj20PSBCek
https://www.youtube.com/watch?v=YEEEJYp8snQ
http://www.ulaff.net
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• Since corresponding columns of both sides must be equal, we find that

a1 = Q0r01 + q1ρ11. (3.2.1)

Also, QH0 Q0 = I and QH0 q1 = 0, since the columns of Q are mutually orthonormal.

• Hence
QH0 a1 = QH0 Q0r01 +QH0 q1ρ11 = r01.

• This shows how r01 can be computed from Q0 and a1, which are already known:

r01 := QH0 a1.

• Next,
a⊥1 := a1 −Q0r01

is computed from (3.2.1). This is the component of a1 that is perpendicular (orthogonal) to
the columns of Q0. We know it is nonzero since the columns of A are linearly independent.

• Since ρ11q1 = a⊥1 and we know that q1 has unit length, we now compute

ρ11 := ‖a⊥1 ‖2

and
q1 := a⊥1 /ρ11,

These insights are summarized in the algorithm in Figure 3.2.3.2.

[Q,R] = CGS-QR(A)

A→
(
AL AR

)
, Q→

(
QL QR

)
, R→

(
RTL RTR

0 RBR

)
AL and QL has 0 columns and RTL is 0× 0

while n(AL) < n(A)(
AL AR

)
→
(
A0 a1 A2

)
,
(
QL QR

)
→
(
Q0 q1 Q2

)
,(

RTL RTR
0 RBR

)
→

 R00 r01 R02
0 ρ11 rT12
0 0 R22


r01 := QH0 a1
a⊥1 := a1 −Q0r01
ρ11 := ‖a⊥1 ‖2
q1 := a⊥1 /ρ11(
AL AR

)
←
(
A0 a1 A2

)
,
(
QL QR

)
←
(
Q0 q1 Q2

)
,(

RTL RTR
0 RBR

)
←

 R00 r01 R02
0 ρ11 rT12
0 0 R22


endwhile

Figure 3.2.3.2 (Classical) Gram-Schmidt (CGS) algorithm for computing the QR factorization of
a matrix A.

Having presented the algorithm in FLAME notation, we can provide a formal proof of Theo-
rem 3.2.2.1.
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Proof of Theorem 3.2.2.1. Informal proof: The process described earlier in this unit constructs the
QR decomposition. The computation of ρj,j is unique if it is restricted to be a real and positive
number. This then prescribes all other results along the way.

Formal proof:
(By induction). Note that n ≤ m since A has linearly independent columns.

• Base case: n = 1. In this case A =
(
A0 a1

)
, where A0 has no columns. Since A has

linearly independent columns, a1 6= 0. Then

A =
(
a1
)

= (q1) (ρ11) ,

where ρ11 = ‖a1‖2 and q1 = a1/ρ11, so that Q = (q1) and R = (ρ11).

• Inductive step: Assume that the result is true for all A0 with k linearly independent columns.
We will show it is true for A with k + 1 linearly independent columns.

Let A ∈ Cm×(k+1). Partition A→
(
A0 a1

)
.

By the induction hypothesis, there exist Q0 and R00 such that QH0 Q0 = I, R00 is upper
triangular with nonzero diagonal entries and A0 = Q0R00. Also, by induction hypothesis, if
the elements on the diagonal of R00 are chosen to be positive, then the factorization A0 =
Q0R00 is unique.
We are looking for (

Q̃0 q1
)

and
(
R̃00 r01
0 ρ11

)
so that (

A0 a1
)

=
(
Q̃0 q1

)( R̃00 r01
0 ρ11

)
.

This means that

◦ A0 = Q̃0R̃00,

We choose Q̃0 = Q0 and R̃00 = R00. If we insist that the elements on the diagonal be
positive, this choice is unique. Otherwise, it is a choice that allows us to prove existence.
◦ a1 = Q0r01 + ρ11q1 which is the unique choice if we insist on positive elements on the
diagonal.
a1 = Q0r01 + ρ11q1. Multiplying both sides by QH0 we find that r01 must equal QH0 a1
(and is uniquely determined by this if we insist on positive elements on the diagonal).
◦ Letting a⊥1 = a1 − Q0r01 (which equals the component of a1 orthogonal to C(Q0)), we
find that ρ11q1 = a⊥1 . Since q1 has unit length, we can choose ρ11 = ‖a⊥1 ‖2. If we insist
on positive elements on the diagonal, then this choice is unique.
◦ Finally, we let q1 = a⊥1 /ρ11.

• By the Principle of Mathematical Induction the result holds for all matrices A ∈ Cm×n with
m ≥ n.

�



WEEK 3. THE QR DECOMPOSITION 113

Homework 3.2.3.1 Implement the algorithm given in Figure 3.2.3.2 as
function [ Q, R ] = CGS_QR( A )

by completing the code in Assignments/Week03/matlab/CGS_QR.m. Input is anm×n matrix A. Output
is the matrix Q and the upper triangular matrix R. You may want to use Assignments/Week03/

matlab/test_CGS_QR.m to check your implementation. [Solution]

3.2.4 Modified Gram-Schmidt (MGS)

YouTube: https://www.youtube.com/watch?v=pOBJHhV3TKY
In the video, we reasoned that the following two algorithms compute the same values, except

that the columns of Q overwrite the corresponding columns of A:

for j = 0, . . . , n− 1
a⊥j := aj
for k = 0, . . . , j − 1
ρk,j := qHk a

⊥
j

a⊥j := a⊥j − ρk,jqk
end
ρj,j := ‖a⊥j ‖2
qj := a⊥j /ρj,j

end

for j = 0, . . . , n− 1

for k = 0, . . . , j − 1
ρk,j := aHk aj
aj := aj − ρk,jak

end
ρj,j := ‖aj‖2
aj := aj/ρj,j

end

(a) MGS algorithm that computes Q and R
from A.

(b) MGS algorithm that computes Q and R
from A, overwriting A with Q.

Homework 3.2.4.1 Assume that q0, . . . , qk−1 are mutually orthonormal. Let ρj,k = qHj y for
j = 0, . . . , i− 1. Show that

qHi y︸︷︷︸
ρi,k

= qHi (y − ρ0,kq0 − · · · − ρi−1,kqi−1)

for i = 0, . . . , k − 1. [Solution]

Assignments/Week03/matlab/CGS_QR.m
Assignments/Week03/matlab/test_CGS_QR.m
Assignments/Week03/matlab/test_CGS_QR.m
https://www.youtube.com/watch?v=pOBJHhV3TKY
https://www.youtube.com/watch?v=0ooNPondq5M
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YouTube: https://www.youtube.com/watch?v=0ooNPondq5M
This homework illustrates how, given a vector y ∈ Cm and a matrix Q ∈ Cmxk the component

orthogonal to the column space of Q, given by (I − QQH)y, can be computed by either of the
two algorithms given in Figure 3.2.4.1. The one on the left, Proj ⊥ QCGS(Q, y) projects y onto
the column space perpendicular to Q as did the Gram-Schmidt algorithm with which we started.
The one on the left successfuly subtracts out the component in the direction of qi using a vector
that has been updated in previous iterations (and hence is already orthogonal to q0, . . . , qi−1). The
algorithm on the right is one variant of the Modified Gram-Schmidt (MGS) algorithm.

[y⊥, r] = Proj⊥QCGS(Q, y) [y⊥, r] = Proj⊥QMGS(Q, y)
(used by CGS) (used by MGS)
y⊥ = y y⊥ = y
for i = 0, . . . , k − 1 for i = 0, . . . , k − 1
ρi := qHi y ρi := qHi y

⊥

y⊥ := y⊥ − ρiqi y⊥ := y⊥ − ρiqi
endfor endfor

Figure 3.2.4.1 Two different ways of computing y⊥ = (I − QQH)y = y − Qr, where r = QHy.
The computed y⊥ is the component of y orthogonal to C(Q), where Q has k orthonormal columns.
(Notice the y on the left versus the y⊥ on the right in the computation of ρi.)

These insights allow us to present CGS and this variant of MGS in FLAME notation, in Fig-
ure 3.2.4.2 (left and middle).
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[A,R] := GS(A) (overwrites A with Q)

A→
(
AL AR

)
, R→

(
RTL RTR

0 RBR

)
AL has 0 columns and RTL is 0× 0

while n(AL) < n(A)(
AL AR

)
→
(
A0 a1 A2

)
,

(
RTL RTR

0 RBR

)
→

 R00 r01 R02
0 ρ11 rT12
0 0 R22


CGS MGS MGS (alternative)
r01 := AH0 a1
a1 := a1 −A0r01 [a1, r01] = Proj⊥toQMGS(A0, a1)
ρ11 := ‖a1‖2 ρ11 := ‖a1‖2 ρ11 := ‖a1‖2
a1 := a1/ρ11 a1 := a1/ρ11 a1 := a1/ρ11

rT12 := aH1 A2
A2 := A2 − a1r

T
12(

AL AR
)
←
(
A0 a1 A2

)
,

(
RTL RTR

0 RBR

)
←

 R00 r01 R02
0 ρ11 rT12
0 0 R22


endwhile

Figure 3.2.4.2 Left: Classical Gram-Schmidt algorithm. Middle: Modified Gram-Schmidt algo-
rithm. Right: Alternative Modified Gram-Schmidt algorithm. In this last algorithm, every time
a new column, q1, of Q is computed, each column of A2 is updated so that its component in the
direction of q1 is is subtracted out. This means that at the start and finish of the current iteration,
the columns of AL are mutually orthonormal and the columns of AR are orthogonal to the columns
of AL.

Next, we massage the MGS algorithm into the alternative MGS algorithmic variant given in
Figure 3.2.4.2 (right).

YouTube: https://www.youtube.com/watch?v=3XzHFWzV5iE
The video discusses how MGS can be rearranged so that every time a new vector qk is computed

(overwriting ak), the remaining vectors, {ak+1, . . . , an−1}, can be updated by subtracting out the
component in the direction of qk. This is also illustrated through the next sequence of equivalent
algorithms.

https://www.youtube.com/watch?v=3XzHFWzV5iE
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for j = 0, . . . , n− 1
ρj,j := ‖aj‖2
aj := aj/ρj,j
for k = j + 1, . . . , n− 1
ρj,k := aHj ak
ak := ak − ρj,kaj

end
end

for j = 0, . . . , n− 1
ρj,j := ‖aj‖2
aj := aj/ρj,j
for k = j + 1, . . . , n− 1
ρj,k := aHj ak

end
for k = j + 1, . . . , n− 1
ak := ak − ρj,kaj

end
end

(c) MGS algorithm that normalizes the jth
column to have unit length to compute qj
(overwriting aj with the result) and then sub-
tracts the component in the direction of qj off
the rest of the columns (aj+1, . . . , an−1).

(d) Slight modification of the algorithm in
(c) that computes ρj,k in a separate loop.

for j = 0, . . . , n− 1
ρj,j := ‖aj‖2
aj := aj/ρj,j(

ρj,j+1 · · · ρj,n−1
)

:=
aHj

(
aj+1 · · · an−1

)(
aj+1 · · · an−1

)
:=(

aj+1 − ρj,j+1aj · · · an−1 − ρj,n−1aj
)

end

for j = 0, . . . , n− 1
ρj,j := ‖aj‖2
aj := aj/ρj,j(
ρj,j+1 · · · ρj,n−1

)
:=

aHj

(
aj+1 · · · an−1

)(
aj+1 · · · an−1

)
:=(

aj+1 · · · an−1
)

− aj
(
ρj,j+1 · · · ρj,n−1

)
end

(e) Algorithm in (d) rewritten to expose only
the outer loop.

(f) Algorithm in (e) rewritten to ex-
pose the row-vector-times matrix mul-
tiplication aHj

(
aj+1 · · · an−1

)
and

rank-1 update
(
aj+1 · · · an−1

)
−

aj
(
ρj,j+1 · · · ρj,n−1

)
.

Figure 3.2.4.3 Various equivalent MGS algorithms.
This discussion shows that the updating of future columns by subtracting out the component

in the direction of the latest column of Q to be computed can be cast in terms of a rank-1 update.
This is also captured, using FLAME notation, in the algorithm in Figure 3.2.4.2, as is further
illustrated in Figure 3.2.4.4:
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Figure 3.2.4.4 Alternative Modified Gram-Schmidt algorithm for computing the QR factorization
of a matrix A.

YouTube: https://www.youtube.com/watch?v=elwc14-1WF0

Ponder This 3.2.4.2 Let A have linearly independent columns and let A = QR be a QR factor-
ization of A. Partition

A→
(
AL AR

)
, Q→

(
QL QR

)
, and R→

(
RTL RTR

0 RBR

)
,

where AL and QL have k columns and RTL is k × k.
As you prove the following insights, relate each to the algorithm in Figure 3.2.4.4. In particular,

https://www.youtube.com/watch?v=elwc14-1WF0
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at the top of the loop of a typical iteration, how have the different parts of A and R been updated?

1. AL = QLRTL.
(QLRTL equals the QR factorization of AL.)

2. C(AL) = C(QL).
(The first k columns of Q form an orthonormal basis for the space spanned by the first k
columns of A.)

3. RTR = QHLAR.

4. (AR −QLRTR)HQL = 0.
(Each column in AR−QLRTR equals the component of the corresponding column of AR that
is orthogonal to Span(QL).)

5. C(AR −QLRTR) = C(QR).

6. AR −QLRTR = QRRBR.
(The columns of QR form an orthonormal basis for the column space of AR −QLRTR.)

[Solution]

Homework 3.2.4.3 Implement the algorithm in Figure 3.2.4.4 as
function [ Aout, Rout ] = MGS_QR( A, R )

Input is an m× n matrix A and a n× n matrix R. Output is the matrix Q, which has overwritten
matrix A, and the upper triangular matrix R. (The values below the diagonal can be arbitrary.) You
may want to use Assignments/Week03/matlab/test_MGS_QR.m to check your implementation. [Solution]

3.2.5 In practice, MGS is more accurate

YouTube: https://www.youtube.com/watch?v=7ArZnHE0PIw
In theory, all Gram-Schmidt algorithms discussed in the previous sections are equivalent in the

sense that they compute the exact same QR factorizations when exact arithmetic is employed. In
practice, in the presense of round-off error, the orthonormal columns of Q computed by MGS are
often "more orthonormal" than those computed by CGS. We will analyze how round-off error affects
linear algebra computations in the second part of the ALAFF. For now you will investigate it with
a classic example.

When storing real (or complex) valued numbers in a computer, a limited accuracy can be
maintained, leading to round-off error when a number is stored and/or when computation with
numbers is performed. Informally, the machine epsilon (also called the unit roundoff error) is

Assignments/Week03/matlab/test_MGS_QR.m
https://www.youtube.com/watch?v=7ArZnHE0PIw
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defined as the largest positive number, εmach, such that the stored value of 1 + εmach is rounded
back to 1.

Now, let us consider a computer where the only error that is ever incurred is when

1 + εmach

is computed and rounded to 1.

Homework 3.2.5.1 Let ε = √εmach and consider the matrix

A =


1 1 1
ε 0 0
0 ε 0
0 0 ε

 =
(
a0 a1 a2

)
. (3.2.2)

By hand, apply both the CGS and the MGS algorithms with this matrix, rounding 1 + εmach to 1
whenever encountered in the calculation.

Upon completion, check whether the columns of Q that are computed are (approximately)
orthonormal. [Solution]

YouTube: https://www.youtube.com/watch?v=OT4Yd-eVMSo
We have argued via an example that MGS is more accurate than CGS. A more thorough analysis

is needed to explain why this is generally so.

3.2.6 Cost of Gram-Schmidt algorithms
(No video for this unit.)

Homework 3.2.6.1 Analyze the cost of the CGS algorithm in Figure 3.2.4.2 (left) assuming that
A ∈ Cm×n. [Solution]

Homework 3.2.6.2 Analyze the cost of the MGS algorithm in Figure 3.2.4.2 (right) assuming
that A ∈ Cm×n. [Solution]

Homework 3.2.6.3 Which algorithm requires more flops? [Solution]

https://www.youtube.com/watch?v=OT4Yd-eVMSo
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3.3 Householder QR Factorization

3.3.1 Using unitary matrices

YouTube: https://www.youtube.com/watch?v=NAdMU_1ZANk
A fundamental problem to avoid in numerical codes is the situation where one starts with large

values and one ends up with small values with large relative errors in them. This is known as
catastrophic cancellation. The Gram-Schmidt algorithms can inherently fall victim to this: column
aj is successively reduced in length as components in the directions of {q0, . . . , qj−1} are subtracted,
leaving a small vector if aj was almost in the span of the first j columns of A. Application of
a unitary transformation to a matrix or vector inherently preserves length. Thus, it would be
beneficial if the QR factorization can be implementated as the successive application of unitary
transformations. The Householder QR factorization accomplishes this.

The first fundamental insight is that the product of unitary matrices is itself unitary. If, given
A ∈ Cm×n (with m ≥ n), one could find a sequence of unitary matrices, {H0, . . . ,Hn−1}, such that

Hn−1 · · ·H0A =
(
R
0

)
,

where R ∈ Cn×n is upper triangular, then

A = HH
0 · · ·HH

n−1︸ ︷︷ ︸
Q

(
R
0

)

which is closely related to the QR factorization of A.

Homework 3.3.1.1 Show that if A ∈ Cm×n and A = Q

(
R
0

)
, where Q ∈ Cm×m is unitary and

R is upper triangular, then there exists QL ∈ Cm×n such that A = QLR, is the QR factorization
of A. [Solution]

The second fundamental insight will be that the desired unitary transformations {H0, . . . ,Hn−1}
can be computed and applied cheaply, as we will discover in the remainder of this section.

https://www.youtube.com/watch?v=NAdMU_1ZANk
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3.3.2 Householder transformation

YouTube: https://www.youtube.com/watch?v=6TIVIw4B5VA
What we have discovered in this first video is how to construct a Householder transformation,

also referred to as a reflector, since it acts like a mirroring with respect to the subspace orthogonal
to the vector u, as illustrated in Figure 3.3.2.1.

Resources/Week03/HouseholderTransformation.pptx (Resources/Week03/
HouseholderTransformation.pptx).

Figure 3.3.2.1 Given vector x and unit length vector u, the subspace orthogonal to u becomes a
mirror for reflecting x represented by the transformation (I − 2uuH).

Definition 3.3.2.2 Let u ∈ Cn be a vector of unit length (‖u‖2 = 1). Then H = I − 2uuH is said
to be a Householder transformation or (Householder) reflector. ♦

We observe:

• Any vector z that is perpendicular to u is left unchanged:

(I − 2uuH)z = z − 2u(uHz) = z.

• Any vector x can be written as x = z + uHxu where z is perpendicular to u and uHxu is the

https://www.youtube.com/watch?v=6TIVIw4B5VA
Resources/Week03/HouseholderTransformation.pptx
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component of x in the direction of u. Then

(I − 2uuH)x = (I − 2uuH)(z + uHxu) = z + uHxu− 2u uHz︸︷︷︸
0
− 2uuHuHxu

= z + uHxu− 2uHx uHu︸︷︷︸
1

u = z − uHxu.

These observations can be interpreted as follows: The space perpendicular to u acts as a "mirror": a
vector that is an element in that space (along the mirror) is not reflected. However, if a vector has a
component that is orthogonal to the mirror, that component is reversed in direction, as illustrated
in Figure 3.3.2.1. Notice that a reflection preserves the length of a vector.

Homework 3.3.2.1 Show that if H is a reflector, then
• HH = I (reflecting the reflection of a vector results in the original vector).

• H = HH .

• HHH = HHH = I (a reflector is unitary).

[Solution]

YouTube: https://www.youtube.com/watch?v=wmjUHak9yHU

https://www.youtube.com/watch?v=wmjUHak9yHU
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Resources/Week03/HouseholderTransformationAsUsed.pptx (Resources/
Week03/HouseholderTransformationAsUsed.pptx)

Figure 3.3.2.3 How to compute u given vectors x and y with ‖x‖2 = ‖y‖2.

Next, let us ask the question of how to reflect a given x ∈ Cn into another vector y ∈ Cn with
‖x‖2 = ‖y‖2. In other words, how do we compute vector u so that

(I − 2uuH)x = y.

From our discussion above, we need to find a vector u that is perpendicular to the space with respect
to which we will reflect. From Figure 3.3.2.3 we notice that the vector from y to x, v = x − y, is
perpendicular to the desired space. Thus, u must equal a unit vector in the direction v: u = v/‖v‖2.

Remark 3.3.2.4 In subsequent discussion we will prefer to give Householder transformations as
I − uuH/τ , where τ = uHu/2 so that u needs no longer be a unit vector, just a direction. The
reason for this will become obvious later.

When employing Householder transformations as part of a QR factorization algorithm, we
need to introduce zeroes below the diagonal of our matrix. This requires a very special case of
Householder transformation.

YouTube: https://www.youtube.com/watch?v=iMrgPGCWZ_o
As we compute the QR factorization via Householder transformations, we will need to find a

Householder transformation H that maps a vector x to a multiple of the first unit basis vector (e0).

Resources/Week03/HouseholderTransformationAsUsed.pptx
https://www.youtube.com/watch?v=iMrgPGCWZ_o
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We discuss first how to findH in the case where x ∈ Rn. We seek v so that (I− 2
vT v

vvT )x = ±‖x‖2e0.
Since the resulting vector that we want is y = ±‖x‖2e0, we must choose v = x− y = x∓ ‖x‖2e0.

Example 3.3.2.5 Show that if x ∈ Rn, v = x∓‖x‖2e0, and τ = vT v/2 then (I− 1
τ vv

T )x = ±‖x‖2e0.
Solution. This is surprisingly messy... It is easier to derive the formula than it is to check it. So,
we won’t check it! �

In practice, we choose v = x + sign(χ1)‖x‖2e0 where χ1 denotes the first element of x. The
reason is as follows: the first element of v, ν1, will be ν1 = χ1 ∓ ‖x‖2. If χ1 is positive and ‖x‖2 is
almost equal to χ1, then χ1 − ‖x‖2 is a small number and if there is error in χ1 and/or ‖x‖2, this
error becomes large relative to the result χ1 − ‖x‖2, due to catastrophic cancellation. Regardless
of whether χ1 is positive or negative, we can avoid this by choosing v = x+ sign(χ1)‖x‖2e0:

v := x+ sign(χ1)‖x‖2e0 =
(
χ1
x2

)
+
(

sign(χ1)‖x‖2
0

)
=
(
χ1 + sign(χ1)‖x‖2

x2

)
.

Remark 3.3.2.6 This is a good place to clarify how we index in this course. Here we label the first
element of the vector x as χ1, despite the fact that we have advocated in favor of indexing starting
with zero. In our algorithms that leverage the FLAME notation (partitioning/repartitioning), you
may have noticed that a vector or scalar indexed with 1 refers to the "current column/row" or
"current element". In preparation of using the computation of the vectors v and u in the setting of
such an algorithm, we use χ1 here for the first element from which these vectors will be computed,
which tends to be an element that is indexed with 1. So, there is reasoning behind the apparent
insanity.

Ponder This 3.3.2.2 Consider x ∈ R2 as drawn below:

and let u be the vector such that (I − uuH/τ) is a Householder transformation that maps x to

a vector ρe0 = ρ

(
1
0

)
.
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• Draw a vector ρe0 to which x is "mirrored."

• Draw the line that "mirrors."

• Draw the vector v from which u is computed.

• Repeat for the "other" vector ρe0.

Computationally, which choice of mirror is better than the other? Why?

3.3.3 Practical computation of the Householder vector

YouTube: https://www.youtube.com/watch?v=UX_QBt90jf8

3.3.3.1 The real case

Next, we discuss a slight variant on the above discussion that is used in practice. To do so, we view
x as a vector that consists of its first element, χ1, and the rest of the vector, x2: More precisely,
partition

x =
(
χ1
x2

)
,

where χ1 equals the first element of x and x2 is the rest of x. Then we will wish to find a Householder

vector u =
(

1
u2

)
so that

I − 1
τ

(
1
u2

)(
1
u2

)T( χ1
x2

)
=
(
±‖x‖2

0

)
.

Notice that y in the previous discussion equals the vector
(
±‖x‖2

0

)
, so the direction of u is given

by

v =
(
χ1 ∓ ‖x‖2

x2

)
.

We now wish to normalize this vector so its first entry equals "1":

u = v

ν1
= 1
χ1 ∓ ‖x‖2

(
χ1 ∓ ‖x‖2

x2

)
=
(

1
x2/ν1

)
.

where ν1 = χ1∓‖x‖2 equals the first element of v. (Note that if ν1 = 0 then u2 can be set to 0.)

https://www.youtube.com/watch?v=UX_QBt90jf8
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3.3.3.2 The complex case (optional)

Let us work out the complex case, dealing explicitly with x as a vector that consists of its first
element, χ1, and the rest of the vector, x2: More precisely, partition

x =
(
χ1
x2

)
,

where χ1 equals the first element of x and x2 is the rest of x. Then we will wish to find a Householder

vector u =
(

1
u2

)
so that

I − 1
τ

(
1
u2

)(
1
u2

)H( χ1
x2

)
=
(
± ‖x‖2

0

)
.

Here ± denotes a complex scalar on the complex unit circle. By the same argument as before

v =
(
χ1 − ± ‖x‖2

x2

)
.

We now wish to normalize this vector so its first entry equals "1":

u = v

ν1
= 1
χ1 − ± ‖x‖2

(
χ1 − ± ‖x‖2

x2

)
=
(

1
x2/ν1

)
.

where ν1 = χ1 − ± ‖x‖2. (If ν1 = 0 then we set u2 to 0.)
As was the case for the real-valued case, the choice ± is important. We choose ± =

−sign(χ1) = − χ1
|χ1| .

3.3.3.3 A routine for computing the Householder vector

The vector (
1
u2

)

is the Householder vector that reflects x into ± ‖x‖2e0. The notation[(
ρ
u2

)
, τ

]
:= Housev

((
χ1
x2

))

represents the computation of the above mentioned vector u2, and scalars ρ and τ , from vector x.
We will use the notation H(x) for the transformation I − 1

τ uu
H where u and τ are computed by

Housev(x).
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Algorithm :
[(

ρ
u2

)
, τ

]
= Housev

((
χ1
x2

))
χ2 := ‖x2‖2

α :=
∥∥∥∥∥
(
χ1
χ2

)∥∥∥∥∥
2

(= ‖x‖2)

ρ = −sign(χ1)‖x‖2 ρ := −sign(χ1)α
ν1 = χ1 + sign(χ1)‖x‖2 ν1 := χ1 − ρ
u2 = x2/ν1 u2 := x2/ν1

χ2 = χ2/|ν1|(= ‖u2‖2)
τ = (1 + uH2 u2)/2 τ = (1 + χ2

2)/2

Figure 3.3.3.1 Computing the Householder transformation. Left: simple formulation. Right:
efficient computation. Note: I have not completely double-checked these formulas for the complex
case. They work for the real case.

Remark 3.3.3.2 The function
function [ rho, ...

u2, tau ] = Housev( chi1, ...
x2 )

implements the function Housev. It can be found in Assignments/Week03/matlab/Housev.m

Homework 3.3.3.1 Function Assignments/Week03/matlab/Housev.m implements the steps in Fig-
ure 3.3.3.1 (left). Update this implementation with the equivalent steps in Figure 3.3.3.1 (right),
which is closer to how it is implemented in practice. [Solution]

3.3.4 Householder QR factorization algorithm

YouTube: https://www.youtube.com/watch?v=5MeeuSoFBdY
Let A be an m × n with m ≥ n. We will now show how to compute A → QR, the QR

factorization, as a sequence of Householder transformations applied to A, which eventually zeroes
out all elements of that matrix below the diagonal. The process is illustrated in Figure 3.3.4.1.

Assignments/Week03/matlab/Housev.m
Assignments/Week03/matlab/Housev.m
https://www.youtube.com/watch?v=5MeeuSoFBdY
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Original matrix

[(
ρ11
u21

)
, τ1

]
=

Housev
(
α11
a21

)
(
α11 aT12
a21 A22

)
:=(

ρ11 aT12 − wT12
0 A22 − u21w

T
12

) “Move forward′′

× × × ×
× × × ×
× × × ×
× × × ×
× × × ×

× × × ×
× × × ×
× × × ×
× × × ×
× × × ×

× × × ×
0 × × ×
0 × × ×
0 × × ×
0 × × ×

× × × ×
0 × × ×
0 × × ×
0 × × ×
0 × × ×

× × × ×
0 × × ×
0 × × ×
0 × × ×
0 × × ×

× × × ×
0 × × ×
0 0 × ×
0 0 × ×
0 0 × ×

× × × ×
0 × × ×
0 0 × ×
0 0 × ×
0 0 × ×

× × × ×
0 × × ×
0 0 × ×
0 0 × ×
0 0 × ×

× × × ×
0 × × ×
0 0 × ×
0 0 0 ×
0 0 0 ×

× × × ×
0 × × ×
0 0 × ×
0 0 0 ×
0 0 0 ×

× × × ×
0 × × ×
0 0 × ×
0 0 0 ×
0 0 0 ×

× × × ×
0 × × ×
0 0 × ×
0 0 0 ×
0 0 0 0

× × × ×
0 × × ×
0 0 × ×
0 0 0 ×
0 0 0 0

Figure 3.3.4.1 Illustration of Householder QR factorization.
In the first iteration, we partition

A→
(
α11 aT12
a21 A22

)
.

Let [(
ρ11
u21

)
, τ1

]
= Housev

((
α11
a21

))
be the Householder transform computed from the first column of A. Then applying this Householder
transform to A yields(

α11 aT12
a21 A22

)
:=

I − 1
τ1

(
1
u21

)(
1
u21

)H( α11 aT12
a21 A22

)

=
(
ρ11 aT12 − wT12
0 A22 − u21w

T
12

)
,

where wT12 = (aT12 +uH21A22)/τ1. Computation of a full QR factorization of A will now proceed with
the updated matrix A22.
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YouTube: https://www.youtube.com/watch?v=WWe8yVccZy0

Homework 3.3.4.1 Show that I 0

0 I − 1
τ1

(
1
u21

)(
1
u21

)H  =

I − 1
τ1

 0
1
u21


 0

1
u21


H .

[Solution]
More generally, let us assume that after k iterations of the algorithm matrix A contains

A→
(
RTL RTR

0 ABR

)
=

 R00 r01 R02
0 α11 aT12
0 a21 A22

 ,
where RTL and R00 are k × k upper triangular matrices. Let[(

ρ11
u21

)
, τ1

]
= Housev

((
α11
a21

))
.

and update

A :=


I 0

0

I − 1
τ1

(
1
u21

)(
1
u21

)H

 R00 r01 R02

0 α11 aT12
0 a21 A22



=

I − 1
τ1

 0
1
u21


 0

1
u21


H

 R00 r01 R02
0 α11 aT12
0 a21 A22


=

 R00 r01 R02
0 ρ11 aT12 − wT12
0 0 A22 − u21w

T
12

 ,
where, again, wT12 = (aT12 + uH21A22)/τ1.

Let

Hk =

I − 1
τ1

 0k
1
u21


 0k

1
u21


H

be the Householder transform so computed during the (k + 1)st iteration. Then upon completion
matrix A contains

R =
(
RTL

0

)
= Hn−1 · · ·H1H0Â

https://www.youtube.com/watch?v=WWe8yVccZy0
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where Â denotes the original contents of A and RTL is an upper triangular matrix. Rearranging
this we find that

Â = H0H1 · · ·Hn−1R

which shows that if Q = H0H1 · · ·Hn−1 then Â = QR.
Typically, the algorithm overwrites the original matrix A with the upper triangular matrix,

and at each step u21 is stored over the elements that become zero, thus overwriting a21. (It is for
this reason that the first element of u was normalized to equal "1".) In this case Q is usually not
explicitly formed as it can be stored as the separate Householder vectors below the diagonal of the
overwritten matrix. The algorithm that overwrites A in this manner is given in Figure 3.3.4.2.

[A, t] = HQR_unb_var1(A)

A→
(
ATL ATR
ABL ABR

)
and t→

(
tT
tB

)
ATL is 0× 0 and tT has 0 elements

while n(ABR) > 0(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 and
(
tT
tB

)
→

 t0
τ1
t2

[(
α11
a21

)
, τ1

]
:=
[(

ρ11
u21

)
, τ1

]
= Housev

(
α11
a21

)

Update
(
aT12
A22

)
:=
(
I − 1

τ1

(
1
u21

)(
1 uH21

))( aT12
A22

)
via the steps

wT12 := (aT12 + aH21A22)/τ1(
aT12
A22

)
:=
(

aT12 − wT12
A22 − a21w

T
12

)
(
ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 and
(
tT
tB

)
←

 t0
τ1
t2


endwhile

Figure 3.3.4.2 Unblocked Householder transformation based QR factorization.
In that figure,

[A, t] = HQR_unb_var1(A)

denotes the operation that computes the QR factorization of m × n matrix A, with m ≥ n, via
Householder transformations. It returns the Householder vectors and matrix R in the first argument
and the vector of scalars "τi" that are computed as part of the Householder transformations in t.

Homework 3.3.4.2 Given A ∈ Rm×n show that the cost of the algorithm in Figure 3.3.4.2 is given
by

CHQR(m,n) ≈ 2mn2 − 2
3n

3 flops.

[Solution]

Homework 3.3.4.3 Implement the algorithm given in Figure 3.3.4.2 as
function [ A_out, t ] = HQR( A )
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by completing the code in Assignments/Week03/matlab/HQR.m. Input is an m × n matrix A. Output
is the matrix A_out with the Householder vectors below its diagonal and R in its upper triangular
part. You may want to use Assignments/Week03/matlab/test_HQR.m to check your implementation.
[Solution]

3.3.5 Forming Q

YouTube: https://www.youtube.com/watch?v=cFWMsVNBzDY
Given A ∈ Cm×n, let [A, t] = HQR_unb_var1(A) yield the matrix A with the Householder

vectors stored below the diagonal, R stored on and above the diagonal, and the scalars τi, 0 ≤ i < n,
stored in vector t. We now discuss how to form the first n columns of Q = H0H1 · · ·Hn−1. The
computation is illustrated in Figure 3.3.5.1.

Original matrix

(
α11 aT12
a21 A22

)
:=(

1− 1/τ1 −(uH21A22)/τ1
−u21/τ1 A22 + u21a

T
12

) “Move forward′′

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ×
0 0 0 ×

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ×
0 0 0 ×

1 0 0 0
0 1 0 0
0 0 × ×
0 0 × ×
0 0 × ×

1 0 0 0
0 1 0 0
0 0 × ×
0 0 × ×
0 0 × ×

1 0 0 0
0 × × ×
0 × × ×
0 × × ×
0 × × ×

1 0 0 0
0 × × ×
0 × × ×
0 × × ×
0 × × ×

× × × ×
× × × ×
× × × ×
× × × ×
× × × ×

× × × ×
× × × ×
× × × ×
× × × ×
× × × ×

Figure 3.3.5.1 Illustration of the computation of Q.

Assignments/Week03/matlab/HQR.m
Assignments/Week03/matlab/test_HQR.m
https://www.youtube.com/watch?v=cFWMsVNBzDY
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Notice that to pick out the first n columns we must form

Q

(
In×n

0

)
= H0 · · ·Hn−1

(
In×n

0

)
= H0 · · ·Hk−1 Hk · · ·Hn−1

(
In×n

0

)
︸ ︷︷ ︸

Bk

so that Q = B0, where Bk = Hk · · ·Hn−1

(
In×n

0

)
.

Homework 3.3.5.1 ALWAYS/SOMETIMES/NEVER:

Bk = Hk · · ·Hn−1

(
In×n

0

)
=
(
Ik×k 0

0 B̃k

)
.

for some (m− k)× (n− k) matrix B̃k. [Answer] [Solution]

YouTube: https://www.youtube.com/watch?v=pNEp5XlsZ4k
The last exercise justifies the algorithm in Figure 3.3.5.2,

https://www.youtube.com/watch?v=pNEp5XlsZ4k
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[A] = FormQ(A, t)

A→
(
ATL ATR
ABL ABR

)
, t→

(
tT
tB

)
ATL is n(A)× n(A) and tT has n(A) elements

while n(ATL) > 0(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 ,( tT
tB

)
→

 t0
τ1
t2


Update

(
α11 aT12
a21 A22

)
:=(

I − 1
τ1

(
1
u21

)(
1 uH21

))( 1 0
0 A22

)
via the steps

α11 := 1− 1/τ1
aT12 := −(aH21A22)/τ1
A22 := A22 + a21a

T
12

a21 := −a21/τ1(
ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 ,( tT
tB

)
←

 t0
τ1
t2


endwhile

Figure 3.3.5.2 Algorithm for overwriting A with Q from the Householder transformations stored
as Householder vectors below the diagonal of A (as produced by [A, t] = HQR_unb_var1(A, t) ).

which, given [A, t] = HQR_unb_var1(A) from Figure 3.3.4.2, overwrites A with the first n =
n(A) columns of Q.

Homework 3.3.5.2 Implement the algorithm in Figure 3.3.5.2 as
function [ A_out ] = FormQ( A, t )

by completing the code in Assignments/Week03/matlab/FormQ.m. You will want to use Assignments/

Week03/matlab/test_FormQ.m to check your implementation. Input is the m×n matrix A and vector
t that resulted from [ A, t ] = HQR( A ). Output is the matrix Q for the QR factorization. You
may want to use Assignments/Week03/matlab/test_FormQ.m to check your implementation. [Solution]

Homework 3.3.5.3 Given A ∈ Cm×n, show that the cost of the algorithm in Figure 3.3.5.2 is
given by

CFormQ(m,n) ≈ 2mn2 − 2
3n

3 flops.

[Hint] [Solution]

Ponder This 3.3.5.4 If m = n then Q could be accumulated by the sequence

Q = (· · · ((IH0)H1) · · ·Hn−1).

Give a high-level reason why this would be (much) more expensive than the algorithm in Fig-
ure 3.3.5.2

Assignments/Week03/matlab/FormQ.m
Assignments/Week03/matlab/test_FormQ.m
Assignments/Week03/matlab/test_FormQ.m
Assignments/Week03/matlab/test_FormQ.m
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3.3.6 Applying QH

YouTube: https://www.youtube.com/watch?v=BfK3DVgfxIM
In a future chapter, we will see that the QR factorization is used to solve the linear least-squares

problem. To do so, we need to be able to compute ŷ = QHy where QH = Hn−1 · · ·H0.
Let us start by computing H0y:I − 1

τ1

(
1
u2

)(
1
u2

)H( ψ1
y2

)
=(
ψ1
y2

)
−
(

1
u2

) (
1
u2

)H (
ψ1
y2

)
/τ1︸ ︷︷ ︸

ω1
=(
ψ1
y2

)
− ω1

(
1
u2

)
=(
ψ1 − ω1
y2 − ω1u2

)
.

More generally, let us compute Hky:I − 1
τ1

 0
1
u2


 0

1
u2


H

 y0
ψ1
y2

 =

 y0
ψ1 − ω1
y2 − ω1u2

 ,
where ω1 = (ψ1 + uH2 y2)/τ1. This motivates the algorithm in Figure 3.3.6.1 for computing y :=
Hn−1 · · ·H0y given the output matrix A and vector t from routine HQR_unb_var1.

https://www.youtube.com/watch?v=BfK3DVgfxIM
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[y] = Apply_QH(A, t, y)

A→
(
ATL ATR
ABL ABR

)
, t→

(
tT
tB

)
, y →

(
yT
yB

)
ATL is 0× 0 and tT , yT have 0 elements

while n(ABR) > 0(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 ,
(
tT
tB

)
→

 t0
τ1
t2

 ,( yT
yB

)
→

 y0
ψ1
y2


Update

(
ψ1
y2

)
:=
(
I − 1

τ1

(
1
a21

)(
1 aH21

))( ψ1
y2

)
via the steps

ω1 := (ψ1 + aH21y2)/τ1(
ψ1
y2

)
:=
(

ψ1 − ω1
y2 − ω1a21

)
(
ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 ,
(
tT
tB

)
←

 t0
τ1
t2

 ,( yT
yB

)
←

 y0
ψ1
y2


endwhile

Figure 3.3.6.1 Algorithm for computing y := QHy(= Hn−1 · · ·H0y) given the output from the
algorithm HQR_unb_var1.

Homework 3.3.6.1 What is the approximate cost of algorithm in Figure 3.3.6.1 if Q (stored as
Householder vectors in A) is m× n. [Solution]

3.3.7 Orthogonality of resulting Q

Homework 3.3.7.1 Previous programming assignments have the following routines for computing
the QR factorization of a given matrix A:

• Classical Gram-Schmidt (CGS) Homework 3.2.3.1:
[ A_out, R_out ] = CGS_QR( A ).

• Modified Gram-Schmidt (MGS) Homework 3.2.4.3:
[ A_out, R_out ] = MGS_QR( A ).

• Householder QR factorization (HQR) Homework 3.3.4.3:
[ A_out, t_out ] = HQR( A ).

• Form Q from Householder QR factorization Homework 3.3.5.2:
Q = FormQ( A, t ).
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Use these to examine the orthogonality of the computedQ by writing a Matlab script (from scratch),
in file Assignments/Week03/matlab/test_orthogonality.m, for the matrix

1 1 1
ε 0 0
0 ε 0
0 0 ε

 .
[Solution]

Ponder This 3.3.7.2 In the last homework, we examined the orthogonality of the computed
matrix Q for a very specific kind of matrix. The problem with that matrix is that the columns are
nearly linearly dependent (the smaller ε is).

How can you quantify how close to being linearly dependent the columns of a matrix are?
How could you create a matrix of arbitrary size in such a way that you can control how close

to being linearly dependent the columns are?

Homework 3.3.7.3 (Optional). Program up your solution to Ponder This 3.3.7.2 and use it to
compare how mutually orthonormal the columns of the computed matrices Q are.

3.4 Enrichments

3.4.1 Blocked Householder QR factorization

3.4.1.1 Casting computation in terms of matrix-matrix multiplication

Modern processors have very fast processors with very fast floating point units (which perform the
multiply/adds that are the bread and butter of our computations), but very slow memory. Without
getting into details, the reason is that modern memories are large and hence are physically far from
the processor, with limited bandwidth between the two. To overcome this, smaller "cache" memories
are closer to the CPU of the processor. In order to achieve high performance (efficient use of the
fast processor), the strategy is to bring data into such a cache and perform a lot of computations
with this data before writing a result out to memory.

Operations like a dot product of vectors or an "axpy" (y := αx+ y) perform O(m) computation
with O(m) data and hence don’t present much opportunity for reuse of data. Similarly, matrix-
vector multiplication and rank-1 update operations perform O(m2) computation with O(m2) data,
again limiting the opportunity for reuse. In contrast, matrix-matrix multiplication performs O(m3)
computation with O(m2) data, and hence there is an opportunity to reuse data.

The goal becomes to rearrange computation so that most computation is cast in terms of matrix-
matrix multiplication-like operations. Algorithms that achieve this are called blocked algorithms.

It is probably best to return to this enrichment after you have encountered simpler algorithms
and their blocked variants later in the course, since Householder QR factorization is one of the
more difficult operations to cast in terms of matrix-matrix multiplication.

3.4.1.2 Accumulating Householder transformations

Given a sequence of Householder transformations, computed as part of Householder QR factor-
ization, these Householder transformations can be accumulated into a new transformation: If
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H0, · · · , Hk−1 are Householder transformations, then

H0H1 · · ·Hk−1 = I − UT−1UH ,

where T is an upper triangular matrix. If U stores the Householder vectors that defineH0, . . . ,Hk−1
(with "1"s explicitly on its diagonal) and t holds the scalars τ0, . . . , τk−1, then

T := FormT( U, t )

computes the desired matrix T . Now, applying this UT transformation to a matrix B yields

(I − UT−1UH)B = B − U(T−1(UHB)),

which demontrates that this operations requires the matrix-matrix multiplication W := UHB, the
triangular matrix-matrix multiplicationW := T−1W and the matrix-matrix multipication B−UW ,
each of which can attain high performance.

In [24] we call the transformation I−UT−1UH that equals the accumulated Householder trans-
formations the UT transform and prove that T can instead by computed as

T = triu(UHU)

(the upper triangular part of UHU) followed by either dividing the diagonal elements by two or
setting them to τ0, . . . , τk−1 (in order). In that paper, we point out similar published results [8]
[36] [49] [33].

3.4.1.3 A blocked algorithm

A QR factorization that exploits the insights that yielded the UT transform can now be described:

• Partition
A→

(
A11 A12
A21 A22

)
where A11 is b× b.

• We can use the unblocked algorithm in Subsection 3.3.4 to factor the panel
(
A11
A21

)

[
(
A11
A21

)
, t1] := HouseQR_unb_var1(

(
A11
A21

)
),

overwriting the entries below the diagonal with the Householder vectors
(
U11
U21

)
(with the

ones on the diagonal implicitly stored) and the upper triangular part with R11.

• Form T11 from the Householder vectors using the procedure described earlier in this unit:

T11 := FormT(
(
A11
A21

)
)
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• Now we need to also apply the Householder transformations to the rest of the columns:(
A12
A22

)
=I − ( U11

U21

)
T−1

11

(
U11
U21

)HH ( A12
A22

)
=(
A12
A22

)
−
(
U11
U21

)
W12

=(
A12 − U11W12
A22 − U21W12

)
,

where
W12 = T−H11 (UH11A12 + UH21A22).

This motivates the blocked algorithm in Figure 3.4.1.1.

[A, t] := HouseQR_blk_var1(A, t)

A→
(
ATL ATR
ABL ABR

)
, t→

(
tT
tB

)
ATL is 0× 0, tT has 0 rows

while m(ATL) < m(A)
choose block size b(

ATL ATR
ABL ABR

)
→

 A00 A01 A02
A10 A11 A12
A20 A21 A22

 ,( tT
tB

)
→

 t0
t1
t2


A11 is b× b, t1 has b rows

[
(
A11
A21

)
, t1] := HQR_unb_var1(

(
A11
A21

)
)

T11 := FormT(
(
A11
A21

)
, t1)

W12 := T−H11 (UH11A12 + UH21A22)(
A12
A22

)
:=
(
A12 − U11W12
A22 − U21W12

)
(
ATL ATR
ABL ABR

)
←

 A00 A01 A02
A10 A11 A12
A20 A21 A22

 ,( tT
tB

)
←

 t0
t1
t2


endwhile

Figure 3.4.1.1 Blocked Householder transformation based QR factorization.
Details can be found in [24].



WEEK 3. THE QR DECOMPOSITION 139

3.4.1.4 The WY transform

An alternative (and more usual) way of expressing a Householder transform is

I − βvvH ,

where β = 2/vHv (= 1/τ , where τ is as discussed before). This leads to an alternative accumulation
of Householder transforms known as the compact WY transform [36]:

I − USUH

where upper triangular matrix S relates to the matrix T in the UT transform via S = T−1. Obvi-
ously, T can be computed first and then inverted via the insights in the next exercise. Alternatively,
inversion of matrix T can be incorporated into the algorithm that computes T (which is what is
done in the implementation in LAPACK [1]).

3.4.2 Systematic derivation of algorithms
We have described two algorithms for Gram-Schmidt orthogonalization: the Classical Gram-
Schmidt (CGS) and the Modified Gram-Schmidt (MGS) algorithms. In this section we use this
operation to introduce our FLAME methodology for systematically deriving algorithms hand-in-
hand with their proof of correctness. Those who want to see the finer points of this methodologies
may want to consider taking our Massive Open Online Course titled "LAFF-On: Programming for
Correctness," offered on edX.

The idea is as follows: We first specify the input (the precondition) and ouput (the postcon-
dition) for the algorithm. factorization

• The precondition for the QR factorization is

A = Â.

A contains the original matrix, which we specify by Â since A will be overwritten as the
algorithm proceeds.

• The postcondition for the QR factorization is

A = Q ∧ Â = QR ∧QHQ = I. (3.4.1)

This specifies that A is to be overwritten by an orthonormal matrix Q and that QR equals
the original matrix Â. We will not explicitly specify that R is upper triangular, but keep that
in mind as well.

Now, we know that we march through the matrices in a consistent way. At some point in the
algorithm we will have divided them as follows:

A→
(
AL AR

)
, Q→

(
QL QR

)
, R→

(
RTL RTR
RBL RBR

)
,

where these partitionings are "conformal" (they have to fit in context). To come up with algorithms,
we now ask the question "What are the contents of A and R at a typical stage of the loop?" To
answer this, we instead first ask the question "In terms of the parts of the matrices are that naturally
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exposed by the loop, what is the final goal?" To answer that question, we take the partitioned
matrices, and enter them in the postcondition (3.4.1):(

AL AR
)

︸ ︷︷ ︸
A

=
(
QL QR

)
︸ ︷︷ ︸

Q

∧
(
ÂL ÂR

)
︸ ︷︷ ︸

Â

=
(
QL QR

)
︸ ︷︷ ︸

Q

(
RTL RTR

0 RBR

)
︸ ︷︷ ︸

R

∧
(
QL QR

)H
︸ ︷︷ ︸

QH

(
QL QR

)
︸ ︷︷ ︸

Q

=
(
I 0
0 I

)
.︸ ︷︷ ︸

I

(Notice that RBL becomes a zero matrix since R is upper triangular.) Applying the rules of linear
algebra (multiplying out the various expressions) yields(

AL AR
)

=
(
QL QR

)
∧
(
ÂL ÂR

)
=
(
QLRTL QLRTR +QRRBR

)
∧
(
QHLQL QTLQR
QHRQL QHRQR

)
. =

(
I 0
0 I

)
.

(3.4.2)

We call this the Partitioned Matrix Expression (PME). It is a recursive definition of the
operation to be performed.

The different algorithms differ in what is in the matrices A and R as the loop iterates. Can we
systematically come up with an expression for their contents at a typical point in the iteration? The
observation is that when the loop has not finished, only part of the final result has been computed.
So, we should be able to take the PME in (3.4.2) and remove terms to come up with partial results
towards the final result. There are some dependencies (some parts of matrices must be computed
before others). Taking this into account gives us two loop invariants:

• Loop invariant 1:

(
AL AR

)
=
(
QL ÂR

)
∧ ÂL = QLRTL
∧QHLQL = I

(3.4.3)

• Loop invariant 2:

(
AL AR

)
=
(
QL ÂR −QLRTR

)
∧
(
ÂL ÂR

)
=
(
QLRTL QLRTR +QRRBR

)
∧QHLQL = I

We note that our knowledge of linear algebra allows us to manipulate this into(
AL AR

)
=
(
QL ÂR −QLRTR

)
∧ ÂL = QLRTL ∧QHL ÂL = RTL ∧QHLQL = I.

(3.4.4)
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The idea now is that we derive the loop that computes the QR factorization by systematically
deriving the algorithm that maintains the state of the variables described by a chosen loop invariant.
If you use (3.4.3), then you end up with CGS. If you use (3.4.4), then you end up with MGS.

Interested in details? We have a MOOC for that: https://www.edx.org/course/laff-on-programming-for-correctness-2.

3.4.3 Available software
The Householder QR factorization algorithms discussed in this week are implemented as part of
the LAPACK library [13] and our own libflame [46] software libraries.

It is useful to compare the programming style embraced by these efforts.

• LAPACK

◦ dgeqrt2.f - Unblocked QR factorization.
◦ dgeqrt.f - Blocked QR factorization via compact WY transforms.

• libflame

◦ FLA_QR2_UT_unb_var1.c - Unblocked QR factorization. Note: this computes not
just the QR factorization, but also accumulates the T matrix needed for the blocked
algorithm.
◦ FLA_QR2_UT_blk_var1.c - Blocked QR factorization via UT transforms.

3.5 Wrap Up

3.5.1 Additional homework

Homework 3.5.1.1 Consider the matrix
(
A

B

)
where A has linearly independent columns. Let

• A = QARA be the QR factorization of A.

•
(
RA
B

)
= QBRB be the QR factorization of

(
RA

B

)
.

•
(
A

B

)
= QR be the QR factorization of

(
A

B

)
.

Assume that the diagonal entries of RA, RB, and R are all positive. Show that R = RB. [Solution]

Remark 3.5.1.1 This last exercise gives a key insight that is explored in the paper
• [21] Brian C. Gunter, Robert A. van de Geijn, Parallel out-of-core computation and updating

of the QR factorization, ACM Transactions on Mathematical Software (TOMS), 2005.

https://www.edx.org/course/laff-on-programming-for-correctness-2
http://www.netlib.org/lapack/explore-html/dd/d9a/group__double_g_ecomputational_gaf52830cc84214fbf513bb7f520095aa9.html#gaf52830cc84214fbf513bb7f520095aa9
http://www.netlib.org/lapack/explore-html/dd/d9a/group__double_g_ecomputational_gaddcf152e87deec6123a1899f6f51101e.html#gaddcf152e87deec6123a1899f6f51101e
https://github.com/flame/libflame/blob/master/src/lapack/dec/q/qr2ut/vars/flamec/FLA_QR2_UT_unb_var1.c
https://github.com/flame/libflame/blob/master/src/lapack/dec/q/qr2ut/vars/flamec/FLA_QR2_UT_blk_var1.c
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3.5.2 Summary
Classical Gram-Schmidt orthogonalization: Given a set of linearly independent vectors {a0, . . . , an−1} ⊂
Cm, the Gram-Schmidt process computes an orthonormal basis {q0, . . . , qn−1} that spans the same
subspace as the original vectors, i.e.

Span({a0, . . . , an−1}) = Span({q0, . . . , qn−1}).

The process proceeds as follows:

• Compute vector q0 of unit length so that Span({a0}) = Span({q0}):

◦ ρ0,0 = ‖a0‖2
Computes the length of vector a0.
◦ q0 = a0/ρ0,0

Sets q0 to a unit vector in the direction of a0.

Notice that a0 = q0ρ0,0

• Compute vector q1 of unit length so that Span({a0, a1}) = Span({q0, q1}):

◦ ρ0,1 = qH0 a1

Computes ρ0,1 so that ρ0,1q0 = qH0 a1q0 equals the component of a1 in the direction of
q0.
◦ a⊥1 = a1 − ρ0,1q0

Computes the component of a1 that is orthogonal to q0.
◦ ρ1,1 = ‖a⊥1 ‖2

Computes the length of vector a⊥1 .
◦ q1 = a⊥1 /ρ1,1

Sets q1 to a unit vector in the direction of a⊥1 .

Notice that (
a0 a1

)
=
(
q0 q1

)( ρ0,0 ρ0,1
0 ρ1,1

)
.

• Compute vector q2 of unit length so that Span({a0, a1, a2}) = Span({q0, q1, q2}):

◦ ρ0,2 = qH0 a2
ρ1,2 = qH1 a2

or, equivalently,
(
ρ0,2
ρ1,2

)
=
(
q0 q1

)H
a2

Computes ρ0,2 so that ρ0,2q0 = qH0 a2q0 and ρ1,2q1 = qH1 a2q1 equal the components of a2
in the directions of q0 and q1.

Or, equivalently,
(
q0 q1

)( ρ0,2
ρ1,2

)
is the component in Span({q0, q1}).

◦ a⊥2 = a2 − ρ0,2q0 − ρ1,2q1 = a2 −
(
q0 q1

)( ρ0,2
ρ1,2

)
Computes the component of a2 that is orthogonal to q0 and q1.
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◦ ρ2,2 = ‖a⊥2 ‖2
Computes the length of vector a⊥2 .
◦ q2 = a⊥2 /ρ2,2

Sets q2 to a unit vector in the direction of a⊥2 .

Notice that (
a0 a1 a2

)
=
(
q0 q1 q2

) ρ0,0 ρ0,1 ρ0,2
0 ρ1,1 ρ1,2
0 0 ρ2,2

 .
• And so forth.

Theorem 3.5.2.1 QR Decomposition Theorem. Let A ∈ Cm×n have linearly independent
columns. Then there exists an orthonormal matrix Q and upper triangular matrix R such that
A = QR, its QR decomposition. If the diagonal elements of R are taken to be real and positive,
then the decomposition is unique.
Projection a vector y onto the orthonormal columns of Q ∈ Cm×n:

[y⊥, r] = Proj⊥QCGS(Q, y) [y⊥, r] = Proj⊥QMGS(Q, y)
(used by CGS) (used by MGS)
y⊥ = y y⊥ = y
for i = 0, . . . , k − 1 for i = 0, . . . , k − 1
ρi := qHi y ρi := qHi y

⊥

y⊥ := y⊥ − ρiqi y⊥ := y⊥ − ρiqi
endfor endfor

Gram-Schmidt orthogonalization algorithms:

[A,R] := GS(A) (overwrites A with Q)

A→
(
AL AR

)
, R→

(
RTL RTR

0 RBR

)
AL has 0 columns and RTL is 0× 0

while n(AL) < n(A)(
AL AR

)
→
(
A0 a1 A2

)
,

(
RTL RTR

0 RBR

)
→

 R00 r01 R02
0 ρ11 rT12
0 0 R22


CGS MGS MGS (alternative)
r01 := AH0 a1
a1 := a1 −A0r01 [a1, r01] = Proj⊥toQMGS(A0, a1)
ρ11 := ‖a1‖2 ρ11 := ‖a1‖2 ρ11 := ‖a1‖2
a1 := a1/ρ11 q1 := a1/ρ11 a1 := a1/ρ11

rT12 := aH1 A2
A2 := A2 − a1r

T
12(

AL AR
)
←
(
A0 a1 A2

)
,

(
RTL RTR

0 RBR

)
←

 R00 r01 R02
0 ρ11 rT12
0 0 R22


endwhile
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Classic example that shows that the columns of Q, computed by MGS, are "more orthogonal"
than those computed by CGS:

A =


1 1 1
ε 0 0
0 ε 0
0 0 ε

 =
(
a0 a1 a2

)
.

Cost of Gram-Schmidt algorithms: approximately 2mn2 flops.

Definition 3.5.2.2 Let u ∈ Cn be a vector of unit length (‖u‖2 = 1). Then H = I − 2uuH is said
to be a Householder transformation or (Householder) reflector. ♦

If H is a Householder transformation (reflector), then

• HH = I.

• H = HH .

• HHH = HH=I.

• H−1 = HH = H.

Computing a Householder transformation I − 2uuH :

• Real case:

◦ v = x∓ ‖x‖2e0.
v = x+ sign(χ1)‖x‖2e0 avoids catastrophic cancellation.
◦ u = v/‖v‖2

• Complex case:

◦ v = x∓ ± ‖x‖2e0.
(Picking ± carefully avoids catastrophic cancellation.)
◦ u = v/‖v‖2

Practical computation of u and τ so that I−uuH/τ is a Householder transformation (reflector):

Algorithm :
[(

ρ
u2

)
, τ

]
= Housev

((
χ1
x2

))
χ2 := ‖x2‖2

α :=
∥∥∥∥∥
(
χ1
χ2

)∥∥∥∥∥
2

(= ‖x‖2)

ρ = −sign(χ1)‖x‖2 ρ := −sign(χ1)α
ν1 = χ1 + sign(χ1)‖x‖2 ν1 := χ1 − ρ
u2 = x2/ν1 u2 := x2/ν1

χ2 = χ2/|ν1|(= ‖u2‖2)
τ = (1 + uH2 u2)/2 τ = (1 + χ2

2)/2
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Householder QR factorization algorithm:

[A, t] = HQR_unb_var1(A)

A→
(
ATL ATR
ABL ABR

)
and t→

(
tT
tB

)
ATL is 0× 0 and tT has 0 elements

while n(ABR) > 0(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 and
(
tT
tB

)
→

 t0
τ1
t2

[(
α11
a21

)
, τ1

]
:=
[(

ρ11
u21

)
, τ1

]
= Housev

(
α11
a21

)

Update
(
aT12
A22

)
:=
(
I − 1

τ1

(
1
u21

)(
1 uH21

))( aT12
A22

)
via the steps

wT12 := (aT12 + aH21A22)/τ1(
aT12
A22

)
:=
(

aT12 − wT12
A22 − a21w

T
12

)
(
ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 and
(
tT
tB

)
←

 t0
τ1
t2


endwhile

Cost: approximately 2mn2 − 2
3n

3 flops.



WEEK 3. THE QR DECOMPOSITION 146

Algorithm for forming Q given output of Householder QR factorization algorithm:

[A] = FormQ(A, t)

A→
(
ATL ATR
ABL ABR

)
, t→

(
tT
tB

)
ATL is n(A)× n(A) and tT has n(A) elements

while n(ATL) > 0(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 ,( tT
tB

)
→

 t0
τ1
t2


Update

(
α11 aT12
a21 A22

)
:=(

I − 1
τ1

(
1
u21

)(
1 uH21

))( 1 0
0 A22

)
via the steps

α11 := 1− 1/τ1
aT12 := −(aH21A22)/τ1
A22 := A22 + a21a

T
12

a21 := −a21/τ1(
ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 ,( tT
tB

)
←

 t0
τ1
t2


endwhile

Cost: approximately 2mn2 − 2
3n

3 flops.
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Algorithm for applying QH given output of Householder QR factorization algorithm:

[y] = Apply_QH(A, t, y)

A→
(
ATL ATR
ABL ABR

)
, t→

(
tT
tB

)
, y →

(
yT
yB

)
ATL is 0× 0 and tT , yT have 0 elements

while n(ABR) < 0(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 ,
(
tT
tB

)
→

 t0
τ1
t2

 ,( yT
yB

)
→

 y0
ψ1
y2


Update

(
ψ1
y2

)
:=
(
I − 1

τ1

(
1
u21

)(
1 uH21

))( ψ1
y2

)
via the steps

ω1 := (ψ1 + aH21y2)/τ1(
ψ1
y2

)
:=
(

ψ1 − ω1
y2 − ω1u2

)
(
ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 ,
(
tT
tB

)
←

 t0
τ1
t2

 ,( yT
yB

)
←

 y0
ψ1
y2


endwhile

Cost: approximately 4mn− n2 flops.



Week 4

Linear Least Squares

4.1 Opening Remarks

4.1.1 Fitting the best line

YouTube: https://www.youtube.com/watch?v=LPfdOYoQQU0
A classic problem is to fit the "best" line through a given set of points: Given

{(χi, ψi)}m−1
i=0 ,

we wish to fit the line f(χ) = γ0 + γ1χ to these points, meaning that the coefficients γ0 and γ1 are
to be determined. Now, in the end we want to formulate this as approximately solving Ax = b and
for that reason, we change the labels we use: Starting with points

{(αi, βi)}m−1
i=0 ,

we wish to fit the line f(α) = χ0 + χ1α through these points so that

χ0 + χ1α0 ≈ β0
χ0 + χ1α1 ≈ β1

...
...

...
χ0 + χ1αm−1 ≈ βm−1,

which we can instead write as
Ax ≈ b,

148

https://www.youtube.com/watch?v=LPfdOYoQQU0
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where

A =


1 α0
1 α1
...

...
1 αm−1

 , x =
(
χ0
χ1

)
, and b =


β0
β1
...

βm−1

 .
Homework 4.1.1.1 Use the script in Assignments/Week04/matlab/LineFittingExercise.m to fit a line
to the given data by guessing the coefficients χ0 and χ1.

Ponder This 4.1.1.2 Rewrite the script for Homework 4.1.1.1 to be a bit more engaging...)

4.1.2 Overview
• 4.1 Opening Remarks

◦ 4.1.1 Fitting the best line
◦ 4.1.2 Overview
◦ 4.1.3 What you will learn

• 4.2 Solution via the Method of Normal Equations

◦ 4.2.1 The four fundamental spaces of a matrix
◦ 4.2.2 The Method of Normal Equations
◦ 4.2.3 Solving the normal equations
◦ 4.2.4 Conditioning of the linear least squares problem
◦ 4.2.5 Why using the Method of Normal Equations could be bad

• 4.3 Solution via the SVD

◦ 4.3.1 The SVD and the four fundamental spaces
◦ 4.3.2 Case 1: A has linearly independent columns
◦ 4.3.3 Case 2: General case

• 4.4 Solution via the QR factorization

◦ 4.4.1 A has linearly independent columns
◦ 4.4.2 Via Gram-Schmidt QR factorization
◦ 4.4.3 Via the Householder QR factorization
◦ 4.4.4 A has linearly dependent columns

• 4.5 Enrichments

◦ 4.5.1 Rank Revealing QR (RRQR) via MGS
◦ 4.5.2 Rank Revealing Householder QR factorization

• 4.6 Wrap Up

◦ 4.6.1 Additional homework
◦ 4.6.2 Summary

Assignments/Week04/matlab/LineFittingExercise.m
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4.1.3 What you will learn
This week is all about solving linear least squares, a fundamental problem encountered when fitting
data or approximating matrices.

Upon completion of this week, you should be able to

• Formulate a linear least squares problem.

• Transform the least squares problem into normal equations.

• Relate the solution of the linear least squares problem to the four fundamental spaces.

• Describe the four fundamental spaces of a matrix using its singular value decomposition.

• Solve the solution of the linear least squares problem via Normal Equations, the Singular
Value Decomposition, and the QR decomposition.

• Compare and contrast the accuracy and cost of the different approaches for solving the linear
least squares problem.

4.2 Solution via the Method of Normal Equations

4.2.1 The four fundamental spaces of a matrix

YouTube: https://www.youtube.com/watch?v=9mdDqC1SChg
We assume that the reader remembers theory related to (vector) subspaces. If a review is in

order, we suggest Weeks 9 and 10 of Linear Algebra: Foundations to Frontiers (LAFF) [27].
At some point in your linear algebra education, you should also have learned about the four

fundamental spaces of a matrix A ∈ Cm×n (although perhaps only for the real-valued case):

• The column space, C(A), which is equal to the set of all vectors that are linear combinations
of the columns of A

{y | y = Ax}.

• The null space, N (A), which is equal to the set of all vectors that are mapped to the zero
vector by A

{x | Ax = 0}.

• The row space, R(A), which is equal to the set

{y | yH = xHA}.

Notice that R(A) = C(AH).

https://www.youtube.com/watch?v=9mdDqC1SChg
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• The left null space, which is equal to the set of all vectors

{x | xHA = 0}.

Notice that this set is equal to N (AH).

Definition 4.2.1.1 Orthogonal subspaces. Two subspaces S, T ⊂ Cn are orthogonal if any
two arbitrary vectors (and hence all vectors) x ∈ S and y ∈ T are orthogonal: xHy = 0. ♦

The following exercises help you refresh your skills regarding these subspaces.

Homework 4.2.1.1 Let A ∈ Cm×n. Show that its row space, R(A), and null space, N (A), are
orthogonal. [Solution]

Homework 4.2.1.2 Let A ∈ Cm×n. Show that its column space, C(A), and left null space, N (AH),
are orthogonal. [Solution]

Homework 4.2.1.3 Let {s0, · · · , sr−1} be a basis for subspace S ⊂ Cn and {t0, · · · , tk−1} be a
basis for subspace T ⊂ Cn. Show that the following are equivalent statements:

1. Subspaces S, T are orthogonal.

2. The vectors in {s0, · · · , sr−1} are orthogonal to the vectors in {t0, · · · , tk−1}.

3. sHi tj = 0 for all 0 ≤ i < r and 0 ≤ j < k.

4.
(
s0 · · · sr−1

)H (
t0 · · · tk−1

)
= 0, the zero matrix of appropriate size.

[Solution]

Homework 4.2.1.4 Let A ∈ Cm×n. Show that any vector x ∈ Cn can be written as x = xr + xn,
where xr ∈ R(A) and xn ∈ N (A), and xHr xn = 0. [Hint] [Answer] [Solution]

YouTube: https://www.youtube.com/watch?v=ZdlraR_7cMA
Figure 4.2.1.2 captures the insights so far.

https://www.youtube.com/watch?v=ZdlraR_7cMA
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Figure 4.2.1.2 Illustration of the four fundamental spaces and the mapping of a vector x ∈ Cn by
matrix A ∈ Cm×n.

That figure also captures that if r is the rank of matrix, then

• dim(R(A)) = dim(C(A)) = r;

• dim(N (A)) = n− r;

• dim(N (AH)) = m− r.

Proving this is a bit cumbersome given the knowledge we have so far, but becomes very easy once
we relate the various spaces to the SVD, in Subsection 4.3.1. So, we just state it for now.

4.2.2 The Method of Normal Equations

YouTube: https://www.youtube.com/watch?v=oT4KIOxx-f4

https://www.youtube.com/watch?v=oT4KIOxx-f4
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Consider again the LLS problem: Given A ∈ Cm×n and b ∈ Cm find x̂ ∈ Cn such that

‖b−Ax̂‖2 = min
x∈Cn

‖b−Ax‖2.

We list a sequence of observations that you should have been exposed to in previous study of linear
algebra:

• b̂ = Ax̂ is in the column space of A.

• b̂ equals the member of the column space of A that is closest to b, making it the orthogonal
projection of b onto the column space of A.

• Hence the residual, b− b̂, is orthogonal to the column space of A.

• From Figure 4.2.1.2 we deduce that b− b̂ = b−Ax̂ is in N (AH), the left null space of A.

• Hence AH(b−Ax̂) = 0 or, equivalently,

AHAx̂ = AHb.

This linear system of equations is known as the normal equations.

• If A has linearly independent columns, then rank(A) = n, N (A) = ∅, and AHA is nonsingular.
In this case,

x̂ = (AHA)−1AHb.

Obviously, this solution is in the row space, since R(A) = Cn.

With this, we have discovered what is known as the Method of Normal Equations. These steps are
summarized in Figure 4.2.2.1
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images/Chapter04/FundamentalSpacesLLSLinIndep.pptx

Figure 4.2.2.1 Solving LLS via the Method of Normal Equations when A has linearly independent
columns (and hence the row space of A equals Cn).

Definition 4.2.2.2 (Left) pseudo inverse. Let A ∈ Cm×n have linearly independent columns.
Then

A† = (AHA)−1AH

is its (left) pseudo inverse. ♦

Homework 4.2.2.1 Let A ∈ Cm×m be nonsingular. Then A−1 = A†. [Solution]

Homework 4.2.2.2 Let A ∈ Cm×n have linearly independent columns. ALWAYS/SOMETIMES/
NEVER: AA† = I. [Hint] [Answer] [Solution]

Ponder This 4.2.2.3 The last exercise suggests there is also a right pseudo inverse. How would
you define it?

4.2.3 Solving the normal equations

YouTube: https://www.youtube.com/watch?v=ln4XogsWcOE

images/Chapter04/FundamentalSpacesLLSLinIndep.pptx
https://www.youtube.com/watch?v=ln4XogsWcOE
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Let us review a method you have likely seen before for solving the LLS problem when matrix
A has linearly independent columns. We already used these results in Subsection 2.1.1

We wish to solve AHAx̂ = AHb, where A has linearly independent columns. If we form B =
AHA and y = AHb, we can instead solve Bx̂ = y. Some observations:

• Since A has linearly independent columns, B is nonsingular. Hence, x̂ is unique.

• B is Hermitian since BH = (AHA)H = AH(AH)H = AHA = B.

• B is Hermitian Positive Definite (HPD): x 6= 0 implies that xHBx > 0. This follows from
the fact that

xHBx = xHAHAx = (Ax)H(Ax) = ‖Ax‖22.

Since A has linearly independent columns, x 6= 0 implies that Ax 6= 0 and hence ‖Ax‖22 > 0.

In Section 5.4, you will find out that since B is HPD, there exists a lower triangular matrix L such
that B = LLH . This is known as the Cholesky factorization of B. The steps for solving the normal
equations then become

• Compute B = AHA.
Notice that since B is Hermitian symmetric, only the lower or upper triangular part needs to
be computed. This is known as a Hermitian rank-k update (where in this case k = n). The
cost is, approximately, mn2 flops. (See Section C.1.)

• Compute y = AHb.
The cost of this matrix-vector multiplication is, approximately, 2mn flops. (See Section C.1.)

• Compute the Cholesky factorization B → LLH .
Later we will see that this costs, approximately, 1

3n
3 flops. (See Subsection 5.4.3.)

• Solve
Lz = y

(solve with a lower triangular matrix) followed by

LH x̂ = z

(solve with an upper triangular matrix).
Together, these triangular solves cost, approximately, 2n2 flops. (See Section C.1.)

We will revisit this in Section 5.4.

4.2.4 Conditioning of the linear least squares problem

https://www.youtube.com/watch?v=etx_1VZ4VFk


WEEK 4. LINEAR LEAST SQUARES 156

YouTube: https://www.youtube.com/watch?v=etx_1VZ4VFk
Given A ∈ Cm×n with linearly independent columns and b ∈ Cm, consider the linear least

squares (LLS) problem
‖b−Ax̂‖2 = min

x
‖b−Ax‖2 (4.2.1)

and the perturbed problem

‖(b+ δb)−A(x̂+ δ̂x)‖2 = min
x
‖(b+ δb)−A(x+ δx)‖2 (4.2.2)

The question we want to examine is by how much the relative error in b is amplified into a relative
error in x̂. We will restrict our discussion to the case where A has linearly independent columns.

Now, we discovered that b̂, the projection of b onto the column space of A, satisfies

b̂ = Ax̂ (4.2.3)

and the projection of b+ δb satisfies

b̂+ δ̂b = A(x̂+ δ̂x) (4.2.4)

where δ̂b equals the projection of δb onto the column space of A.
Let θ equal the angle between vectors b and its projection b̂ (which equals the angle between b

and the column space of A). Then
cos(θ) = ‖b̂‖2/‖b‖2

and hence
cos(θ)‖b‖2 = ‖b̂‖2 = ‖Ax̂‖2 ≤ ‖A‖2‖x̂‖2 = σ0‖x̂‖2

which (as long as x̂ 6= 0) can be rewritten as

1
‖x̂‖2

≤ σ0
cos(θ)

1
‖b‖2

. (4.2.5)

Subtracting (4.2.3) from (4.2.4) yields

δ̂b = Aδ̂x

or, equivalently,
Aδ̂x = δ̂b

which is solved by
δ̂x = A†δ̂b

= A†A(AHA)−1AHδb
= (AHA)−1AHA(AHA)−1AHδb
= A†δb,

where A† = (AHA)−1AH is the pseudo inverse of A and we recall that δ̂b = A(AHA)−1AHδb. Hence

‖δ̂x‖2 ≤ ‖A†‖2‖δb‖2. (4.2.6)

Homework 4.2.4.1 Let A ∈ Cm×n have linearly independent columns. Show that

‖(AHA)−1AH‖2 = 1/σn−1,
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where σn−1 equals the smallest singular value of A. [Hint] [Solution]
Combining (4.2.5), (4.2.6), and the result in this last homework yields

‖δ̂x‖2
‖x̂‖2

≤ 1
cos(θ)

σ0
σn−1

‖δb‖2
‖b‖2

. (4.2.7)

Notice the effect of the cos(θ)b. If b is almost perpendicular to C(A), then its projection b̂ is
small and cos θ is small. Hence a small relative change in b can be greatly amplified. This makes
sense: if b is almost perpendical to C(A), then x̂ ≈ 0, and any small δb ∈ C(A) can yield a relatively
large change δx.

Definition 4.2.4.1 Condition number of matrix with linearly independent columns.
Let A ∈ Cm×n have linearly independent columns (and hence n ≤ m). Then its condition number
(with respect to the 2-norm) is defined by

κ2(A) = ‖A‖2‖A†‖2 = σ0
σn−1

.

♦
It is informative to explicity expose cos(θ) = ‖b̂‖2/‖b‖2 in (4.2.7):

‖δ̂x‖2
‖x̂‖2

≤ ‖b‖2
‖b̂‖2

σ0
σn−1

‖δb‖2
‖b‖2

.

Notice that the ratio
‖δb‖2
‖b‖2

can be made smaller by adding a component, br, to b that is orthogonal to C(A) (and hence does
not change the projection onto the column space, b̂):

‖δb‖2
‖b+ br‖2

.

The factor 1/ cos(θ) ensures that this does not magically reduce the relative error in x̂:

‖δ̂x‖2
‖x̂‖2

≤ ‖b+ br‖2
‖b̂‖2

σ0
σn−1

‖δb‖2
‖b+ br‖2

.

4.2.5 Why using the Method of Normal Equations could be bad

YouTube: https://www.youtube.com/watch?v=W-HnQDsZsOw

https://www.youtube.com/watch?v=W-HnQDsZsOw
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Homework 4.2.5.1 Show that κ2(AHA) = (κ2(A))2. [Hint] [Solution]
Let A ∈ Cm×n have linearly independent columns. If one uses the Method of Normal Equations

to solve the linear least squares problem minx ‖b−Ax‖2 via the steps

• Compute B = AHA.

• Compute y = AHb.

• Solve Bx̂ = y.

the condition number of B equals the square of the condition number of A. So, while the sensitivity
of the LLS problem is captured by

‖δ̂x‖2
‖x̂‖2

≤ 1
cos(θ)κ2(A)‖δb‖2

‖b‖2
.

the sensitivity of computing x̂ from Bx̂ = y is captured by

‖δ̂x‖2
‖x̂‖2

≤ κ2(A)2 ‖δy‖2
‖y‖2

.

If κ2(A) is relatively small (meaning that A is not close to a matrix with linearly dependent
columns), then this may not be a problem. But if the columns of A are nearly linearly dependent,
or high accuracy is desired, alternatives to the Method of Normal Equations should be employed.

Remark 4.2.5.1 It is important to realize that this squaring of the condition number is an artifact
of the chosen algorithm rather than an inherent sensitivity to change of the problem.

4.3 Solution via the SVD

4.3.1 The SVD and the four fundamental spaces

YouTube: https://www.youtube.com/watch?v=Zj72oRSSsH8

Theorem 4.3.1.1 Given A ∈ Cm×n, let A = ULΣTLV
H
L equal its Reduced SVD and A =(

UL UR
)( ΣTL 0

0 0

)(
VL VR

)H
its SVD. Then

• C(A) = C(UL),

• N (A) = C(VR),

• R(A) = C(AH) = C(VL), and

• N (AH) = C(UR).

https://www.youtube.com/watch?v=Zj72oRSSsH8
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Proof. We prove that C(A) = C(UL), leaving the other parts as exercises.
Let A = ULΣTLV

H
L be the Reduced SVD of A. Then

• UHL UL = I (UL is orthonormal),

• V H
L VL = I (VL is orthonormal), and

• ΣTL is nonsingular because it is diagonal and the diagonal elements are all nonzero.

We will show that C(A) = C(UL) by showing that C(A) ⊂ C(UL) and C(UL) ⊂ C(A)

• C(A) ⊂ C(UL):
Let z ∈ C(A). Then there exists a vector x ∈ Cn such that z = Ax. But then z = Ax =
ULΣTLV

H
L x = UL ΣTLV

H
L x︸ ︷︷ ︸

x̂

= ULx̂. Hence z ∈ C(UL).

• C(UL) ⊂ C(A):
Let z ∈ C(UL). Then there exists a vector x ∈ Cr such that z = ULx. But then z = ULx =
UL ΣTLV

H
L VLΣ−1

TL︸ ︷︷ ︸
I

x = A VLΣ−1
TLx︸ ︷︷ ︸
x̂

= Ax̂. Hence z ∈ C(A).

We leave the other parts as exercises for the learner. �

Homework 4.3.1.1 For the last theorem, prove that R(A) = C(AH) = C(VL). [Solution]

Ponder This 4.3.1.2 For the last theorem, prove that N (AH) = C(UR).

Homework 4.3.1.3 Given A ∈ Cm×n, let A = ULΣTLV
H
L equal its Reduced SVD and A =(

UL UR
)( ΣTL 0

0 0

)(
VL VR

)H
its SVD, and r = rank(A).

• ALWAYS/SOMETIMES/NEVER: r = rank(A) = dim(C(A)) = dim(C(UL)),

• ALWAYS/SOMETIMES/NEVER: r = dim(R(A)) = dim(C(VL)),

• ALWAYS/SOMETIMES/NEVER: n− r = dim(N (A)) = dim(C(VR)), and

• ALWAYS/SOMETIMES/NEVER: m− r = dim(N (AH)) = dim(C(UR)).

[Answer] [Solution]

Homework 4.3.1.4 Given A ∈ Cm×n, let A = ULΣTLV
H
L equal its Reduced SVD and A =(

UL UR
)( ΣTL 0

0 0

)(
VL VR

)H
its SVD.

Any vector x ∈ Cn can be written as x = xr + xn where xr ∈ C(VL) and xn ∈ C(VR).
TRUE/FALSE [Answer] [Solution]



WEEK 4. LINEAR LEAST SQUARES 160

images/Chapter04/FundamentalSpacesSVD.pptx

Figure 4.3.1.2 Illustration of relationship between the SVD of matrix A and the four fundamental
spaces.

4.3.2 Case 1: A has linearly independent columns

YouTube: https://www.youtube.com/watch?v=wLCN0yOLFkM
Let us start by discussing how to use the SVD to find x̂ that satisfies

‖b−Ax̂‖2 = min
x
‖b−Ax‖2,

for the case where A ∈ Cm×n has linearly independent columns (in other words, rank(A) = n).
Let A = ULΣTLV

H be its reduced SVD decomposition. (Notice that VL = V since A has
linearly independent columns and hence VL is n× n and equals V .)

images/Chapter04/FundamentalSpacesSVD.pptx
https://www.youtube.com/watch?v=wLCN0yOLFkM
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Here is a way to find the solution based on what we encountered before: Since A has linearly
independent columns, the solution is given by x̂ = (AHA)−1AHb (the solution to the normal
equations). Now,

x̂
= < solution to the normal equations >

(AHA)−1AHb
= < A = ULΣTLV

H >[
(ULΣTLV

H)H(ULΣTLV
H)
]−1

(ULΣTLV
H)Hb

= < (BCD)H = (DHCHBH) and ΣH
TL = ΣTL >[

(V ΣTLU
H
L )(ULΣTLV

H)
]−1

(V ΣTLU
H
L )b

= < UHL UL = I >[
V ΣTLΣTLV

H
]−1

V ΣTLU
H
L b

= < V −1 = V H and (BCD)−1 = D−1C−1B−1 >

V Σ−1
TLΣ−1

TLV
HV ΣTLU

H
L b

= < V HV = I and Σ−1
TLΣTL = I >

V Σ−1
TLU

H
L b

images/Chapter04/FundamentalSpacesSVDLLSLinIndep.pptx

Figure 4.3.2.1 Solving LLS via the SVD when A had linearly independent columns (and hence
the row space of A equals Cn).

Alternatively, we can come to the same conclusion without depending on the Method of Normal
Equations, in preparation for the more general case discussed in the next subsection. The derivation

images/Chapter04/FundamentalSpacesSVDLLSLinIndep.pptx
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is captured in Figure 4.3.2.1.

minx∈Cn ‖b−Ax‖22
= < substitute the SVDA = UΣV H >

minx∈Cn ‖b− UΣV Hx‖22
= < substitute I = UUH and factor out U >

minx∈Cn ‖U(UHb− ΣV Hx)‖22
= < multiplication by a unitary matrix preserves two-norm >

minx∈Cn ‖UHb− ΣV Hx‖22
= < partition, partitioned matrix-matrix multiplication >

minx∈Cn
∥∥∥∥∥
(
UHL b

UHR b

)
−
(

ΣTL

0

)
V Hx

∥∥∥∥∥
2

2
= < partitioned matrix-matrix multiplication and addition >

minx∈Cn
∥∥∥∥∥
(
UHL b− ΣTLV

Hx

UHR b

)∥∥∥∥∥
2

2

= <

∥∥∥∥∥
(
vT
vB

)∥∥∥∥∥
2

2
= ‖vT ‖22 + ‖vB‖22 >

minx∈Cn
∥∥∥UHL b− ΣTLV

Hx
∥∥∥2

2
+
∥∥∥UHR b∥∥∥2

2

The x that solves ΣTLV
Hx = UHL b minimizes the expression. That x is given by

x̂ = V Σ−1
TLU

H
L b.

since ΣTL is a diagonal matrix with only nonzeroes on its diagonal and V is unitary.
Here is yet another way of looking at this: we wish to compute x̂ that satisfies

‖b−Ax̂‖2 = min
x
‖b−Ax‖2,

for the case where A ∈ Cm×n has linearly independent columns. We know that A = ULΣTLV
H , its

Reduced SVD. To find the x that minimizes, we first project b onto the column space of A. Since
the column space of A is identical to the column space of UL, we can project onto the column space
of UL instead:

b̂ = ULU
H
L b.

(Notice that this is not because UL is unitary, since it isn’t. It is because the matrix ULUHL projects
onto the columns space of UL since UL is orthonormal.) Now, we wish to find x̂ that exactly solves
Ax̂ = b̂. Substituting in the Reduced SVD, this means that

ULΣTLV
H x̂ = ULU

H
L b.

Multiplying both sides by UHL yields

ΣTLV
H x̂ = UHL b.

and hence
x̂ = V Σ−1

TLU
H
L b.

We believe this last explanation probably leverages the Reduced SVD in a way that provides the
most insight, and it nicely motivates how to find solutions to the LLS problem when rank(A) < r.

The steps for solving the linear least squares problem via the SVD, when A ∈ Cm×n has linearly
independent columns, and the costs of those steps are given by
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• Compute the Reduced SVD A = ULΣTLV
H .

We will not discuss practical algorithms for computing the SVD until much later. We will
see that the cost is O(mn2) with a large constant.

• Compute x̂ = V Σ−1
TLU

H
L b.

The cost of this is approximately,

◦ Form yT = UHL b: 2mn flops.
◦ Scale the individual entries in yT by dividing by the corresponding singular values: n

divides, overwriting yT = Σ−1
TLyT . The cost of this is negligible.

◦ Compute x̂ = V yT : 2n2 flops.

The devil is in the details of how the SVD is computed and whether the matrices UL and/or
V are explicitly formed.

4.3.3 Case 2: General case

YouTube: https://www.youtube.com/watch?v=qhsPHQk1id8
Now we show how to use the SVD to find x̂ that satisfies

‖b−Ax̂‖2 = min
x
‖b−Ax‖2,

where rank(A) = r, with no assumptions about the relative size of m and n. In our discussion, we
let A = ULΣTLV

H
L equal its Reduced SVD and

A =
(
UL UR

)( ΣTL 0
0 0

)(
VL VR

)H
its SVD.

The first observation is, once more, that an x̂ that minimizes ‖b−Ax‖2 satisfies

Ax̂ = b̂,

where b̂ = ULU
H
L b, the orthogonal projection of b onto the column space of A. Notice our use of

"an x̂" since the solution won’t be unique if r < m and hence the null space of A is not trivial.
Substituting in the SVD this means that

(
UL UR

)( ΣTL 0
0 0

)(
VL VR

)H
x̂ = ULU

H
L b.

https://www.youtube.com/watch?v=qhsPHQk1id8
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Multiplying both sides by UHL yields(
I 0

)( ΣTL 0
0 0

)(
VL VR

)H
x̂ = UHL b

or, equivalently,
ΣTLV

H
L x̂ = UHL b. (4.3.1)

Any solution to this can be written as the sum of a vector in the row space of A with a vector in
the null space of A:

x̂ = V z =
(
VL VR

)( zT
zB

)
= VLzT︸ ︷︷ ︸

xr

+ VRzB︸ ︷︷ ︸
xn

.

Substituting this into (4.3.1) we get

ΣTLV
H
L (VLzT + VRzB) = UHL b,

which leaves us with
ΣTLzT = UHL b.

Thus, the solution in the row space is given by

xr = VLzT = VLΣ−1
TLU

H
L b

and the general solution is given by

x̂ = VLΣ−1
TLU

H
L b+ VRzB,

where zB is any vector in Cn−r. This reasoning is captured in Figure 4.3.3.1.

images/Chapter04/FundamentalSpacesSVDLLS.pptx

Figure 4.3.3.1 Solving LLS via the SVD of A.

images/Chapter04/FundamentalSpacesSVDLLS.pptx
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Homework 4.3.3.1 Reason that
x̂ = VLΣ−1

TLU
H
L b

is the solution to the LLS problem with minimal length (2-norm). In other words, if x? satisfies

‖b−Ax?‖2 = min
x
‖b−Ax‖2

then ‖x̂‖2 ≤ ‖x?‖2. [Solution]

4.4 Solution via the QR factorization

4.4.1 A has linearly independent columns

YouTube: https://www.youtube.com/watch?v=mKAZjYX656Y

Theorem 4.4.1.1 Assume A ∈ Cm×n has linearly independent columns and let A = QR be its QR
factorization with orthonormal matrix Q ∈ Cm×n and upper triangular matrix R ∈ Cn×n. Then
the LLS problem

Find x̂ ∈ Cn such that ‖b−Ax̂‖2 = min
x∈Cn

‖b−Ax‖2

is solved by the unique solution of
Rx̂ = QHb.

Proof 1. Since A = QR, minimizing ‖b−Ax‖2 means minimizing

‖b−Q Rx︸︷︷︸
z

‖2.

Since R is nonsingular, we can first find z that minimizes

‖b−Qz‖2

after which we can solve Rx = z for x. But from the Method of Normal Equations we know that
the minimizing z solves

QHQz = QHb.

Since Q has orthonormal columns, we thus deduce that

z = QHb.

Hence, the desired x̂ must satisfy
Rx̂ = QHb.

�

https://www.youtube.com/watch?v=mKAZjYX656Y
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Proof 2. Let A = QLRTL be the QR factorization of A. We know that then there exists a matrix
QR such that Q =

(
QL QR

)
is unitary: QR is an orthonormal basis for the space orthogonal

to the space spanned by QL. Now,

minx∈Cn ‖b−Ax‖22
= < substitute A = QLRTL >

minx∈Cn ‖b−QLRTLx‖22
= < two norm is preserved since QH is unitary >

minx∈Cn ‖QH(b−QLRTLx)‖22
= < partitioning; distributing >

minx∈Cn
∥∥∥∥∥
(
QHL
QHR

)
b−

(
QHL
QHR

)
QLRTLx

∥∥∥∥∥
2

2
= < partitioned matrix-matrix multiplication >

minx∈Cn
∥∥∥∥∥
(
QHL b

QHR b

)
−
(
RTLx

0

)∥∥∥∥∥
2

2
= < partitioned matrix addition >

minx∈Cn
∥∥∥∥∥
(
QHL b−RTLx

QHR b

)∥∥∥∥∥
2

2

= < property of the 2-norm:
∥∥∥∥∥
(
u

v

)∥∥∥∥∥
2

2
= ‖u‖22 + ‖v‖22 >

minx∈Cn
(∥∥∥QHL b−RTLx∥∥∥2

2
+ ‖QHR b‖22

)
= < QHR b is independent of x >(

minx∈Cn
∥∥∥QHL b−RTLx∥∥∥2

2

)
+ ‖QHR b‖22

= < minimized by x̂ that satisfies RTLx̂ = QHL b >
‖QHR b‖22.

Thus, the desired x̂ that minimizes the linear least squares problem solves RTLx̂ = QHL y. The
solution is unique because RTL is nonsingular (because A has linearly independent columns). �

Homework 4.4.1.1 Yet another alternative proof for Theorem 4.4.1.1 starts with the observation
that the solution is given by x̂ = (AHA)−1AHb and then substitutes in A = QR. Give a proof that
builds on this insight. [Solution]

Ponder This 4.4.1.2 Create a picture similar to Figure 4.3.2.1 that uses the QR factorization
rather than the SVD.

4.4.2 Via Gram-Schmidt QR factorization
In Section 3.2, you were introduced to the (Classical and Modified) Gram-Schmidt process and
how it was equivalent to computing a QR factorization of the matrix, A, that has as columns the
linearly independent vectors being orthonormalized. The resulting Q and R can be used to solve
the linear least squares problem by first computing y = QHb and next solving Rx̂ = y.

Starting with A ∈ Cm×n let’s explicitly state the steps required to solve the LLS problem via
either CGS or MGS and analyze the cost.:

• From Homework 3.2.6.1 or Homework 3.2.6.2, factoring A = QR via CGS or MGS costs,
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approximately, 2mn2 flops.

• Compute y = QHb: 2mn flops.

• Solve Rx̂ = y: n2 flops.

Total: 2mn2 + 2mn+ n2 flops.

4.4.3 Via the Householder QR factorization

YouTube: https://www.youtube.com/watch?v=Mk-Y_15aGGc
Given A ∈ Cm×n with linearly independent columns, the Householder QR factorization yields

n Householder transformations, H0, . . . ,Hn−1, so that

Hn−1 · · ·H0︸ ︷︷ ︸
QH

A =
(
RT
0

)
.

[A, t] = HouseQR_unb_var1(A) overwritesA with the Householder vectors that defineH0, · · · , Hn−1
below the diagonal and RT in the upper triangular part.

Rather than explicitly computing Q and then computing ỹ := QHy, we can instead apply the
Householder transformations:

ỹ := Hn−1 · · ·H0y,

overwriting y with ỹ. After this, the vector y is partitioned as y =
(
yT
yB

)
and the triangular

system RT x̂ = yT yields the desired solution.
The steps and theirs costs of this approach are

• From Subsection 3.3.4, factoring A = QR via the Householder QR factorization costs, ap-
proximately, 2mn2 − 2

3n
3 flops.

• From Homework 3.3.6.1, applying Q as a sequence of Householder transformations costs,
approximately, 4mn− 2n2 flops.

• Solve RT x̂ = yT : n2 flops.

Total: 2mn2 − 2
3n

3 + 4mn− n2 ≈ 2mn2 − 2
3n

3 flops.

https://www.youtube.com/watch?v=Mk-Y_15aGGc
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4.4.4 A has linearly dependent columns
Let us now consider the case where A ∈ Cm×n has rank r ≤ n. In other words, it has r linearly
independent columns. Let p ∈ Rn be a permutation vector, by which we mean a permutation of
the vector 

0
1
...

n− 1


And P (p) be the matrix that, when applied to a vector x ∈ Cn permutes the entries of x according
to the vector p:

P (p)x =


eTπ0
eTπ1...
eTπn−1


︸ ︷︷ ︸

P (p)

x =


eTπ0x
eTπ1x...
eTπn−1x

 =


χπ0

χπ1
...

χπn−1

 .

where ej equals the columns of I ∈ Rn×n indexed with j (and hence the standard basis vector
indexed with j).

If we apply P (p)T to A ∈ Cm×n from the right, we get

AP (p)T
= < definition of P (p) >

A


eTπ0...
eTπn−1


T

= < transpose >

A
(
eπ0 · · · eπn−1

)
= < matrix multiplication by columns >(
Aeπ0 · · · Aeπn−1

)
= < Bej = bj >(
aπ0 · · · aπn−1

)
.

In other words, applying the transpose of the permutation matrix to A from the right permutes its
columns as indicated by the permutation vector p.

The discussion about permutation matrices gives us the ability to rearrange the columns of A
so that the first r = rank(A) columns are linearly independent.

Theorem 4.4.4.1 Assume A ∈ Cm×n and that r = rank(A). Then there exists a permutation vector
p ∈ Rn, orthonormal matrix QL ∈ Cm×r, upper triangular matrix RTL ∈ Cr×r, and RTR ∈ Cr×(n−r)

such that
AP (p)T = QL

(
RTL RTR

)
.

Proof. Let p be the permutation vector such that the first r columns of AP = AP (p)T are linearly
independent. Partition

AP = AP (p)T =
(
APL APR

)
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where APL ∈ Cm×r. Since APL has linearly independent columns, its QR factorization, AP = QLRTL,
exists. Since all the linearly independent columns of matrix A were permuted to the left, the
remaining columns, now part of APR, are in the column space of APL and hence in the column space
of QL. Hence APR = QLRTR for some matrix RTR, which then must satisfy QHLAPR = RTR giving
us a means by which to compute it. We conclude that

AP = AP (p)T =
(
APL APR

)
= QL

(
RTL RTR

)
.

�
Let us examine how this last theorem can help us solve the LLS

Find x̂ ∈ Cn such that ‖b−Ax̂‖2 = min
x∈Cn

‖b−Ax‖2

when rank(A) ≤ n:

minx∈Cn ‖b−Ax‖2
= < P (p)TP (p) = I >

minx∈Cn ‖b−AP (p)TP (p)x‖2
= < AP (p)T = QL

(
RTL RTR

)
>

minx∈Cn ‖b−QL
(
RTL RTR

)
P (p)x︸ ︷︷ ︸

w

‖2

= < substitute w =
(
RTL RTR

)
P (p)x >

minw∈Cr ‖b−QLw‖2
which is minimized when w = QHL b. Thus, we are looking for vector x̂ such that(

RTL RTR
)
P (p)x̂ = QHL b.

Substituting

z =
(
zT
zB

)
for P (p)x̂ we find that (

RTL RTR
)( zT

zB

)
= QHL b.

Now, we can pick zB ∈ Cn−r to be an arbitrary vector, and determine a corresponding zT by solving

RTLzT = QHL b−RTRzB.

A convenient choice is zB = 0 so that zT solves

RTLzT = QHL b.

Regardless of choice of zB, the solution x̂ is given by

x̂ = P (p)T
(
R−1
TL(QHL b−RTRzB)

zB

)
.

(a permutation of vector z.) This defines an infinite number of solutions if rank(A) < n.
The problem is that we don’t know which columns are linearly independent in advance. In

enrichments in Subsection 4.5.1 and Subsection 4.5.2, rank-revealing QR factorization algorithms
are discussed that overcome this problem.
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4.5 Enrichments

4.5.1 Rank-Revealing QR (RRQR) via MGS
The discussion in Subsection 4.4.4 falls short of being a practical algorithm for at least two reasons:

• One needs to be able to determine in advance what columns of A are linearly independent;
and

• Due to roundoff error or error in the data from which the matrix was created, a column may
be linearly independent of other columns when for practical purposes it should be considered
dependent.

We now discuss how the MGS algorithm can be modified so that appropriate linearly independent
columns can be determined "on the fly" as well as the defacto rank of the matrix. The result is known
as the Rank Revealing QR factorization (RRQR). It is also known as QR factorization
with column pivoting. We are going to give a modification of the MGS algorithm for computing
the RRQR.

For our discussion, we introduce an elementary pivot matrix, P̃ (j) ∈ Cn×n, that swaps the first
element of the vector to which it is applied with the element indexed with j:

P̃ (j)x =



eTj
eT1
...

eTj−1
eT0
eTj+1
...

eTn−1


x =



eTj x

eT1 x
...

eTj−1x

eT0 x
eTj+1x

...
eTn−1x


=



χj
χ1
...

χj−1
χ0
χj+1
...

χn−1


.

Another way of stating this is that

P̃ (j) =


0 0 1 0
0 I(j−1)×(j−1) 0 0
1 0 0 0
0 0 0 I(n−j−1)×(n−j−1)

 ,

where Ik×k equals the k×k identity matrix. When applying P̃ (j) from the right to a matrix, it swaps
the first column and the column indexed with j. Notice that P̃ (j)T = P̃ (j) and P̃ (j) = P̃ (j)−1.

Remark 4.5.1.1 For a more detailed discussion of permutation matrices, you may want to consult
Week 7 of "Linear Algebra: Foundations to Frontiers" (LAFF) [27]. We also revisit this in Section 5.3
when discussing LU factorization with partial pivoting.

Here is an outline of the algorithm:

• Determine the index π1 such that the column of A indexed with π1 has the largest 2-norm
(is the longest).

• Permute A := AP̃ (π1), swapping the first column with the column that is longest.
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• Partition

A→
(
a1 A2

)
, Q→

(
q1 Q2

)
, R→

(
ρ11 rT12
0 R22

)
, p→

(
π1
p2

)

• Compute ρ11 := ‖a1‖2.

• q1 := a1/ρ11.

• Compute rT12 := qT1 A2.

• Update A2 := A2 − q1r
T
12.

This substracts the component of each column that is in the direction of q1.

• Continue the process with the updated matrix A2.

The complete algorithm, which overwrites A with Q, is given in Figure 4.5.1.2. Observe that
the elements on the diagonal of R will be positive and in non-increasing order because updating
A2 := A2 − q1r

T
12 inherently does not increase the length of the columns of A2. After all, the

component in the direction of q1 is being subtracted from each column of A2, leaving the component
orthogonal to q1.

[A,R, p] := RRQR_MGS_simple(A,R, p)

A→
(
AL AR

)
, R→

(
RTL RTR
RBL RBR

)
, p→

(
pT
pB

)
AL has 0 columns, RTL is 0× 0, pT has 0 rows

while n(AL) < n(A)(
AL AR

)
→
(
A0 a1 A2

)
,(

RTL RTR
RBL RBR

)
→

 R00 r01 R02
rT10 ρ11 rT12
R20 r21 R22

 ,( pT
pB

)
→

 p0
π1
p2


π1 = DetermineColumnIndex(

(
a1 A2

)
)(

a1 A2
)

:=
(
a1 A2

)
P̃ (π1)

ρ11 := ‖a1‖2
a1 := a1/ρ11
rT12 := aT1 A2
A2 := A2 − a1r

T
12(

AL AR
)
←
(
A0 a1 A2

)
,(

RTL RTR
RBL RBR

)
←

 R00 r01 R02
rT10 ρ11 rT12
R20 r21 R22

 ,( pT
pB

)
←

 p0
π1
p2


endwhile

Figure 4.5.1.2 Simple implementation of RRQR via MGS. Incorporating a stopping critera that
checks whether ρ11 is small would allow the algorithm to determine the effective rank of the input
matrix.

The problem with the algorithm in Figure 4.5.1.2 is that determining the index π1 requires
the 2-norm of all columns in AR to be computed, which costs O(m(n − j)) flops when AL has
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j columns (and hence AR has n − j columns). The following insight reduces this cost: Let A =

(
a0 a1 · · · an−1

)
, v =


ν0
ν1
...

νn−1

 =


‖a0‖22
‖a1‖22

...
‖an−1‖22

, qT q = 1 (here q is of the same size as the

columns of A), and r = AT q =


ρ0
ρ1
...

ρn−1

. Compute B := A−qrT with B =
(
b0 b1 · · · bn−1

)
.

Then 
‖b0‖22
‖b1‖22

...
‖bn−1‖22

 =


ν0 − ρ2

0
ν1 − ρ2

1
...

νn−1 − ρ2
n−1

 .
To verify this, notice that

ai = (ai − aTi qq) + aTi qq

and
(ai − aTi qq)T q = aTi q − aTi qqT q = aTi q − aTi q = 0.

This means that

‖ai‖22 = ‖(ai − aTi qq) + aTi qq‖22 = ‖ai − aTi qq‖22 + ‖aTi qq‖22 = ‖ai − ρiq‖22 + ‖ρiq‖22 = ‖bi‖22 + ρ2
i

so that
‖bi‖22 = ‖ai‖22 − ρ2

i = νi − ρ2
i .

Building on this insight, we make an important observation that greatly reduces the cost of
determining the column that is longest. Let us start by computing v as the vector such that the
ith entry in v equals the square of the length of the ith column of A. In other words, the ith entry
of v equals the dot product of the i column of A with itself. In the above outline for the MGS with
column pivoting, we can then also partition

v →
(
ν1
v2

)
.

The question becomes how v2 before the update A2 := A2−q1r
T
12 compares to v2 after that update.

The answer is that the ith entry of v2 must be updated by subtracting off the square of the ith
entry of rT12.

Let us introduce the functions v = ComputeWeights( A ) and v = UpdateWeights( v, r ) to
compute the described weight vector v and to update a weight vector v by subtracting from its
elements the squares of the corresponding entries of r. Also, the function DeterminePivot returns
the index of the largest in the vector, and swaps that entry with the first entry. An optimized
RRQR via MGS algorithm, RRQR-MGS, is now given in Figure 4.5.1.3. In that algorithm, A is
overwritten with Q.
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[A,R, p] := RRQR_MSG(A,R, p)
v := ComputeWeights(A)

A→
(
AL AR

)
, R→

(
RTL RTR
RBL RBR

)
, p→

(
pT
pB

)
, v →

(
vT
vB

)
AL has 0 columns, RTL is 0× 0, pT has 0 rows, vT has 0 rows

while n(AL) < n(A)(
AL AR

)
→
(
A0 a1 A2

)
,(

RTL RTR
RBL RBR

)
→

 R00 r01 R02
rT10 ρ11 rT12
R20 r21 R22

 ,
(
pT
pB

)
→

 p0
π1
p2

 ,( vT
vB

)
→

 v0
ν1
v2


[
(
ν1
v2

)
, π1] = DeterminePivot(

(
ν1
v2

)
)

(
A0 a1 A2

)
:=
(
A0 a1 A2

)( I 0
0P̃ (π1)T

)
ρ11 := ‖a1‖2
a1 := a1/ρ11
rT12 := qT1 A2
A2 := A2 − q1r

T
12

v2 := UpdateWeights(v2, r12)(
AL AR

)
←
(
A0 a1 A2

)
,(

RTL RTR
RBL RBR

)
←

 R00 r01 R02
rT10 ρ11 rT12
R20 r21 R22

 ,
(
pT
pB

)
←

 p0
π1
p2

 ,( vT
vB

)
←

 v0
ν1
v2


endwhile

Figure 4.5.1.3 RRQR via MGS, with optimization. Incorporating a stopping critera that checks
whether ρ11 is small would allow the algorithm to determine the effective rank of the input matrix.

Let us revisit the fact that the diagonal elements of R are positive and in nonincreasing order.
This upper triangular matrix is singular if a diagonal element equals zero (and hence all subsequent
diagonal elements equal zero). Hence, if ρ11 becomes small relative to prior diagonal elements, the
remaining columns of the (updated) AR are essentially zero vectors, and the original matrix can
be approximated with

A ≈ QL
(
RTL RTR

)
= . .

If QL has k columns, then this becomes a rank-k approximation.
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Remark 4.5.1.4 Notice that in updating the weight vector v, the accuracy of the entries may
progressively deteriorate due to catastrophic cancellation. Since these values are only used to
determine the order of the columns and, importantly, when they become very small the rank of the
matrix has revealed itself, this is in practice not a problem.

4.5.2 Rank Revealing Householder QR factorization
The unblocked QR factorization discussed in Section 3.3 can be supplemented with column pivoting,
yielding HQRP_unb_var1 in Figure 4.5.2.1. In that algorithm, we incorporate the idea that the
weights that are used to determine how to pivot can be updated at each step by using information
in the partial row rT12, which overwrites aT12, just like it was in Subsection 4.5.1.

[A, t, p] = HQRP_unb_var1(A)
v := ComputeWeights(A)

A→
(
ATL ATR
ABL ABR

)
, t→

(
tT
tB

)
, p→

(
pT
pB

)
, v →

(
vT
vB

)
ATL is 0× 0 and tT has 0 elements

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 ,( tT
tB

)
→

 t0
τ1
t2

 ,
(
pT
pB

)
→

 p0
π1
p2

 ,( vT
vB

)
→

 v0
ν1
v2


[
(
ν1
v2

)
, π1] = DeterminePivot(

(
ν1
v2

)
) a01 A02

α11 aT12
a21 A22

 :=

 a01 A02
α11 aT12
a21 A22

P (π1)T

[(
α11
a21

)
, τ1

]
:=
[(

ρ11
u21

)
, τ1

]
= Housev

(
α11
a21

)
wT12 := (aT12 + aH21A22)/τ1(
aT12
A22

)
:=
(

aT12 − wT12
A22 − a21w

T
12

)
v2 = UpdateWeight(v2, a12)
· · ·

endwhile

Figure 4.5.2.1 Rank Revealing Householder QR factorization algorithm.
Combining a blocked Householder QR factorization algorithm, as discussed in Subsubsec-

tion 3.4.1.3, with column pivoting is tricky, since half the computational cost is inherently in
computing the parts of R that are needed to update the weights and that stands in the way of
a true blocked algorithm (that casts most computation in terms of matrix-matrix multiplication).
The following papers are related to this:

• [34] Gregorio Quintana-Orti, Xioabai Sun, and Christof H. Bischof, A BLAS-3 version of the
QR factorization with column pivoting, SIAM Journal on Scientific Computing, 19, 1998.
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discusses how too cast approximately half the computation in terms of matrix-matrix multi-
plication.

• [26] Per-Gunnar Martinsson, Gregorio Quintana-Orti, Nathan Heavner, Robert van de Geijn,
Householder QR Factorization With Randomization for Column Pivoting (HQRRP), SIAM
Journal on Scientific Computing, Vol. 39, Issue 2, 2017.
shows how a randomized algorithm can be used to cast most computation in terms of matrix-
matrix multiplication.

4.6 Wrap Up

4.6.1 Additional homework
We start with some concrete problems from our undergraduate course titled "Linear Algebra: Foun-
dations to Frontiers" [27]. If you have trouble with these, we suggest you look at Chapter 11 of
that course.

Homework 4.6.1.1 Consider A =

 1 0
0 1
1 1

 and b =

 1
1
0

.
• Compute an orthonormal basis for C(A).

• Use the method of normal equations to compute the vector x̂ that minimizes minx ‖b−Ax‖2

• Compute the orthogonal projection of b onto C(A).

• Compute the QR factorization of matrix A.

• Use the QR factorization of matrix A to compute the vector x̂ that minimizes minx ‖b−Ax‖2
Homework 4.6.1.2 The vectors

q0 =
√

2
2

(
1
1

)
=
( √

2
2√
2

2

)
, q1 =

√
2

2

(
−1

1

)
=
(
−
√

2
2√
2

2

)
.

• TRUE/FALSE: These vectors are mutually orthonormal.

• Write the vector
(

4
2

)
as a linear combination of vectors q0 and q1.

4.6.2 Summary
The LLS problem can be states as: Given A ∈ Cm×n and b ∈ Cm find x̂ ∈ Cn such that

‖b−Ax̂‖2 = min
x∈Cn

‖b−Ax‖2.

Given A ∈ Cm×n,



WEEK 4. LINEAR LEAST SQUARES 176

• The column space, C(A), which is equal to the set of all vectors that are linear combinations
of the columns of A

{y | y = Ax}.

• The null space, N (A), which is equal to the set of all vectors that are mapped to the zero
vector by A

{x | Ax = 0}.

• The row space, R(A), which is equal to the set

{y | yH = xHA}.

Notice that R(A) = C(AH).

• The left null space, which is equal to the set of all vectors

{x | xHA = 0}.

Notice that this set is equal to N (AH).

• If Ax = b then there exist xr ∈ R(A) and x = xr + xn where xr ∈ R(A) and xn ∈ N (A).

These insights are summarized in the following picture, which also captures the orthogonality of
the spaces.
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If A has linearly independent columns, then the solution of LLS, x̂, equals the solution of the
normal equations

(AHA)x̂ = AHb.

as summarized in

The (left) pseudo inverse of A is given by A† = (AHA)−1AH so that the solution of LLS is given
by x̂ = A†b.

Definition 4.6.2.1 Condition number of matrix with linearly independent columns.
Let A ∈ Cm×n have linearly independent columns (and hence n ≤ m). Then its condition number
(with respect to the 2-norm) is defined by

κ2(A) = ‖A‖2‖A†‖2 = σ0
σn−1

.

♦
Assuming A has linearly independent columns, let b̂ = Ax̂ where b̂ is the projection of b onto

the column space of A (in other words, x̂ solves the LLS problem), cos(θ) = ‖b̂‖2/‖b‖2, and
b̂+ δ̂b = A(x̂+ δ̂x), where δ̂b equals the projection of δb onto the column space of A. Then

‖δ̂x‖2
‖x̂‖2

≤ 1
cos(θ)

σ0
σn−1

‖δb‖2
‖b‖2

captures the sensitivity of the LLS problem to changes in the right-hand side.

Theorem 4.6.2.2 Given A ∈ Cm×n, let A = ULΣTLV
H
L equal its Reduced SVD and A =(

UL UR
)( ΣTL 0

0 0

)(
VL VR

)H
its SVD. Then

• C(A) = C(UL),
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• N (A) = C(VR),

• R(A) = C(AH) = C(VL), and

• N (AH) = C(UR).
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If A has linearly independent columns and A = ULΣTLV
H
L is its Reduced SVD, then

x̂ = VLΣ−1
TLU

H
L b

solves LLS.
GivenA ∈ Cm×n, letA = ULΣTLV

H
L equal its Reduced SVD andA =

(
UL UR

)( ΣTL 0
0 0

)(
VL VR

)H
its SVD. Then

x̂ = VLΣTLU
H
L b+ VRzb,

is the general solution to LLS, where zb is any vector in Cn−r.

Theorem 4.6.2.3 Assume A ∈ Cm×n has linearly independent columns and let A = QR be its QR
factorization with orthonormal matrix Q ∈ Cm×n and upper triangular matrix R ∈ Cn×n. Then
the LLS problem

Find x̂ ∈ Cn such that ‖b−Ax̂‖2 = min
x∈Cn

‖b−Ax‖2

is solved by the unique solution of
Rx̂ = QHb.

Solving LLS via Gram-Schmidt QR factorization for A ∈ Cm×n:

• Compute QR factorization via (Classical or Modified) Gram-Schmidt: approximately 2mn2

flops.

• Compute y = QHb: approximately 2mn2 flops.
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• Solve Rx̂ = y: approximately n2 flops.

Solving LLS via Householder QR factorization for A ∈ Cm×n:

• Householder QR factorization: approximately 2mn2 − 2
3n

3 flops.

• Compute yT = QHbnn by applying Householder transformations: approximately 4mn− 2n2

flops.

• Solve RTLx̂ = yT : approximately n2 flops.



Part II

Solving Linear Systems
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Week 5

The LU and Cholesky Factorizations

5.1 Opening Remarks

5.1.1 Of Gaussian elimination and LU factorization

YouTube: https://www.youtube.com/watch?v=fszE2KNxTmo

Homework 5.1.1.1 Reduce the appended system

2 −1 1 1
−2 2 1 −1

4 −4 1 5

to upper triangular form, overwriting the zeroes that are introduced with the multipliers. [Solution]

YouTube: https://www.youtube.com/watch?v=Tt0OQikd-nI

182

https://www.youtube.com/watch?v=fszE2KNxTmo
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A = LU(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


a21 := a21/α11
A22 := A22 − a21a

T
12(

ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


endwhile

Figure 5.1.1.1 Algorithm that overwrites A with its LU factorization.

Homework 5.1.1.2 The execution of the LU factorization algorithm with

A =

 2 −1 1
−2 2 1

4 −4 1


in the video overwrites A with  2 −1 1

−1 1 2
2 −2 3

 .
Multiply the L and U stored in that matrix and compare the result with the original matrix, let’s
call it Â. [Solution]

5.1.2 Overview
• 5.1 Opening Remarks

◦ 5.1.1 Of Gaussian elimination and LU factorization
◦ 5.1.2 Overview
◦ 5.1.3 What you will learn

• 5.2 From Gaussian elimination to LU factorization

◦ 5.2.1 Gaussian elimination
◦ 5.2.2 LU factorization: The right-looking algorithm
◦ 5.2.3 Existence of the LU factorization
◦ 5.2.4 Gaussian elimination via Gauss transforms

• 5.3 LU factorization with (row) pivoting

◦ 5.3.1 Gaussian elimination with row exchanges
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◦ 5.3.2 Permutation matrices
◦ 5.3.3 LU factorization with partial pivoting
◦ 5.3.4 Solving A x = y via LU factorization with pivoting
◦ 5.3.5 Solving with a triangular matrix
◦ 5.3.6 LU factorization with complete pivoting
◦ 5.3.7 Improving accuracy via iterative refinement

• 5.4 Cholesky factorization

◦ 5.4.1 Hermitian Positive Definite matrices
◦ 5.4.2 The Cholesky Factorization Theorem
◦ 5.4.3 Cholesky factorization algorithm (right-looking variant)
◦ 5.4.4 Proof of the Cholesky Factorizaton Theorem
◦ 5.4.5 Cholesky factorization and solving LLS
◦ 5.4.6 Implementation with the classical BLAS

• 5.5 Enrichments

◦ 5.5.1 Other LU factorization algorithms

• 5.6 Wrap Up

◦ 5.6.1 Additional homework
◦ 5.6.2 Summary

5.1.3 What you will learn
This week is all about solving nonsingular linear systems via LU (with or without pivoting) and
Cholesky factorization. In practice, solving Ax = b is not accomplished by forming the inverse
explicitly and then computing x = A−1b. Instead, the matrix A is factored into the product of
triangular matrices and it is these triangular matrices that are employed to solve the system. This
requires fewer computations.

Upon completion of this week, you should be able to

• Link Gaussian elimination to LU factorization.

• View LU factorization in different ways: as Gaussian elimination, as the application of a
sequence of Gauss transforms, and the operation that computes L and U such that A = LU .

• State and prove necessary conditions for the existence of the LU factorization.

• Extend the ideas behind Gaussian elimination and LU factorization to include pivoting.

• Derive different algorithms for LU factorization and for solving the resulting triangular sys-
tems.

• Employ the LU factorization, with or without pivoting, to solve Ax = b.
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• Identify, prove, and apply properties of Hermitian Positive Definite matrices.

• State and prove conditions related to the existence of the Cholesky factorization.

• Derive Cholesky factorization algorithms.

• Analyze the cost of the different factorization algorithms and related algorithms for solving
triangular systems.

5.2 From Gaussian elimination to LU factorization

5.2.1 Gaussian elimination

YouTube: https://www.youtube.com/watch?v=UdN0W8Czj8c

Homework 5.2.1.1 Solve  2 −1 1
−4 0 1

4 0 −2


 χ0
χ1
χ2

 =

 −6
2
0

 .
[Answer] [Solution]

The exercise in Homework 5.2.1.1 motivates the following algorithm, which reduces the linear
system Ax = b stored in n×n matrix A and right-hand side vector b of size n to an upper triangular
system.

for j := 0, . . . , n− 1
for i := j + 1, . . . , n− 1
λi,j := αi,j/αj,j
αi,j := 0

for k = j + 1, . . . , n− 1
αi,k := αi,k − λi,jαj,k

endfor
βi := βi − λi,jβj

 subtract λi,j times row j from row k

endfor
endfor

This algorithm completes as long as no divide by zero is encountered.
Let us manipulate this a bit. First, we notice that we can first reduce the matrix to an upper

triangular matrix, and then update the right-hand side using the multipliers that were computed

https://www.youtube.com/watch?v=UdN0W8Czj8c
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along the way (if these are stored):

reduce A to upper triangular form
for j := 0, . . . , n− 1

for i := j + 1, . . . , n− 1
λi,j := αi,j/αj,j
αi,j := 0

for k = j + 1, . . . , n− 1
αi,k := αi,k − λi,jαj,k

endfor

 subtract λi,j times row j from row k

endfor
endfor

update b using multipliers (forward substitution)
for j := 0, . . . , n− 1

for i := j + 1, . . . , n− 1
βi := βi − λi,jβj

endfor
endfor

Ignoring the updating of the right-hand side (a process known as forward substitution), for each
iteration we can first compute the multipliers and then update the matrix:

for j := 0, . . . , n− 1
for i := j + 1, . . . , n− 1
λi,j := αi,j/αj,j
αi,j := 0

endfor

 compute multipliers

for i := j + 1, . . . , n− 1
for k = j + 1, . . . , n− 1
αi,k := αi,k − λi,jαj,k

endfor

 subtract λi,j times row j from row k

endfor
endfor

Since we know that αi,j is set to zero, we can use its location to store the multiplier:

for j := 0, . . . , n− 1
for i := j + 1, . . . , n− 1
αi,j := λi,j = αi,j/αj,j

endfor

 compute all multipliers

for i := j + 1, . . . , n− 1
for k = j + 1, . . . , n− 1
αi,k := αi,k − αi,jαj,k

endfor

 subtract λi,j times row j from row k

endfor
endfor
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Finally, we can cast the computation in terms of operations with vectors and submatrices:

‘

for j := 0, . . . , n− 1 αj+1,j
...

αn−1,j

 :=

 αj+1,j
...

αn−1,j

 /αj,j
 αj+1,j+1 · · · αj+1,n−1

...
...

αn−1,j+1 · · · αn−1,n−1

 :=

 αj+1,j+1 · · · αj+1,n−1
...

...
αn−1,j+1 · · · αn−1,n−1

−
 αj+1,j

...
αn−1,j

( αj,j+1 · · · αj,n−1
)

endfor

In Figure 5.2.1.1 this algorithm is presented with our FLAME notation.

A = GE(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


a21 := l21 = a21/α11
A22 := A22 − a21a

T
12(

ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


endwhile

Figure 5.2.1.1 Gaussian elimination algorithm that reduced a matrix A to upper triangular form,
storing the multipliers below the diagonal.

Homework 5.2.1.2 Apply the algorithm Figure 5.2.1.1 to the matrix 2 −1 1
−4 0 1

4 0 −2


and report the resulting matrix. Compare the contents of that matrix to the upper triangular
matrix computed in the solution of Homework 5.2.1.1. [Answer] [Solution]

Homework 5.2.1.3 Applying Figure 5.2.1.1 to the matrix

A =

 2 −1 1
−4 0 1

4 0 −2


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yielded  2 −1 1
−2 −2 3

2 −1 −1

 .
This can be thought of as an array that stores the unit lower triangular matrix L below the diagonal
(with implicit ones on its diagonal) and upper triangular matrix U on and above its diagonal:

L =

 1 0 0
−2 1 0

2 −1 1

 and U =

 2 −1 1
0 −2 3
0 0 −1


Compute B = LU and compare it to A. [Answer] [Solution]

5.2.2 LU factorization: The right-looking algorithm

YouTube: https://www.youtube.com/watch?v=GfpB_RU8pIo
In the launch of this week, we mentioned an algorithm that computes the LU factorization of

a given matrix A so that
A = LU,

where L is a unit lower triangular matrix and U is an upper triangular matrix. We now derive that
algorithm, which is often called the right-looking algorithm for computing the LU factorization.

Partition A, L, and U as follows:

A→
(
α11 aT12
a21 A22

)
, L→

(
1 0
l21 L22

)
, and U →

(
υ11 uT12
0 U22

)
.

Then A = LU means that(
α11 aT12
a21 A22

)
=
(

1 0
l21 L22

)(
υ11 uT12
0 U22

)
=
(

υ11 uT12
l21υ11 l21u

T
12 + L22U22

)
.

Hence
α11 = υ11 aT12 = uT12
a21 = υ11l21 A22 = l21u

T
12 + L22U22

or, equivalently,
α11 = υ11 aT12 = uT12
a21 = υ11l21 A22 − l21u

T
12 = L22U22.

If we overwrite the upper triangular part of A with U and the strictly lower triangular part of A
with the strictly lower triangular part of L (since we know that its diagonal consists of ones), we
deduce that we must perform the computations

https://www.youtube.com/watch?v=GfpB_RU8pIo
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• a21 := l21 = a21/α11.

• A22 := A22 − l21a
T
12 = A22 − a21a

T
12.

• Continue by computing the LU factorization of the updated A22.

The resulting algorithm is given in Figure 5.2.2.1.

A = LU-right-looking(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


a21 := a21/α11
A22 := A22 − a21a

T
12(

ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


endwhile

Figure 5.2.2.1 Right-looking LU factorization algorithm.
Before we discuss the cost of this algorithm, let us discuss a trick that is often used in the

analysis of the cost of algorithms in linear algebra. We can approximate sums with integrals:

n−1∑
k=0

kp ≈
∫ n

0
xpdx = 1

p+ 1 xp+1
∣∣∣n
0

= 1
p+ 1n

p+1.

Homework 5.2.2.1 Give the approximate cost incurred by the algorithm in Figure 5.2.2.1 when
applied to an n× n matrix. [Answer] [Solution]

Homework 5.2.2.2 Give the approximate cost incurred by the algorithm in Figure 5.2.2.1 when
applied to an m× n matrix. [Answer] [Solution]

Remark 5.2.2.2 In a practical application of LU factorization, it is uncommon to factor a non-
square matrix. However, high-performance implementations of the LU factorization that use
"blocked" algorithms perform a factorization of a rectangular submatrix of A, which is why we
generalize beyond the square case.
Homework 5.2.2.3 It is a good idea to perform a "git pull" in the Assignments directory to update
with the latest files before you start new programming assignments.

Implement the algorithm given in Figure 5.2.2.1 as

function [ A_out ] = LU_right_looking( A )

by completing the code in Assignments/Week05/matlab/LU_right_looking.m. Input is an m×n matrix
A. Output is the matrix A that has been overwritten by the LU factorization. You may want to
use Assignments/Week05/matlab/test_LU_right_looking.m to check your implementation. [Solution]

Assignments/Week05/matlab/LU_right_looking.m
Assignments/Week05/matlab/test_LU_right_looking.m
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5.2.3 Existence of the LU factorization

YouTube: https://www.youtube.com/watch?v=Aaa9n97N1qc
Now that we have an algorithm for computing the LU factorization, it is time to talk about when

this LU factorization exists (in other words: when we can guarantee that the algorithm completes).
We would like to talk about the existence of the LU factorization for the more general case

where A is an m× n matrix, with m ≥ n. What does this mean?

Definition 5.2.3.1 Given a matrix A ∈ Cm×n withm ≥ n, its LU factorization is given by A = LU
where L ∈ Cm×n is unit lower trapezoidal and U ∈ Cn×n is upper triangular with nonzeroes on its
diagonal. ♦

The first question we will ask is when the LU factorization exists. For this, we need another
definition.
Definition 5.2.3.2 Principal leading submatrix. For k ≤ n, the k×k principal leading subma-

trix of a matrix A is defined to be the square matrix ATL ∈ Ck×k such that A =
(
ATL ATR
ABL ABR

)
.

♦
This definition allows us to state necessary and sufficient conditions for when a matrix with n

linearly independent columns has an LU factorization:

Lemma 5.2.3.3 Let L ∈ Cn×n be a unit lower triangular matrix and U ∈ Cn×n be an upper
triangular matrix. Then A = LU is nonsingular if and only if U has no zeroes on its diagonal.
Homework 5.2.3.1 Prove Lemma 5.2.3.3. [Hint] [Solution]

Theorem 5.2.3.4 Existence of the LU factorization. Let A ∈ Cm×n and m ≥ n have linearly
independent columns. Then A has a (unique) LU factorization if and only if all its principal leading
submatrices are nonsingular.

YouTube: https://www.youtube.com/watch?v=SPlE5xJF9hY

Proof.
• (⇒): Let nonsingular A have a (unique) LU factorization. We will show that its principal

leading submatrices are nonsingular.

https://www.youtube.com/watch?v=Aaa9n97N1qc
https://www.youtube.com/watch?v=SPlE5xJF9hY
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Let (
ATL ATR
ABL ABR

)
︸ ︷︷ ︸

A

=
(
LTL 0
LBL LBR

)
︸ ︷︷ ︸

L

(
UTL UTR

0 UBR

)
︸ ︷︷ ︸

U

be the LU factorization of A, where ATL, LTL, UTL ∈ Ck×k. By the assumption that LU is
the LU factorization of A, we know that U cannot have a zero on the diagonal and hence is
nonsingular. Now, since(

ATL ATR
ABL ABR

)
︸ ︷︷ ︸

A

=
(
LTL 0
LBL LBR

)
︸ ︷︷ ︸

L

(
UTL UTR

0 UBR

)
︸ ︷︷ ︸

U

=
(
LTLUTL LTLUTR
LBLUTL LBLUTR + LBLUBR

)
,

the k× k principal leading submatrix ATL equals ATL = LTLUTL, which is nonsingular since
LTL has a unit diagonal and UTL has no zeroes on the diagonal. Since k was chosen arbitrarily,
this means that all principal leading submatrices are nonsingular.

• (⇐): We will do a proof by induction on n.

◦ Base Case: n = 1. Then A has the form A =
(
α11
a21

)
where α11 is a scalar. Since the

principal leading submatrices are nonsingular α11 6= 0. Hence A =
(

1
a21/α11

)
︸ ︷︷ ︸

L

α11︸︷︷︸
U

is the LU factorization of A. This LU factorization is unique because the first element
of L must be 1.
◦ Inductive Step: Assume the result is true for all matrices with n = k. Show it is true
for matrices with n = k + 1.
Let A of size n = k + 1 have nonsingular principal leading submatrices. Now, if an LU
factorization of A exists, A = LU , then it would have to form A00 a01

aT10 α11
A20 a21


︸ ︷︷ ︸

A

=

 L00 0
lT10 1
L20 l21


︸ ︷︷ ︸

L

(
U00 u01
0 υ11

)
︸ ︷︷ ︸

U

. (5.2.1)

If we can show that the different parts of L and U exist, are unique, and υ11 6= 0, we are
done (since then U is nonsingular). (5.2.1) can be rewritten as A00

aT10
A20

 =

 L00
lT10
L20

U00 and

 a01
α11
a21

 =

 L00u01
lT10u01 + υ11

L20u01 + l21υ11

 ,
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or, equivalently, 
L00u01 = a01

υ11 = α11 − lT10u01
l21 = (a21 − L20u01)/υ11

Now, by the Inductive Hypothesis L00, lT10, and L20 exist and are unique. So the question
is whether u01, υ11, and l21 exist and are unique:
� u01 exists and is unique. Since L00 is nonsingular (it has ones on its diagonal)
L00u01 = a01 has a solution that is unique.

� υ11 exists, is unique, and is nonzero. Since lT10 and u01 exist and are unique, υ11 =
α11 − lT10u01 exists and is unique. It is also nonzero since the principal leading
submatrix of A given by(

A00 a01
aT10 α11

)
=
(
L00 0
lT10 1

)(
U00 u01
0 υ11

)
,

is nonsingular by assumption and therefore υ11 must be nonzero.
� l21 exists and is unique. Since υ11 exists, is unique, and is nonzero,

l21 = (a21 − L20a01)/υ11

exists and is uniquely determined.
Thus the m× (k + 1) matrix A has a unique LU factorization.
◦ By the Principal of Mathematical Induction the result holds.

�
The formulas in the inductive step of the proof of Theorem 5.2.3.4 suggest an alternative algo-

rithm for computing the LU factorization of a m×n matrix A with m ≥ n, given in Figure 5.2.3.5.
This algorithm is often referred to as the (unblocked) left-looking algorithm.
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A = LU-left-looking(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


Solve L00u01 = a01 overwriting a01 with u01
α11 := υ11 = α11 − aT10a01
a21 := a21 −A20a01
a21 := l21 = a21/α11(
ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


endwhile

Figure 5.2.3.5 Left-looking LU factorization algorithm. L00 is the unit lower triangular matrix
stored in the strictly lower triangular part of A00 (with the diagonal implicitly stored).

Homework 5.2.3.2 Show that if the left-looking algorithm in Figure 5.2.3.5 is applied to an
m × n matrix, with m ≥ n, the cost is approximately mn2 − 1

3n
3 flops (just like the right-looking

algorithm). [Solution]

Remark 5.2.3.6 A careful analysis would show that the left- and right-looking algorithms perform
the exact same operations with the same elements of A, except in a different order. Thus, it is no
surprise that the costs of these algorithms are the same.

Ponder This 5.2.3.3 If A is m × m (square!), then yet another algorithm can be derived by
partitioning A, L, and U so that

A =
(
A00 a01
aT10 α11

)
, L =

(
L00 0
lT10 1

)
, U =

(
U00 u01
0 υ11

)
.

Assume that L00 and U00 have already been computed in previous iterations, and determine how
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to compute u01, lT10, and υ11 in the current iteration. Then fill in the algorithm:

A = LU-bordered(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22



(
ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


endwhile

This algorithm is often called the bordered LU factorization algorithm.
Next, modify the proof of Theorem 5.2.3.4 to show the existence of the LU factorization when

A is square and has nonsingular leading principal submatrices.
Finally, show that this bordered algorithm also requires approximately 2m3/3 flops.

Homework 5.2.3.4 Implement the algorithm given in Figure 5.2.3.5 as
function [ A_out ] = LU_left_looking( A )

by completing the code in Assignments/Week05/matlab/LU_left_looking.m. Input is an m× n matrix
A. Output is the matrix A that has been overwritten by the LU factorization. You may want to
use Assignments/Week05/matlab/test_LU_left_looking.m to check your implementation. [Solution]

5.2.4 Gaussian elimination via Gauss transforms

YouTube: https://www.youtube.com/watch?v=YDtynD4iAVM

Definition 5.2.4.1 A matrix Lk of the form

Lk =

 Ik 0 0
0 1 0
0 l21 I

 ,

Assignments/Week05/matlab/LU_left_looking.m
Assignments/Week05/matlab/test_LU_left_looking.m
https://www.youtube.com/watch?v=YDtynD4iAVM
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where Ik is the k × k identity matrix and I is an identity matrix "of appropriate size" is called a
Gauss transform. ♦

Gauss transforms, when applied to a matrix, take multiples of the row indexed with k and add
these multiples to other rows. In our use of Gauss transforms to explain the LU factorization, we
subtract instead:
Example 5.2.4.2 Evaluate 

1 0 0 0
0 1 0 0
0 −λ21 1 0
0 −λ31 0 1



ãT0
ãT1
ãT2
ãT3

 =

Solution.
1 0 0 0
0 1 0 0
0 −λ21 1 0
0 −λ31 0 1



ãT0
ãT1
ãT2
ãT3

 =


ãT0
ãT1(

ãT2
ãT3

)
−
(
λ21
λ31

)
ãT1

 =


ãT0
ãT1

ãT2 − λ21ã
T
1

ãT3 − λ31ã
T
1

 .
�

Notice the similarity with what one does in Gaussian elimination: take multiples of one row
and subtracting these from other rows.

Homework 5.2.4.1 Evaluate Ik 0 0
0 1 0
0 −l21 I


 A00 a01 A02

0 α11 aT12
0 a21 A22


where Ik is the k × k identity matrix and A0 has k rows. If we compute A00 a01 A02

0 α11 aT12
0 â21 Â22

 :=

 Ik 0 0
0 1 0
0 −l21 I


 A00 a01 A02

0 α11 aT12
0 a21 A22


how should l21 be chosen if we want â21 to be a zero vector? [Solution]

Hopefully you notice the parallels between the computation in the last homework, and the
algorithm in Figure 5.2.1.1.

Now, assume that the right-looking LU factorization has proceeded to where A contains A00 a01 A02
0 α11 aT12
0 a21 A22

 ,
where A00 is upper triangular (recall: it is being overwritten by U !). What we would like to do is
eliminate the elements in a21 by taking multiples of the "current row"’

(
α11 aT12

)
and subtract

these from the rest of the rows:
(
a21 A22

)
in order to introduce zeroes below α11. The vehicle

is an appropriately chosen Gauss transform, inspired by Homework 5.2.4.1. We must determine l21
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so that  I 0 0
0 1 0
0 −l21 I


 A00 a01 A02

0 α11 aT12
0 a21 A22

 =

 A00 a01 A02
0 α11 aT12
0 0 A22 − l21a

T
12

 .
As we saw in Homework 5.2.4.1, this means we must pick l21 = a21/α11. The resulting algorithm is
summarized in Figure 5.2.4.3. Notice that this algorithm is, once again, identical to the algorithm
in Figure 5.2.1.1 (except that it does not overwrite the lower triangular matrix).

A = GE-via-Gauss-transforms(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


l21 := a21/α11 A00 a01 A02

0 α11 aT12
0 a21 A22


:=

 I 0 0
0 1 0
0 −l21 I


 A00 a01 A02

0 α11 aT12
0 a21 A22


=

 A00 a01 A02
0 α11 aT12
0 0 A22 − l21a

T
12





a21 := 0
A22 := A22 − l21a

T
12

(
ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


endwhile

Figure 5.2.4.3 Gaussian elimination, formulated as a sequence of applications of Gauss transforms.

Homework 5.2.4.2 Show that Ik 0 0
0 1 0
0 −l21 I


−1

=

 Ik 0 0
0 1 0
0 l21 I


where Ik denotes the k × k identity matrix. [Hint] [Solution]

Starting with an m×m matrix A, the algorithm computes a sequence of m Gauss transforms
L0, . . . , Lm−1, each of the form

Lk =

 Ik 0 0
0 1 0
0 −l21 I

 , (5.2.2)
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such that Lm−1Lm−2 · · ·L1L0A = U . Equivalently, A = L−1
0 L−1

1 · · ·L
−1
m−2L

−1
m−1U , where

L−1
k =

 Ik 0 0
0 1 0
0 l21 I

 .
It is easy to show that the product of unit lower triangular matrices is itself unit lower triangular.
Hence

L = L−1
0 L−1

1 · · ·L
−1
n−2L

−1
n−1

is unit lower triangular. However, it turns out that this L is particularly easy to compute, as the
following homework suggests.

Homework 5.2.4.3 Let

L̃k−1 = L−1
0 L−1

1 . . . L−1
k−1 =

 L00 0 0
lT10 1 0
L20 0 I

 and L−1
k =

 Ik 0 0
0 1 0
0 l21 I

 ,
where L00 is a k × k unit lower triangular matrix. Show that

L̃k = L̃k−1L
−1
k =

 L00 0 0
lT10 1 0
L20 l21 I

 .
[Solution]

What this exercise shows is that L = L−1
0 L−1

1 · · ·L
−1
n−2L

−1
n−1 is the triangular matrix that is

created by simply placing the computed vectors l21 below the diagonal of a unit lower triangular
matrix. This insight explains the "magic" observed in Homework 5.2.1.3. We conclude that the
algorithm in Figure 5.2.1.1 overwrites n × n matrix A with unit lower triangular matrix L and
upper triangular matrix U such that A = LU . This is known as the LU factorization or LU
decomposition of A.

Ponder This 5.2.4.4 Let

Lk =

 Ik×k 0 0
0 1 0
0 −l21 I

 .
Show that

κ2(Lk) ≥ ‖l21‖22.

What does this mean about how error in Amay be amplified if the pivot (the α11 by which entries
in a21 are divided to compute l21) encountered in the right-looking LU factorization algorithm is
small in magnitude relative to the elements below it? How can we chose which row to swap so as
to minimize ‖l21‖2? [Hint]

5.3 LU factorization with (row) pivoting

5.3.1 Gaussian elimination with row exchanges
!
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YouTube: https://www.youtube.com/watch?v=t6cK75IE6d8

Homework 5.3.1.1 Perform Gaussian elimination as explained in Subsection 5.2.1 to solve(
0 1
1 0

)(
χ0
χ1

)
=
(

2
1

)

[Solution]
The point of the exercise: Gaussian elemination and, equivalently, LU factorization as we

have discussed so far can fail if a "divide by zero" is encountered. The element on the diagonal
used to compute the multipliers in a current iteration of the outer-most loop is called the pivot
(element). Thus, if a zero pivot is encountered, the algorithms fail. Even if the pivot is merely small
(in magnitude), as we will discuss in a future week, roundoff error encountered when performing
floating point operations will likely make the computation "numerically unstable," which is the
topic of next week’s material.

The simple observation is that the rows of the matrix (and corresponding right-hand side ele-
ment) correspond to linear equations that must be simultaneously solved. Reordering these does
not change the solution. Reordering in advance so that no zero pivot is encountered is problematic,
since pivots are generally updated by prior computation. However, when a zero pivot is encoun-
tered, the row in which it appears can simply be swapped with another row so that the pivot is
replaced with a nonzero element (which then becomes the pivot). In exact arithmetic, it suffices to
ensure that the pivot is nonzero after swapping. As mentioned, in the presence of roundoff error,
any element that is small in magnitude can create problems. For this reason, we will swap rows so
that the element with the largest magnitude (among the elements in the "current" column below
the diagonal) becomes the pivot. This is known as partial pivoting or row pivoting.

Homework 5.3.1.2 When performing Gaussian elimination as explained in Subsection 5.2.1 to
solve (

10−k 1
1 0

)(
χ0
χ1

)
=
(

1
1

)
,

set
1− 10k

to
−10k

(since we will assume k to be large and hence 1 is very small to relative to 10k). With this
modification (which simulates roundoff error that may be encountered when performing floating
point computation), what is the answer?

https://www.youtube.com/watch?v=t6cK75IE6d8
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Next, solve (
1 0

10−k 1

)(
χ0
χ1

)
=
(

1
1

)
.

What do you observe? [Solution]

5.3.2 Permutation matrices

YouTube: https://www.youtube.com/watch?v=4lRnLbvrdtg
Recall that we already discussed permutation in Subsection 4.4.4 in the setting of column

pivoting when computing the QR factorization.

Definition 5.3.2.1 Given

p =

 π0
...

πn−1

 ,
where {π0, π1, . . . , πn−1} is a permutation (rearrangement) of the integers {0, 1, . . . , n−1}, we define
the permutation matrix P (p) by

P (p) =


eTπ0...
eTπn−1

 .
♦

Homework 5.3.2.1 Let

p =

 π0
...

πn−1

 and x =

 χ0
...

χn−1

 .
Evaluate P (p)x. [Solution]

The last homework shows that applying P (p) to a vector x rearranges the elements of that
vector according to the permutation indicated by the vector p.

Homework 5.3.2.2 Let

p =

 π0
...

πn−1

 and A =

 ãT0
...

ãTn−1

 .
Evaluate P (p)A. [Solution]

The last homework shows that applying P (p) to a matrix A rearranges the rows of that matrix
according to the permutation indicated by the vector p.

https://www.youtube.com/watch?v=4lRnLbvrdtg
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Homework 5.3.2.3 Let

p =

 π0
...

πn−1

 and A =
(
a0 · · · an−1

)
.

Evaluate AP (p)T . [Solution]
The last homework shows that applying P (p)T from the right to a matrix A rearranges the

columns of that matrix according to the permutation indicated by the vector p.

Homework 5.3.2.4 Evaluate P (p)P (p)T . [Answer] [Solution]

YouTube: https://www.youtube.com/watch?v=1qvSlln65Ws
We will see that when discussing the LU factorization with partial pivoting, a permutation

matrix that swaps the first element of a vector with the π-th element of that vector is a fundamental
tool.
Definition 5.3.2.2 Elementary pivot matrix. Given π ∈ {0, . . . , n− 1} define the elementary
pivot matrix

P̃ (π) =



eTπ
eT1
...

eTπ−1
eT0
eTπ+1
...

eTn−1


or, equivalently,

P̃ (π) =



In if π = 0
0 0 1 0
0 Iπ−1 0 0
1 0 0 0
0 0 0 In−π−1

 otherwise,

where n is the size of the permutation matrix. ♦

When P̃ (π) is applied to a vector, it swaps the top element with the element indexed with π.
When it is applied to a matrix, it swaps the top row with the row indexed with π. The size of
matrix P̃ (π) is determined by the size of the vector or the row size of the matrix to which it is
applied.

In discussing LU factorization with pivoting, we will use elementary pivot matrices in a very

https://www.youtube.com/watch?v=1qvSlln65Ws
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specific way, which necessitates the definition of how a sequence of such pivots are applied. Let p
be a vector of integers satisfying the conditions

p =

 π0
...

πk−1

 , where 1 ≤ k ≤ n and 0 ≤ πi < n− i, (5.3.1)

then P̃ (p) will denote the sequence of pivots

P̃ (p) =
(
Ik−1 0

0 P̃ (πk−1)

)(
Ik−2 0

0 P̃ (πk−2)

)
· · ·
(

1 0
0 P̃ (π1)

)
P̃ (π0).

(Here P̃ (·) is always an elementary pivot matrix "of appropriate size.") What this exactly does is
best illustrated through an example:

Example 5.3.2.3 Let

p =

 2
1
1

 and A =


0.0 0.1 0.2
1.0 1.1 1.2
2.0 2.1 2.2
3.0 3.1 3.2

 .

Evaluate P̃ (p)A.
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Solution.

P̃ (p)A
= < instantiate >

P̃ (

 2
1
1

)


0.0 0.1 0.2
1.0 1.1 1.2
2.0 2.1 2.2
3.0 3.1 3.2


= < definition of P̃ (·) > 1 0

0 P̃ (
(

1
1

)
)

 P̃ (2)


0.0 0.1 0.2
1.0 1.1 1.2
2.0 2.1 2.2
3.0 3.1 3.2


= < swap first row with row indexed with 2 > 1 0

0 P̃ (
(

1
1

)
)




2.0 2.1 2.2
1.0 1.1 1.2
0.0 0.1 0.2
3.0 3.1 3.2


= < partitioned matrix-matrix multiplication >

(
2.0 2.1 2.2

)
P̃ (
(

1
1

)
)

 1.0 1.1 1.2
0.0 0.1 0.2
3.0 3.1 3.2




= < swap current first row with row indexed with 1 relative to that row >
(

2.0 2.1 2.2
0.0 0.1 0.2

)

P̃ (
(

1
)
)
(

1.0 1.1 1.2
3.0 3.1 3.2

)


= < swap current first row with row indexed with 1 relative to that row >
 2.0 2.1 2.2

0.0 0.1 0.2
3.0 3.1 3.2

(
1.0 1.1 1.2

)


=
2.0 2.1 2.2
0.0 0.1 0.2
3.0 3.1 3.2
1.0 1.1 1.2


�

The relation between P̃ (·) and P (·) is tricky to specify:

P̃ (


π0
π1
...

πk−1

) = P (
(
Ik−1 0

0 P̃ (πk−1)

)
· · ·
(

1 0
0 P̃ (π1)

)
P̃ (π0)


0
1
...

k − 1

).
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5.3.3 LU factorization with partial pivoting

YouTube: https://www.youtube.com/watch?v=QSnoqrsQNag
Having introduced our notation for permutation matrices, we can now define the LU factoriza-

tion with partial pivoting: Given an m× n matrix A, we wish to compute

• vector p of n integers that indicates how rows are pivoting as the algorithm proceeds,

• a unit lower trapezoidal matrix L, and

• an upper triangular matrix U

so that P̃ (p)A = LU . We represent this operation by

[A, p] := LUpivA,

where upon completion A has been overwritten by {L\U}, which indicates that U overwrites the
upper triangular part of A and L is stored in the strictly lower triangular part of A.

Let us start with revisiting the derivation of the right-looking LU factorization in Subsec-
tion 5.2.2. The first step is to find a first permutation matrix P̃ (π1) such that the element on the
diagonal in the first column is maximal in value. (Mathematically, any nonzero value works. We
will see that ensuring that the multiplier is less than one in magnitude reduces the potential for
accumulation of error.) For this, we will introduce the function

maxi(x)

which, given a vector x, returns the index of the element in x with maximal magnitude (absolute
value). The algorithm then proceeds as follows:

• Partition A, L as follows:

A→
(
α11 aT12
a21 A22

)
, and L→

(
1 0
l21 L22

)

• Compute π1 = maxi
(
α11
a21

)
.

• Permute the rows:
(
α11 aT12
a21 A22

)
:= P̃ (π1)

(
α11 aT12
a21 A22

)
.

• Compute l21 := a21/α11.

https://www.youtube.com/watch?v=QSnoqrsQNag
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• Update A22 := A22 − l21a
T
12.

This completes the introduction of zeroes below the diagonal of the first column.
Now, more generally, assume that the computation has proceeded to the point where matrix A

has been overwritten by  A00 a01 A02
0 α11 aT12
0 a21 A22


where A00 is upper triangular. If no pivoting was added one would compute l21 := a21/α11 followed
by the update A00 a01 A02

0 α11 aT12
0 a21 A22

 :=

 I 0 0
0 1 0
0 −l21 I


 A00 a01 A02

0 α11 aT12
0 a21 A22

 =

 A00 a01 A02
0 α11 aT12
0 0 A22 − l21a

T
12

 .
Now, instead one performs the steps

• Compute

π1 := maxi
(
α11
a21

)
.

• Permute the rows: A00 a01 A02
0 α11 aT12
0 a21 A22

 :=
(
I 0
0 P̃ (π1)

) A00 a01 A02
0 α11 aT12
0 a21 A22


• Update

l21 := a21/α11.

• Update  A00 a01 A02
0 α11 aT12
0 a21 A22

 :=

 I 0 0
0 1 0
0 −l21 I


 A00 a01 A02

0 α11 aT12
0 a21 A22


=

 A00 a01 A02
0 α11 aT12
0 0 A22 − l21a

T
12

 .
This algorithm is summarized in Figure 5.3.3.1. In that algorithm, the lower triangular matrix L
is accumulated below the diagonal.
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[A, p] = LUpiv-right-looking(A)

A→
(
ATL ATR
ABL ABR

)
, p→

(
pT
pB

)
ATL is 0× 0, pT has 0 elements

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 ,( pT
pB

)
→

 p0
π1
p2


π1 := maxi

(
α11
a21

)
 A00 a01 A02

aT10 α11 aT12
A20 a21 A22

 :=
(
I 0
0 P (π1)

) A00 a01 A02
aT10 α11 aT12
A20 a21 A22


a21 := a21/α11
A22 := A22 − a21a

T
12(

ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 ,( pT
pB

)
←

 p0
π1
p2


endwhile

Figure 5.3.3.1 Right-looking LU factorization algorithm with partial pivoting.

YouTube: https://www.youtube.com/watch?v=n-Kl62HrYhM
What this algorithm computes is a sequence of Gauss transforms L0, . . . , Ln−1 and permutations

P0, . . . , Pn−1 such that
Ln−1Pn−1 · · ·L0P0A = U

or, equivalently,
A = P T0 L

−1
0 · · ·P

T
n−1L

−1
n−1U.

Actually, since Pk =
(
Ik×k 0

0 P̃ (π)

)
for some π , we know that P Tk = Pk and hence

A = P0L
−1
0 · · ·Pn−1L

−1
n−1U.

What we will finally show is that there are Gauss transforms L?0, . . . L?n−1 such that

A = P0 · · ·Pn−1 L?0 · · ·L?n−1︸ ︷︷ ︸
L

U

https://www.youtube.com/watch?v=n-Kl62HrYhM
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or, equivalently,
P̃ (p)A = Pn−1 · · ·P0A = L?0 · · ·L?n−1︸ ︷︷ ︸

L

U,

which is what we set out to compute.
Here is the insight. If only we know how to order the rows of A and right-hand side b correctly,

then we would not have to pivot. But we only know how to pivot as the computation unfolds.
Recall that the multipliers can overwrite the elements they zero in Gaussian elimination and do so
when we formulate it as an LU factorization. By not only pivoting the elements of(

α11 aT12
a21 A22

)

but also all of (
aT10 α11 aT12
A20 a21 A22

)
,

we are moving the computed multipliers with the rows that are being swapped. It is for this reason
that we end up computing the LU factorization of the permuted matrix: P̃ (p)A.

Homework 5.3.3.1 Implement the algorithm given in Figure 5.3.3.1 as
function [ A_out ] = LUpiv_right_looking( A )

by completing the code in Assignments/Week05/matlab/LUpiv_right_looking.m. Input is an m × n
matrix A. Output is the matrix A that has been overwritten by the LU factorization and pivot
vector p. You may want to use Assignments/Week05/matlab/test_LUpiv_right_looking.m to check
your implementation.

The following utility functions may come in handy:

• Assignments/Week05/matlab/maxi.m

• Assignments/Week05/matlab/Swap.m

which we hope are self explanatory. [Solution]

5.3.4 Solving A x = y via LU factorization with pivoting

YouTube: https://www.youtube.com/watch?v=kqj3n1EUCkw
Given nonsingular matrix A ∈ Cm×n, the above discussions have yielded an algorithm for

computing permutation matrix P , unit lower triangular matrix L and upper triangular matrix U
such that PA = LU . We now discuss how these can be used to solve the system of linear equations
Ax = y.

Assignments/Week05/matlab/LUpiv_right_looking.m
Assignments/Week05/matlab/test_LUpiv_right_looking.m
Assignments/Week05/matlab/maxi.m
Assignments/Week05/matlab/Swap.m
https://www.youtube.com/watch?v=kqj3n1EUCkw
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Starting with
Ax = b

where nonsingular matrix A is n× n (and hence square),

• Overwrite A with its LU factorization, accumulating the pivot information in vector p:

[A, p] := LUpiv(A).

A now contains L and U and P̃ (p)A = LU .

• We notice that Ax = b is equivalent to P̃ (p)Ax = P̃ (p)b. Thus, we compute y := P̃ (p)b.
Usually, y overwrites b.

• Next, we recognize that P̃ (p)Ax = y is equivalent to L (Ux)︸ ︷︷ ︸
z

= y. Hence, we can compute

z by solving the unit lower triangular system

Lz = y

and next compute x by solving the upper triangular system

Ux = z.

5.3.5 Solving with a triangular matrix
We are left to discuss how to solve Lz = y and Ux = z.

5.3.5.1 Algorithmic Variant 1

YouTube: https://www.youtube.com/watch?v=qc_4NsNp3q0
Consider Lz = y where L is unit lower triangular. Partition

L→
(

1 0
l21 L22

)
, z →

(
ζ1
z2

)
and y →

(
ψ1
y2

)
.

Then (
1 0
l21 L22

)
︸ ︷︷ ︸

L

(
ζ1
z2

)
︸ ︷︷ ︸

z

=
(
ψ1
y2

)
︸ ︷︷ ︸

y

.

https://www.youtube.com/watch?v=qc_4NsNp3q0
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Multiplying out the left-hand side yields(
ζ1

ζ1l21 + L22z2

)
=
(
ψ1
y2

)

and the equalities
ζ1 = ψ1

ζ1l21 + L22z2 = y2,

which can be rearranged as
ζ1 = ψ1

L22z2 = y2 − ζ1l21.

We conclude that in the current iteration

• ψ1 needs not be updated.

• y2 := y2 − ψ1l21

So that in future iterations L22z2 = y2 (updated!) will be solved, updating z2.
These insights justify the algorithm in Figure 5.3.5.1, which overwrites y with the solution to

Lz = y.

Solve Lz = y, overwriting y with z (Variant 1)

L→
(
LTL LTR
LBL LBR

)
, y →

(
yT
yB

)
LTL is 0× 0 and yT has 0 elements

while n(LTL) < n(L)(
LTL LTR
LBL LBR

)
→

 L00 l01 L02
lT10 λ11 lT12
L20 l21 L22

 ,( yT
yB

)
→

 y0
ψ1
y2


y2 := y2 − ψ1l21(
LTL LTR
LBL LBR

)
←

 L00 l01 L02
lT10 λ11 lT12
L20 l21 L22

 ,( yT
yB

)
←

 y0
ψ1
y2


endwhile

Figure 5.3.5.1 Lower triangular solve (with unit lower triangular matrix), Variant 1

Homework 5.3.5.1 Derive a similar algorithm for solving Ux = z. Update the below skeleton
algorithm with the result. (Don’t forget to put in the lines that indicate how you "partition and
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repartition" through the matrix.)

Solve Ux = z, overwriting z with x (Variant 1)

U →
(
UTL UTR
UBL UBR

)
, z →

(
zT
zB

)
UBR is 0× 0 and zB has 0 elements

while n(UBR) < n(U)(
UTL UTR
UBL UBR

)
→

 U00 u01 U02
uT10 υ11 uT12
U20 u21 U22

 ,( zT
zB

)
→

 z0
ζ1
z2



(
UTL UTR
UBL UBR

)
←

 U00 u01 U02
uT10 υ11 uT12
U20 u21 U22

 ,( zT
zB

)
←

 z0
ζ1
z2


endwhile

Hint: Partition (
U00 u01
0 υ11

)(
x0
χ1

)
=
(
z0
ζ1

)
.

[Solution]

5.3.5.2 Algorithmic Variant 2

YouTube: https://www.youtube.com/watch?v=2tvfYnD9NrQ
An alternative algorithm can be derived as follows: Partition

L→
(
L00 0
lT10 1

)
, z →

(
z0
ζ1

)
and y →

(
y0
ψ1

)
.

Then (
L00 0
lT10 1

)
︸ ︷︷ ︸

L

(
z0
ζ1

)
︸ ︷︷ ︸

z

=
(
y0
ψ1

)
︸ ︷︷ ︸

y

.

Multiplying out the left-hand side yields(
L00z0

lT10z0 + ζ1

)
=
(
y0
ψ1

)

https://www.youtube.com/watch?v=2tvfYnD9NrQ
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and the equalities
L00z0 = y0

lT10z0 + ζ1 = ψ1.

The idea now is as follows: Assume that the elements of z0 were computed in previous iterations
in the algorithm in Figure 5.3.5.2, overwriting y0. Then in the current iteration we must compute
ζ1 := ψ1 − lT10z0, overwriting ψ1.

Solve Lz = y, overwriting y with z (Variant 2)

L→
(
LTL LTR
LBL LBR

)
, y →

(
yT
yB

)
LTL is 0× 0 and yT has 0 elements

while n(LTL) < n(L)(
LTL LTR
LBL LBR

)
→

 L00 l01 L02
lT10 λ11 lT12
L20 l21 L22

 ,( yT
yB

)
→

 y0
ψ1
y2


ψ1 := ψ1 − lT10y0(
LTL LTR
LBL LBR

)
←

 L00 l01 L02
lT10 λ11 lT12
L20 l21 L22

 ,( yT
yB

)
←

 y0
ψ1
y2


endwhile

Figure 5.3.5.2 Lower triangular solve (with unit lower triangular matrix), Variant 2

Homework 5.3.5.2 Derive a similar algorithm for solving Ux = z. Update the below skeleton
algorithm with the result. (Don’t forget to put in the lines that indicate how you "partition and
repartition" through the matrix.)

Solve Ux = z, overwriting z with x (Variant 2)

U →
(
UTL UTR
UBL UBR

)
, z →

(
zT
zB

)
UBR is 0× 0 and zB has 0 elements

while n(UBR) < n(U)(
UTL UTR
UBL UBR

)
→

 U00 u01 U02
uT10 υ11 uT12
U20 u21 U22

 ,( zT
zB

)
→

 z0
ζ1
z2



(
UTL UTR
UBL UBR

)
←

 U00 u01 U02
uT10 υ11 uT12
U20 u21 U22

 ,( zT
zB

)
←

 z0
ζ1
z2


endwhile

Hint: Partition
U →

(
υ11 uT12
0 U22

)
.

[Solution]



WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 211

Homework 5.3.5.3 Let L be an m×m unit lower triangular matrix. If a multiply and add each
require one flop, what is the approximate cost of solving Lx = y? [Solution]

5.3.5.3 Discussion

Computation tends to be more efficient when matrices are accessed by column, since in scientific
computing applications tend to store matrices by columns (in column-major order). This dates back
to the days when Fortran ruled supreme. Accessing memory consecutively improves performance,
so computing with columns tends to be more efficient than computing with rows.

Variant 1 for each of the algorithms casts computation in terms of columns of the matrix that
is involved;

y2 := y2 − ψ1l21

and
z0 := z0 − ζ1u01.

These are called axpy operations:
y := αx+ y.

"alpha times x plus y." In contrast, Variant 2 casts computation in terms of rows of the matrix that
is involved:

ψ1 := ψ1 − lT10y0

and
ζ1 := ζ1 − uT12z2

perform dot products.

5.3.6 LU factorization with complete pivoting
LU factorization with partial pivoting builds on the insight that pivoting (rearranging) rows in a
linear system does not change the solution: if Ax = b then P (p)Ax = P (p)b, where p is a pivot
vector. Now, if r is another pivot vector, then notice that P (r)TP (r) = I (a simple property
of pivot matrices) and AP (r)T permutes the columns of A in exactly the same order as P (r)A
permutes the rows of A.

What this means is that if Ax = b then P (p)AP (r)T (P (r)x) = P (p)b. This supports the idea
that one might want to not only permute rows of A, as in partial pivoting, but also columns of A.
This is done in a variation on LU factorization that is known as LU factorization with complete
pivoting.

The idea is as follows: Given matrix A, partition

A =
(
α11 aT12
a21 A22

)
.

Now, instead of finding the largest element in magnitude in the first column, find the largest element
in magnitude in the entire matrix. Let’s say it is element (π1, ρ1). Then, one permutes(

α11 aT12
a21 A22

)
:= P (π1)

(
α11 aT12
a21 A22

)
P (ρ1)T ,
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making α11 the largest element in magnitude. We will later see that the magnitude of α11 impacts
element growth in the remaining matrix (A22) and that in turn impacts the numerical stability
(accuracy) of the algorithm. By choosing α11 to be as large as possible in magnitude, the magnitude
of multipliers is reduced as is element growth.

The problem is that complete pivoting requires O(n2) comparisons per iteration. Thus, the
number of comparisons is of the same order as the number of floating point operations. Worse, it
completely destroys the ability to cast most computation in terms of matrix-matrix multiplication,
thus impacting the ability to attain much greater performance.

In practice LU with complete pivoting is not used.

5.3.7 Improving accuracy via iterative refinement
When solving Ax = b on a computer, error is inherently incurred. Instead of the exact solution x,
an approximate solution x̂ is computed, which instead solves Ax̂ = b̂. The difference between x
and x̂ satisfies

A(x− x̂) = b− b̂.

We can compute b̂ = Ax̂ and hence we can compute δb = b − b̂. We can then solve Aδx = δb.
If this computation is completed without error, then x = x̂ + δx and we are left with the exact
solution. Obviously, there is error in δx as well, and hence we have merely computed an improved
approximate solution to Ax = b. This process can be repeated. As long as solving with A yields
at least one digit of accuracy, this process can be used to improve the computed result, limited by
the accuracy in the right-hand side b and the condition number of A.

This process is known as iterative refinement.

5.4 Cholesky factorization

5.4.1 Hermitian Positive Definite matrices

YouTube: https://www.youtube.com/watch?v=nxGR8NgXYxg
Hermitian Positive Definite (HPD) are a special class of matrices that are frequently encountered

in practice.

Definition 5.4.1.1 Hermitian positive definite matrix. A matrix A ∈ Cn×n is Hermitian
positive definite (HPD) if and only if it is Hermitian (AH = A) and for all nonzero vectors x ∈ Cn
it is the case that xHAx > 0. If in addition A ∈ Rn×n then A is said to be symmetric positive
definite (SPD). ♦

If you feel uncomfortable with complex arithmetic, just replace the word "Hermitian" with
"symmetric"" in this document and the Hermitian transpose operation, H , with the transpose
operation, T .

https://www.youtube.com/watch?v=nxGR8NgXYxg
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Example 5.4.1.2 Consider the case where n = 1 so that A is a real scalar, α. Notice that then A
is SPD if and only if α > 0. This is because then for all nonzero χ ∈ R it is the case that αχ2 > 0.

�
Let’s get some practice with reasoning about Hermitian positive definite matrices.

Homework 5.4.1.1 Let B ∈ Cm×n have linearly independent columns.
ALWAYS/SOMETIMES/NEVER: A = BHB is HPD. [Answer] [Solution]

Homework 5.4.1.2 Let A ∈ Cm×m be HPD.
ALWAYS/SOMETIMES/NEVER: The diagonal elements of A are real and positive. [Hint]

[Answer] [Solution]

Homework 5.4.1.3 Let A ∈ Cm×m be HPD. Partition

A =
(
α11 aH21
a21 A22

)
.

ALWAYS/SOMETIMES/NEVER: A22 is HPD. [Answer] [Solution]

5.4.2 The Cholesky Factorization Theorem

YouTube: https://www.youtube.com/watch?v=w8a9xVHVmAI
We will prove the following theorem in Subsection 5.4.4.

Theorem 5.4.2.1 Cholesky Factorization Theorem. Given an HPD matrix A there exists a
lower triangular matrix L such that A = LLH . If the diagonal elements of L are restricted to be
positive, L is unique.

Obviously, there similarly exists an upper triangular matrix U such that A = UHU since we
can choose UH = L.

The lower triangular matrix L is known as the Cholesky factor and LLH is known as the
Cholesky factorization of A. It is unique if the diagonal elements of L are restricted to be positive.
Typically, only the lower (or upper) triangular part of A is stored, and it is that part that is then
overwritten with the result. In our discussions, we will assume that the lower triangular part of A
is stored and overwritten.

https://www.youtube.com/watch?v=w8a9xVHVmAI
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5.4.3 Cholesky factorization algorithm (right-looking variant)

YouTube: https://www.youtube.com/watch?v=x4grvf-MfTk
The most common algorithm for computing the Cholesky factorization of a given HPD matrix

A is derived as follows:

• Consider A = LLH , where L is lower triangular.
Partition

A =
(
α11 ?
a21 A22

)
and L =

(
λ11 0
l21 L22

)
. (5.4.1)

Since A is HPD, we know that

◦ α11 is a positive number (Homework 5.4.1.2).
◦ A22 is HPD (Homework 5.4.1.3).

• By substituting these partitioned matrices into A = LLH we find that(
α11 ?
a21 A22

)
=

(
λ11 0
l21 L22

)(
λ11 0
l21 L22

)H
=
(
λ11 0
l21 L22

)(
λ̄11 lH21
0 LH22

)

=
(
|λ11|2 ?

λ̄11l21 l21l
H
21 + L22L

H
22

)
,

from which we conclude that

α11 = |λ11|2 ?
a21 = λ11l21 A22 = l21l

H
21 + L22L

H
22

or, equivalently,
λ11 = ±√α11 ?

l21 = a21/λ̄11 L22 = Chol(A22 − l21l
H
21) .

• These equalities motivate the following algorithm for overwriting the lower triangular part of
A with the Cholesky factor of A:

◦ Partition A→
(
α11 ?
a21 A22

)
.

◦ Overwrite α11 := λ11 = √α11. (Picking λ11 = √α11 makes it positive and real, and
ensures uniqueness.)
◦ Overwrite a21 := l21 = a21/λ11.

https://www.youtube.com/watch?v=x4grvf-MfTk
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◦ Overwrite A22 := A22 − l21l
H
21 (updating only the lower triangular part of A22). This

operation is called a symmetric rank-1 update.
◦ Continue by computing the Cholesky factor of A22.

The resulting algorithm is often called the "right-looking" variant and is summarized in Fig-
ure 5.4.3.1.

A = Chol-right-looking(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


α11 := λ11 = √α11
a21 := l21 = a21/α11
A22 := A22 − a21a

H
21 (syr: update only lower triangular part)(

ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


endwhile

Figure 5.4.3.1 Cholesky factorization algorithm (right-looking variant). The operation "syr" refers
to "symmetric rank-1 update", which performs a rank-1 update, updating only the lower triangular
part of the matrix in this algorithm.

Homework 5.4.3.1 Give the approximate cost incurred by the algorithm in Figure 5.4.3.1 when
applied to an n× n matrix. [Answer] [Solution]

Remark 5.4.3.2 Comparing the cost of the Cholesky factorization to that of the LU factorization
in Homework 5.2.2.1, we see that taking advantage of symmetry cuts the cost approximately in
half.
Homework 5.4.3.2 Implement the algorithm given in Figure 5.4.3.1 as
function [ A_out ] = Chol_right_looking( A )

by completing the code in Assignments/Week05/matlab/Chol_right_looking.m. Input is a HPD m×n
matrix A with only the lower triangular part stored. Output is the matrix A that has its lower
triangular part overwritten with the Cholesky factor. You may want to use Assignments/Week05/

matlab/test_Chol_right_looking.m to check your implementation. [Solution]

Assignments/Week05/matlab/Chol_right_looking.m
Assignments/Week05/matlab/test_Chol_right_looking.m
Assignments/Week05/matlab/test_Chol_right_looking.m
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5.4.4 Proof of the Cholesky Factorizaton Theorem

YouTube: https://www.youtube.com/watch?v=unpQfRgIHOg
Partition, once again,

A→
(
α11 aH21
a21 A22

)
.

The following lemmas are key to the proof of the Cholesky Factorization Theorem:

Lemma 5.4.4.1 Let A ∈ Cn×n be HPD. Then α11 is real and positive.
Proof. This is special case of Homework 5.4.1.2. �

Lemma 5.4.4.2 Let A ∈ Cn×n be HPD and l21 = a21/
√
α11. Then A22 − l21l

H
21 is HPD.

Proof. Since A is Hermitian so are A22 and A22 − l21l
H
21.

Let x2 ∈ Cn−1 be an arbitrary nonzero vector. Define x =
(
χ1
x2

)
where χ1 = −aH21x2/α11.

Then, since clearly x 6= 0,

0
< < A is HPD >

xHAx
= < partition >(
χ1
x2

)H (
α11 aH21
a21 A22

)(
χ1
x2

)
= < partitioned multiplication >(
χ1
x2

)H (
α11χ1 + aH21x2
a21χ1 +A22x2

)
= < partitioned multiplication >

α11χ1χ1 + χ̄1a
H
21x2 + xH2 a21χ1 + xH2 A22x2

= < linear algebra >

α11
aH21x2
α11

xH2 a21
α11
−xH2 a21

α11
aH21x2 − xH2 a21

aH21x2
α11

+ xH2 A22x2
= < since xH2 a21, a

H
21x2 are scalars and hence can move around; α11/α11 = 1 >

xH2 a21
aH21x2
α11
− xH2 a21

aH21x2
α11
− xH2 a21

aH21x2
α11

+ xH2 A22x2
= < cancel terms; factor out xH2 and x2 >

xH2 (A22 −
a21aH21
α11

)x2
= < simplify >

xH2 (A22 − l21l
H
21)x2.

We conclude that A22 − l21l
H
21 is HPD. �

https://www.youtube.com/watch?v=unpQfRgIHOg
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Proof of the Cholesky Factorization Theorem. Proof by induction.
1. Base case: n = 1:

Clearly the result is true for a 1 × 1 matrix A = α11: In this case, the fact that A is HPD
means that α11 is real and positive and a Cholesky factor is then given by λ11 = √α11, with
uniqueness if we insist that λ11 is positive.

2. Inductive step: Assume the result is true for n = k. We will show that it holds for n = k+ 1.
Let A ∈ C(k+1)×(k+1) be HPD. Partition

A =
(
α11 aH21
a21 A22

)
and L =

(
λ11 0
l21 L22

)
.

Let

• λ11 = √α11 (which is well-defined by Lemma 5.4.4.1,
• l21 = a21/λ11,
• A22 − l21l

H
21 = L22L

H
22 (which exists as a consequence of the Inductive Hypothesis and

Lemma 5.4.4.2.)

Then L is the desired Cholesky factor of A.

3. By the Principal of Mathematical Induction, the theorem holds.

�

5.4.5 Cholesky factorization and solving LLS

YouTube: https://www.youtube.com/watch?v=C7LEuhS4H94
Recall from Section 4.2 that the solution x̂ ∈ Cn to the linear least-squares (LLS) problem

‖b−Ax̂‖2 = min
x∈Cn

‖b−Ax‖2 (5.4.2)

equals the solution to the normal equations

AHA︸ ︷︷ ︸
B

x̂ = AHb︸ ︷︷ ︸
y

.

Since AHA is Hermitian, it would be good to take advantage of that special structure to factor it
more cheaply. If AHA were HPD, then the Cholesky factorization can be employed. Fortunately,
from Homework 5.4.1.1 we know that if A has linearly independent columns, then AHA is HPD.
Thus, the steps required to solve the LLS problem (5.4.2) when A ∈ Cm×n Are

https://www.youtube.com/watch?v=C7LEuhS4H94
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• Form B = AHA. Cost: approximately mn2 flops.

• Factor B = LLH (Cholesky factorization). Cost: approximately n3/3 flops.

• Compute y = AHb. Cost: approximately 2mn flops.

• Solve Lz = y. Cost: approximately n2 flops.

• Solve LH x̂ = z. Cost: approximately n2 flops.

for a total of, approximately, mn2 + n3/3 flops.

Ponder This 5.4.5.1 Consider A ∈ Cm×n with linearly independent columns. Recall that A
has a QR factorization, A = QR where Q has orthonormal columns and R is an upper triangular
matrix with positive diagonal elements. How are the Cholesky factorization of AHA and the QR
factorization of A related?

5.4.6 Implementation with the classical BLAS
The Basic Linear Algebra Subprograms (BLAS) are an interface to commonly used fundamental
linear algebra operations. In this section, we illustrate how the unblocked and blocked Cholesky
factorization algorithms can be implemented in terms of the BLAS. The explanation draws from
the entry we wrote for the BLAS in the Encyclopedia of Parallel Computing [39].

5.4.6.1 What are the BLAS?

The BLAS interface [25] [15] [14] was proposed to support portable high-performance implemen-
tation of applications that are matrix and/or vector computation intensive. The idea is that one
casts computation in terms of the BLAS interface, leaving the architecture-specific optimization of
that interface to an expert.

5.4.6.2 Implementation in Fortran

We start with a simple implementation in Fortran. A simple algorithm that exposes three loops
and the corresponding code in Fortran are given by

for j := 0, . . . , n− 1
αj,j := √αj,j
for i := j + 1, . . . , n− 1
αi,j := αi,j/αj,j

end
for k := j + 1, . . . , n− 1

for i := k, . . . , n− 1
αi,k := αi,k − αi,jαk,j

endfor
endfor

endfor

do j=1, n
A(j,j) = sqrt(A(j,j))

do i=j+1,n
A(i,j) = A(i,j) / A(j,j)

enddo

do k=j+1,n
do i=k,n
A(i,k) = A(i,k) - A(i,j) * A(k,j)

enddo
enddo

enddo
Notice that Fortran starts indexing at one when addressing an array.
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Next, exploit the fact that the BLAS interface supports a number of "vector-vector" operations
known as the Level-1 BLAS. Of these, we will use

dscal( n, alpha, x, incx )

which updates the vector x stored in memory starting at address x and increment between entries
of incx and of size n with αx where α is stored in alpha, and

daxpy( n, alpha, x, incx, y, incy )

which updates the vector y stored in memory starting at address y and increment between entries
of incy and of size n with αx+y where x is stored at address x with increment incx and α is stored
in alpha. With these, the implementation becomes

for j := 0, . . . , n− 1
αj,j := √αj,j
αj+1:n−1,j := αj+1:n−1,j/αj,j
for k := j + 1, . . . , n− 1
αk:n−1,k := αk:n−1,k − αk,jαk:n−1,j

endfor
endfor

do j=1, n
A(j,j) = sqrt(A(j,j))

call dscal( n-j, 1.0d00 / a(j,j), a(j+1,j), 1 )

do k=j+1,n
call daxpy( n-k+1, -A(k,j), A(k,j), 1,

A(k,k), 1 )
enddo

enddo

Here αj+1:n−1,j =

 αj+1,j
...

αn−1,j

.
The entire update A22 := A22−a21a

T
21 can be cast in terms of a matrix-vector operation (level-2

BLAS call) to

dsyr( uplo, n, alpha, x, A, ldA )

which updates the matrix A stored in memory starting at address A with leading dimension ldA
of size n by n with αxxT + A where x is stored at address x with increment incx and α is stored
in alpha. Since both A and αxxT +A are symmetric, only the triangular part indicated by uplo is
updated. This is captured by the below algorithm and implementation.

for j := 0, . . . , n− 1
αj,j := √αj,j
αj+1:n−1,j := αj+1:n−1,j/αj,j
αj+1:n−1,j+1:n−1 :=

αj+1:n−1,j+1:n−1
− tril(αj+1:n−1,jα

T
j+1:n−1,j)

endfor

do j=1, n
A(j,j) = sqrt(A(j,j))

call dscal( n-j, 1.0d00 / a(j,j), a(j+1,j), 1 )

call dsyr( "Lower triangular", n-j+1, -1.0d00,
A(j+1,j), 1, A(j+1,j+1), ldA )

enddo

Notice how the code that cast computation in terms of the BLAS uses a higher level of abstrac-
tion, through routines that implement the linear algebra operations that are encountered in the
algorithms.
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A = Chol-blocked-right-looking(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 A01 A02
A10 A11 AT12
A20 A21 A22


A11 := L11 = Chol(A11)
Solve L21L

H
11 = A21 overwriting A21 with L21

A22 := A22 −A21A
H
21 syrk: update only lower triangular part(

ATL ATR
ABL ABR

)
←

 A00 A01 A02
A10 A11 AT12
A20 A21 A22


endwhile

Figure 5.4.6.1 Blocked Cholesky factorization Variant 3 (right-looking) algorithm. The opera-
tion "syrk" refers to "symmetric rank-k update", which performs a rank-k update (matrix-matrix
multiplication with a small "k" size), updating only the lower triangular part of the matrix in this
algorithm.

Finally, a blocked right-looking Cholesky factorization algorithm, which casts most computation
in terms of a matrix-matrix multiplication operation referred to as a "symmetric rank-k update"
is given in Figure 5.4.6.1. There, we use FLAME notation to present the algorithm. It translates
into Fortran code that exploits the BLAS given below.
do j=1, nb ,n

jb = min( nb, n-j )
Chol( jb, A( j, j );

dtrsm( "Right", "Lower triangular", "Transpose",
"Unit diag", jb, n-j-jb+1, 1.0d00, A( j,j ), LDA,
A( j+jb, j ), LDA )

dsyrk( "Lower triangular", n-j-jb+1, jb, 1.0d00,
A( j+jb,j ), LDA, 1.0d00, A( j+jb, j+jb ), LDA )

enddo
The routines dtrsm and dsyrk are level-3 BLAS routines:

• The call to dtrsm implements A21 := L21 where L21L
T
11 = A21.

• The call to dsyrk implements A22 := −A21A
T
21 +A22, updating only the lower triangular part

of the matrix.

The bulk of the computation is now cast in terms of matrix-matrix operations which can achieve
high performance.
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5.5 Enrichments

5.5.1 Other LU factorization algorithms
There are actually five different (unblocked) algorithms for computing the LU factorization that
were discovered over the course of the centuries. Here we show how to systematically derive all five.
For details, we suggest Week 6 of our Massive Open Online Course titled "LAFF-On Programming
for Correctness" [29].

Remark 5.5.1.1 To put yourself in the right frame of mind, we highly recommend you spend
about an hour reading the paper

• [32] Devangi N. Parikh, Margaret E. Myers, Richard Vuduc, Robert A. van de Geijn, A
Simple Methodology for Computing Families of Algorithms, FLAME Working Note #87,
The University of Texas at Austin, Department of Computer Science, Technical Report TR-
18-06. arXiv:1808.07832.

A = LU-var1(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


...(
ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


endwhile

Figure 5.5.1.2 LU factorization algorithm skeleton.
Finding the algorithms starts with the following observations.

• Our algorithms will overwrite the matrix A, and hence we introduce Â to denote the original
contents of A. We will say that the precondition for the algorithm is that

A = Â

(A starts by containing the original contents of A.)

• We wish to overwrite A with L and U . Thus, the postcondition for the algorithm (the state
in which we wish to exit the algorithm) is that

A = L\U ∧ LU = Â

(A is overwritten by L below the diagonal and U on and above the diagonal, where multiplying
L and U yields the original matrix A.)

https://arxiv.org/abs/1808.07832
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• All the algorithms will march through the matrices from top-left to bottom-right, giving us
the code skeleton in Figure 5.5.1.2. Since the computed L and U overwrite A, throughout
they are partitioned comformal to (in the same way) as is A.

• Thus, before and after each iteration of the loop the matrices are viewed as quadrants:

A→
(
ATL ATR
ABL ABR

)
, L→

(
LTL 0
LBL LBR

)
, and U →

(
UTL UTR

0 UBR

)
.

where ATL, LTL, and UTL are all square and equally sized.

• In terms of these exposed quadrants, in the end we wish for matrix A to contain(
ATL ATR
ABL ABR

)
=
(
L\UTL UTR
LBL L\UBR

)

∧
(
LTL 0
LBL LBR

)(
UTL UTR

0 UBR

)
=
(
ÂTL ÂTR
ÂBL ÂBR

)

• Manipulating this yields what we call the Partitioned Matrix Expression (PME), which can
be viewed as a recursive definition of the LU factorization:(

ATL ATR
ABL ABR

)
=
(
L\UTL UTR
LBL L\UBR

)

∧ LTLUTL = ÂTL LTLUTR = ÂTR
LBLUTL = ÂBL LBRUBR = ÂBR − LBLUTR.

• Now, consider the code skeleton for the LU factorization in Figure 5.5.1.2. At the top of the
loop (right after the while), we want to maintain certain contents in matrix A. Since we are
in a loop, we haven’t yet overwritten A with the final result. Instead, some progress toward
this final result has been made. The way we can find what the state of A is that we would
like to maintain is to take the PME and delete subexpressions. For example, consider the
following condition on the contents of A:(

ATL ATR
ABL ABR

)
=
(
L\UTL UTR
LBL ÂBR − LBLUTR

)

∧ LTLUTL = ÂTL LTLUTR = ÂTR
LBLUTL = ÂBL .

What we are saying is that ATL, ATR, and ABL have been completely updated with the
corresponding parts of L and U , and ABR has been partially updated. This is exactly the
state that the right-looking algorithm that we discussed in Subsection 5.2.2 maintains! What
is left is to factor ABR, since it contains ÂBR − LBLUTR, and ÂBR − LBLUTR = LBRUBR.

• By carefully analyzing the order in which computation must occur (in compiler lingo: by
performing a dependence analysis), we can identify five states that can be maintained at the
top of the loop, by deleting subexpressions from the PME. These are called loop invariants.
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There are five for LU factorization:(
AT L AT R

ABL ABR

)
=
(
L\UT L ÂT R

ÂBL ÂBR

) (
AT L AT R

ABL ABR

)
=
(
L\UT L UT R

ÂBL ÂBR

)
Invariant 1 Invariant 2(

AT L AT R

ABL ABR

)
=
(
L\UT L ÂT R

LBL ÂBR

) (
AT L AT R

ABL ABR

)
=
(
L\UT L UT R

LBL ÂBR

)
Invariant 3 Invariant 4(

AT L AT R

ABL ABR

)
=
(
L\UT L UT R

LBL ÂBR − LBLUT R

)
Invariant 5

• Key to figuring out what updates must occur in the loop for each of the variants is to look
at how the matrices are repartitioned at the top and bottom of the loop body.

For each of the five algorithms for LU factorization, we will derive the loop invariant, and then
derive the algorithm from the loop invariant.

5.5.1.1 Variant 1: Bordered algorithm

Consider the loop invariant:(
ATL ATR
ABL ABR

)
=
(
L\UTL ÂTR
ÂBL ÂBR

)
∧ LTLUTL = ÂTL,

meaning that the leading principal submatrix ATL has been overwritten with its LU factorization,
and the remainder of the matrix has not yet been touched.

At the top of the loop, after repartitioning, A then contains A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 =

 L\U00 â01 Â02
âT10 α̂11 âT12
Â20 â21 Â22

 ∧ L00U00 = Â00

while after updating A it must contain A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 =

 L\U00 u01 Â02
lT10 υ11 âT12
Â20 â21 Â22,


∧
(
L00 0
lT10 1

)(
U00 u01
0 υ11

)
=
(
Â00 â01
âT10 α̂11

)
︸ ︷︷ ︸

L00U00 = Â00 L00u01 = â01
lT10U00 = âT10 lT10u01 + υ11 = α̂11

for the loop invariant to again hold after the iteration. Here the entries in red are known (in
addition to the ones marked with a "hat") and the entries in blue are to be computed. With this,
we can compute the desired parts of L and U :

• Solve L00u01 = a01, overwriting a01 with the result. (Notice that a01 = â01 before this
update.)
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• Solve lT10U00 = aT10 (or, equivalently, UT00(lT10)T = (aT10)T for lT10), overwriting aT10 with the
result. (Notice that aT10 = âT10 before this update.)

• Update α11 := υ11 = α11−lT10u01. (Notice that by this computation, aT10 = lT10 and a01 = u01.)

The resulting algorithm is captured in Figure 5.5.1.3.

A = LU-var1(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


Solve L00u01 = a01 overwriting a01 with the result
Solve lT10U00 = aT10 overwriting aT10 with the result
α11 := υ11 = α11 − aT10a01(
ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


endwhile

Figure 5.5.1.3 Variant 1 (bordered) LU factorization algorithm. Here A00 stores L\U00.

Homework 5.5.1.1 If A is n× n, show the cost of Variant 1 is approximately 2
3n

3. [Solution]

5.5.1.2 Variant 2: Up-looking algorithm

Consider next the loop invariant:(
ATL ATR
ABL ABR

)
=
(
L\UTL UTR
ÂBL ÂBR

)
∧ LTLUTL = ÂTL LTLUTR = ÂTR

meaning that the leading principal submatrix ATL has been overwritten with its LU factorization
and UTR has overwritten ATR.

At the top of the loop, after repartitioning, A then contains A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 =

 L\U00 u01 U02
âT10 α̂11 âT12
Â20 â21 Â22


∧ L00U00 = Â00 L00

(
u01 U02

)
=
(
â01 Â02

)
︸ ︷︷ ︸

L00U00 = Â00 L00u01 = â01 L00U02 = Â02
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while after updating A it must contain A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 =

 L\U00 u01 U02
lT10 υ11 uT12
Â20 â21 Â22,


∧

(
L00 0
lT10 1

)(
U00 u01
0 υ11

)
=
(
Â00 â01
âT10 α̂11

) (
L00 0
lT10 1

)(
U02
uT12

)
=
(
Â00
âT12

)
︸ ︷︷ ︸

L00U00 = Â00 L00u01 = â01 L00U02 = Â02
lT10U00 = âT10 lT10u01 + υ11 = α̂11 lT10U02 + uT12 = âT12

for the loop invariant to again hold after the iteration. Here, again, the entries in red are known
(in addition to the ones marked with a "hat") and the entries in blue are to be computed. With
this, we can compute the desired parts of L and U :

• Solve lT10U00 = aT10, overwriting aT10 with the result.

• Update α11 := υ11 = α11 − lT10u01 = α11 − aT10a01.

• Update aT12 := uT12 = aT12 − lT10U02 = aT12 − aT10A02.

The resulting algorithm is captured in Figure 5.5.1.4.

A = LU-var2(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


Solve lT10U00 = aT10 overwriting aT10 with the result
α11 := υ11 = α11 − aT10a01
aT12 := uT12 = aT12 − lT10U02(
ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


endwhile

Figure 5.5.1.4 Variant 2 (up-looking) LU factorization algorithm. Here A00 stores L\U00.

Homework 5.5.1.2 If A is n× n, show the cost of Variant 2 is approximately 2
3n

3. [Solution]

5.5.1.3 Variant 3: Left-looking algorithm

Consider the loop invariant:(
ATL ATR
ABL ABR

)
=
(
L\UTL ÂTR
LBL ÂBR

)
∧ LTLUTL = ÂTL

LBLUTL = ÂBxL.
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At the top of the loop, after repartitioning, A then contains A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 =

 L\U00 â01 Â02
lT10 α̂11 âT12
L20 â21 Â22

 ∧ L00U00 = Â00
lT10U00 = âT10
L20U00 = Â20

while after updating A it must contain A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 =

 L\U00 u01 Â02
lT10 υ11 âT12
L20 l21 Â22,



∧

(
L00 0
lT10 1

)(
U00 u01
0 υ11

)
=
(
Â00 â01
âT10 α̂11

)
(
L20 l21

)( U00 u01
0 υ11

)
=
(
Â20 â21

)
︸ ︷︷ ︸

L00U00 = Â00 L00u01 = â01
lT10U00 = âT10 lT10u01 + υ11 = α̂11
L20U00 = Â20 L20u01 + l21υ11 = â21

for the loop invariant to again hold after the iteration. With this, we can compute the desired parts
of L and U :

• Solve L00u01 = a01, overwriting a01 with the result.

• Update α11 := υ11 = α11 − lT10u01 = α11 − aT10a01.

• Update a21 := l21 = (a21 − L20u01)/υ11 = (a21 −A20a01)/α11.

The resulting algorithm is captured in Figure 5.5.1.5.

A = LU-var3(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


Solve L00u01 = a01 overwriting a01 with the result
α11 := υ11 = α11 − aT10a01
a21 := l21 = (a21 −A20a01)/α11(
ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


endwhile

Figure 5.5.1.5 Variant 3 (left-looking) LU factorization algorithm. Here A00 stores L\U00.
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Homework 5.5.1.3 If A is n× n, show the cost of Variant 3 is approximately 2
3n

3. [Solution]

5.5.1.4 Variant 4: Crout variant

Consider next the loop invariant:(
ATL ATR
ABL ABR

)
=
(
L\UTL UTR
LBL ÂBR

)
∧ LTLUTL = ÂTL LTLUTR = ÂTR

LBLUTL = ÂBL.

At the top of the loop, after repartitioning, A then contains A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 =

 L\U00 u01 U02
lT10 α̂11 âT12
L20 â21 Â22


∧

L00U00 = Â00 L00u01 = â01 L00U02 = Â02
lT10U00 = âT10
L20U00 = Â20

while after updating A it must contain A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 =

 L\U00 u01 U02
lT10 υ11 uT12
L20 l21 Â22,



∧

(
L00 0
lT10 1

)(
U00 u01
0 υ11

)
=
(
Â00 â01
âT10 α̂11

) (
L00 0
lT10 1

)(
U02
uT12

)
=
(
Â02
âT12

)
(
L20 l21

)( U00 u01
0 υ11

)
=
(
Â20 â21

)
︸ ︷︷ ︸

L00U00 = Â00 L00u01 = â01 L00U02 = Â02
lT10U00 = âT10 lT10u01 + υ11 = α̂11 lT10U02 + uT12 = âT12
L20U00 = Â20 L20u01 + l21υ11 = â21

for the loop invariant to again hold after the iteration. With this, we can compute the desired parts
of L and U :

• Update α11 := υ11 = α11 − lT10u01 = α11 − aT10a01.

• Update aT12 := uT12 = aT12 − lT10U02 = aT12 − aT10A02.

• Update a21 := l21 = (a21 − L20u01)/υ11 = (a21 −A20a01)/α11.

The resulting algorithm is captured in Figure 5.5.1.6.
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A = LU-var4(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


α11 := υ11 = α11 − aT10a01
aT12 := uT12 = aT12 − aT10A02
a21 := l21 = (a21 −A20a01)/α11(
ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


endwhile

Figure 5.5.1.6 Variant 4 (Crout) LU factorization algorithm.

Homework 5.5.1.4 If A is n× n, show the cost of Variant 4 is approximately 2
3n

3. [Solution]

5.5.1.5 Variant 5: Classical Gaussian elimination

Consider final loop invariant:(
ATL ATR
ABL ABR

)
=
(
L\UTL UTR
LBL ÂBR − LBLUTR

)
∧ LTLUTL = ÂTL LTLUTR = ÂTR

LBLUTL = ÂBL.

At the top of the loop, after repartitioning, A then contains A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 =

 L\U00 u01 U02
lT10 α̂11 − lT10u01 âT12 − lT10U02
L20 â21 − L20u01 Â22 − L20U02


∧

L00U00 = Â00 L00u01 = â01 L00U02 = Â02
lT10U00 = âT10
L20U00 = Â20

while after updating A it must contain A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 =

 L\U00 u01 U02
lT10 υ11 uT12
L20 l21 Â22 − l21u

T
12,



∧

(
L00 0
lT10 1

)(
U00 u01
0 υ11

)
=
(
Â00 â01
âT10 α̂11

) (
L00 0
lT10 1

)(
U02
uT12

)
=
(
Â02
âT12

)
(
L20 l21

)( U00 u01
0 υ11

)
=
(
Â20 â21

)
︸ ︷︷ ︸

L00U00 = Â00 L00u01 = â01 L00U02 = Â02
lT10U00 = âT10 lT10u01 + υ11 = α̂11 lT10U02 + uT12 = âT12
L20U00 = Â20 L20u01 + l21υ11 = â21
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for the loop invariant to again hold after the iteration. With this, we can compute the desired parts
of L and U :

• α11 := υ11 = α̂11 − lT10u01 = α11 (no-op).
(α11 already equals α̂11 − lT01u01.)

• aT12 := uT12 = âT12 − lT10U02 = aT12 (no-op).
(aT12 already equals âT12 − lT01U02.)

• Update a21 := (â21 − L20u01)/υ11 = a21/α11.
(a21 already equals â21 − L20u01.)

• Update A22 := Â22 − L20U02 − l21u
T
12 = A22 − a21a

T
12

(A22 already equals Â22 − L20U02.)

The resulting algorithm is captured in Figure 5.5.1.7.

A = LU-var5(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


a21 := l21 = a21/α11
A22 := A22 − a21a

T
12(

ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


endwhile

Figure 5.5.1.7 Variant 5 (classical Gaussian elimination) LU factorization algorithm.

Homework 5.5.1.5 If A is n× n, show the cost of Variant 5 is approximately 2
3n

3. [Solution]

5.5.1.6 Discussion

Remark 5.5.1.8 For a discussion of the different LU factorization algorithms that also gives a
historic perspective, we recommend "Matrix Algorithms Volume 1" by G.W. Stewart [38].

5.5.2 Blocked LU factorization
Recall from Subsection 3.3.4 that casting computation in terms of matrix-matrix multiplication
facilitates high performance. In this unit we very briefly illustrate how the right-looking LU fac-
torization can be reformulated as such a "blocked" algorithm. For details on other blocked LU
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factorization algorithms and blocked Cholesky factorization algorithms, we once again refer the in-
terested reader to our Massive Open Online Course titled "LAFF-On Programming for Correctness"
[29]. We will revisit these kinds of issues in the final week of this course.

Consider A = LU and partition these matrices as

A→
(
A11 A12
A21 A22

)
, L→

(
L11 0
L21 L22

)
, U →

(
U11 U12
0 U22

)
,

where A11, L11, and U11 are b× b submatrices. Then(
A11 A12
A21 A22

)
=
(
L11 0
L21 L22

)(
U11 U12
0 U22

)
=
(
L11U11 L11A12
A21U11 A22 − L21U12

)
.

From this we conclude that

A11 = L11U11 A12 = L11U12
A21 = L21U11 A22 − L21U12 = L22U22.

This suggests the following steps:

• Compute the LU factorization of A11 (e.g., using any of the "unblocked’ algorithms from
Subsection 5.5.1).

A11 = L11U11,

overwriting A11 with the factors.

• Solve
L11U12 = A12

for U12, overwriting A12 with the result. This is known as a "triangular solve with multple
right-hand sides." This comes from the fact that solving

LX = B,

where L is lower triangular, can be reformulated by partitioning X and B by columns,

L
(
x0 x1 · · ·

)
︸ ︷︷ ︸(
Lx0 Lx1 · · ·

) =
(
b0 b1 · · ·

)
,

which exposes that for each pair of columns we must solve the unit lower triangular system
Lxj = bj .

• Solve
L21U11 = A21

for L21, overwriting A21 with the result. This is also a "triangular solve with multple right-
hand sides" since we can instead view it as solving the lower triangular system with multiple
right-hand sides

UT11L
T
21 = AT21.

(In practice, the matrices are not transposed.)
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• Update
A22 := A22 − L21U12.

• Proceed by computing the LU factorization of the updated A22.

This motivates the algorithm in Figure 5.5.2.1.

A = LU-blk-var5(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 A01 A02
A10 A11 A12
A20 A21 A22


A11 := LU(A11) L11 and U11 overwrite A11
Solve L11U12 = A12 overwriting A12 with U12
Solve L21U11 = A21 overwriting A21 with L21
A22 := A22 −A21A12(
ATL ATR
ABL ABR

)
←

 A00 A01 A02
A10 A11 A12
A20 A21 A22


endwhile

Figure 5.5.2.1 Blocked Variant 5 (classical Gaussian elimination) LU factorization algorithm.

The important observation is that if A is m ×m and b is much smaller than m, then most of
the computation is in the matrix-matrix multiplication A22 := A22 −A21A12.

Remark 5.5.2.2 For each (unblocked) algorithm in Subsection 5.5.1, there is a corresponding
blocked algorithm.

5.5.3 Formal derivation of factorization algorithms
In Subsection 3.4.2, we discussed the systematic derivation via the FLAME methodology of Gram-
Schmidt algorithms, yielding Classical Gram-Schmidt (CGS) and Modified Gram-Schmidt. LU
factorization without pivoting and Cholesky factorization are are straight-forward examples for
illustrating the approach [20], [44]. For example, they are discussed in LAFF-On Programming for
Correctness, in Week 6 [29], [30].

Whether a family of algorithms for LU factorization with pivoting could similarly be derived had
been an open question for decades. It was shown to be within scope of the FLAME methodology
in a recent paper [41] that learners in this course may enjoy.

5.6 Wrap Up

5.6.1 Additional homework
In this chapter, we discussed how the LU factorization (with pivoting) can be used to solve Ax = y.
Why don’t we instead discuss how to compute the inverse of the matrix A and compute x = A−1y?
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Through a sequence of exercises, we illustrate why one should (almost) never compute the inverse
of a matrix.
Homework 5.6.1.1 Let A ∈ Cm×m be nonsingular and B its inverse. We know that AB = I and
hence

A
(
b0 · · · bm−1

)
=
(
e0 · · · em−1

)
,

where ej can be thought of as the standard basis vector indexed with j or the column of I indexed
with j.

1. Justify the following algorithm for computing B:

for j = 0, . . . ,m− 1
Compute the LU factorization with pivoting : P (p)A = LU
Solve Lz = P (p)ej
Solve Ubj = z

endfor

2. What is the cost, in flops, of the above algorithm?

3. How can we reduce the cost in the most obvious way and what is the cost of this better
algorithm?

4. If we want to solve Ax = y we can now instead compute x = By. What is the cost of this
multiplication and how does this cost compare with the cost of computing it via the LU
factorization, once the LU factorization has already been computed:

Solve Lz = P (p)y
Solve Ux = z

What do we conclude about the wisdom of computing the inverse?
Homework 5.6.1.2 Let L be a unit lower triangular matrix. Partition

L =
(

1 0
l21 L22

)
.

1. Show that
L−1 =

(
1 0

−L−1
22 l21 L−1

22

)
.

2. Use the insight from the last part to complete the following algorithm for computing the
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inverse of a unit lower triangular matrix:

[L] = inv(L)

L→
(
LTL LTR
LBL LBR

)
LTL is 0× 0

while n(LTL) < n(L)(
LTL LTR
LBL LBR

)
→

 L00 l01 L02
lT10 λ11 lT12
L20 l21 L22


l21 :=

(
LTL LTR
LBL LBR

)
←

 L00 l01 L02
lT10 λ11 lT12
L20 l21 L22


endwhile

3. The correct algorithm in the last part will avoid inverting matrices and will require, approx-
imately, 1

3m
3 flops. Analyze the cost of your algorithm.

Homework 5.6.1.3 LINPACK, the first software package for computing various operations related
to solving (dense) linear systems, includes routines for inverting a matrix. When a survey was con-
ducted to see what routines were in practice most frequently used, to the dismay of the developers,
it was discovered that routine for inverting matrices was among them. To solve Ax = y users were
inverting A and then computing x = A−1y. For this reason, the successor to LINPACK, LAPACK,
does not even include a routine for inverting a matrix. Instead, if a user wants to compute the
inverse, the user must go through the steps.

Compute the LU factorization with pivoting : P (p)A = LU
Invert L, overwriting L with the result
Solve UX = L for X
Compute A−1 := XP (p) (permuting the columns of X)

1. Justify that the described steps compute A−1.

2. Propose an algorithm for computing X that solves UX = L. Be sure to take advantage of
the triangular structure of U and L.

3. Analyze the cost of the algorithm in the last part of this question. If you did it right, it should
require, approximately, m3 operations.

4. What is the total cost of inverting the matrix?
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5.6.2 Summary
The process known as Gaussian elimination is equivalent to computing the LU factorization of the
matrix A ∈ Cm×m

: A = LU,

where L is a unit lower trianguular matrix and U is an upper triangular matrix.

Definition 5.6.2.1 Given a matrix A ∈ Cm×n withm ≥ n, its LU factorization is given by A = LU
where L ∈ Cm×n is unit lower trapezoidal and U ∈ Cn×n is upper triangular with nonzeroes on its
diagonal. ♦

Definition 5.6.2.2 Principal leading submatrix. For k ≤ n, the k×k principal leading subma-

trix of a matrix A is defined to be the square matrix ATL ∈ Ck×k such that A =
(
ATL ATR
ABL ABR

)
.

♦

Lemma 5.6.2.3 Let L ∈ Cn×n be a unit lower triangular matrix and U ∈ Cn×n be an upper
triangular matrix. Then A = LU is nonsingular if and only if U has no zeroes on its diagonal.

Theorem 5.6.2.4 Existence of the LU factorization. Let A ∈ Cm×n and m ≥ n have linearly
independent columns. Then A has a (unique) LU factorization if and only if all its principal leading
submatrices are nonsingular.

A = LU-right-looking(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


a21 := a21/α11
A22 := A22 − a21a

T
12(

ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


endwhile

Figure 5.6.2.5 Right-looking LU factorization algorithm.
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The right-looking algorithm performs the same computations as the algorithm

for j := 0, . . . , n− 1
for i := j + 1, . . . , n− 1
λi,j := αi,j/αj,j
αi,j := 0

endfor

 compute multipliers

for i := j + 1, . . . , n− 1
for k = j + 1, . . . , n− 1
αi,k := αi,k − λi,jαj,k

endfor

 subtract λi,j times row j from row k

endfor
endfor

A = LU-left-looking(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


Solve L00u01 = a01 overwriting a01 with u01
α11 := υ11 = α11 − aT10a01
a21 := a21 −A20a01
a21 := l21 = a21/α11(
ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


endwhile

Figure 5.6.2.6 Left-looking LU factorization algorithm. L00 is the unit lower triangular matrix
stored in the strictly lower triangular part of A00 (with the diagonal implicitly stored).

Solving Ax = b via LU factorization:

• Compute the LU factorization A = LU .

• Solve Lz = b.

• Solve Ux = z.

Cost of LU factorization: Starting with an m× n matrix A, LU factorization requires approxi-
mately mn2 − 1

3n
3 flops. If m = n this becomes

2
3n

3 flops.
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Definition 5.6.2.7 A matrix Lk of the form

Lk =

 Ik 0 0
0 1 0
0 l21 I

 ,
where Ik is the k × k identity matrix and I is an identity matrix "of appropropriate size" is called
a Gauss transform. ♦

L−1
k =

 Ik 0 0
0 1 0
0 l21 I


−1

=

 Ik 0 0
0 1 0
0 −l21 I

 .
Definition 5.6.2.8 Given

p =

 π0
...

πn−1

 ,
where {π0, π1, . . . , πn−1} is a permutation (rearrangement) of the integers {0, 1, . . . , n−1}, we define
the permutation matrix P (p) by

P (p) =


eTπ0...
eTπn−1

 .
♦

If P is a permutation matrix then P−1 = P T .

Definition 5.6.2.9 Elementary pivot matrix. Given π ∈ {0, . . . , n− 1} define the elementary
pivot matrix

P̃ (π) =



eTπ
eT1
...

eTπ−1
eT0
eTπ+1
...

eTn−1


or, equivalently,

P̃ (π) =



In if π = 0
0 0 1 0
0 Iπ−1 0 0
1 0 0 0
0 0 0 In−π−1

 otherwise,

where n is the size of the permutation matrix. ♦



WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 237

[A, p] = LUpiv-right-looking(A)

A→
(
ATL ATR
ABL ABR

)
, p→

(
pT
pB

)
ATL is 0× 0, pT has 0 elements

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 ,( pT
pB

)
→

 p0
π1
p2


π1 := maxi

(
α11
a21

)
 A00 a01 A02

aT10 α11 aT12
A20 a21 A22

 :=
(
I 0
0 P (π1)

) A00 a01 A02
aT10 α11 aT12
A20 a21 A22


a21 := a21/α11
A22 := A22 − a21a

T
12(

ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 ,( pT
pB

)
←

 p0
π1
p2


endwhile

Figure 5.6.2.10 Right-looking LU factorization algorithm with partial pivoting.
Solving Ax = b via LU factorization: with row pivoting:

• Compute the LU factorization with pivoting PA = LU .k

• Apply the row exchanges to the right-hand side: y = Pb.

• Solve Lz = y.

• Solve Ux = z.

Solve Lz = y, overwriting y with z (Variant 1)

L→
(
LTL LTR
LBL LBR

)
, y →

(
yT
yB

)
LTL is 0× 0 and yT has 0 elements

while n(LTL) < n(L)(
LTL LTR
LBL LBR

)
→

 L00 l01 L02
lT10 λ11 lT12
L20 l21 L22

 ,( yT
yB

)
→

 y0
ψ1
y2


y2 := y2 − ψ1l21(
LTL LTR
LBL LBR

)
←

 L00 l01 L02
lT10 λ11 lT12
L20 l21 L22

 ,( yT
yB

)
←

 y0
ψ1
y2


endwhile

Figure 5.6.2.11 Lower triangular solve (with unit lower triangular matrix), Variant 1
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Solve Lz = y, overwriting y with z (Variant 2)

L→
(
LTL LTR
LBL LBR

)
, y →

(
yT
yB

)
LTL is 0× 0 and yT has 0 elements

while n(LTL) < n(L)(
LTL LTR
LBL LBR

)
→

 L00 l01 L02
lT10 λ11 lT12
L20 l21 L22

 ,( yT
yB

)
→

 y0
ψ1
y2


ψ1 := ψ1 − lT10y0(
LTL LTR
LBL LBR

)
←

 L00 l01 L02
lT10 λ11 lT12
L20 l21 L22

 ,( yT
yB

)
←

 y0
ψ1
y2


endwhile

Figure 5.6.2.12 Lower triangular solve (with unit lower triangular matrix), Variant 2

Solve Ux = z, overwriting z with x (Variant 1)

U →
(
UTL UTR
UBL UBR

)
, z →

(
zT
zB

)
UBR is 0× 0 and zB has 0 elements

while n(UBR) < n(U)(
UTL UTR
UBL UBR

)
→

 U00 u01 U02
uT10 υ11 uT12
U20 u21 U22

 ,( zT
zB

)
→

 z0
ζ1
z2


ζ1 := ζ1/υ11
z0 := z0 − ζ1u01(
UTL UTR
UBL UBR

)
←

 U00 u01 U02
uT10 υ11 uT12
U20 u21 U22

 ,( zT
zB

)
←

 z0
ζ1
z2


endwhile

Figure 5.6.2.13 Upper triangular solve Variant 1
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Solve Ux = z, overwriting z with x (Variant 2)

U →
(
UTL UTR
UBL UBR

)
, z →

(
zT
zB

)
UBR is 0× 0 and zB has 0 elements

while n(UBR) < n(U)(
UTL UTR
UBL UBR

)
→

 U00 u01 U02
uT10 υ11 uT12
U20 u21 U22

 ,( zT
zB

)
→

 z0
ζ1
z2


ζ1 := ζ1 − uT12z2
ζ1 := ζ1/υ11(
UTL UTR
UBL UBR

)
←

 U00 u01 U02
uT10 υ11 uT12
U20 u21 U22

 ,( zT
zB

)
←

 z0
ζ1
z2


endwhile

Figure 5.6.2.14 Upper triangular solve Variant 2
Cost of triangular solve Starting with an n×n (upper or lower) triangular matrix T , solving Tx = b
requires approximately n2 flops.

Provided the solution of Ax = b yields some accuracy in the solution, that accuracy can be
improved through a process known as iterative refinement.

• Let x̂ is an approximate solution to Ax = b.

• Let δ̂x is an approximate solution to Aδx = b−Ax̂,

• Then x̂+ δ̂x, is an improved approximation.

• This process can be repeated until the accuracy in the computed solution is as good as
warranted by the conditioning of A and the accuracy in b.

Definition 5.6.2.15 Hermitian positive definite matrix. A matrix A ∈ Cn×n is Hermitian
positive definite (HPD) if and only if it is Hermitian (AH = A) and for all nonzero vectors x ∈ Cn
it is the case that xHAx > 0. If in addition A ∈ Rn×n then A is said to be symmetric positive
definite (SPD). ♦

Some insights regarding HPD matrices:

• B has linearly independent columns if and only if A = BHB is HPD.

• A diagonal matrix has only positive values on its diagonal if and only if it is HPD.

• If A is HPD, then its diagonal elements are all real-valued and positive.

• If A =
(
ATL ATR
ABL ABR

)
, where ATL is square, is HPD, then ATL and ABR are HPD.

Theorem 5.6.2.16 Cholesky Factorization Theorem. Given an HPD matrix A there exists
a lower triangular matrix L such that A = LLH . If the diagonal elements of L are restricted to be
positive, L is unique.
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A = Chol-right-looking(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


α11 := λ11 = √α11
a21 := l21 = a21/α11
A22 := A22 − a21a

T
12 (syr: update only lower triangular part)(

ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


endwhile

Figure 5.6.2.17 Cholesky factorization algorithm (right-looking variant). The operation "syr"
refers to "symmetric rank-1 update", which performs a rank-1 update, updating only the lower
triangular part of the matrix in this algorithm.

Lemma 5.6.2.18 Let A =
(
α11 aH21
a21 A22

)
,∈ Cn×n be HPD and l21 = a21/

√
α11. Then A22− l21l

H
21

is HPD.
Let x̂ ∈ Cn equal the solution to the linear least-squares (LLS) problem

‖b−Ax̂‖2 = min
x∈Cn

‖b−Ax‖2, (5.6.1)

where A has linearly independent columns, equals the solution to the normal equations

AHA︸ ︷︷ ︸
B

x̂ = AHb︸ ︷︷ ︸
y

.

This solution can be computed via the steps

• Form B = AHA. Cost: approximately mn2 flops.

• Factor B = LLH (Cholesky factorization). Cost: approximately n3/3 flops.

• Compute y = AHb. Cost: approximately 2mn flops.

• Solve Lz = y. Cost: approximately n2 flops.

• Solve LH x̂ = z. Cost: approximately n2 flops.

for a total of, approximately, mn2 + n3/3 flops.



Week 6

Numerical Stability

The material in this chapter has be adapted from

• [6] Paolo Bientinesi, Robert A. van de Geijn, Goal-Oriented and Modular Stability Analysis,
SIAM Journal on Matrix Analysis and Applications , Volume 32 Issue 1, February 2011.

and the technical report version of that paper (which includes exercises)

• [7] Paolo Bientinesi, Robert A. van de Geijn, The Science of Deriving Stability Analyses,
FLAME Working Note #33. Aachen Institute for Computational Engineering Sciences,
RWTH Aachen. TR AICES-2008-2. November 2008.

We recommend the technical report version for those who want to gain a deep understanding.
In this chapter, we focus on computation with real-valued scalars, vectors, and matrices.

6.1 Opening Remarks

6.1.1 Whose problem is it anyway?
Ponder This 6.1.1.1 What if we solve Ax = b on a computer and the result is an approximate
solution x̂ due to roundoff error that is incurred. If we don’t know x, how do we check that x̂
approximates x with a small relative error? Should we check the residual b−Ax̂? [Solution]

In the presence of roundoff error, it is hard to determine whether an implementation is correct.
Let’s examine a few scenerios.
Homework 6.1.1.2 You use some linear system solver and it gives the wrong answer. In other
words, you solve Ax = b on a computer, computing x̂, and somehow you determine that

‖x− x̂‖

is large. Which of the following is a possible cause (identify all):
• There is a bug in the code. In other words, the algorithm that is used is sound (gives the

right answer in exact arithmetic) but its implementation has an error in it.

• The linear system is ill-conditioned. A small relative error in the right-hand side can amplify
into a large relative error in the solution.

• The algorithm you used accumulates a significant roundoff error.

241
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• All is well: ‖x̂− x‖ is large but the relative error ‖x̂− x‖/‖x‖ is small.

[Solution]

6.1.2 Overview
• 6.1 Opening Remarks

◦ 6.1.1 Whose problem is it anyway?
◦ 6.1.2 Overview
◦ 6.1.3 What you will learn

• 6.2 Floating Point Arithmetic

◦ 6.2.1 Storing real numbers as floating point numbers
◦ 6.2.2 Error in storing a real number as a floating point number
◦ 6.2.3 Models of floating point computation
◦ 6.2.4 Stability of a numerical algorithm
◦ 6.2.5 Conditioning versus stability
◦ 6.2.6 Absolute value of vectors and matrices

• 6.3 Error Analysis for Basic Linear Algebra Algorithms

◦ 6.3.1 Initial insights
◦ 6.3.2 Backward error analysis of dot product: general case
◦ 6.3.3 Dot product: error results
◦ 6.3.4 Matrix-vector multiplication
◦ 6.3.5 Matrix-matrix multiplication

• 6.4 Error Analysis for Solving Linear Systems

◦ 6.4.1 Numerical stability of triangular solve
◦ 6.4.2 Numerical stability of LU factorization
◦ 6.4.3 Numerical stability of linear solve via LU factorization
◦ 6.4.4 Numerical stability of linear solve via LU factorization with partial pivoting
◦ 6.4.5 Is LU with Partial Pivoting Stable?

• 6.5 Enrichments

◦ 6.5.1 Systematic derivation of backward error analyses
◦ 6.5.2 LU factorization with pivoting can fail in practice

• 6.6 Wrap Up

◦ 6.6.1 Additional homework
◦ 6.6.2 Summary
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6.1.3 What you will learn
This week, you explore how roundoff error when employing floating point computation affect cor-
rectness.

Upon completion of this week, you should be able to

• Recognize how floating point numbers are stored.

• Employ strategies for avoiding unnecessary overflow and underflow that can occur in inter-
mediate computations.

• Compute the machine epsilon (also called the unit roundoff) for a given floating point repre-
sentation.

• Quantify errors in storing real numbers as floating point numbers and bound the incurred
relative error in terms of the machine epsilon.

• Analyze error incurred in floating point computation using the Standard Computation Model
(SCM) and the Alternative Computation Model (ACM) to determine their forward and back-
ward results.

• Distinguish between conditioning of a problem and stability of an algorithm.

• Derive error results for simple linear algebra computations.

• State and interpret error results for solving linear systems.

• Argue how backward error can affect the relative error in the solution of a linear system.

6.2 Floating Point Arithmetic

6.2.1 Storing real numbers as floating point numbers

YouTube: https://www.youtube.com/watch?v=sWcdwmCdVOU
Only a finite number of (binary) digits can be used to store a real number in the memory of a

computer. For so-called single-precision and double-precision floating point numbers, 32 bits and
64 bits are typically employed, respectively.

Recall that any real number can be written as µ × βe, where β is the base (an integer greater
than one), µ ∈ (−1, 1) is the mantissa, and e is the exponent (an integer). For our discussion, we
will define the set of floating point numbers, F , as the set of all numbers χ = µ× βe such that

• β = 2,

https://www.youtube.com/watch?v=sWcdwmCdVOU
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• µ = ±.δ0δ1 · · · δt−1 (µ has only t (binary) digits), where δj ∈ {0, 1}),

• δ0 = 0 iff µ = 0 (the mantissa is normalized), and

• −L ≤ e ≤ U .

With this, the elements in F can be stored with a finite number of (binary) digits.

Example 6.2.1.1 Let β = 2, t = 3, µ = .101, and e = 1. Then

µ× βe
=

.101× 21

=(
1× 2−1 + 0× 2−2 + 1× 2−3)× 21

=(
1
2 + 0

4 + 1
8

)
× 2

=
1.25

�
Observe that

• There is a largest number (in absolute value) that can be stored. Any number with larger
magnitude "overflows". Typically, this causes a value that denotes a NaN (Not-a-Number) to
be stored.

• There is a smallest number (in absolute value) that can be stored. Any number that is smaller
in magnitude "underflows". Typically, this causes a zero to be stored.

In practice, one needs to be careful to consider overflow and underflow. The following example
illustrates the importance of paying attention to this.

Example 6.2.1.2 Computing the (Euclidean) length of a vector is an operation we will frequently
employ. Careful attention must be paid to overflow and underflow when computing it.

Given x ∈ Rn, consider computing

‖x‖2 =

√√√√n−1∑
i=0

χ2
i . (6.2.1)

Notice that
‖x‖2 ≤

√
n
n−1max
i=0
|χi|

and hence, unless some χi is close to overflowing, the result will not overflow. The problem is that
if some element χi has the property that χ2

i overflows, intermediate results in the computation in
(6.2.1) will overflow. The solution is to determine k such that

|χk| =
n−1max
i=0
|χi|

and to then instead compute

‖x‖2 = |χk|

√√√√n−1∑
i=0

(
χi
χk

)2
.
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It can be argued that the same approach also avoids underflow if underflow can be avoided. �

In our discussion, we mostly ignore this aspect of floating point computation.

Remark 6.2.1.3 Any time a real number is stored in our computer, it is stored as a nearby
floating point number (element in F ) (either through rounding or truncation). Nearby, of course,
could mean that it is stored as the exact number if it happens to also be a floating point number.

6.2.2 Error in storing a real number as a floating point number

YouTube: https://www.youtube.com/watch?v=G2jawQW5WPc

Remark 6.2.2.1 We consider the case where a real number is truncated to become the stored
floating point number. This makes the discussion a bit simpler.

Let positive χ be represented by

χ = .δ0δ1 · · · × 2e,

where δi are binary digits and δ0 = 1 (the mantissa is normalized). If t binary digits are stored by
our floating point system, then

χ̌ = .δ0δ1 · · · δt−1 × 2e

is stored (if truncation is employed). If we let δχ = χ− χ̌. Then

δχ = .δ0δ1 · · · δt−1δt · · · × 2e︸ ︷︷ ︸
χ

− .δ0δ1 · · · δt−1 × 2e︸ ︷︷ ︸
χ̌

= .0 · · · 00︸ ︷︷ ︸
t

δt · · · × 2e

< .0 · · · 01︸ ︷︷ ︸
t

× 2e = 2−t2e.

Since χ is positive and δ0 = 1,
χ = .δ0δ1 · · · × 2e ≥ 1

2 × 2e.

Thus,
δχ

χ
≤ 2−t2e

1
22e

= 2−(t−1),

which can also be written as
δχ ≤ 2−(t−1)χ.

A careful analysis of what happens when χ equals zero or is negative yields

|δχ| ≤ 2−(t−1)|χ|.

https://www.youtube.com/watch?v=G2jawQW5WPc
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Example 6.2.2.2 The number 4/3 = 1.3333 · · · can be written as

1.3333 · · ·
=

1 + 0
2 + 1

4 + 0
8 + 1

16 + · · ·
= < convert to binary representation >

1.0101 · · · × 20

= < normalize >
.10101 · · · × 21

Now, if t = 4 then this would be truncated to

.1010× 21,

which equals the number

.101× 21 =
1
2 + 0

4 + 1
8 + 0

16 × 21

=
0.625× 2 = < convert to decimal >
1.25

The relative error equals
1.333 · · · − 1.25

1.333 · · · = 0.0625.

�
If χ̌ is computed by rounding instead of truncating, then

|δχ| ≤ 2−t|χ|.

We can abstract away from the details of the base that is chosen and whether rounding or truncation
is used by stating that storing χ as the floating point number χ̌ obeys

|δχ| ≤ εmach|χ|

where εmach is known as the machine epsilon or unit roundoff. When single precision floating point
numbers are used εmach ≈ 10−8, yielding roughly eight decimal digits of accuracy in the stored
value. When double precision floating point numbers are used εmach ≈ 10−16, yielding roughly
sixteen decimal digits of accuracy in the stored value.

Example 6.2.2.3 The number 4/3 = 1.3333 · · · can be written as

1.3333 · · ·
=

1 + 0
2 + 1

4 + 0
8 + 1

16 + · · ·
= < convert to binary representation >

1.0101 · · · × 20

= < normalize >
.10101 · · · × 21
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Now, if t = 4 then this would be rounded to

.1011× 21,

which is equals the number

.1011× 21 =
1
2 + 0

4 + 1
8 + 1

16 × 21

=
0.6875× 2 = < convert to decimal >
1.375

The relative error equals
|1.333 · · · − 1.375|

1.333 · · · = 0.03125.

�

Definition 6.2.2.4 Machine epsilon (unit roundoff). The machine epsilon (unit roundoff),
εmach, is defined as the smallest positive floating point number χ such that the floating point number
that represents 1 + χ is greater than one. ♦

Remark 6.2.2.5 The quantity εmach is machine dependent. It is a function of the parameters
characterizing how a specific architecture converts reals to floating point numbers.
Homework 6.2.2.1 Assume a floating point number system with β = 2, a mantissa with t digits,
and truncation when storing.

• Write the number 1 as a floating point number in this system.

• What is the εmach for this system?

[Solution]

6.2.3 Models of floating point computation
When computing with floating point numbers on a target computer, we will assume that all (floating
point) arithmetic that is performed is in terms of additions, subtractions, multiplications, and
divisions: {+,−,×, /}.

6.2.3.1 Notation

In our discussions, we will distinguish between exact and computed quantities. The function
fl(expression) returns the result of the evaluation of expression, where every operation is executed
in floating point arithmetic. For example, given χ, ψ, ζ, ω ∈ F and assuming that the expressions
are evaluated from left to right and order of operations is obeyed,

fl(χ+ ψ + ζ/ω)

is equivalent to
fl(fl(χ+ ψ) + fl(ζ/ω)).

Equality between the quantities lhs and rhs is denoted by lhs = rhs. Assignment of rhs to lhs is
denoted by lhs := rhs (lhs becomes rhs). In the context of a program, the statements lhs := rhs
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and lhs := fl(rhs) are equivalent. Given an assignment

κ := expression,

we use the notation κ̌ (pronounced "check kappa") to denote the quantity resulting from fl(expression),
which is actually stored in the variable κ:

κ̌ = fl(expression).

Remark 6.2.3.1 In future discussion, we will use the notation [·] as shorthand for fl(·).

6.2.3.2 Standard Computational Model (SCM)

YouTube: https://www.youtube.com/watch?v=RIsLyjFbonU
The Standard Computational Model (SCM) assumes that, for any two floating point numbers

χ and ψ, the basic arithmetic operations satisfy the equality

fl(χ op ψ) = (χ op ψ)(1 + ε), |ε| ≤ εmach, and op ∈ {+,−, ∗, /}.

The quantity ε is a function of χ, ψ and op. Sometimes we add a subscript (ε+, ε∗, · · · ) to indicate
what operation generated the (1 + ε) error factor. We always assume that all the input variables
to an operation are floating point numbers.

Remark 6.2.3.2 We can interpret the SCM as follows: These operations are performed exactly
and it is only in storing the result that a roundoff error occurs.

What really happens is that enough digits of the result are computed so that the net effect is
as if the result of the exact operation was stored.

Given χ, ψ ∈ F , performing any operation op ∈ {+,−, ∗, /} with χ and ψ in floating point
arithmetic, fl(χ op ψ) yields a result that is correct up to machine precision: Let ζ = χ op ψ and
ζ̌ = ζ + δζ = fl(χ op ψ). Then |δζ| ≤ εmach|ζ| and hence ζ̌ is close to ζ (it has k correct binary
digits).

Example 6.2.3.3 Consider the operation

κ = 4/3,

where we notice that both 4 and 3 can be exactly represented in our floating point system with
β = 2 and t = 4. Recall that the real number 4/3 = 1.3333 · · · is stored as .1010× 21, if t = 4 and
truncation is employed. This equals 1.25 in decimal representation. The relative error was 0.0625.

https://www.youtube.com/watch?v=RIsLyjFbonU
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Now
κ̌

=
fl(4/3)

=
1.25

=
1.333 · · ·+ (−0.0833 · · · )

=
1.333 · · · ×

(
1 + −0.08333···

1.333···

)
=

4/3× (1 + (−0.0625))
=

κ(1 + ε/),

where
|ε/| = 0.0625 ≤ 0.125︸ ︷︷ ︸

εmach = 2−(t−1)
.

�

6.2.3.3 Alternative Computational Model (ACM)

YouTube: https://www.youtube.com/watch?v=6jBxznXcivg
For certain problems it is convenient to use the Alternative Computational Model (ACM) [22],

which also assumes for the basic arithmetic operations that

fl(χ op ψ) = χ op ψ

1 + ε
, |ε| ≤ εmach, and op ∈ {+,−, ∗, /}.

As for the standard computation model, the quantity ε is a function of χ, ψ and op. Note that the
ε’s produced using the standard and alternative models are generally not equal. The Taylor series
expansion of 1/(1 + ε) is given by

1
1 + ε

= 1 + (−ε) +O(ε2),

which explains how the SCM and ACM are related.
The ACM is useful when analyzing algorithms that involve division. In this course, we don’t

analyze in detail any such algorithms. We include this discussion of ACM for completeness.

Remark 6.2.3.4 Sometimes it is more convenient to use the SCM and sometimes the ACM. Trial
and error, and eventually experience, will determine which one to use.

https://www.youtube.com/watch?v=6jBxznXcivg
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6.2.4 Stability of a numerical algorithm

YouTube: https://www.youtube.com/watch?v=_AoelpfTLhI
Correctness in the presence of error (e.g., when floating point computations are performed) takes

on a different meaning. For many problems for which computers are used, there is one correct answer
and we expect that answer to be computed by our program. The problem is that most real numbers
cannot be stored exactly in a computer memory. They are stored as approximations, floating point
numbers, instead. Hence storing them and/or computing with them inherently incurs error. The
question thus becomes "When is a program correct in the presence of such errors?"

Let us assume that we wish to evaluate the mapping f : D → R where D ⊂ Rn is the domain and
R ⊂ Rm is the range (codomain). Now, we will let f̌ : D → R denote a computer implementation
of this function. Generally, for x ∈ D it is the case that f(x) 6= f̌(x). Thus, the computed value
is not "correct". From earlier discussions about how the condition number of a matrix can amplify
relative error, we know that it may not be the case that f̌(x) is "close to" f(x): even if f̌ is an
exact implementation of f , the mere act of storing x may introduce a small error δx and f(x+ δx)
may be far from f(x) if f is ill-conditioned.

https://www.youtube.com/watch?v=_AoelpfTLhI
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Figure 6.2.4.1 In this illustation, f : D → R is a function to be evaluated. The function f̌
represents the implementation of the function that uses floating point arithmetic, thus incurring
errors. The fact that for a nearby value, x̌, the computed value equals the exact function applied
to the slightly perturbed input x, that is,

f(x̌) = f̌(x),

means that the error in the computation can be attributed to a small change in the input. If this
is true, then f̌ is said to be a (numerically) stable implementation of f for input x.

The following defines a property that captures correctness in the presence of the kinds of errors
that are introduced by computer arithmetic:

Definition 6.2.4.2 Backward stable implementation. Given the mapping f : D → R, where
D ⊂ Rn is the domain and R ⊂ Rm is the range (codomain), let f̌ : D → R be a computer
implementation of this function. We will call f̌ a backward stable (also called "numerically stable")
implementation of f on domain D if for all x ∈ D there exists a x̌ "close" to x such that f̌(x) = f(x̌).

♦
In other words, f̌ is a stable implementation if the error that is introduced is similar to that

introduced when f is evaluated with a slightly changed input. This is illustrated in Figure 6.2.4.1
for a specific input x. If an implemention is not stable, it is numerically unstable.

The algorithm is said to be forward stable on domain D if for all x ∈ D it is that case that
f̌(x) ≈ f(x). In other words, the computed result equals a slight perturbation of the exact result.
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Example 6.2.4.3 Under the SCM from the last unit, floating point addition, κ := χ + ψ, is a
backward stable operation.
Solution.

κ̌
= < computed value for κ >

[χ+ ψ]
= < SCM >

(χ+ ψ)(1 + ε+)
= < distribute >

χ(1 + ε+) + ψ(1 + ε+)
=

(χ+ δχ) + (ψ + δψ)

where

• |ε+| ≤ εmach,

• δχ = χε+,

• δψ = ψε+.

Hence κ̌ equals the exact result when adding nearby inputs. �

Homework 6.2.4.1
• ALWAYS/SOMETIMES/NEVER: Under the SCM from the last unit, floating point subtrac-

tion, κ := χ− ψ, is a backward stable operation.

• ALWAYS/SOMETIMES/NEVER: Under the SCM from the last unit, floating point multi-
plication, κ := χ× ψ, is a backward stable operation.

• ALWAYS/SOMETIMES/NEVER: Under the SCM from the last unit, floating point division,
κ := χ/ψ, is a backward stable operation.

[Answer] [Solution]

Ponder This 6.2.4.2 In the last homework, we showed that floating point division is backward
stable by showing that [χ/ψ] = (χ+ δχ)/ψ for suitably small δχ.

How would one show that [χ/ψ] = χ/(ψ + δψ) for suitably small δψ?

6.2.5 Conditioning versus stability

YouTube: https://www.youtube.com/watch?v=e29Yk4XCyLs
It is important to keep conditioning versus stability straight:

https://www.youtube.com/watch?v=e29Yk4XCyLs


WEEK 6. NUMERICAL STABILITY 253

• Conditioning is a property of the problem you are trying to solve. A problem is well-
conditioned if a small change in the input is guaranteed to only result in a small change
in the output. A problem is ill-conditioned if a small change in the input can result in a large
change in the output.

• Stability is a property of an implementation. If the implementation, when executed with
an input always yields an output that can be attributed to slightly changed input, then the
implementation is backward stable.

In other words, in the presence of roundoff error, computing a wrong answer may be due to the
problem (if it is ill-conditioned), the implementation (if it is numerically unstable), or a program-
ming bug (if the implementation is sloppy). Obviously, it can be due to some combination of
these.

Now,

• If you compute the solution to a well-conditioned problem with a numerically stable imple-
mentation, then you will get an answer that is close to the actual answer.

• If you compute the solution to a well-conditioned problem with a numerically unstable im-
plementation, then you may or may not get an answer that is close to the actual answer.

• If you compute the solution to an ill-conditioned problem with a numerically stable imple-
mentation, then you may or may not get an answer that is close to the actual answer.

Yet another way to look at this: A numerically stable implementation will yield an answer that is
as accurate as the conditioning of the problem warrants.

6.2.6 Absolute value of vectors and matrices
In the above discussion of error, the vague notions of "near" and "slightly perturbed" are used.
Making these notions exact usually requires the introduction of measures of size for vectors and
matrices, i.e., norms. When analyzing the stability of algorithms, we instead give all bounds in
terms of the absolute values of the individual elements of the vectors and/or matrices. While it is
easy to convert such bounds to bounds involving norms, the converse is not true.

Definition 6.2.6.1 Absolute value of vector and matrix. Given x ∈ Rn and A ∈ Rm×n,

|x| =


|χ0|
|χ1|
...

|χn−1|

 and |A| =


|α0,0| |α0,1| . . . |α0,n−1|
|α1,0| |α1,1| . . . |α1,n−1|
...

... . . . ...
|αm−1,0| |αm−1,1| . . . |αm−1,n−1|

.

♦

Definition 6.2.6.2 Let M∈{<,≤,=,≥, >} and x, y ∈ Rn. Then

|x|M |y| iff |χi|M |ψi|,

for all i = 0, . . . , n− 1. Similarly, given A and B ∈ Rm×n,

|A|M |B| iff |αij |M |βij |,

for all i = 0, . . . ,m− 1 and j = 0, . . . , n− 1. ♦
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The next Lemma is exploited in later sections:

Homework 6.2.6.1 Let A ∈ Rm×k and B ∈ Rk×n.
ALWAYS/SOMETIMES/NEVER: |AB| ≤ |A||B|. [Answer] [Solution]
The fact that the bounds that we establish can be easily converted into bounds involving norms

is a consequence of the following theorem, where ‖ ‖F indicates the Frobenius matrix norm.

Theorem 6.2.6.3 Let A,B ∈ Rm×n. If |A| ≤ |B| then ‖A‖F ≤ ‖B‖F , ‖A‖1 ≤ ‖B‖1, and
‖A‖∞ ≤ ‖B‖∞.

Homework 6.2.6.2 Prove Theorem 6.2.6.3 [Solution]

6.3 Error Analysis for Basic Linear Algebra Algorithms

6.3.1 Initial insights

YouTube: https://www.youtube.com/watch?v=OHqdJ3hjHFY
Before giving a general result, let us focus on the case where the vectors x and y have only a

few elements:
Example 6.3.1.1 Consider

x =
(
χ0
χ1

)
and y =

(
ψ0
ψ1

)
and the computation

κ := xT y.

Under the SCM given in Subsubsection 6.2.3.2, the computed result, κ̌, satisfies

κ̌ =
(
χ0
χ1

)T (
(1 + ε

(0)
∗ )(1 + ε

(1)
+ ) 0

0 (1 + ε
(1)
∗ )(1 + ε

(1)
+ )

)(
ψ0
ψ1

)
. (6.3.1)

https://www.youtube.com/watch?v=OHqdJ3hjHFY


WEEK 6. NUMERICAL STABILITY 255

Solution.

κ̌

= < κ̌ =
[
xT y

]
>( χ0

χ1

)T (
ψ0
ψ1

)
= < definition of xT y >

[χ0ψ0 + χ1ψ1]
= < each suboperation is performed in floating point arithmetic >

[[χ0ψ0] + [χ1ψ1]]
= < apply SCM multiple times >[

χ0ψ0(1 + ε
(0)
∗ ) + χ1ψ1(1 + ε

(1)
∗ )
]

= < apply SCM >

(χ0ψ0(1 + ε
(0)
∗ ) + χ1ψ1(1 + ε

(1)
∗ ))(1 + ε

(1)
+ )

= < distribute >

χ0ψ0(1 + ε
(0)
∗ )(1 + ε

(1)
+ ) + χ1ψ1(1 + ε

(1)
∗ )(1 + ε

(1)
+ )

= < commute >

χ0(1 + ε
(0)
∗ )(1 + ε

(1)
+ )ψ0 + χ1(1 + ε

(1)
∗ )(1 + ε

(1)
+ )ψ1

= < (perhaps too) slick way of expressing the final result >(
χ0
χ1

)T (
(1 + ε

(0)
∗ )(1 + ε

(1)
+ ) 0

0 (1 + ε
(1)
∗ )(1 + ε

(1)
+ )

)(
ψ0
ψ1

)
,

where |ε(0)
∗ |, |ε(1)

∗ |, |ε(1)
+ | ≤ εmach. �

An important insight from this example is that the result in (6.3.1) can be manipulated to
associate the accummulated error with vector x as in

κ̌ =
(
χ0(1 + ε

(0)
∗ )(1 + ε

(1)
+ )

χ1(1 + ε
(1)
∗ )(1 + ε

(1)
+ )

)T (
ψ0
ψ1

)
or with vector y

κ̌ =
(
χ0
χ1

)T (
ψ0(1 + ε

(0)
∗ )(1 + ε

(1)
+ )

ψ1(1 + ε
(1)
∗ )(1 + ε

(1)
+ )

)
.

This will play a role when we later analyze algorithms that use the dot product.

Homework 6.3.1.1 Consider

x =

 χ0
χ1
χ2

 and y =

 ψ0
ψ1
ψ2


and the computation

κ := xT y

computed in the order indicated by

κ := (χ0ψ0 + χ1ψ1) + χ2ψ2.
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Employ the SCM given in Subsubsection 6.2.3.2, to derive a result similar to that given in (6.3.1).
[Answer] [Solution]

6.3.2 Backward error analysis of dot product: general case

YouTube: https://www.youtube.com/watch?v=PmFUqJXogm8
Consider now

κ := xT y =


χ0
χ1
...

χn−2
χn−1



T 
ψ0
ψ1
...

ψn−2
ψn−1

 =
((

(χ0ψ0 + χ1ψ1) + · · ·
)

+ χn−2ψn−2
)

+ χn−1ψn−1.

Under the computational model given in Subsection 6.2.3 the computed result, κ̌, satisfies

κ̌ =
(((

χ0ψ0(1 + ε
(0)
∗ ) + χ1ψ1(1 + ε

(1)
∗ )
)
(1 + ε

(1)
+ ) + · · ·

)
(1 + ε

(n−2)
+ )

+ χn−1ψn−1(1 + ε
(n−1)
∗ )

)
(1 + ε

(n−1)
+ )

= χ0ψ0(1 + ε
(0)
∗ )(1 + ε

(1)
+ )(1 + ε

(2)
+ ) · · · (1 + ε

(n−1)
+ )

+ χ1ψ1(1 + ε
(1)
∗ )(1 + ε

(1)
+ )(1 + ε

(2)
+ ) · · · (1 + ε

(n−1)
+ )

+ χ2ψ2(1 + ε
(2)
∗ ) (1 + ε

(2)
+ ) · · · (1 + ε

(n−1)
+ )

+ · · ·
+ χn−1ψn−1(1 + ε

(n−1)
∗ ) (1 + ε

(n−1)
+ )

=
∑n−1
i=0

(
χiψi(1 + ε

(i)
∗ )

∏n−1
j=i (1 + ε

(j)
+ )
)

so that

κ̌ =
n−1∑
i=0

χiψi(1 + ε
(i)
∗ )

n−1∏
j=i

(1 + ε
(j)
+ )

 , (6.3.2)

where ε(0)
+ = 0 and |ε(0)

∗ |, |ε(j)∗ |, |ε(j)+ | ≤ εmach for j = 1, . . . , n− 1.
Clearly, a notation to keep expressions from becoming unreadable is desirable. For this reason

we introduce the symbol θj :

https://www.youtube.com/watch?v=PmFUqJXogm8
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YouTube: https://www.youtube.com/watch?v=6qnYXaw4Bms

Lemma 6.3.2.1 Let εi ∈ R, 0 ≤ i ≤ n− 1, nεmach < 1, and |εi| ≤ εmach. Then ∃ θn ∈ R such that

n−1∏
i=0

(1 + εi)±1 = 1 + θn,

with |θn| ≤ nεmach/(1− nεmach).
Here the ±1 means that on an individual basis, the term is either used in a multiplication or a

division. For example
(1 + ε0)±1(1 + ε1)±1

might stand for

(1 + ε0)(1 + ε1) or (1 + ε0)
(1 + ε1) or (1 + ε1)

(1 + ε0) or 1
(1 + ε1)(1 + ε0)

so that this lemma can accommodate an analysis that involves a mixture of the Standard and Al-
ternative Computational Models (SCM and ACM).
Proof. By Mathematical Induction.

• Base case. n = 1. Trivial.

• Inductive Step. The Inductive Hypothesis (I.H.) tells us that for all εi ∈ R, 0 ≤ i ≤ n − 1,
nεmach < 1, and |εi| ≤ εmach, there exists a θn ∈ R such that

n−1∏
i=0

(1 + εi)±1 = 1 + θn, with |θn| ≤ nεmach/(1− nεmach).

We will show that if εi ∈ R, 0 ≤ i ≤ n, (n+ 1)εmach < 1, and |εi| ≤ εmach, then there exists a
θn+1 ∈ R such that

n∏
i=0

(1 + εi)±1 = 1 + θn+1, with |θn+1| ≤ (n+ 1)εmach/(1− (n+ 1)εmach).

◦ Case 1: The last term comes from the application of the SCM.∏n
i=0(1 + εi)±1 =

∏n−1
i=0 (1 + εi)±1(1 + εn). See Ponder This 6.3.2.1.

◦ Case 2: The last term comes from the application of the ACM.∏n
i=0(1 + εi)±1 = (

∏n−1
i=0 (1 + εi)±1)/(1 + εn). By the I.H. there exists a θn such that

https://www.youtube.com/watch?v=6qnYXaw4Bms
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(1 + θn) =
∏n−1
i=0 (1 + εi)±1 and |θn| ≤ nεmach/(1− nεmach). Then∏n−1

i=0 (1 + εi)±1

1 + εn
= 1 + θn

1 + εn
= 1 + θn − εn

1 + εn︸ ︷︷ ︸
θn+1

,

which tells us how to pick θn+1. Now

|θn+1|
= < definition of θn+1 >

|(θn − εn)/(1 + εn)|
≤ < |θn − εn| ≤ |θn|+ |εn| ≤ |θn|+ εmach >

(|θn|+ εmach)/(|1 + εn|)
≤ < |1 + εn| ≥ 1− |εn| ≥ 1− εmach >

(|θn|+ εmach)/(1− εmach)
≤ < bound |θn| using I.H. >

( nεmach
1−nεmach

+ εmach)/(1− εmach)
= < algebra >

(nεmach + (1− nεmach)εmach)/((1− nεmach)(1− εmach))

= < algebra >
((n+ 1)εmach − nε2mach)/(1− (n+ 1)εmach + nε2mach)
≤ < increase numerator; decrease denominator >

((n+ 1)εmach)/(1− (n+ 1)εmach).

• By the Principle of Mathematical Induction, the result holds.

�

Ponder This 6.3.2.1 Complete the proof of Lemma 6.3.2.1.
Remark 6.3.2.2 The quantity θn will be used throughout these notes. It is not intended to be a
specific number. Instead, it is an order of magnitude identified by the subscript n, which indicates
the number of error factors of the form (1 + εi) and/or (1 + εi)−1 that are grouped together to form
(1 + θn).

Since we will often encounter the bound on |θn| that appears in Lemma 6.3.2.1 we assign it a
symbol as follows:

Definition 6.3.2.3 For all n ≥ 1 and nεmach < 1, define

γn = nεmach/(1− nεmach).

♦
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With this notation, (6.3.2) simplifies to

κ̌
=

χ0ψ0(1 + θn) + χ1ψ1(1 + θn) + · · ·+ χn−1ψn−1(1 + θ2)
=
χ0
χ1
χ2
...

χn−1



T 
(1 + θn) 0 0 · · · 0

0 (1 + θn) 0 · · · 0
0 0 (1 + θn−1) · · · 0
...

...
... . . . ...

0 0 0 · · · (1 + θ2)




ψ0
ψ1
ψ2
...

ψn−1


=
χ0
χ1
χ2
...

χn−1



T I +


θn 0 0 · · · 0
0 θn 0 · · · 0
0 0 θn−1 · · · 0
...

...
... . . . ...

0 0 0 · · · θ2




︸ ︷︷ ︸

I + Σ(n)


ψ0
ψ1
ψ2
...

ψn−1



=
xT (I + Σ(n))y,

(6.3.3)

where |θj | ≤ γj , j = 2, . . . , n.

Remark 6.3.2.4 Two instances of the symbol θn, appearing even in the same expression, typically
do not represent the same number. For example, in (6.3.3) a (1 + θn) multiplies each of the terms
χ0ψ0 and χ1ψ1, but these two instances of θn, as a rule, do not denote the same quantity. In
particular, one should be careful when factoring out such quantities.

YouTube: https://www.youtube.com/watch?v=Uc6NuDZMakE
As part of the analyses the following bounds will be useful to bound error that accumulates:

Lemma 6.3.2.5 If n, b ≥ 1 then γn ≤ γn+b and γn + γb + γnγb ≤ γn+b.
This lemma will be invoked when, for example, we want to bound |ε| such that 1 + ε = (1 +

ε1)(1 + ε2) = 1 + (ε1 + ε2 + ε1ε2) knowing that |ε1| ≤ γn and |ε2| ≤ γb.

Homework 6.3.2.2 Prove Lemma 6.3.2.5. [Solution]

https://www.youtube.com/watch?v=Uc6NuDZMakE
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6.3.3 Dot product: error results

YouTube: https://www.youtube.com/watch?v=QxUCV4k8Gu8
It is of interest to accumulate the roundoff error encountered during computation as a pertur-

bation of input and/or output parameters:

• κ̌ = (x+ δx)T y;
(κ̌ is the exact output for a slightly perturbed x)

• κ̌ = xT (y + δy);
(κ̌ is the exact output for a slightly perturbed y)

• κ̌ = xT y + δκ.
(κ̌ equals the exact result plus an error)

The first two are backward error results (error is accumulated onto input parameters, showing that
the algorithm is numerically stable since it yields the exact output for a slightly perturbed input)
while the last one is a forward error result (error is accumulated onto the answer). We will see that
in different situations, a different error result may be needed by analyses of operations that require
a dot product.

Let us focus on the second result. Ideally one would show that each of the entries of y is slightly
perturbed relative to that entry:

δy =

 σ0ψ0
...

σn−1ψn−1

 =

 σ0 · · · 0
... . . . ...
0 · · · σn−1


 ψ0

...
ψn−1

 = Σy,

where each σi is "small" and Σ = diag(σ0, . . . , σn−1). The following special structure of Σ, inspired
by (6.3.3) will be used in the remainder of this note:

Σ(n) =


0× 0 matrix if n = 0
θ1 if n = 1
diag(θn, θn, θn−1, . . . , θ2) otherwise .

Recall that θj is an order of magnitude variable with |θj | ≤ γj .

Homework 6.3.3.1 Let k ≥ 0 and assume that |ε1|, |ε2| ≤ εmach, with ε1 = 0 if k = 0. Show that(
I + Σ(k) 0

0 (1 + ε1)

)
(1 + ε2) = (I + Σ(k+1)).

Hint: Reason the cases where k = 0 and k = 1 separately from the case where k > 1. [Solution]
We state a theorem that captures how error is accumulated by the algorithm.

https://www.youtube.com/watch?v=QxUCV4k8Gu8
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Theorem 6.3.3.1 Let x, y ∈ Rn and let κ := xT y be computed in the order indicated by

(· · · ((χ0ψ0 + χ1ψ1) + χ2ψ2) + · · · ) + χn−1ψn−1.

Then
κ̌ =

[
xT y

]
= xT (I + Σ(n))y.

Proof.
Proof by Mathematical Induction on n, the size of vectors x and y.
When going through the below proof, it will help to look at Section 3 in

• [7] Paolo Bientinesi, Robert A. van de Geijn, The Science of Deriving Stability Analyses,
FLAME Working Note #33. Aachen Institute for Computational Engineering Sciences,
RWTH Aachen. TR AICES-2008-2. November 2008.

which relates the algorithm for computing a dot product using our "partition-repartition" FLAME
notation to the choices xT , yT , etc. It also links the inductive proof to that algorithm.

• Base case.
m(x) = m(y) = 0. Trivial!

• Inductive Step.
Inductive Hypothesis (I.H.): Assume that if xT , yT ∈ Rk, k > 0, then

fl(xT
TyT) = xTT (I + ΣT )yT , where ΣT = Σ(k).

We will show that when xT , yT ∈ Rk+1, the equality fl(xT
TyT) = xTT (I + ΣT )yT holds true

again. Assume that xT , yT ∈ Rk+1, and partition xT →
(
x0
χ1

)
and yT →

(
y0
ψ1

)
. Then

fl(
(
x0
χ1

)T(
y0
ψ1

)
)

= < definition >
fl((fl(xT

0 y0) + fl(χ1ψ1))
= < I.H. with xT = x0, yT = y0, and Σ0 = Σ(k) >

fl(xT
0 (I + Σ0)y0 + fl(χ1ψ1))
= < SCM, twice >(

xT0 (I + Σ0)y0 + χ1ψ1(1 + ε∗)
)

(1 + ε+)
= < rearrangement >(
x0
χ1

)T (
(I + Σ0) 0

0 (1 + ε∗)

)
(1 + ε+)

(
y0
ψ1

)
= < renaming >

xTT (I + ΣT )yT

where |ε∗|, |ε+| ≤ εmach, ε+ = 0 if k = 0, and

(I + ΣT ) =
(

(I + Σ0) 0
0 (1 + ε∗)

)
(1 + ε+)

so that ΣT = Σ(k+1).
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• By the Principle of Mathematical Induction, the result holds.

�
A number of useful consequences of Theorem 6.3.3.1 follow. These will be used later as an

inventory (library) of error results from which to draw when analyzing operations and algorithms
that utilize a dot product.

Corollary 6.3.3.2 Under the assumptions of Theorem 6.3.3.1 the following relations hold:
R-1B κ̌ = (x+ δx)T y, where |δx| ≤ γn|x|,

R-2B κ̌ = xT (y + δy), where |δy| ≤ γn|y|;

R-1F κ̌ = xT y + δκ, where |δκ| ≤ γn|x|T |y|.
Proof. R-1B

We leave the proof of Corollary 6.3.3.2 R-1B as an exercise.
R-2B
The proof of Corollary 6.3.3.2 R-2B is, of course, just a minor modification of the proof of

Corollary 6.3.3.2 R-1B.
R-1F
For Corollary 6.3.3.2 R-1F, let δκ = xTΣ(n)y, where Σ(n) is as in Theorem 6.3.3.1. Then

|δκ| = |xTΣ(n)y|
≤ |χ0||θn||ψ0|+ |χ1||θn||ψ1|+ · · ·+ |χn−1||θ2||ψn−1|
≤ γn|χ0||ψ0|+ γn|χ1||ψ1|+ · · ·+ γ2|χn−1||ψn−1|
≤ γn|x|T |y|.

�

Homework 6.3.3.2 Prove Corollary 6.3.3.2 R1-B. [Solution]

6.3.4 Matrix-vector multiplication

YouTube: https://www.youtube.com/watch?v=q7rACPOu4ZQ
Assume A ∈ Rm×n, x ∈ Rn, and y ∈ Rm. Partition

A =


ãT0
ãT1
...

ãTm−1

 and y =


ψ0
ψ1
...

ψm−1

 .

https://www.youtube.com/watch?v=q7rACPOu4ZQ
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Then computing y := Ax can be orchestrated as
ψ0
ψ1
...

ψm−1

 :=


ãT0 x
ãT1 x
...

ãTm−1x

 . (6.3.4)

From R-1B 6.3.3.2 regarding the dot product we know that

y̌ =


ψ̌0
ψ̌1
...

ψ̌m−1

 =


(ã0 + δ̃a0)Tx
(ã1 + δ̃a1)Tx

...
(ãm−1 + δ̃am−1)Tx



=




ãT0
ãT1
...

ãTm−1

+


δ̃aT0
δ̃aT1
...

δ̃aTm−1


x = (A+ ∆A)x,

where |δ̃ai| ≤ γn|ãi|, i = 0, . . . ,m− 1, and hence |∆A| ≤ γn|A|. .
Also, from Corollary 6.3.3.2 R-1F regarding the dot product we know that

y̌ =


ψ̌0
ψ̌1
...

ψ̌m−1

 =


ãT0 x+ δψ0
ãT1 x+ δψ1

...
ãTm−1x+ δψm−1

 =


ãT0
ãT1
...

ãTm−1

x+


δψ0
δψ1
...

δψm−1

 = Ax+ δy.

where |δψi| ≤ γn|ãi|T |x| and hence |δy| ≤ γn|A||x|.
The above observations can be summarized in the following theorem:

Theorem 6.3.4.1 Error results for matrix-vector multiplication. Let A ∈ Rm×n, x ∈ Rn, y ∈ Rm
and consider the assignment y := Ax implemented via dot products as expressed in (6.3.4). Then
these equalities hold:
R-1B y̌ = (A+ ∆A)x, where |∆A| ≤ γn|A|.

R-1F y̌ = Ax+ δy, where |δy| ≤ γn|A||x|.
Ponder This 6.3.4.1 In the above theorem, could one instead prove the result

y̌ = A(x+ δx),

where δx is "small"? [Solution]
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6.3.5 Matrix-matrix multiplication

YouTube: https://www.youtube.com/watch?v=pvBMuIzIob8
The idea behind backward error analysis is that the computed result is the exact result when

computing with changed inputs. Let’s consider matrix-matrix multiplication:

C := AB.

What we would like to be able to show is that there exist ∆A and ∆B such that the computed
result, Č, satisfies

Č := (A+ ∆A)(B + ∆B).

Let’s think about this...
Ponder This 6.3.5.1 Can one find matrices ∆A and ∆B such that

Č = (A+ ∆A)(B + ∆B)?

YouTube: https://www.youtube.com/watch?v=3d6kQ6rnRhA
For matrix-matrix multiplication, it is possible to "throw" the error onto the result, as summa-

rized by the following theorem:

Theorem 6.3.5.1 Forward error for matrix-matrix multiplication. Let C ∈ Rm×n,
A ∈ Rm×k, and B ∈ Rk×n and consider the assignment C := AB implemented via matrix-vector
multiplication. Then there exists ∆C ∈ Rm×n such that
Č = AB + ∆C, where |∆C| ≤ γk|A||B|.

Homework 6.3.5.2 Prove Theorem 6.3.5.1. [Solution]

https://www.youtube.com/watch?v=pvBMuIzIob8
https://www.youtube.com/watch?v=3d6kQ6rnRhA
https://www.youtube.com/watch?v=rxKba-pnquQ
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YouTube: https://www.youtube.com/watch?v=rxKba-pnquQ

Remark 6.3.5.2 In practice, matrix-matrix multiplication is often the parameterized operation
C := αAB+βC. A consequence of Theorem 6.3.5.1 is that for β 6= 0, the error can be attributed to
a change in parameter C, which means the error has been "thrown back" onto an input parameter.

6.4 Error Analysis for Solving Linear Systems

6.4.1 Numerical stability of triangular solve

YouTube: https://www.youtube.com/watch?v=ayj_rNkSMig
We now use the error results for the dot product to derive a backward error result for solving

Lx = y, where L is an n×n lower triangular matrix, via the algorithm in Figure 6.4.1.1, a variation
on the algorithm in Figure 5.3.5.1 that stores the result in vector x and does not assume that L is
unit lower triangular.

Solve Lx = y

L→
(
LTL LTR
LBL LBR

)
, x→

(
xT
xB

)
, y →

(
yT
yB

)
LTL is 0× 0 and yT , xT have 0 elements

while n(LTL) < n(L)(
LTL LTR
LBL LBR

)
→

 L00 l01 L02
lT10 λ11 lT12
L20 l21 L22

 ,( xT
xB

)
→

 x0
χ1
x2

 ,( yT
yB

)
→

 y0
ψ1
y2


χ1 := (ψ1 − lT10x0)/λ11(
LTL LTR
LBL LBR

)
←

 L00 l01 L02
lT10 λ11 lT12
L20 l21 L22

 ,( xT
xB

)
←

 x0
χ1
x2

 ,( yT
yB

)
←

 y0
ψ1
y2


endwhile

Figure 6.4.1.1 Dot product based lower triangular solve algorithm.
To establish the backward error result for this algorithm, we need to understand the error

incurred in the key computation
χ1 := (ψ1 − lT10x0)/λ11.

The following theorem gives the required (forward error) result, abstracted away from the specifics
of how it occurs in the lower triangular solve algorithm.

Lemma 6.4.1.2 Let n ≥ 1, λ, ν ∈ R and x, y ∈ Rn. Assume λ 6= 0 and consider the computation

ν := (α− xT y)/λ,

https://www.youtube.com/watch?v=ayj_rNkSMig
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Then
(λ+ δλ)ν̌ = α− (x+ δx)T y, where |δx| ≤ γn|x| and |δλ| ≤ γ2|λ|.

Homework 6.4.1.1 Prove Lemma 6.4.1.2 [Hint] [Solution]
The errror result for the algorithm in Figure 6.4.1.1 is given by

Theorem 6.4.1.3 Let L ∈ Rn×n be a nonsingular lower triangular matrix and let x̌ be the com-
puted result when executing Figure 6.4.1.1 to solve Lx = y under the computation model from
Subsection 6.2.3. Then there exists a matrix ∆L such that

(L+ ∆L)x̌ = y where |∆L| ≤ max(γ2, γn−1)|L|.
The reasoning behind the result is that one expects the maximal error to be incurred during

the final iteration when computing χ1 := (ψ1 − lT10x0)/λ11. This fits Lemma 6.4.1.2, except that
this assignment involves a dot product with vectors of length n− 1 rather than of length n.

You now prove Theorem 6.4.1.3 by first proving the special cases where n = 1 and n = 2, and
then the general case.

Homework 6.4.1.2 Prove Theorem 6.4.1.3 for the case where n = 1. [Solution]

Homework 6.4.1.3 Prove Theorem 6.4.1.3 for the case where n = 2. [Solution]

Homework 6.4.1.4 Prove Theorem 6.4.1.3 for n ≥ 1. [Solution]

YouTube: https://www.youtube.com/watch?v=GB7wj7_dhCE
A careful examination of the solution to Homework 6.4.1.2, together with the fact that γn−1 ≤ γn

allows us to state a slightly looser, but cleaner, result of Theorem 6.4.1.3:

Corollary 6.4.1.4 Let L ∈ Rn×n be a nonsingular lower triangular matrix and let x̌ be the com-
puted result when executing Figure 6.4.1.1 to solve Lx = y under the computation model from
Subsection 6.2.3. Then there exists a matrix ∆L such that

(L+ ∆L)x̌ = y where |∆L| ≤ γn|L|.

6.4.2 Numerical stability of LU factorization

YouTube: https://www.youtube.com/watch?v=fds-FeL28ok

https://www.youtube.com/watch?v=GB7wj7_dhCE
https://www.youtube.com/watch?v=fds-FeL28ok
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The numerical stability of various LU factorization algorithms as well as the triangular solve
algorithms can be found in standard graduate level numerical linear algebra texts [19] [22]. Of
particular interest may be the analysis of the Crout variant of LU factorization 5.5.1.4 in

• [6] Paolo Bientinesi, Robert A. van de Geijn, Goal-Oriented and Modular Stability Analysis,
SIAM Journal on Matrix Analysis and Applications , Volume 32 Issue 1, February 2011.

• [7] Paolo Bientinesi, Robert A. van de Geijn, The Science of Deriving Stability Analyses,
FLAME Working Note #33. Aachen Institute for Computational Engineering Sciences,
RWTH Aachen. TR AICES-2008-2. November 2008. (Technical report version with ex-
ercises.)

since these papers use the same notation as we use in our notes. Here is the pertinent result from
those papers:

Theorem 6.4.2.1 Backward error of Crout variant for LU factorization. Let A ∈ Rn×n
and let the LU factorization of A be computed via the Crout variant, yielding approximate factors
Ľ and Ǔ . Then

(A+ ∆A) = ĽǓ with |∆A| ≤ γn|Ľ||Ǔ |.

6.4.3 Numerical stability of linear solve via LU factorization

YouTube: https://www.youtube.com/watch?v=c1NsTSCpe1k
Let us now combine the results from Subsection 6.4.1 and Subsection 6.4.2 into a backward

error result for solving Ax = y via LU factorization and two triangular solves.

Theorem 6.4.3.1 Let A ∈ Rn×nand x, y ∈ Rn with Ax = y. Let x̌ be the approximate solution
computed via the following steps:

• Compute the LU factorization, yielding approximate factors Ľ and Ǔ .

• Solve Ľz = y, yielding approximate solution ž.

• Solve Ǔx = ž, yielding approximate solution x̌.

Then
(A+ ∆A)x̌ = y with |∆A| ≤ (3γn + γ2

n)|Ľ||Ǔ |.
We refer the interested learner to the proof in the previously mentioned papers [6] [7].

Homework 6.4.3.1 The question left is how a change in a nonsingular matrix affects the accuracy
of the solution of a linear system that involves that matrix. We saw in Subsection 1.4.1 that if

Ax = y and A(x+ δx) = y + δy

https://www.youtube.com/watch?v=c1NsTSCpe1k
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then
‖δx‖
‖x‖

≤ κ(A)‖δy‖
‖y‖

when ‖ · ‖ is a subordinate norm. But what we want to know is how a change in A affects the
solution:

Ax = y and (A+ ∆A)(x+ δx) = y

then
‖δx‖
‖x‖

≤
κ(A)‖∆A‖‖A‖

1− κ(A)‖∆A‖‖A‖

.

Prove this! [Solution]
The last homework brings up a good question: If A is nonsingular, how small does ∆A need to

be for it to be nonsingular?

Theorem 6.4.3.2 Let A be nonsingular, ‖ · ‖ be a subordinate norm, and

‖∆A‖
‖A‖

<
1

κ(A) .

Then A+ ∆A is nonsingular.
Proof. Proof by contradiction.

Assume that A is nonsingular,
‖∆A‖
‖A‖

<
1

κ(A) . (6.4.1)

and A+ ∆A is singular. We will show this leads to a contradition.
Since A+ ∆A is singular, there exists x 6= 0 such that (A+ ∆A)x = 0. We can rewrite this as

x = −A−1∆Ax

and hence
‖x‖ = ‖A−1∆Ax‖ ≤ ‖A−1‖‖∆A‖‖x‖.

Dividing both sides by ‖x‖ yields
1 ≤ ‖A−1‖‖∆A‖

and hence 1
‖A−1‖ ≤ ‖∆A‖ and finally

1
‖A‖‖A−1‖

≤ ‖∆A‖
‖A‖

,

which contradicts (6.4.1) since ‖A‖‖A−1‖ = κ(A). �
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6.4.4 Numerical stability of linear solve via LU factorization with partial pivoting

YouTube: https://www.youtube.com/watch?v=n95C8qjMBcI
The analysis of LU factorization without partial pivoting is related to that of LU factorization

with partial pivoting as follows:

• We have shown that LU factorization with partial pivoting is equivalent to the LU factoriza-
tion without partial pivoting on a pre-permuted matrix: PA = LU , where P is a permutation
matrix.

• The permutation (exchanging of rows) doesn’t involve any floating point operations and
therefore does not generate error.

It can therefore be argued that, as a result, the error that is accumulated is equivalent with or
without partial pivoting

More slowly, what if we took the following approach to LU factorization with partial pivoting:

• Compute the LU factorization with partial pivoting yielding the pivot matrix P , the unit
lower triangular matrix L, and the upper triangular matrix U . In exact arithmetic this would
mean these matrices are related by PA = LU.

• In practice, no error exists in P (except that a wrong index of a row with which to pivot may
result from roundoff error in the intermediate results in matrix A) and approximate factors
Ľ and Ǔ are computed.

• If we now took the pivot matrix P and formed B = PA (without incurring error since rows are
merely swapped) and then computed the LU factorization of B, then the computed L and U
would equal exactly the Ľ and Ǔ that resulted from computing the LU factorization with row
pivoting with A in floating point arithmetic. Why? Because the exact same computations are
performed although possibly with data that is temporarily in a different place in the matrix
at the time of that computation.

• We know that therefore Ľ and Ǔ satisfy

B + ∆B = ĽǓ , where |∆B| ≤ γn|Ľ||Ǔ |..

We conclude that
PA+ ∆B = ĽǓ , where |∆B| ≤ γn|Ľ||Ǔ |

or, equivalently,
P (A+ ∆A) = ĽǓ , where P |∆A| ≤ γn|Ľ||Ǔ |

where ∆B = P∆A and we note that P |∆A| = |P∆A| (taking the absolute value of a matrix and
then swapping rows yields the same matrix as when one first swaps the rows and then takes the
absolute value).

https://www.youtube.com/watch?v=n95C8qjMBcI
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6.4.5 Is LU with Partial Pivoting Stable?

YouTube: https://www.youtube.com/watch?v=TdLM41LCma4
The last unit gives a backward error result regarding LU factorization (and, by extention, LU

factorization with pivoting):

(A+ ∆A) = ĽǓ with |∆A| ≤ γn|Ľ||Ǔ |..

The question now is: does this mean that LU factorization with partial pivoting is stable? In other
words, is ∆A, which we bounded with |∆A| ≤ γn|Ľ||Ǔ |, always small relative to the entries of |A|?
The following exercise gives some insight:

Homework 6.4.5.1 Apply LU with partial pivoting to

A =

 1 0 1
−1 1 1
−1 −1 1

 .
Pivot only when necessary. [Solution]

Homework 6.4.5.2 Generalize the insights from the last homework to a n × n matrix. What is
the maximal element growth that is observed? [Solution]

From these exercises we conclude that even LU factorization with partial pivoting can yield
large (exponential) element growth in U .

In practice, this does not seem to happen and LU factorization is considered to be stable.

6.5 Enrichments

6.5.1 Systematic derivation of backward error analyses
Throughout the course, we have pointed out that the FLAME notation facilitates the systematic
derivation of linear algebra algorithms. The papers

• [6] Paolo Bientinesi, Robert A. van de Geijn, Goal-Oriented and Modular Stability Analysis,
SIAM Journal on Matrix Analysis and Applications , Volume 32 Issue 1, February 2011.

• [7] Paolo Bientinesi, Robert A. van de Geijn, The Science of Deriving Stability Analyses,
FLAME Working Note #33. Aachen Institute for Computational Engineering Sciences,
RWTH Aachen. TR AICES-2008-2. November 2008. (Technical report version of the SIAM
paper, but with exercises.)

extend this to the systematic derivation of the backward error analysis of algorithms. Other publi-
cations and texts present error analyses on a case-by-case basis (much like we do in these materials)
rather than as a systematic and comprehensive approach.

https://www.youtube.com/watch?v=TdLM41LCma4
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6.5.2 LU factorization with pivoting can fail in practice
While LU factorization with pivoting is considered to be a numerically stable approach to solving
linear systems, the following paper discusses cases where it may fail in practice:

• [18] Leslie V. Foster, Gaussian elimination with partial pivoting can fail in practice, SIAM
Journal on Matrix Analysis and Applications, 15 (1994), pp. 1354–1362.

Also of interest may be the paper

• [50] Stephen J. Wright, A Collection of Problems for Which {G}aussian Elimination with
Partial Pivoting is Unstable, SIAM Journal on Scientific Computing, Vol. 14, No. 1, 1993.

which discusses a number of (not necessarily practical) examples where LU factorization with
pivoting fails.

6.5.3 The IEEE floating point standard
A colleague of ours, Sid Chatterjee, share the below video on IEEE Standard floating point arith-
metic. While we choose to abtract away from the details, It is important to be aware of them.

Unfortunately, we have not figured out how to embed this video, so you will have to access it
via the following link: Lecture by Prof. Sid Chatterjee (the lecture starts around the 1:15 minute
mark).

6.6 Wrap Up

6.6.1 Additional homework
Homework 6.6.1.1 In Units 6.3.1-3 we analyzed how error accumulates when computing a dot
product of x and y of size m in the order indicated by

κ = ((· · · ((χ0ψ0 + χ1ψ1) + χ2ψ2) + · · · ) + χm−1ψm−1).

Let’s illustrate an alternative way of computing the dot product:
• For m = 2:

κ = χ0ψ0 + χ1ψ1

• For m = 4:
κ = (χ0ψ0 + χ1ψ1) + (χ2ψ2 + χ3ψ3)

• For m = 8:

κ = ((χ0ψ0 + χ1ψ1) + (χ2ψ2 + χ3ψ3)) + ((χ4ψ4 + χ5ψ5) + (χ6ψ6 + χ7ψ7))

and so forth. Analyze how under the SCM error accumulates and state backward stability results.
You may assume that m is a power of two.

https://www.dropbox.com/s/inht3hp5hd93959/210204-CS%20429C-Chatterjee.mp4
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6.6.2 Summary
In our discussions, the set of floating point numbers, F , is the set of all numbers χ = µ× βe such
that

• β = 2,

• µ = ±.δ0δ1 · · · δt−1 (µ has only t (binary) digits), where δj ∈ {0, 1}),

• δ0 = 0 iff µ = 0 (the mantissa is normalized), and

• −L ≤ e ≤ U .
Definition 6.6.2.1 Machine epsilon (unit roundoff). The machine epsilon (unit roundoff),
εmach, is defined as the smallest positive floating point number χ such that the floating point number
that represents 1 + χ is greater than one. ♦

fl(expression) = [expression]

equals the result when computing expression using floating point computation (rounding or trun-
cating as every intermediate result is stored). If

κ = expression

in exact arithmetic, then we indicate the associated floating point result with

κ̌ = [expression].

The Standard Computational Model (SCM) assumes that, for any two floating point numbers
χ and ψ, the basic arithmetic operations satisfy the equality

fl(χ op ψ) = (χ op ψ)(1 + ε), |ε| ≤ εmach, and op ∈ {+,−, ∗, /}.

The Alternative Computational Model (ACM) assumes for the basic arithmetic operations that

fl(χ op ψ) = χ op ψ

1 + ε
, |ε| ≤ εmach, and op ∈ {+,−, ∗, /}.

Definition 6.6.2.2 Backward stable implementation. Given the mapping f : D → R, where
D ⊂ Rn is the domain and R ⊂ Rm is the range (codomain), let f̌ : D → R be a computer
implementation of this function. We will call f̌ a backward stable (also called "numerically stable")
implementation of f on domain D if for all x ∈ D there exists a x̌ "close" to x such that f̌(x) = f(x̌).

♦

• Conditioning is a property of the problem you are trying to solve. A problem is well-
conditioned if a small change in the input is guaranteed to only result in a small change
in the output. A problem is ill-conditioned if a small change in the input can result in a large
change in the output.

• Stability is a property of an implementation. If the implementation, when executed with
an input always yields an output that can be attributed to slightly changed input, then the
implementation is backward stable.
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Definition 6.6.2.3 Absolute value of vector and matrix. Given x ∈ Rn and A ∈ Rm×n,

|x| =


|χ0|
|χ1|
...

|χn−1|

 and |A| =


|α0,0| |α0,1| . . . |α0,n−1|
|α1,0| |α1,1| . . . |α1,n−1|
...

... . . . ...
|αm−1,0| |αm−1,1| . . . |αm−1,n−1|

.

♦

Definition 6.6.2.4 Let M∈{<,≤,=,≥, >} and x, y ∈ Rn. Then

|x|M |y| iff |χi|M |ψi|,

with i = 0, . . . , n− 1. Similarly, given A and B ∈ Rm×n,

|A|M |B| iff |αij |M |βij |,

with i = 0, . . . ,m− 1 and j = 0, . . . , n− 1. ♦

Theorem 6.6.2.5 Let A,B ∈ Rm×n. If |A| ≤ |B| then ‖A‖1 ≤ ‖B‖1, ‖A‖∞ ≤ ‖B‖∞, and
‖A‖F ≤ ‖B‖F .
Consider

κ := xT y =


χ0
χ1
...

χn−2
χn−1



T 
ψ0
ψ1
...

ψn−2
ψn−1

 =
((

(χ0ψ0 + χ1ψ1) + · · ·
)

+ χn−2ψn−2
)

+ χn−1ψn−1.

Under the computational model given in Subsection 6.2.3 the computed result, κ̌, satisfies

κ̌ =
n−1∑
i=0

χiψi(1 + ε
(i)
∗ )

n−1∏
j=i

(1 + ε
(j)
+ )

 ,
where ε(0)

+ = 0 and |ε(0)
∗ |, |ε(j)∗ |, |ε(j)+ | ≤ εmach for j = 1, . . . , n− 1.

Lemma 6.6.2.6 Let εi ∈ R, 0 ≤ i ≤ n− 1, nεmach < 1, and |εi| ≤ εmach. Then ∃ θn ∈ R such that

n−1∏
i=0

(1 + εi)±1 = 1 + θn,

with |θn| ≤ nεmach/(1− nεmach).
Here the ±1 means that on an individual basis, the term is either used in a multiplication or a

division. For example
(1 + ε0)±1(1 + ε1)±1

might stand for

(1 + ε0)(1 + ε1) or (1 + ε0)
(1 + ε1) or (1 + ε1)

(1 + ε0) or 1
(1 + ε1)(1 + ε0)



WEEK 6. NUMERICAL STABILITY 274

so that this lemma can accommodate an analysis that involves a mixture of the Standard and Al-
ternative Computational Models (SCM and ACM).
Definition 6.6.2.7 For all n ≥ 1 and nεmach < 1, define

γn = nεmach/(1− nεmach).

♦
simplifies to

κ̌
=

χ0ψ0(1 + θn) + χ1ψ1(1 + θn) + · · ·+ χn−1ψn−1(1 + θ2)
=
χ0
χ1
χ2
...

χn−1



T 
(1 + θn) 0 0 · · · 0

0 (1 + θn) 0 · · · 0
0 0 (1 + θn−1) · · · 0
...

...
... . . . ...

0 0 0 · · · (1 + θ2)




ψ0
ψ1
ψ2
...

ψn−1


=
χ0
χ1
χ2
...

χn−1



T I +


θn 0 0 · · · 0
0 θn 0 · · · 0
0 0 θn−1 · · · 0
...

...
... . . . ...

0 0 0 · · · θ2






ψ0
ψ1
ψ2
...

ψn−1

 ,

where |θj | ≤ γj , j = 2, . . . , n.

Lemma 6.6.2.8 If n, b ≥ 1 then γn ≤ γn+b and γn + γb + γnγb ≤ γn+b.

Theorem 6.6.2.9 Let x, y ∈ Rn and let κ := xT y be computed in the order indicated by

(· · · ((χ0ψ0 + χ1ψ1) + χ2ψ2) + · · · ) + χn−1ψn−1.

Then
κ̌ =

[
xT y

]
= xT (I + Σ(n))y.

Corollary 6.6.2.10 Under the assumptions of Theorem 6.6.2.9 the following relations hold:
R-1B κ̌ = (x+ δx)T y, where |δx| ≤ γn|x|,

R-2B κ̌ = xT (y + δy), where |δy| ≤ γn|y|;

R-1F κ̌ = xT y + δκ, where |δκ| ≤ γn|x|T |y|.

Theorem 6.6.2.11 Error results for matrix-vector multiplication. Let A ∈ Rm×n, x ∈ Rn, y ∈ Rm
and consider the assignment y := Ax implemented via dot products as expressed in (6.3.4). Then
these equalities hold:
R-1B y̌ = (A+ ∆A)x, where |∆A| ≤ γn|A|.

R-1F y̌ = Ax+ δy, where |δy| ≤ γn|A||x|.
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Theorem 6.6.2.12 Forward error for matrix-matrix multiplication. Let C ∈ Rm×n,
A ∈ Rm×k, and B ∈ Rk×n and consider the assignment C := AB implemented via matrix-vector
multiplication. Then there exists ∆C ∈ Rm×n such that
Č = AB + ∆C, where |∆C| ≤ γk|A||B|.
Lemma 6.6.2.13 Let n ≥ 1, λ, ν ∈ R and x, y ∈ Rn. Assume λ 6= 0 and consider the computation

ν := (α− xT y)/λ,

Then
(λ+ δλ)ν̌ = α− (x+ δx)T y, where |δλ| ≤ γ2|λ| and |δx| ≤ γn|x|.

Theorem 6.6.2.14 Let L ∈ Rn×n be a nonsingular lower triangular matrix and let x̌ be the
computed result when executing Figure 6.4.1.1 to solve Lx = y under the computation model from
Subsection 6.2.3. Then there exists a matrix ∆L such that

(L+ ∆L)x̌ = y where |∆L| ≤ max(γ2, γn−1)|L|.

Corollary 6.6.2.15 Let L ∈ Rn×n be a nonsingular lower triangular matrix and let x̌ be the
computed result when executing Figure 6.4.1.1 to solve Lx = y under the computation model from
Subsection 6.2.3. Then there exists a matrix ∆L such that

(L+ ∆L)x̌ = y where |∆L| ≤ γn|L|.

Theorem 6.6.2.16 Backward error of Crout variant for LU factoriztion. Let A ∈ Rn×n
and let the LU factorization of A be computed via the Crout variant, yielding approximate factors
Ľ and Ǔ . Then

(A+ ∆A) = ĽǓ with |∆A| ≤ γn|Ľ||Ǔ |.

Theorem 6.6.2.17 Let A ∈ Rn×nand x, y ∈ Rn with Ax = y. Let x̌ be the approximate solution
computed via the following steps:

• Compute the LU factorization, yielding approximate factors Ľ and Ǔ .

• Solve Ľz = y, yielding approximate solution ž.

• Solve Ǔx = ž, yielding approximate solution x̌.

Then
(A+ ∆A)x̌ = y with |∆A| ≤ (3γn + γ2

n)|Ľ||Ǔ |.

Theorem 6.6.2.18 Let A and A+ ∆A be nonsingular and

Ax = y and (A+ ∆A)(x+ δx) = y

then
‖δx‖
‖x‖

≤
κ(A)‖∆A‖‖A‖

1− κ(A)‖∆A‖‖A‖

.



WEEK 6. NUMERICAL STABILITY 276

Theorem 6.6.2.19 Let A be nonsingular, ‖ · ‖ be a subordinate norm, and

‖∆A‖
‖A‖

<
1

κ(A) .

Then A+ ∆A is nonsingular.
An important example that demonstrates how LU with partial pivoting can incur "element

growth":

A =



1 0 0 · · · 0 1
−1 1 0 · · · 0 1
−1 −1 1 · · · 0 1
...

...
... . . . ...

...
−1 −1 · · · 1 1
−1 −1 · · · −1 1


.



Week 7

Solving Sparse Linear Systems

7.1 Opening Remarks

7.1.1 Where do sparse linear systems come from?

YouTube: https://www.youtube.com/watch?v=Qq_cQbVQA5Y
Many computational engineering and science applications start with some law of physics that

applies to some physical problem. This is mathematically expressed as a Partial Differential Equa-
tion (PDE). We here will use one of the simplest of PDEs, Poisson’s equation on the domain Ω in
two dimensions:

−∆u = f.

In two dimensions this is alternatively expressed as

− ∂2u

∂x2 −
∂2u

∂y2 = f(x, y) (7.1.1)

with Dirichlet boundary condition ∂Ω = 0 (meaning that u(x, y) = 0 on the boundary of domain
Ω). For example, the domain may be the square 0 ≤ x, y ≤ 1, ∂Ω its boundary, and the question
may be a membrane with f being some load from, for example, a sound wave.

Since this course does not require a background in the mathematics of PDEs, let’s explain the
gist of all this in layman’s terms.

• We want to find the function u that satisfies the conditions specified by (7.1.1). It is assumed
that u is appropriately differentiable.

• For simplicity, let’s assume the domain is the square with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 so that
the boundary Ω is the boundary of this square. We assume that on the boundary the function
equals zero.

277

https://www.youtube.com/watch?v=Qq_cQbVQA5Y
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• It is usually difficult to analytically determine the continuous function u that solves such a
"boundary value problem" (except for very simple examples).

• To solve the problem computationally, the problem is "discretized". What this means for
our example is that a mesh is laid over the domain, values for the function u at the mesh
points are approximated, and the operator is approximated. In other words, the continuous
domain is viewed as a mesh instead, as illustrated in Figure 7.1.1.1 (Left). We will assume
an N × N mesh of equally spaced points, where the distance between two adjacent points
is h = 1/(N + 1). This means the mesh consists of points {(χi, ψj)} with χi = (i + 1)h for
i = 0, 1, . . . , N − 1 and ψj = (j + 1)h for j = 0, 1, . . . , N − 1.

Figure 7.1.1.1 2D mesh.

• If you do the math, details of which can be found in Subsection 7.4.1, you find that the
problem in (7.1.1) can be approximated with a linear equation at each mesh point:

−u(χi, ψj−1)− u(χi−1, ψj) + 4u(χi, ψj)− u(xi+1, ψj)− u(xi, ψj+1)
h2 = f(χi, ψi).

The values in this equation come from the "five point stencil" illustrated in Figure 7.1.1.1
(Right).

YouTube: https://www.youtube.com/watch?v=GvdBA5emnSs

• If we number the values at the grid points, u(χi, ψj) in what is called the "natural ordering"
as illustrated in Figure 7.1.1.1 (Middle), then we can write all these insights, together with
the boundary condition, as

−υi−N − υi−1 + 4υi − υi+1 − υi+N = h2φi

https://www.youtube.com/watch?v=GvdBA5emnSs
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or, equivalently,

υi = h2φi + υi−N + υi−1 + υi+1 + υi+N
4

with appropriate modifications for the case where i places the point that yielded the equation
on the bottom, left, right, and/or top of the mesh.

YouTube: https://www.youtube.com/watch?v=VYMbSJAqaUM
All these insights can be put together into a system of linear equations:

4υ0 −υ1 −υ4 = h2φ0
−υ0 +4υ1 −υ2 −υ5 = h2φ1

−υ1 +4υ2 −υ3 −υ6 = h2φ2
−υ2 +4υ3 −υ7 = h2φ3

−υ0 +4υ4 −υ5 −υ8 = h2φ4
. . . . . . . . . . . . . . . ...

where φi = f(χi, ψj) if (χi, ψj) is the point associated with value υi. In matrix notation this
becomes 

4 −1 −1
−1 4 −1 −1

−1 4 −1 −1
−1 4 −1

−1 4 −1 −1

−1 −1 4 −1 . . .
−1 −1 4 −1

−1 −1 4

−1 4 . . .
. . . . . . . . .





υ0
υ1
υ2
υ3
υ4
υ5
υ6
υ7
υ8
...



=



h2φ0
h2φ1
h2φ2
h2φ3
h2φ4
h2φ5
h2φ6
h2φ7
h2φ8
...



.

This demonstrates how solving the discretized Poisson’s equation boils down to the solution of a
linear system Au = h2f , where A has a distinct sparsity pattern (pattern of nonzeroes).

Homework 7.1.1.1 The observations in this unit suggest the following way of solving (7.1.1):
• Discretize the domain 0 ≤ χ, ψ ≤ 1 by creating an (N + 2)× (N + 2) mesh of points.

• An (N + 2)× (N + 2) array U holds the values u(χi, ψi) plus the boundary around it.

• Create an (N + 2) × (N + 2) array F that holds the values f(χi, ψj) (plus, for convenience,
extra values that correspond to the boundary).

https://www.youtube.com/watch?v=VYMbSJAqaUM
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• Set all values in U to zero. This initializes the last rows and columns to zero, which captures
the boundary condition, and initializes the rest of the values at the mesh points to zero.

• Repeatedly update all interior points with the formula

U(i, j) =
(h2 F (i, j)︸ ︷︷ ︸

f(χi, ψj)

+ U(i, j − 1)︸ ︷︷ ︸
u(χi, ψj−1)

+ U(i− 1, j)︸ ︷︷ ︸
u(χi−1, ψj)

+ U(i+ 1, j)︸ ︷︷ ︸
u(χi+1, ψj)

+ U(i, j + 1)︸ ︷︷ ︸
u(χi, ψj+1)

)/4

until the values converge.

• Bingo! You have written your first iterative solver for a sparse linear system.

• Test your solver with the problem where f(χ, ψ) = (α2 + β2)π2 sin(απχ) sin(βπψ).

• Hint: if x and y are arrays with the vectors x and y (with entries χi and ψj), then mesh( x,
y, U ) plots the values in U.

[Hint] [Solution]

Remark 7.1.1.2 In Homework 7.2.1.4 we store the vectors u and f as they appear in Figure 7.1.1.1
as 2D arrays. This captures the fact that a 2d array of numbers isn’t necessarily a matrix. In this
case, it is a vector that is stored as a 2D array because it better captures how the values to be
computed relate to the physical problem from which they arise.

YouTube: https://www.youtube.com/watch?v=j-ELcqx3bRo

Remark 7.1.1.3 The point of this launch is that many problems that arise in computational
science require the solution to a system of linear equations Ax = b where A is a (very) sparse
matrix. Often, the matrix does not even need to be explicitly formed and stored.
Remark 7.1.1.4 Wilkinson defined a sparse matrix as any matrix with enough zeros that it pays
to take advantage of them.

The problem used to motivate in this unit were suggested to us by Isaac Lee. You may enjoy
other materials of his by visiting https://crunchingnumbers.live/2017/07/09/iterative-methods-part-2/.

7.1.2 Overview
• 7.1 Opening Remarks

◦ 7.1.1 Where do sparse linear systems come from?
◦ 7.1.2 Overview
◦ 7.1.3 What you will learn

https://www.youtube.com/watch?v=j-ELcqx3bRo
https://crunchingnumbers.live/2017/07/09/iterative-methods-part-2/
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• 7.2 Direct Solution

◦ 7.2.1 Banded matrices
◦ 7.2.2 Nested dissection
◦ 7.2.3 Observations

• 7.3 Iterative Solution

◦ 7.3.1 Jacobi iteration
◦ 7.3.2 Gauss-Seidel iteration
◦ 7.3.3 Convergence of splitting methods
◦ 7.3.4 Successive Over-Relaxation (SOR)

• 7.4 Enrichments

◦ 7.4.1 Details!
◦ 7.4.2 Parallelism in splitting methods
◦ 7.4.3 Dr. SOR

• 7.5 Wrap Up

◦ 7.5.1 Additional homework
◦ 7.5.2 Summary

7.1.3 What you will learn
This week is all about solving nonsingular linear systems with matrices that are sparse (have enough
zero entries that it is worthwhile to exploit them).

Upon completion of this week, you should be able to

• Exploit sparsity when computing the Cholesky factorization and related triangular solves of
a banded matrix.

• Derive the cost for a Cholesky factorization and related triangular solves of a banded matrix.

• Utilize nested dissection to reduce fill-in when computing the Cholesky factorization and
related triangular solves of a sparse matrix.

• Connect sparsity patterns in a matrix to the graph that describes that sparsity pattern.

• Relate computations over discretized domains to the Jacobi, Gauss-Seidel, Successive Over-
Relaxation (SOR) and Symmetric Successive Over-Relaxation (SSOR) iterations.

• Formulate the Jacobi, Gauss-Seidel, Successive Over-Relaxation (SOR) and Symmetric Suc-
cessive Over-Relaxation (SSOR) iterations as splitting methods.

• Analyze the convergence of splitting methods.
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7.2 Direct Solution

7.2.1 Banded matrices

YouTube: https://www.youtube.com/watch?v=UX6Z6q1_prs
It is tempting to simply use a dense linear solver to compute the solution to Ax = b via, for

example, LU or Cholesky factorization, even when A is sparse. This would require O(n3) operations,
where n equals the size of matrix A. What we see in this unit is that we can take advantage of a
"banded" structure in the matrix to greatly reduce the computational cost.

Homework 7.2.1.1 The 1D equivalent of the example from Subsection 7.1.1 is given by the
tridiagonal linear system

A =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 . (7.2.1)

Prove that this linear system is nonsingular. [Hint] [Solution]
This course covers topics in a "circular" way, where sometimes we introduce and use results that

we won’t formally cover until later in the course. Here is one such situation. In a later week you
will prove these relevant results involving eigenvalues:

• A symmetric matrix is symmetric positive definite (SPD) if and only if its eigenvalues are
positive.

• The Gershgorin Disk Theorem tells us that the matrix in (7.2.1) has nonnegative eigenvalues.

• A matrix is singular if and only if it has zero as an eigenvalue.

These insights, together with Homework 7.2.1.1, tell us that the matrix in (7.2.1) is SPD.

Homework 7.2.1.2 Compute the Cholesky factor of

A =


4 −2 0 0
−2 5 −2 0

0 −2 10 6
0 0 6 5

 .
[Answer]

https://www.youtube.com/watch?v=UX6Z6q1_prs
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Homework 7.2.1.3 Let A ∈ Rn×n be tridiagonal and SPD so that

A =


α0,0 α1,0
α1,0 α1,1 α2,1

. . . . . . . . .
αn−2,n−3 αn−2,n−2 αn−1,n−2

αn−1,n−2 αn−1,n−1

 . (7.2.2)

• Propose a Cholesky factorization algorithm that exploits the structure of this matrix.

• What is the cost? (Count square roots, divides, multiplies, and subtractions.)

• What would have been the (approximate) cost if we had not taken advantage of the tridiagonal
structure?

[Solution]

Homework 7.2.1.4 Propose an algorithm for overwriting y with the solution to Ax = y for the
SPD matrix in Homework 7.2.1.3. [Solution]

The last exercises illustrate how special structure (in terms of patterns of zeroes and nonzeroes)
can often be exploited to reduce the cost of factoring a matrix and solving a linear system.

YouTube: https://www.youtube.com/watch?v=kugJ2NljC2U
The bandwidth of a matrix is defined as the smallest integer b such that all elements on the jth

superdiagonal and subdiagonal of the matrix equal zero if j > b.

• A diagonal matrix has bandwidth 1.

• A tridiagonal matrix has bandwith 2.

• And so forth.

Let’s see how to take advantage of the zeroes in a matrix with bandwidth b, focusing on SPD
matrices.
Definition 7.2.1.1 The half-band width of a symmetric matrix equals the number of subdiagonals
beyond which all the matrix contains only zeroes. For example, a diagonal matrix has half-band
width of zero and a tridiagonal matrix has a half-band width of one. ♦

Homework 7.2.1.5 Assume the SPD matrix A ∈ Rm×m has a bandwidth of b. Propose a modifi-

https://www.youtube.com/watch?v=kugJ2NljC2U
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cation of the right-looking Cholesky factorization from Figure 5.4.3.1

A = Chol-right-looking(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


α11 := √α11
a21 := a21/α11
A22 := A22 − a21a

T
21 (updating only the lower triangular part)(

ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


endwhile

that takes advantage of the zeroes in the matrix. (You will want to draw yourself a picture.) What
is its approximate cost in flops (when m is large)? [Solution]

YouTube: https://www.youtube.com/watch?v=AoldARtix5Q

Ponder This 7.2.1.6 Propose a modification of the FLAME notation that allows one to elegantly
express the algorithm you proposed for Homework 7.2.1.5

Ponder This 7.2.1.7 Another way of looking at an SPD matrix A ∈ Rn×n with bandwidth b is
to block it

A =


A0,0 AT1,0
A1,0 A1,1 AT2,1

. . . . . . . . .
An−2,n−3 An−2,n−2 ATn−1,n−2

An−1,n−2 An−1,n−1

 .

where, Ai,j ∈ Rb×b and for simplicity we assume that n is a multiple of b. Propose an algorithm for
computing its Cholesky factorization that exploits this block structure. What special structure do
matrices Ai+1,i have? Can you take advantage of this structure?

Analyze the cost of your proposed algorithm.

https://www.youtube.com/watch?v=AoldARtix5Q
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7.2.2 Nested dissection

YouTube: https://www.youtube.com/watch?v=r1P4Ze7Yqe0
The purpose of the game is to limit fill-in, which happens when zeroes turn into nonzeroes.

With an example that would result from, for example, Poisson’s equation, we will illustrate the
basic techniques, which are known as "nested dissection."

If you consider the mesh that results from the discretization of, for example, a square domain,
the numbering of the mesh points does not need to be according to the "natural ordering" we
chose to use before. As we number the mesh points, we reorder (permute) both the columns of
the matrix (which correspond to the elements υi to be computed) and the equations that tell one
how υi is computed from its neighbors. If we choose a separator, the points highlighted in red in
Figure 7.2.2.1 (Top-Left), and order the mesh points to its left first, then the ones to its right, and
finally the points in the separator, we create a pattern of zeroes, as illustrated in Figure 7.2.2.1
(Top-Right).

Figure 7.2.2.1 An illustration of nested dissection.

Homework 7.2.2.1 Consider the SPD matrix

A =

 A00 0 AT20
0 A11 AT21
A20 A21 A22

 .

https://www.youtube.com/watch?v=r1P4Ze7Yqe0
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• What special structure does the Cholesky factor of this matrix have?

• How can the different parts of the Cholesky factor be computed in a way that takes advantage
of the zero blocks?

• How do you take advantage of the zero pattern when solving with the Cholesky factors?

[Solution]

YouTube: https://www.youtube.com/watch?v=mwX0wPRdw7U
Each of the three subdomains that were created in Figure 7.2.2.1 can themselves be reordered by

identifying separators. In Figure 7.2.2.2 we illustrate this only for the left and right subdomains.
This creates a recursive structure in the matrix. Hence, the name nested dissection for this
approach.

Figure 7.2.2.2 A second level of nested dissection.

7.2.3 Observations
Through an example, we have illustrated the following insights regarding the direct solution of
sparse linear systems:

• There is a one-to-one correspondence between links in the graph that shows how mesh points
are influenced by other mesh points (connectivity) and nonzeroes in the matrix. If the graph is

https://www.youtube.com/watch?v=mwX0wPRdw7U
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undirected, then the sparsity in the matrix is symmetric (provided the unknowns are ordered
in the same order as the equations that relate the unknowns to their neighbors). If the graph
is directed, then the matrix has a nonsymmetric sparsity pattern.

• Renumbering the mesh points is equivalent to correspondingly permuting the columns of
the matrix and the solution vector. Reordering the corresponding equations is equivalent to
permuting the rows of the matrix.

These obervations relate the problem of reducing fill-in to the problem of partitioning the graph by
identifying a separator. The smaller the number of mesh points in the separator (the interface), the
smaller the submatrix that corresponds to it and the less fill-in will occur related to this dissection.

Remark 7.2.3.1 Importantly: one can start with a mesh and manipulate it into a matrix or one
can start with a matrix and have its sparsity pattern prescribe the graph.

7.3 Iterative Solution

7.3.1 Jacobi iteration

YouTube: https://www.youtube.com/watch?v=OMbxk1ihIFo
Let’s review what we saw in Subsection 7.1.1. The linear system Au = f

4υ0 −υ1 −υ4 = h2φ0
−υ0 +4υ1 −υ2 −υ5 = h2φ1

−υ1 +4υ2 −υ3 −υ6 = h2φ2
−υ2 +4υ3 −υ7 = h2φ3

−υ0 +4υ4 −υ5 −υ8 = h2φ4
. . . . . . . . . . . . . . . ...

which can be written in matrix form as

4 −1 −1
−1 4 −1 −1

−1 4 −1 −1
−1 4 −1

−1 4 −1 −1

−1 −1 4 −1 . . .
−1 −1 4 −1

−1 −1 4

−1 4 . . .
. . . . . . . . .





υ0
υ1
υ2
υ3
υ4
υ5
υ6
υ7
υ8
...



=



h2φ0
h2φ1
h2φ2
h2φ3
h2φ4
h2φ5
h2φ6
h2φ7
h2φ8
...



.

https://www.youtube.com/watch?v=OMbxk1ihIFo
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was solved by repeatedly updating

υi = h2φi + υi−N + υi−1 + υi+1 + υi+N
4

modified appropriately for points adjacent to the boundary. Let’s label the value of υi during the
kth iteration with υ(k)

i and state the algorithm more explicitly as

for k = 0, . . . , convergence
for i = 0, . . . , N ×N − 1
υ

(k+1)
i = (h2φi + υ

(k)
i−N + υ

(k)
i−1 + υ

(k)
i+1 + υ

(k)
i+N )/4

endfor
endfor

again, modified appropriately for points adjacent to the boundary. The superscripts are there to
emphasize the iteration during which a value is updated. In practice, only the values for iteration
k and k + 1 need to be stored. We can also capture the algorithm with a vector and matrix as

4υ(k+1)
0 = υ

(k)
1 +υ(k)

4 +h2φ0

4υ(k+1)
1 = υ

(k)
0 +υ(k)

2 +υ(k)
5 +h2φ1

4υ(k+1)
2 = υ

(k)
1 +υ(k)

3 +υ(k)
6 +h2φ2

4υ(k+1)
3 = υ

(k)
2 +υ(k)

7 +h2φ3

4υ(k+1)
4 = υ

(k)
0 +υ(k)

5 −υ(k)
8 +h2φ4

... . . . . . . . . . . . . . . . ...
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which can be written in matrix form as



4
4

4
4

4
4

4
4

4
. . .





υ
(k+1)
0
υ

(k+1)
1
υ

(k+1)
2
υ

(k+1)
3
υ

(k+1)
4
υ

(k+1)
5
υ

(k+1)
6
υ

(k+1)
7
υ

(k+1)
8
...



=



0 1 1
1 0 1 1

1 0 1 1
1 0 1

1 0 1 1

1 1 0 1 . . .
1 1 0 1

1 1 0

1 0 . . .
. . . . . . . . .





υ
(k)
0
υ

(k)
1
υ

(k)
2
υ

(k)
3
υ

(k)
4
υ

(k)
5
υ

(k)
6
υ

(k)
7
υ

(k)
8
...



+



h2φ0
h2φ1
h2φ2
h2φ3
h2φ4
h2φ5
h2φ6
h2φ7
h2φ8
...



.

(7.3.1)

YouTube: https://www.youtube.com/watch?v=7rDvET9_nek
How can we capture this more generally?

• We wish to solve Ax = y.
We write A as the difference of its diagonal, M = D, and the negative of its off-diagonal part,
N = D −A so that

A = D − (D −A) = M −N.

In our example, M = 4I and N = 4I −A.

• We then notice that
Ax = y

can be rewritten as
(M −N)x = y

https://www.youtube.com/watch?v=7rDvET9_nek
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or, equivalently,
Mx = Nx+ y.

If you think about it carefully, this captures (7.3.1) for our example. Finally,

x = M−1(Nx+ y).

• If we now let x(k) be the values of our vector x in the current step. Then the values after all
elements have been updated are given by the vector

x(k+1) = M−1(Nx(k) + y).

• All we now need is an initial guess for the solution, x(0), and we are ready to iteratively solve
the linear system by computing x(1), x(2), etc., until we (approximately) reach a fixed point
where x(k+1) = M−1(Nx(k) + y) ≈ x(k).

The described method, where M equals the diagonal of A and N = D − A, is known as the
Jacobi iteration.
Remark 7.3.1.1 The important observation is that the computation involves a matrix-vector
multiplication with a sparse matrix, N = D −A, and a solve with a diagonal matrix, M = D.

7.3.2 Gauss-Seidel iteration

YouTube: https://www.youtube.com/watch?v=ufMUhO1vDew
A variation on the Jacobi iteration is the Gauss-Seidel iteration. It recognizes that since values

at points are updated in some order, if a neighboring value has already been updated earlier in the
current step, then you might as well use that updated value. For our example from Subsection 7.1.1
this is captured by the algorithm

for k = 0, . . . , convergence
for i = 0, . . . , N ×N − 1
υ

(k+1)
i = (h2φi + υ

(k+1)
i−N + υ

(k+1)
i−1 + υ

(k)
i+1 + υ

(k)
i+N )/4

endfor
endfor

modified appropriately for points adjacent to the boundary. This algorithm exploits the fact that
υ

(k+1)
i−N and υ

(k+1)
i−1 have already been computed by the time υ(k+1)

i is updated. Once again, the
superscripts are there to emphasize the iteration during which a value is updated. In practice, the
superscripts can be dropped because of the order in which the computation happens.

https://www.youtube.com/watch?v=ufMUhO1vDew
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Homework 7.3.2.1 Modify the code for Homework 7.1.1.1 ( what you now know as the Jacobi
iteration) to implement the Gauss-Seidel iteration. [Solution]

Homework 7.3.2.2 Here we repeat (7.3.1) for Jacobi’s iteration applied to the example in Sub-
section 7.1.1:



4
4

4
4

4
4

4
4

4
. . .





υ
(k+1)
0
υ

(k+1)
1
υ

(k+1)
2
υ

(k+1)
3
υ

(k+1)
4
υ

(k+1)
5
υ

(k+1)
6
υ

(k+1)
7
υ

(k+1)
8
...



=



0 1 1
1 0 1 1

1 0 1 1
1 0 1

1 0 1 1

1 1 0 1 . . .
1 1 0 1

1 1 0

1 0 . . .
. . . . . . . . .





υ
(k)
0
υ

(k)
1
υ

(k)
2
υ

(k)
3
υ

(k)
4
υ

(k)
5
υ

(k)
6
υ

(k)
7
υ

(k)
8
...



+



h2φ0
h2φ1
h2φ2
h2φ3
h2φ4
h2φ5
h2φ6
h2φ7
h2φ8
...



.

(7.3.2)

Modify this to reflect the Gauss-Seidel iteration. [Solution]
This homework suggests the following:

• We wish to solve Ax = y.
We write symmetric A as

A = (D − L)︸ ︷︷ ︸
M

− (LT )︸ ︷︷ ︸
N

,

where −L equals the strictly lower triangular part of A and D is its diagonal.

• We then notice that
Ax = y

can be rewritten as
(D − L− LT )x = y

or, equivalently,
(D − L)x = LTx+ y.
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If you think about it carefully, this captures (7.3.2) for our example. Finally,

x = (D − L)−1(LTx+ y).

• If we now let x(k) be the values of our vector x in the current step. Then the values after all
elements have been updated are given by the vector

x(k+1) = (D − L)−1(LTx(k) + y).

Homework 7.3.2.3 When the Gauss-Seidel iteration is used to solve Ax = y, where A ∈ Rn×n,
it computes entries of x(k+1) in the forward order χ(k+1)

0 , χ
(k+1)
1 , . . .. If A = D − L − LT , this is

captured by
(D − L)x(k+1) = LTx(k) + y. (7.3.3)

Modify (7.3.3) to yield a "reverse" Gauss-Seidel method that computes the entries of vector x(k+1)

in the order χ(k+1)
n−1 , χ

(k+1)
n−2 , . . .. [Solution]

Homework 7.3.2.4 A "symmetric" Gauss-Seidel iteration to solve symmetric Ax = y, where
A ∈ Rn×n, alternates between computing entries in forward and reverse order. In other words, if
A = MF −NF for the forward Gauss-Seidel method and A = MR−NR for the reverse Gauss-Seidel
method, then

MFx
(k+ 1

2 ) = NFx
(k) + y

MRx
(k+1) = NRx

(k+ 1
2 ) + y

constitutes one iteration of this symmetric Gauss-Seidel iteration. Determine M and N such that

Mx(k+1) = Nx(k) + y

equals one iteration of the symmetric Gauss-Seidel iteration.
(You may want to follow the hint...) [Hint] [Solution]

7.3.3 Convergence of splitting methods

YouTube: https://www.youtube.com/watch?v=L6PZhc-G7cE
The Jacobi and Gauss-Seidel iterations can be generalized as follows. Split matrix A = M −N

where M is nonsingular. Now,
(M −N)x = y

is equivalent to
Mx = Nx+ y

and
x = M−1(Nx+ y).

https://www.youtube.com/watch?v=L6PZhc-G7cE
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This is an example of a fixed-point equation: Plug x into M−1(Nx+ y) and the result is again x.
The iteration is then created by viewing the vector on the left as the next approximation to the
solution given the current approximation x on the right:

x(k+1) = M−1(Nx(k) + y).

Let A = (D − L − U) where −L, D, and −U are the strictly lower triangular, diagonal, and
strictly upper triangular parts of A.

• For the Jacobi iteration, M = D and N = (L+ U).

• For the Gauss-Seidel iteration, M = (D − L) and N = U .

In practice, M is not inverted. Instead, the iteration is implemented as

Mx(k+1) = Nx(k) + y,

with which we emphasize that we solve with M rather than inverting it.

Homework 7.3.3.1 Why are the choices ofM and N used by the Jacobi iteration and Gauss-Seidel
iteration convenient? [Solution]

Homework 7.3.3.2 Let A = M − N be a splitting of matrix A. Let x(k+1) = M−1(Nx(k) + y).
Show that

x(k+1) = x(k) +M−1r(k), where r(k) = y −Ax(k).

[Solution]
This last exercise provides an important link between iterative refinement, discussed in Subsec-

tion 5.3.7, and splitting methods. Let us revisit this, using the notation from this section.
If Ax = y and x(k) is a (current) approximation to x, then

r(k) = y −Ax(k)

is the (current) residual. If we solve
Aδx(k) = r(k)

or, equivalently, compute
δx = A−1r(k)

then
x = x(k) + δx

is the solution to Ax = y. Now, if we merely compute an approximation,

δx(k) ≈ A−1r(k),

then
x(k+1) = x(k) + δx(k)

is merely a (hopefully better) approximation to x. If M ≈ A then

δx(k) = M−1r(k) ≈ A−1r(k).

So, the better M approximates A, the faster we can expect x(k) to converge to x.
With this in mind, we notice that if A = D − L − U , where D, −L, and −U equals its

diagonal, strictly lower triangular, and strictly upper triangular part, and we split A = M − N ,
then M = D − L is a better approximation to matrix A than is M = D.
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Ponder This 7.3.3.3 Given these insights, why might the symmetric Gauss-Seidel method dis-
cussed in Homework 7.3.2.4 have benefits over the regular Gauss-Seidel method?

Loosely speaking, a sequence of numbers, χ(k) is said to converge to the number χ if |χ(k) − χ|
eventually becomes arbitrarily close to zero. This is written as

lim
k→∞

χ(k) = χ.

A sequence of vectors, x(k), converges to the vector x if for some norm ‖ · ‖

lim
k→∞

‖x(k) − x‖ = 0.

Because of the equivalence of norms, if the sequence converges in one norm, it converges in all
norms. In particular, it means it converges in the ∞-norm, which means that maxi |χ(k)

i − χi|
converges to zero, and hence for all entries |χ(k)

i −χi| eventually becomes arbitrarily small. Finally,
a sequence of matrices, A(k), converges to the matrix A if for some norm ‖ · ‖

lim
k→∞

‖A(k) −A‖ = 0.

Again, if it converges for one norm, it converges for all norms and the individual elements of A(k)

converge to the corresponding elements of A.
Let’s now look at the convergence of splitting methods. If x solves Ax = y and x(k) is the

sequence of vectors generated starting with x(0), then

Mx = Nx+ y

Mx(k+1) = Nx(k) + y

so that
M(x(k+1) − x) = N(x(k) − x)

or, equivalently,
x(k+1) − x = (M−1N)(x(k) − x).

This, in turn, means that
x(k+1) − x = (M−1N)k+1(x(0) − x).

If ‖ · ‖ is a vector norm and its induced matrix norm, then

‖x(k+1) − x‖ = ‖(M−1N)k+1(x(0) − x)‖ ≤ ‖M−1N‖k+1‖x(0) − x‖.

Hence, if ‖M−1N‖ < 1 in that norm, then limi→∞ ‖M−1N‖i = 0 and hence x(k) converges to x.
We summarize this in the following theorem:

Theorem 7.3.3.1 Let A ∈ Rn×n be nonsingular and x, y ∈ Rn so that Ax = y. Let A = M −N
be a splitting of A, x(0) be given (an initial guess), and x(k+1) = M−1(Nx(k) + y). If ‖M−1N‖ < 1
for some matrix norm induced by the ‖ · ‖ vector norm, then x(k) will converge to the solution x.

Because of the equivalence of matrix norms, if we can find any matrix norm ||| · ||| such that
|||M−1N ||| < 1, the sequence of vectors converges.

Ponder This 7.3.3.4 Contemplate the finer points of the last argument about the convergence of
(M−1N)i
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YouTube: https://www.youtube.com/watch?v=uv8cMeR9u_U
Understanding the following observation will have to wait until after we cover eigenvalues and

eigenvectors, later in the course. For splitting methods, it is the spectral radius of a matrix (the
magnitude of the eigenvalue with largest magnitude), ρ(B), that often gives us insight into whether
the method converges. This, once again, requires us to use a result from a future week in this
course: It can be shown that for all B ∈ Rm×m and ε > 0 there exists a norm ||| · |||B,ε such that
|||B|||B,ε ≤ ρ(B)+ ε. What this means is that if we can show that ρ(M−1N) < 1, then the splitting
method converges for the given matrix A.

Homework 7.3.3.5 Given nonsingular A ∈ Rn×n, what splitting A = M −N will give the fastest
convergence to the solution of Ax = y? [Solution]

YouTube: https://www.youtube.com/watch?v=lKlsk0qdCu0

7.3.4 Successive Over-Relaxation (SOR)

YouTube: https://www.youtube.com/watch?v=t9Bl9z7HPTQ
Recall that if A = D−L−U where −L, D, and −U are the strictly lower triangular, diagonal,

and strictly upper triangular parts of A, then the Gauss-Seidel iteration for solving Ax = y can be
expressed as x(k+1) = (D − L)−1(Ux+ y) or, equivalently, χ(k+1)

i solves

i−1∑
j=0

αi,jχ
(k+1)
j + αi,iχ

(k+1)
i = −

n−1∑
j=i+1

αi,jχ
(k)
j + ψi.

where any term involving a zero is skipped. We label this χ(k+1)
i with χGS (i+1)

i in our subsequent
discussion.

https://www.youtube.com/watch?v=uv8cMeR9u_U
https://www.youtube.com/watch?v=lKlsk0qdCu0
https://www.youtube.com/watch?v=t9Bl9z7HPTQ
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What if we pick our next value a bit further:

χ
(k+1)
i = ωχ

GS (k+1)
i + (1− ω)χ(k)

i ,

where ω ≥ 1. This is known as over-relaxation. Then

χ
GS (k+1)
i = 1

ω
χ

(k+1)
i − 1− ω

ω
χ

(k)
i

and
i−1∑
j=0

αi,jχ
(k+1)
j + αi,i

[ 1
ω
χ

(k+1)
i − 1− ω

ω
χ

(k)
i

]
= −

n−1∑
j=i+1

αi,jχ
(k)
j + ψi

or, equivalently,

i−1∑
j=0

αi,jχ
(k+1)
j + 1

ω
αi,iχ

(k+1)
i = 1− ω

ω
αi,iχ

(k)
i −

n−1∑
j=i+1

αi,jχ
(k)
j + ψi.

This is equivalent to splitting

A =
( 1
ω
D − L

)
︸ ︷︷ ︸

M

−
(1− ω

ω
D + U

)
︸ ︷︷ ︸

N

,

an iteration known as successive over-relaxation (SOR). The idea now is that the relaxation
parameter ω can often be chosen to improve (reduce) the spectral radius ofM−1N , thus accelerating
convergence.

We continue with A = D − L − U , where −L, D, and −U are the strictly lower triangular,
diagonal, and strictly upper triangular parts of A. Building on SOR where

A =
( 1
ω
D − L

)
︸ ︷︷ ︸

MF

−
(1− ω

ω
D + U

)
︸ ︷︷ ︸

NF

,

where the F stands for "Forward." Now, an alternative would be to compute the elements of x in
reverse order, using the latest available values. This is equivalent to splitting

A =
( 1
ω
D − U

)
︸ ︷︷ ︸

MR

−
(1− ω

ω
D + L

)
︸ ︷︷ ︸

NR

,

where the R stands for "Reverse." The symmetric successive over-relaxation (SSOR) iteration com-
bines the "forward" SOR with a "reverse" SOR, much like the symmetric Gauss-Seidel does:

x(k+ 1
2 ) = M−1

F (NFx
(k) + y)

x(k+1) = M−1
R (NRx

(k+ 1
2 ) + y).

This can be expressed as splitting A = M − N . The details are a bit messy, and we will skip
them.
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7.4 Enrichments

7.4.1 Details!
To solve the problem computationally the problem is again discretized. Relating back to the
problem of the membrane on the unit square in the previous section, this means that the continuous
domain is viewed as a mesh instead, as illustrated in Figure 7.4.1.1.

Figure 7.4.1.1 2D mesh.
In that figure, υi equals, for example, the displacement from rest of the point on the membrane.
Now, let φi be the value of f(x, y) at the mesh point i. One can approximate

∂2u(x, y)
∂x2 ≈ u(x− h, y)− 2u(x, y) + u(x+ h, y)

h2

and
∂2u(x, y)
∂y2 ≈ u(x, y − h)− 2u(x, y) + u(x, y + h)

h2

so that
−∂

2u

∂x2 −
∂2u

∂y2 = f(x, y)

becomes

−u(x− h, y) + 2u(x, y)− u(x+ h, y)
h2 + −u(x, y − h) + 2u(x, y)− u(x, y + h)

h2 = f(x, y)

or, equivalently,

−u(x− h, y)− u(x, y − h) + 4u(x, y)− u(x+ h, y)− u(x, y + h)
h2 = f(x, y).

If (x, y) corresponds to the point i in a mesh where the interior points form an N × N grid, this
translates to the system of linear equations

−υi−N − υi−1 + 4υi − υi+1 − υi+N = h2φi.
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This can be rewritten as
υi = h2φi + υi−N + υi−1 + υi+1 + υi+N

4
or

4υ0 −υ1 −υ4 = h2φ0
−υ0 +4υ1 −υ2 −υ5 = h2φ1

−υ1 +4υ2 −υ3 −υ6 = h2φ2
−υ2 +4υ3 −υ7 = h2φ3

−υ0 +4υ4 −υ5 −υ8 = h2φ4

υ1
. . . . . . . . . . . . ...

In matrix notation this becomes

4 −1 −1
−1 4 −1 −1

−1 4 −1 −1
−1 4 −1

−1 4 −1 −1

−1 −1 4 −1 . . .
−1 −1 4 −1

−1 −1 4

−1 4 . . .
. . . . . . . . .





υ0
υ1
υ2
υ3
υ4
υ5
υ6
υ7
υ8
...



=



h2φ0
h2φ1
h2φ2
h2φ3
h2φ4
h2φ5
h2φ6
h2φ7
h2φ8
...



. (7.4.1)

This demonstrates how solving the discretized Poisson’s equation boils down to the solution of a
linear system Au = h2f , where A has a distinct sparsity pattern (pattern of nonzeros).

7.4.2 Parallelism in splitting methods
One of the advantages of, for example, the Jacobi iteration over the Gauss-Seidel iteration is that
the values at all mesh points can be updated simultaneously. This comes at the expense of slower
convergence to the solution.

There is actually quite a bit of parallelism to be exploited in the Gauss-Seidel iteration as well.
Consider our example of a mesh on a square domain as illustrated by
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• First υ(1)
0 is computed from υ

(0)
1 and υ(0)

N .

• Second, simultaneously,

◦ υ(1)
1 can be computed from υ

(1)
0 , υ(0)

2 , and υ(0)
N+1.

◦ υ(1)
N can be computed from υ

(1)
0 , υ(0)

N+1, and υ
(0)
2N .

• Third, simultaneously,

◦ υ(1)
2 can be computed from υ

(1)
1 , υ(0)

2 , and υ(0)
N+2.

◦ υ(1)
N+1 can be computed from υ

(1)
1 , υ0i)

N , and υ(0)
N+2, and υ

(0)
2N+1.

◦ υ(1)
2N can be computed from υ

(1)
N , and υ(0)

2N+1, and υ
(0)
3N .

◦ AND υ
(2)
0 can be computed from υ

(1)
1 and υ(1)

N , which starts a new "wave."

What we notice is that taking the opportunity to update when data is ready creates wavefronts
through the mesh, where each wavefront corresponds to computation related to a different iteration.

Alternatively, extra parallelism can be achieved by ordering the mesh points using what is called
a red-black ordering. Again focusing on our example of a mesh placed on a domain, the idea
is to partition the mesh points into two groups, where each group consists of points that are not
adjacent in the mesh: the red points and the black points.

The iteration then proceeds by alternating between (simultaneously) updating all values at the
red points and (simultaneously) updating all values at the black points, always using the most
updated values.

7.4.3 Dr. SOR

YouTube: https://www.youtube.com/watch?v=WDsF7gaj4E4
SOR was first proposed in 1950 by David M. Young and Stanley P. Frankel. David Young

(1923-2008) was a colleague of ours at UT-Austin. His vanity license plate read "Dr. SOR."

https://www.youtube.com/watch?v=WDsF7gaj4E4
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7.5 Wrap Up

7.5.1 Additional homework
Homework 7.5.1.1 In Subsection 7.3.4 we discussed SOR and SSOR. Research how to choose
the relaxation parameter ω and then modify your implementation of Gauss-Seidel from Home-
work 7.3.2.1 to investigate the benefits.

7.5.2 Summary
Let A ∈ Rn×n be tridiagonal and SPD so that

A =


α0,0 α1,0
α1,0 α1,1 α2,1

. . . . . . . . .
αn−2,n−3 αn−2,n−2 αn−1,n−2

αn−1,n−2 αn−1,n−1

 .

Then its Cholesky factor is given by
λ0,0
λ1,0 λ1,1

. . . . . .
λn−2,n−3 λn−2,n−2

λn−1,n−2 λn−1,n−1

 .

An algorithm for computing it is given by

for i = 0, . . . , n− 2
αi,i := √αi,i
αi+1,i := αi+1,i/αi,i
αi+1,i+1 := αi+1,i+1 − αi+1,iαi+1,i

endfor
αn−1,n−1 := √αn−1,n−1

It requires n square roots, n − 1 divides, n − 1 multiplies, and n − 1 subtracts. An algorithm for
overwriting y with the solution to Ax = y given its Cholesky factor is given by

• Overwrite y with the solution of Lz = y (forward substitution) is accomplished by the fol-
lowing algorithm (here L has overwritten A):

for i = 0, . . . , n− 2
ψi := ψi/αi,i
ψi+1 := ψi+1 − αi+1,iψi

endfor
ψn−1 := ψn−1/αn−1,n−1
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• Overwriting y with the solution of LTx = z, (where z has overwritten y (back substitution).

for i = n− 1, . . . , 1
ψi := ψi/αi,i
ψi−1 := ψi−1 − αi,i−1ψi

endfor
ψ0 := ψ0/α0,0

Definition 7.5.2.1 The half-band width of a symmetric matrix equals the number of subdiagonals
beyond which all the matrix contains only zeroes. For example, a diagonal matrix has half-band
width of zero and a tridiagonal matrix has a half-band width of one. ♦

Nested dissection: a hierarchical partitioning of the graph that captures the sparsity of a matrix
in an effort to reorder the rows and columns of that matrix so as to reduce fill-in (the overwriting
of zeroes in the matrix with nonzeroes).

Splitting methods: The system of linear equations Ax = b, splitting methods view A as A =
M − N and then, given an initial approximation x(0), create a sequence of approximations, x(k)

that under mild conditions converge to x by solving

Mx(k+1) = Nx(k) + b

or, equivalently, computing
x(k+1) = M−1(Nx(k) + b).

This method converges to x if for some norm ‖ · · · ‖

‖M−1N‖ < 1.

Given A = D−L−U where −L, D, and −U equal the strictly lower triangular, diagonal, and
strictly upper triangular parts of A, commonly used splitting methods are

• Jacobi iteration: A = D︸︷︷︸
M

− (L+ U)︸ ︷︷ ︸
N

.

• Gauss-Seidel iteration: A = D − L︸ ︷︷ ︸
M

− U︸︷︷︸
N

.

• Successive Over-Relaxation (SOR): A = 1
ω
D − L︸ ︷︷ ︸
M

−
(1− ω

ω
D + U

)
︸ ︷︷ ︸

N

, where ω is the re-

laxation parameter.

• Symmetric Successive Over-Relaxation (SSOR).



Week 8

Descent Methods

8.1 Opening Remarks

8.1.1 Solving linear systems by solving a minimization problem

YouTube: https://www.youtube.com/watch?v=--WEfBpj1Ts
Consider the quadratic polynomial

f(χ) = 1
2αχ

2 − βχ.

Finding the value χ̂ that minimizes this polynomial can be accomplished via the steps:

• Compute the derivative and set it to zero:

f ′(χ̂) = αχ̂− β = 0.

We notice that computing χ̂ is equivalent to solving the linear system (of one equation)

αχ̂ = β.

• It is a minimum if α > 0 (the quadratic polynomial is concaved up).

Obviously, you can turn this around: in order to solve αχ̂ = β where α > 0, we can instead
minimize the polynomial

f(χ) = 1
2αχ

2 − βχ.

This course does not have multivariate calculus as a prerequisite, so we will walk you through
the basic results we will employ. We will focus on finding a solution to Ax = b where A is symmetric

302

https://www.youtube.com/watch?v=--WEfBpj1Ts
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positive definite (SPD). (In our discussions we will just focus on real-valued problems). Now, if

f(x) = 1
2x

TAx− xT b,

then its gradient equals
∇f(x) = Ax− b.

The function f(x) is minimized (when A is SPD) when its gradient equals zero, which allows us to
compute the vector for which the function achieves its minimum. The basic insight is that in order
to solve Ax̂ = b we can instead find the vector x̂ that minimizes the function f(x) = 1

2x
TAx−xT b.

YouTube: https://www.youtube.com/watch?v=rh9GhwU1fuU

Theorem 8.1.1.1 Let A be SPD and assume that Ax̂ = b. Then the vector x̂ minimizes the
function f(x) = 1

2x
TAx− xT b.

Proof. This proof does not employ multivariate calculus!
Let Ax̂ = b. Then

f(x)
= < definition of f(x) >

1
2x

TAx− xT b
= < Ax̂ = b >

1
2x

TAx− xTAx̂
= < algebra >

1
2x

TAx− xTAx̂+ 1
2 x̂

TAx̂− 1
2 x̂

TAx̂︸ ︷︷ ︸
0

= < factor out >
1
2(x− x̂)TA(x− x̂)− 1

2 x̂
TAx̂.

Since x̂TAx̂ is independent of x, and A is SPD, this is clearly minimized when x = x̂. �

8.1.2 Overview
• 8.1 Opening Remarks

◦ 8.1.1 Solving linear systems by solving a minimization problem
◦ 8.1.2 Overview
◦ 8.1.3 What you will learn

• 8.2 Search directions

◦ 8.2.1 Basics of descent methods

https://www.youtube.com/watch?v=rh9GhwU1fuU
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◦ 8.2.2 Toward practical descent methods
◦ 8.2.3 Relation to Splitting Methods
◦ 8.2.4 Method of Steepest Descent
◦ 8.2.5 Preconditioning

• 8.3 The Conjugate Gradient Method

◦ 8.3.1 A-conjugate directions
◦ 8.3.2 Existence of A-conjugate search directions
◦ 8.3.3 Conjugate Gradient Method Basics
◦ 8.3.4 Technical details
◦ 8.3.5 Practical Conjugate Gradient Method algorithm
◦ 8.3.6 Final touches for the Conjugate Gradient Method

• 8.4 Enrichments

◦ 8.4.1 Conjugate Gradient Method: Variations on a theme

• 8.5 Wrap Up

◦ 8.5.1 Additional homework
◦ 8.5.2 Summary

8.1.3 What you will learn
This week, you are introduced to additional techniques for solving sparse linear systems (or any
linear system where computing a matrix-vector multiplication with the matrix is cheap). We discuss
descent methods in general and the Conjugate Gradient Method in particular, which is the most
important member of this family of algorithms.

Upon completion of this week, you should be able to

• Relate solving a linear system of equations Ax = b, where A is symmetric positive definite
(SPD), to finding the minimum of the function f(x) = 1

2x
TAx− xT b.

• Solve Ax = b via descent methods including the Conjugate Gradient Method.

• Exploit properties of A-conjugate search directions to morph the Method of Steepest Descent
into a practical Conjugate Gradient Method.

• Recognize that while in exact arithmetic the Conjugate Gradient Method solves Ax = b in a
finite number of iterations, in practice it is an iterative method due to error introduced by
floating point arithmetic.

• Accelerate the Method of Steepest Descent and Conjugate Gradient Method by applying a
preconditioner implicitly defines a new problem with the same solution and better condition
number.
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8.2 Search directions

8.2.1 Basics of descent methods

YouTube: https://www.youtube.com/watch?v=V7Cvihzs-n4

Remark 8.2.1.1 In the video, the quadratic polynomial pictured takes on the value −1
2 x̂

TAx̂ at
x̂ and that minimum is below the x-axis. This does not change the conclusions that are drawn in
the video.

The basic idea behind a descent method is that at the kth iteration one has an approximation
to x, x(k), and one would like to create a better approximation, x(k+1). To do so, the method picks
a search direction, p(k), and chooses the next approximation by taking a step from the current
approximate solution in the direction of p(k):

x(k+1) := x(k) + αkp
(k).

In other words, one searches for a minimum along a line defined by the current iterate, x(k), and
the search direction, p(k). One then picks αk so that, preferrably, f(x(k+1)) ≤ f(x(k)). This is
summarized in Figure 8.2.1.2.

Given : A, b, x(0)

r(0) := b−Ax(0)

k := 0
while r(k) 6= 0
p(k) := next direction
x(k+1) := x(k) + αkp

(k) for some scalar αk
r(k+1) := b−Ax(k+1)

k := k + 1
endwhile

Figure 8.2.1.2 Outline for a descent method.
To this goal, typically, an exact descent method picks αk to exactly minimize the function

along the line from the current approximate solution in the direction of p(k).

https://www.youtube.com/watch?v=V7Cvihzs-n4
https://www.youtube.com/watch?v=O1Slxl3oAc8
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YouTube: https://www.youtube.com/watch?v=O1Slxl3oAc8
Now,

f(x(k+1))
= < x(k+1) = x(k) + αkp

(k) >

f(x(k) + αkp
(k))

= < evaluate >

1
2

(
x(k) + αkp

(k)
)T

A
(
x(k) + αkp

(k)
)
−
(
x(k) + αkp

(k)
)T

b

= < multiply out >
1
2x

(k)TAx(k) + αkp
(k)TAx(k) + 1

2α
2
kp

(k)TAp(k) − x(k)T b− αkp(k)T b
= < rearrange >

1
2x

(k)TAx(k) − x(k)T b+ 1
2α

2
kp

(k)TAp(k) + αkp
(k)TAx(k) − αkp(k)T b

= < substitute f(x(k)) and factor out common terms >

f(x(k)) + 1
2α

2
kp

(k)TAp(k) + αkp
(k)T (Ax(k) − b)

= < substitute r(k) and commute to expose polynomial in αk
1
2p

(k)TAp(k)α2
k − p(k)T r(k)αk + f(x(k)),

where r(k) = b−Ax(k) is the residual. This is a quadratic polynomial in the scalar αk (since this
is the only free variable).

YouTube: https://www.youtube.com/watch?v=SA_VrhP7EZg
Minimizing

f(x(k+1)) = 1
2p

(k)TAp(k)α2
k − p(k)T r(k)αk + f(x(k))

exactly requires the deriviative with respect to αk to be zero:

0 = df(x(k) + αkp
(k))

dαk
= p(k)TAp(k)αk − p(k)T r(k).

Hence, for a given choice of pk

αk = p(k)T r(k)

p(k)TAp(k) and x(k+1) = x(k) + αkp
(k).

provides the next approximation to the solution. This leaves us with the question of how to pick
the search directions {p(0), p(1), . . .}.

A basic decent method based on these ideas is given in Figure 8.2.1.3.

https://www.youtube.com/watch?v=SA_VrhP7EZg
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Given : A, b, x(0)

r(0) := b−Ax(0)

k := 0
while r(k) 6= 0
p(k) := next direction
αk := p(k)T r(k)

p(k)TAp(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := b−Ax(k+1)

k := k + 1
endwhile

Figure 8.2.1.3 Basic descent method.

Homework 8.2.1.1 The cost of an iterative method is a combination of how many iterations it
takes to convergence and the cost per iteration. For the loop in Figure 8.2.1.3, count the number
of matrix-vector multiplications, dot products, and "axpy" operations (not counting the cost of
determining the next descent direction). [Solution]

8.2.2 Toward practical descent methods

YouTube: https://www.youtube.com/watch?v=aBTI_EEQNKE
Even though matrices are often highly sparse, a major part of the cost of solving Ax = b via

descent methods is in the matrix-vector multiplication (a cost that is proportional to the number
of nonzeroes in the matrix). For this reason, reducing the number of these is an important part of
the design of the algorithm.

Homework 8.2.2.1 Let
x(k+1) = x(k) + αkp

(k)

r(k) = b−Ax(k)

r(k+1) = b−Ax(k+1)

Show that
r(k+1) = r(k) − αkAp(k).

[Solution]

https://www.youtube.com/watch?v=aBTI_EEQNKE
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YouTube: https://www.youtube.com/watch?v=j00GS9mTgd8
With the insights from this last homework, we can reformulate our basic descent method into

one with only one matrix-vector multiplication, as illustrated in Figure 8.2.2.1.

Given : A, b, x(0)

r(0) := b−Ax(0)

k := 0
while r(k) 6= 0
p(k) = next direction

αk := p(k)T r(k)

p(k)TAp(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := b−Ax(k+1)

k := k + 1
endwhile

Given : A, b, x(0)

r(0) := b−Ax(0)

k := 0
while r(k) 6= 0
p(k) := next direction

αk := p(k)T r(k)

p(k)TAp(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := r(k) − αkAp(k)

k := k + 1

endwhile

Given : A, b, x(0)

r(0) := b−Ax(0)

k := 0
while r(k) 6= 0
p(k) := next direction
q(k) := Ap(k)

αk := p(k)T r(k)

p(k)T q(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := r(k) − αkq(k)

k := k + 1
endwhile

Figure 8.2.2.1 Left: Basic descent method from last unit. Middle: Minor modification that
recasts the computation of the residual r(k+1) as an update of the previous residual r(k). Right:
modification that reduces the number of matrix-vector multiplications by introducing temporary
vector q(k).

Homework 8.2.2.2 For loops in the algorithm in Figure 8.2.2.1 (Right), count the number of
matrix-vector multiplications, dot products, and "axpy" operations (not counting the cost of deter-
mining the next descent direction). [Solution]

YouTube: https://www.youtube.com/watch?v=OGqV_hfaxJA
We finish our discussion regarding basic descent methods by observing that we don’t need to

keep the history of vectors, x(k), p(k), r(k), q(k), and scalar αk that were computed as long as they
are not needed to compute the next search direction, leaving us with the algorithm

https://www.youtube.com/watch?v=j00GS9mTgd8
https://www.youtube.com/watch?v=OGqV_hfaxJA
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Given : A, b, x
r := b−Ax
while r 6= 0
p := next direction
q := Ap

α := pT r
pT q

x := x+ αp
r := r − αq

endwhile

Figure 8.2.2.2 The algorithm from Figure 8.2.2.1 (Right) storing only the most current vectors
and scalar.

8.2.3 Relation to Splitting Methods

YouTube: https://www.youtube.com/watch?v=ifwailOB1EI
Let us pick some really simple search directions in the right-most algorithm in Homework 8.2.2.2:

p(k) = ek modn, which cycles through the standard basis vectors.

Homework 8.2.3.1 For the right-most algorithm in Homework 8.2.2.2, show that if p(0) = e0,
then

χ
(1)
0 = χ

(0)
0 + 1

α0,0

β0 −
n−1∑
j=0

α0,jχ
(0)
j

 = 1
α0,0

β0 −
n−1∑
j=1

α0,jχ
(0)
j

 .
[Solution]

YouTube: https://www.youtube.com/watch?v=karx3stbVdE
Careful contemplation of the last homework reveals that this is exactly how the first element

in vector x, χ0, is changed in the Gauss-Seidel method!

Ponder This 8.2.3.2 Continue the above argument to show that this choice of descent directions
yields the Gauss-Seidel iteration.

https://www.youtube.com/watch?v=ifwailOB1EI
https://www.youtube.com/watch?v=karx3stbVdE
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8.2.4 Method of Steepest Descent

YouTube: https://www.youtube.com/watch?v=tOqAd1OhIwc
For a function f : Rn → R that we are trying to minimize, for a given x, the direction in which

the function most rapidly increases in value at x is given by its gradient,

∇f(x).

Thus, the direction in which it decreases most rapidly is

−∇f(x).

For our function
f(x) = 1

2x
TAx− xT b

this direction of steepest descent is given by

−∇f(x) = −(Ax− b) = b−Ax,

which we recognize as the residual. Thus, recalling that r(k) = b− Ax(k), the direction of steepest
descent at x(k) is given by p(k) = r(k) = b − Ax(k). These insights motivate the algorithms in
Figure 8.2.4.1.

Given : A, b, x(0)

r(0) := b−Ax(0)

k := 0
while r(k) 6= 0
p(k) := r(k)

q(k) := Ap(k)

αk := p(k)T r(k)

p(k)T q(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := r(k) − αkq(k)

k := k + 1
endwhile

Given : A, b, x
k := 0
r := b−Ax
while r 6= 0
p := r
q := Ap

α := pT r
pT q

x := x+ αp
r := r − αq
k := k + 1

endwhile

Figure 8.2.4.1 Steepest descent algorithm, with indices and without indices.

https://www.youtube.com/watch?v=tOqAd1OhIwc
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8.2.5 Preconditioning

YouTube: https://www.youtube.com/watch?v=i-83HdtrI1M
For a general (appropriately differential) nonlinear function f(x), using the direction of steepest

descent as the search direction is often a reasonable choice. For our problem, especially if A is
relatively ill-conditioned, we can do better.

Here is the idea: Let A = QΣQT be the SVD of SPD matrix A (or, equivalently for SPD
matrices, its spectral decomposition, which we will discuss in Subsection 9.2.4). Then

f(x) = 1
2x

TAx− xT b = 1
2x

TQΣQTx− xTQQT b.

Using the change of basis y = QTx and b̂ = QT b, then

g(y) = 1
2y

TΣy − yT b̂.

How this relates to the convergence of the Method of Steepest Descent is discussed (informally) in
the video. The key insight is that if κ(A) = σ0/σn−1 (the ratio between the largest and smallest
eigenvalues or, equivalently, the ratio between the largest and smallest singular value) is large, then
convergence can take many iterations.

What would happen if instead σ0 = · · · = σn−1? Then A = QΣQT is the SVD/Spectral
decomposition of A and A = Q(σ0I)QT . If we then perform the Method of Steepest Descent with
y (the transformed vector x) and b̂ (the transformed right-hand side), then

y(1)

=
y(0) − r(0)T r(0)

r(0)T σ0Ir(0) r
(0)

=
y(0) − 1

σ0
r(0)

=
y(0) − 1

σ0
(σ0y

(0) − b̂)
=

1
σ0
b̂,

which is the solution to σ0Iy = b̂. Thus, the iteration converges in one step. The point we are
trying to (informally) make is that if A is well-conditioned, then the Method of Steepest Descent
converges faster.

Now, Ax = b is equivalent to M−1Ax = M−1b. Hence, one can define a new problem with the
same solution and, hopefully, a better condition number by letting Ã = M−1A and b̃ = M−1b. A

https://www.youtube.com/watch?v=i-83HdtrI1M
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better condition number results if M ≈ A since then M−1A ≈ A−1A ≈ I. A constraint is that M
should be chosen so that solving with it is easy/cheap. The matrix M is called a preconditioner.

A problem is that, in our discussion of descent methods, we restrict ourselves to the case where
the matrix is SPD. Generally speaking, M−1A will not be SPD. To fix this, choose M ≈ A to be
SPD and letM = LML

T
M equal its Cholesky factorization. If A = LLT is the Cholesky factorization

of A, then L−1
M AL−TM ≈ L−1

M LLTL−TM ≈ I. With this, we can transform our linear system Ax = b
in to one that has the same solution:

L−1
M AL−TM︸ ︷︷ ︸
Ã

LTMx︸ ︷︷ ︸
x̃

= L−1
M b︸ ︷︷ ︸
b̃

.

We note that Ã is SPD and hence one can apply the Method of Steepest Descent to Ãx̃ = b̃, where
Ã = L−1

M AL−TM , x̃ = LTMx, and b̃ = L−1
M b. Once the method converges to the solution x̃, one can

transform that solution of this back to solution of the original problem by solving LTMx = x̃. If
M is chosen carefully, κ(L−1

M AL−TM ) can be greatly improved. The best choice would be M = A,
of course, but that is not realistic. The point is that in our case where A is SPD, ideally the
preconditioner should be SPD.

Some careful rearrangement takes the method of steepest descent on the transformed problem
to the much simpler preconditioned algorithm on the right in Figure 8.2.5.1.

Given : A, b, x(0)

r(0) := b−Ax(0)

k := 0
while r(k) 6= 0
p(k) := r(k)

q(k) := Ap(k)

αk := p(k)T r(k)

p(k)T q(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := r(k) − αkq(k)

k := k + 1
endwhile

Given : A, b, x(0),
M = LLT

Ã = L−1AL−T

b̃ = L−1b

x̃(0) = LTx(0)

r̃(0) := b̃− Ãx̃(0)

k := 0
while r̃(k) 6= 0
p̃(k) := r̃(k)

q̃(k) := Ãp̃(k)

α̃k := p̃(k)T r̃(k)

p̃(k)T q̃(k)

x̃(k+1) := x̃(k) + α̃kp̃
(k)

r̃(k+1) := r̃(k) − α̃kq̃(k)

x(k+1) = L−T x̃(k+1)

k := k + 1
endwhile

Given : A, b, x(0),M

r(0) := b−Ax(0)

k := 0
while r(k) 6= 0
p(k) := M−1r(k)

q(k) := Ap(k)

αk := p(k)T r(k)

p(k)T q(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := r(k) − αkq(k)

k := k + 1
endwhile

Figure 8.2.5.1 Left: method of steepest descent. Middle: method of steepest descent with trans-
formed problem. Right: preconditioned method of steepest descent. It can be checked that the x(k)

computed by the middle algorithm is exactly the x(k) computed by the one on the right. Of course,
the computation x(k+1) = L−T x̃(k+1) needs only be done once, after convergence, in the algorithm
in the middle. We state it this way to facilitate Homework 8.2.5.1.

Homework 8.2.5.1 Show that the algorithm in Figure 8.2.5.1 (Middle) computes the same values
for x(k) as does the algorithm to its right. [Hint] [Solution]
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8.3 The Conjugate Gradient Method

8.3.1 A-conjugate directions

YouTube: https://www.youtube.com/watch?v=9-SyyJv0XuU
Let’s start our generic descent method algorithm with x(0) = 0. Here we do not use the

temporary vector q(k) = Ap(k) so that later we can emphasize how to cast the Conjugate Gradient
Method in terms of as few matrix-vector multiplication as possible (one to be exact).

Given : A, b

x(0) := 0
r(0) := b−Ax(0)(= b)
k := 0
while r(k) 6= 0
p(k) := next direction
αk := p(k)T r(k)

p(k)TAp(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := r(k) − αAp(k)

k := k + 1
endwhile

Given : A, b
x := 0
r := b

while r 6= 0
p := next direction
α := pT r

pTAp

x := x+ αp
r := r − αAp

endwhile

Figure 8.3.1.1 Generic descent algorithm started with x(0) = 0. Left: with indices. Right: without
indices.

Now, since x(0) = 0, clearly

x(k+1) = α0p
(0) + · · ·+ αkp

(k).

Thus, x(k+1) ∈ Span(p(0), . . . , p(k)).
It would be nice if after the kth iteration

f(x(k+1)) = min
x∈Span(p(0),...,p(k))

f(x) (8.3.1)

and the search directions were linearly independent. Then, the resulting descent method, in exact
arithmetic, is guaranteed to complete in at most n iterations, This is because then

Span(p(0), . . . , p(n−1)) = Rn

so that
f(x(n)) = min

x∈Span(p(0),...,p(n−1))
f(x) = min

x∈Rn
f(x)

https://www.youtube.com/watch?v=9-SyyJv0XuU
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and hence Ax(n) = b.
Unfortunately, the Method of Steepest Descent does not have this property. The next approxi-

mation to the solution, x(k+1) minimizes f(x) where x is constrained to be on the line x(k) +αp(k).
Because in each step f(x(k+1)) ≤ f(x(k)), a slightly stronger result holds: It also minimizes f(x)
where x is constrained to be on the union of lines x(j) + αp(j), j = 0, . . . , k. However, unless we
pick the search directions very carefully, that is not the same as it minimizing over all vectors in
Span(p(0), . . . , p(k)).

YouTube: https://www.youtube.com/watch?v=j8uNP7zjdv8
We can write (8.3.1) more concisely: Let

P (k−1) =
(
p(0) p(1) · · · p(k−1)

)
be the matrix that holds the history of all search directions so far (as its columns) . Then, letting

a(k−1) =

 α0
...

αk−1

 ,
we notice that

x(k) =
(
p(0) · · · p(k−1)

) α0
...

αk−1

 = P (k−1)ak−1. (8.3.2)

Homework 8.3.1.1 Let p(k) be a new search direction that is linearly independent of the columns
of P (k−1), which themselves are linearly independent. Show that

minx∈Span(p(0),...,p(k−1),p(k)) f(x) = miny f(P (k)y)

= miny
[

1
2y

T
0 P

(k−1)TAP (k−1)y0 − yT0 P (k−1)T b

+ψ1y
T
0 P

(k−1) TAp(k) + 1
2ψ

2
1p

(k)TAp(k) − ψ1p
(k)T b

]
,

where y =
(
y0
ψ1

)
∈ Rk+1. [Hint] [Solution]

https://www.youtube.com/watch?v=j8uNP7zjdv8
https://www.youtube.com/watch?v=5eNmr776GJY
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YouTube: https://www.youtube.com/watch?v=5eNmr776GJY
Now, if

P (k−1)TAp(k) = 0

then

minx∈Span(p(0),...,p(k−1),p(k)) f(x)
= < from before >

miny
[

1
2y

T
0 P

(k−1)TAP (k−1)y0 − yT0 P (k−1) T b

+ ψ1y
T
0 P

(k−1)TAp(k)︸ ︷︷ ︸
0

+ 1
2ψ

2
1p

(k)TAp(k) − ψ1p
(k)T b

]
= < remove zero term >

miny
[

1
2y

T
0 P

(k−1)TAP (k−1)y0 − yT0 P (k−1) T b

+ 1
2ψ

2
1p

(k)TAp(k) − ψ1p
(k)T b

]
= < split into two terms that can be minimized separately >

miny0

[
1
2y

T
0 P

(k−1)TAP (k−1)y0 − yT0 P (k−1) T b
]

+ minψ1

[
1
2ψ

2
1p

(k)TAp(k) − ψ1p
(k)T b

]
= < recognize first set of terms as f(P (k−1)y0) >

minx∈Span(p(0),...,p(k−1)) f(x) + minψ1

[
1
2ψ

2
1p

(k)TAp(k) − ψ1p
(k)T b

]
.

The minimizing ψ1 is given by

ψ1 = p(k)T b

p(k)TAp(k) .

If we pick p(k) = p(k) and αk = ψ1 then

x(k+1) = P (k−1)y0 + ψ1p
(k) = α0p

(0) + · · ·+ αk−1p
(k−1) + αkp

(k) = x(k) + αkp
(k).

A sequence of such directions is said to be A-conjugate.

Definition 8.3.1.2 A-conjugate directions. Let A be SPD. A sequence p(0), . . . , p(k−1) ∈ Rn
such that p(j)TAp(i) = 0 if and only if j 6= i is said to be A-conjugate. ♦

YouTube: https://www.youtube.com/watch?v=70t6zgeMHs8

Homework 8.3.1.2 Let A ∈ Rn×n be SPD.
ALWAYS/SOMETIMES/NEVER: The columns of P ∈ Rn×k are A-conjugate if and only if

P TAP = D where D is diagonal and has positive values on its diagonal. [Answer] [Solution]

Homework 8.3.1.3 Let A ∈ Rn×n be SPD and the columns of P ∈ Rn×k be A-conjugate.
ALWAYS/SOMETIMES/NEVER: The columns of P are linearly independent. [Answer] [Solu-

tion]

https://www.youtube.com/watch?v=70t6zgeMHs8
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The above observations leaves us with a descent method that picks the search directions to be
A-conjugate, given in Figure 8.3.1.3.

Given : A, b

x(0) := 0
r(0) = b
k := 0
while r(k) 6= 0
Choose p(k) such that p(k)TAP (k−1) = 0 and p(k)T r(k) 6= 0
αk := p(k)T r(k)

p(k)TAp(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := r(k) − αkAp(k)

k := k + 1
endwhile

Figure 8.3.1.3 Basic method that chooses the search directions to be A-conjugate.

Remark 8.3.1.4 The important observation is that if p(0), . . . , p(k) are chosen to be A-conjugate,
then x(k+1) minimizes not only

f(x(k) + αp(k))

but also
min

x∈Span(p(0),...,p(k−1))
f(x).

8.3.2 Existence of A-conjugate search directions

YouTube: https://www.youtube.com/watch?v=yXfR71mJ64w
The big question left dangling at the end of the last unit was whether there exists a direction

p(k) that is A-orthogonal to all previous search directions and that is not orthogonal to r(k). Let
us examine this:

• Assume that all prior search directions p(0), . . . , p(k−1) were A-conjugate.

• Consider all vectors p ∈ Rn that are A-conjugate to p(0), . . . , p(k−1). A vector p has this
property if and only if p ⊥ Span(Ap(0), . . . , Ap(k−1)).

• For p ⊥ Span(Ap(0), . . . , Ap(k−1)) we notice that

pT r(k) = pT (b−Ax(k)) = pT (b−AP (k−1)a(k−1))

https://www.youtube.com/watch?v=yXfR71mJ64w
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where we recall from (8.3.2) that

P (k−1) =
(
p(0) · · · p(k−1)

)
and a(k−1) =

 α0
...

αk−1

 .
• If all vectors p that are A-conjugate to p(0), . . . , p(k−1) are orthogonal to the current residual,
pT r(k) = 0 for all p with P (k−1)TAp = 0, then

0 = pT b− pAP (k−1)a(k−1) = pT b for all p ⊥ Span(Ap(0), . . . , Ap(p−1)).

Let’s think about this: b is orthogonal to all vectors that are orthogonal to Span(Ap(0), . . . , Ap(p−1)).
This means that

b ∈ Span(Ap(0), . . . , Ap(k−1)).

• Hence b = AP (k−1)z for some z ∈ Rk. It also means that x = P (k−1)z solves Ax = b.

• We conclude that our method must already have found the solution since x(k) minimizes f(x)
over all vectors in Span(p(0), . . . , p(k−1)). Thus Ax(k) = b and r(k) = 0.

We conclude that there exist descent methods that leverage A-conjugate search directions as de-
scribed in Figure 8.3.1.3. The question now is how to find a new A-conjugate search direction at
every step.

8.3.3 Conjugate Gradient Method Basics

YouTube: https://www.youtube.com/watch?v=OWnTq1PIFnQ
The idea behind the Conjugate Gradient Method is that in the current iteration we have an

approximation, x(k) to the solution to Ax = b. By construction, since x(0) = 0,

x(k) = α0p
(0) + · · ·+ αk−1p

(k−1).

Also, the residual
r(k)

=
b−Ax(k)

=
b−A(α0p

(0) + · · ·+ αk−1p
(k−1))

=
b− α0Ap

(0) − · · · − αk−1Ap
(k−1)

=
r(k−1) − αk−1Ap

(k−1).

https://www.youtube.com/watch?v=OWnTq1PIFnQ
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If r(k) = 0, then we know that x(k) solves Ax = b, and we are done.
Assume that r(k) 6= 0. The question now is "How should we construct a new p(k) that is

A-conjugate to the previous search directions and so that p(k)T r(k) 6= 0?" Here are some thoughts:

• We like the direction of steepest descent, r(k) = b−Ax(k), because it is the direction in which
f(x) decreases most quickly.

• Let us chose p(k) to be the vector that is A-conjugate to p(0), . . . , p(k−1) and closest to the
direction of steepest descent, r(k):

‖p(k) − r(k)‖2 = min
p⊥Span(Ap(0),...,Ap(k−1))

‖r(k) − p‖2.

This yields the algorithm in Figure 8.3.3.1.

Given : A, b

x(0) := 0
r(0) := b
k := 0
while r(k) 6= 0

if k = 0
p(k) = r(0)

else
p(k) minimizes minp⊥Span(Ap(0),...,Ap(k−1)) ‖r(k) − p‖2

endif
αk := p(k)T r(k)

p(k)TAp(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := r(k) − αkAp(k)

k := k + 1
endwhile

Figure 8.3.3.1 Basic Conjugate Gradient Method.

8.3.4 Technical details
This unit is probably the most technically difficult unit in the course. We give the details here
for completeness, but you will likely live a happy and productive research life without worrying
about them too much... The important part is the final observation: that the next search direction
computed by the Conjugate Gradient Method is a linear combination of the current residual (the
direction of steepest descent) and the last search direction.

YouTube: https://www.youtube.com/watch?v=i5MoVhNsXYU

https://www.youtube.com/watch?v=i5MoVhNsXYU
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Let’s look more carefully at p(k) that satisfies

‖r(k) − p(k)‖2 = min
p⊥Span(Ap(0),...,Ap(k−1))

‖r(k) − p‖2.

Notice that
r(k) = v + p(k)

where v is the orthogonal projection of r(k) onto Span(Ap(0), . . . , Ap(k−1))

‖r(k) − v‖2 = min
w∈Span(Ap(0),...,Ap(k−1))

‖r(k) − w‖2

which can also be formulated as v = AP (k−1)z(k), where

‖r(k) −AP (k−1)z(k)‖2 = min
z∈Rk

‖r(k) −AP (k−1)z‖2.

This can be recognized as a standard linear least squares problem. This allows us to make a few
important observations:

YouTube: https://www.youtube.com/watch?v=ye1FuJixbHQ

Theorem 8.3.4.1 In Figure 8.3.3.1,
• P (k−1)T r(k) = 0.

• Span(p(0), . . . , p(k−1)) = Span(r(0), . . . , r(k−1)) = Span(b, Ab, . . . , Ak−1b).
Proof.

• Proving that
P (k−1)T r(k) = 0.

starts by considering that

f(P (k−1)y)
=

1
2(P (k−1)y)TA(P (k−1)y)− (P (k−1)y)T b

=
1
2y

T (P (k−1)TAP (k−1))y − yTP (k−1)T b

is minimized by y0 that satisfies

(P (k−1)TAP (k−1))y0 = P (k−1)T b.

Since x(k) minimizes
min

x∈Span(p(0),...,p(k−1))
f(x)

https://www.youtube.com/watch?v=ye1FuJixbHQ
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we conclude that x = P (k−1)y0. But then

0 = P (k−1)T b−
(
P (k−1)TAx(k)

)
= P (k−1)T

(
b−Ax(k)

)
= P (k−1)T r(k).

• Show that Span(p(0), . . . , p(k−1)) = Span(r(0), . . . , r(k−1)) = Span(b, Ab, . . . , Ak−1b).
Proof by induction on k.

◦ Base case: k = 1.
The result clearly holds since p(0) = r(0) = b.
◦ Inductive Hypothesis: Assume the result holds for n ≤ k.

Show that the result holds for k = n+ 1.
� If k = n+ 1 then r(k−1) = r(n) = r(n−1) − αn−1Ap

(n−1). By I.H.

r(n−1) ∈ Span(b, Ab, . . . , An−1b)

and
p(n−1) ∈ Span(b, Ab, . . . , An−1b).

But then
Ap(n−1) ∈ Span(Ab,A2b, . . . , Anb)

and hence
r(n) ∈ Span(b, Ab,A2b, . . . , Anb).

� p(n) = r(n) −AP (n−1)y0 and hence

p(n) ∈ Span(b, Ab,A2b, . . . , Anb)

since
r(n) ∈ Span(b, Ab,A2b, . . . , Anb)

and
APn−1y0 ∈ Span(Ab,A2b, . . . , Anb).

◦ We complete the inductive step by noting that all three subspaces have the same dimen-
sion and hence must be the same subspace.
◦ By the Principle of Mathematical Induction, the result holds.

�

Definition 8.3.4.2 Krylov subspace. The subspace

Kk(A, b) = Span(b, Ab, . . . , Ak−1b)

is known as the order-k Krylov subspace. ♦

The next technical detail regards the residuals that are computed by the Conjugate Gradient
Method. They are mutually orthogonal, and hence we, once again, conclude that the method must
compute the solution (in exact arithmetic) in at most n iterations. It will also play an important
role in reducing the number of matrix-vector multiplications needed to implement the final version
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of the Conjugate Gradient Method.

Theorem 8.3.4.3 The residual vectors r(k) are mutually orthogonal.
Proof. In Theorem 8.3.4.1 we established that

Span(p(0), . . . , p(j−1)) = Span(r(0), . . . , r(j−1))

and hence
Span(r(0), . . . , r(j−1)) ⊂ Span(p(0), . . . , p(k−1)) =

for j < k. Hence r(j) = P (k−1)t(j) for some vector t(j) ∈ Rk. Then

r(k)T r(j) = r(k)TP (k−1)t(j) = 0.

Since this holds for all k and j < k, the desired result is established. �

Next comes the most important result. We established that

p(k) = r(k) −AP (k−1)z(k) (8.3.3)

where z(k) solves
min
z∈Rk

‖r(k) −AP (k−1)z‖2.

What we are going to show is that in fact the next search direction equals a linear combination of
the current residual and the previous search direction.

Theorem 8.3.4.4 For k ≥ 1, the search directions generated by the Conjugate Gradient Method
satisfy

p(k) = r(k) + γkp
(k−1)

for some constant γk.
Proof. This proof has a lot of very technical details. No harm done if you only pay cursory attention
to those details.

Partition z(k−1) =
(
z0
ζ1

)
and recall that r(k) = r(k−1) − γk−1Ap

(k−1) so that

p(k)

= < (8.3.3) >

r(k) −AP (k−1)z(k−1)

= < z(k−1) =
(
z0
ζ1

)
>

r(k) −AP (k−2)z0 + ζ1Ap
(k−1)

= <>

r(k) −
(
AP (k−2)z0 + ζ1(r(k) − r(k−1))/αk−1

)
= <>(

1− ζ1
αk−1

)
r(k) +

(
ζ1
αk−1

r(k−1) −AP (k−2)z0

)
︸ ︷︷ ︸

s(k)

= <>(
1− ζ1

αk−1

)
r(k) + s(k).
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We notice that r(k) and s(k) are orthogonal. Hence

‖p(k)‖22 =
(

1 + ζ1
αk−1

)
‖r(k)‖22 + ‖s(k)‖22

and minimizing p(k) means minimizing the two separate parts. Since r(k) is fixed, this means
minimizing ‖s(k)‖22. An examination of s(k) exposes that

s(k) = ζ1
αk−1

r(k−1) −AP (k−2)z0 = − ζ1
αk−1

(
r(k−1) −AP (k−2)w0

)
where w0 = −(αk−1/ζ1)z0. We recall that

‖r(k−1) − p(k−1)‖2 = min
p⊥Span(p(0),...,p(k−2))

‖r(k−1) −Ap‖2

and hence we conclude that sk is a vector the direction of p(k−1). Since we are only interested in
the direction of p(k), ζ1

αk−1
is not relevant. The upshot of this lengthy analysis is that

p(k) = r(k) + γkp
(k−1).

�
This implies that while the Conjugate Gradient Method is an A-conjugate method and hence

leverages a "memory" of all previous search directions,

f(x(k)) = min
x∈Span(p(0),...,p(k−1))

f(x),

only the last search direction is needed to compute the current one. This reduces the cost of
computing the current search direction and means we don’t have to store all previous ones.

YouTube: https://www.youtube.com/watch?v=jHBK1OQE01s

Remark 8.3.4.5 This is a very, very, very big deal...

8.3.5 Practical Conjugate Gradient Method algorithm

https://www.youtube.com/watch?v=jHBK1OQE01s
https://www.youtube.com/watch?v=FVWgZKJQjz0
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YouTube: https://www.youtube.com/watch?v=FVWgZKJQjz0
We have noted that p(k) = r(k) + γkp

(k−1). Since p(k) is A-conjugate to p(k−1) we find that

p(k−1)TAp(k) = p(k−1)TAr(k) + γkp
(k−1)TAp(k−1)

so that
γk = −p(k−1)TAr(k)/p(k−1)TAp(k−1).

This yields the first practical instantiation of the Conjugate Gradient method, given in Fig-
ure 8.3.5.1.

Given : A, b

x(0) := 0
r(0) := b
k := 0
while r(k) 6= 0

if k = 0
p(k) = r(0)

else
γk := −p(k−1)TAr(k)/p(k−1)TAp(k−1)

p(k) := r(k) + γkp
(k−1)

endif
αk := p(k)T r(k)

p(k)TAp(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := r(k) − αkAp(k)

k := k + 1
endwhile

Figure 8.3.5.1 Conjugate Gradient Method.

Homework 8.3.5.1 In Figure 8.3.5.1 we compute

αk := p(k)T r(k)

p(k)TAp(k) .

Show that an alternative formula for αk is given by

αk := r(k)T r(k)

p(k)TAp(k) .

[Hint] [Solution]
The last homework justifies the refined Conjugate Gradient Method in Figure 8.3.5.2 (Left).
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Given : A, b

x(0) := 0
r(0) := b
k := 0
while r(k) 6= 0

if k = 0
p(k) = r(0)

else
γk := −(p(k−1)TAr(k))/(p(k−1)TAp(k−1))
p(k) := r(k) + γkp

(k−1)

endif
αk := r(k)T r(k)

p(k)TAp(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := r(k) − αkAp(k)

k := k + 1
endwhile

Given : A, b

x(0) := 0
r(0) := b
k := 0
while r(k) 6= 0

if k = 0
p(k) = r(0)

else
γk := (r(k)T r(k))/(r(k−1)T r(k−1))
p(k) := r(k) + γkp

(k−1)

endif
αk := r(k)T r(k)

p(k)TAp(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := r(k) − αkAp(k)

k := k + 1
endwhile

Figure 8.3.5.2 Alternative Conjugate Gradient Method algorithms.

Homework 8.3.5.2 For the Conjugate Gradient Method discussed so far,
• Show that

r(k)T r(k) = −αk−1r
(k)TApk−1.

• Show that
p(k−1)TAp(k−1) = r(k−1)T r(k−1)/αk−1.

[Hint] [Solution]
From the last homework we conclude that

γk = −(p(k−1)TAr(k))/(p(k−1)TAp(k−1)) = r(k)T r(k)/r(k−1)T r(k−1).

This is summarized in on the right in Figure 8.3.5.2.

8.3.6 Final touches for the Conjugate Gradient Method

YouTube: https://www.youtube.com/watch?v=f3rLky6mIA4
We finish our discussion of the Conjugate Gradient Method by revisiting the stopping criteria

and preconditioning.

https://www.youtube.com/watch?v=f3rLky6mIA4
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8.3.6.1 Stopping criteria

In theory, the Conjugate Gradient Method requires at most n iterations to achieve the condition
where the residual is zero so that x(k) equals the exact solution. In practice, it is an iterative method
due to the error introduced by floating point arithmetic. For this reason, the iteration proceeds
while ‖r(k)‖2 ≥ εmach‖b‖2 and some maximum number of iterations is not yet performed.

8.3.6.2 Preconditioning

In Subsection 8.2.5 we noted that the method of steepest Descent can be greatly accelerated by
employing a preconditioner. The Conjugate Gradient Method can be greatly accelerated. While
in theory the method requires at most n iterations when A is n × n, in practice a preconditioned
Conjugate Gradient Method requires very few iterations.

Homework 8.3.6.1 Add preconditioning to the algorithm in Figure 8.3.5.2 (right). [Solution]

8.4 Enrichments

8.4.1 Conjugate Gradient Method: Variations on a theme
Many variations on the Conjugate Gradient Method exist, which are employed in different situ-
ations. A concise summary of these, including suggestions as to which one to use when, can be
found in

• [2] Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June M. Donato, Jack
Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk Van der Vorst, Tem-
plates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM Press,
1993. [ PDF ]

8.5 Wrap Up

8.5.1 Additional homework
Homework 8.5.1.1 When using iterative methods, the matrices are typically very sparse. The
question then is how to store a sparse matrix and how to perform a matrix-vector multiplication
with it. One popular way is known as compressed row storage that involves three arrays:

• 1D array nzA (nonzero A) which stores the nonzero elements of matrix A. In this array, first
all nonzero elements of the first row are stored, then the second row, etc. It has size nnzeroes
(number of nonzeroes).

• 1D array ir which is an integer array of size n + 1 such that ir( 1 ) equals the index in
array nzA where the first element of the first row is stored. ir( 2 ) then gives the index
where the first element of the second row is stored, and so forth. ir( n+1 ) equals nnzeroes
+ 1. Having this entry is convenient when you implement a matrix-vector multiplication with
array nzA.

• 1D array ic of size nnzeroes which holds the column indices of the corresponding elements
in array nzA.

http://www.netlib.org/templates/templates.pdf
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1. Write a function

[ nzA, ir, ic ] = Create_Poisson_problem_nzA( N )

that creates the matrix A in this sparse format.

2. Write a function

y = SparseMvMult( nzA, ir, ic, x )

that computes y = Ax with the matrix A stored in the sparse format.

8.5.2 Summary
Given a function f : Rn → R, its gradient is given by

∇f(x) =


∂f
∂χ0

(x)
∂f
∂χ1

(x)
...

∂f
∂χn−1

(x)

 .

∇f(x) equals the direction in which the function f increases most rapidly at the point x and
−∇f(x) equals the direction of steepest descent (the direction in which the function f decreases
most rapidly at the point x).

In this summary, we will assume that A ∈ Rn×n is symmetric positive definite (SPD) and

f(x) = 1
2x

TAx− xT b.

The gradient of this function equals
∇f(x) = Ax− b

and x̂ minimizes the function if and only if

Ax̂ = b.

If x(k) is an approximation to x̂ then r(k) = b−Ax(k) equals the corresponding residual. Notice
that r(k) = −∇f(x(k)) and hence r(k) is the direction of steepest descent .

A prototypical descent method is given by

Given :A, b, x(0)

r(0) := b−Ax(0)

k := 0
while r(k) 6= 0
p(k) := next direction
x(k+1) := x(k) + αkp

(k) for some scalar αk
r(k+1) := b−Ax(k+1)

k := k + 1
endwhile

Here p(k) is the "current" search direction and in each iteration we create the next approximation
to x̂, x(k+1), along the line x(k) + αp(k).
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If x(k+1) minimizes along that line, the method is an exact descent method and

αk = p(k)T r(k)

p(k)TAp(k)

so that a prototypical exact descent method is given by

Given : A, b, x(0)

r(0) := b−Ax(0)

k := 0
while r(k) 6= 0
p(k) := next direction
αk := p(k)T r(k)

p(k)TAp(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := b−Ax(k+1)

k := k + 1
endwhile

Once αk is determined,
r(k+1) = r(k) − αkAp(k).

which saves a matrix-vector multiplication when incorporated into the prototypical exact descent
method:

Given : A, b, x(0)

r(0) := b−Ax(0)

k := 0
while r(k) 6= 0
p(k) := next direction
q(k) := Ap(k)

αk := p(k)T r(k)

p(k)T q(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := r(k) − αkq(k)

k := k + 1
endwhile

The steepest descent algorithm chooses p(k) = −∇f(x(k)) = b−Ax(k) = r(k):

Given : A, b, x(0)

r(0) := b−Ax(0)

k := 0
while r(k) 6= 0
p(k) := r(k)

q(k) := Ap(k)

αk := p(k)T r(k)

p(k)T q(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := r(k) − αkq(k)

k := k + 1
endwhile
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Convergence can be greatly accelerated by incorporating a preconditioner, M , where, ideally,
M ≈ A is SPD and solving Mz = y is easy (cheap).

Given : A, b, x(0),M

r(0) := b−Ax(0)

k := 0
while r(k) 6= 0
p(k) := M−1r(k)

q(k) := Ap(k)

αk := p(k)T r(k)

p(k)T q(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := r(k) − αkq(k)

k := k + 1
endwhile

Definition 8.5.2.1 A-conjugate directions. Let A be SPD. A sequence p(0), . . . , p(k−1) ∈ Rn
such that p(j)TAp(i) = 0 if and only if j 6= i is said to be A-conjugate. ♦

The columns of P ∈ Rn×k are A-conjugate if and only if P TAP = D where D is diagonal and
has positive values on its diagonal.

A-conjugate vectors are linearly independent.
A descent method that chooses the search directions to be A-conjugate will find the solution of

Ax = b, where A ∈ Rn×n is SPD, in at most n iterations:

Given : A, b

x(0) := 0
r(0) = b
k := 0
while r(k) 6= 0

Choose p(k) such that p(k)TAP (k−1) = 0 and p(k)T r(k) 6= 0
αk := p(k)T r(k)

p(k)TAp(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := r(k) − αkAp(k)

k := k + 1
endwhile

The Conjugate Gradient Method chooses the search direction to equal the vector p(k) that is
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A-conjugate to all previous search directions and is closest to the direction of steepest descent:

Given : A, b

x(0) := 0
r(0) := b
k := 0
while r(k) 6= 0

if k = 0
p(k) = r(0)

else
p(k) minimizes minp⊥Span(Ap(0),...,Ap(k−1)) ‖r(k) − p‖2

endif
αk := p(k)T r(k)

p(k)TAp(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := r(k) − αkAp(k)

endwhile

The various vectors that appear in the Conjugate Gradient Method have the following proper-
ties: If P (p−1) =

(
p(0) · · · p(k−1)

)
then

• P (k−1)T r(k) = 0.

• Span(p(0), . . . , p(k−1)) = Span(r(0), . . . , r(k−1)) = Span(b, Ab, . . . , Ak−1b).

• The residual vectors r(k) are mutually orthogonal.

• For k ≥ 1
p(k) = r(k) − γkp(k−1)

Definition 8.5.2.2 Krylov subspace. The subspace

Kk(A, b) = Span(b, Ab, . . . , Ak−1b)

is known as the order-k Krylov subspace. ♦

Alternative Conjugate Gradient Methods are given by
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Given : A, b

x(0) := 0
r(0) := b
k := 0
while r(k) 6= 0

if k = 0
p(k) = r(0)

else
γk := −(p(k−1)TAr(k))/(p(k−1)TAp(k−1))
p(k) := r(k) + γkp

(k−1)

endif
αk := r(k)T r(k)

p(k)TAp(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := r(k) − αkAp(k)

k := k + 1
endwhile

Given : A, b

x(0) := 0
r(0) := b
k := 0
while r(k) 6= 0

if k = 0
p(k) = r(0)

else
γk := (r(k)T r(k))/(r(k−1)T r(k−1))
p(k) := r(k) + γkp

(k−1)

endif
αk := r(k)T r(k)

p(k)TAp(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := r(k) − αkAp(k)

k := k + 1
endwhile

A practical stopping criteria for the Conjugate Gradient Method is to proceed while ‖r(k)‖2 ≤
εmach‖b‖2 and some maximum number of iterations is not yet performed.

The Conjugate Gradient Method can be accelerated by incorporating a preconditioned, M ,
where M ≈ A is SPD.
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Week 9

Eigenvalues and Eigenvectors

9.1 Opening Remarks

9.1.1 Relating diagonalization to eigenvalues and eigenvectors
You may want to start your exploration of eigenvalues and eigenvectors by watching the video

• Eigenvectors and eigenvalues | Essence of linear algebra, chapter 14 from the 3Blue1Brown
series. (We don’t embed the video because we are not quite sure that the rules about doing
so are.)

Here are the insights from that video in the terminology of this week.

YouTube: https://www.youtube.com/watch?v=S_OgLYAh2Jk

Homework 9.1.1.1 Eigenvalues and eigenvectors are all about finding scalars, λ, and nonzero
vectors, x, such that

Ax = λx.

To help you visualizing how a 2 × 2 real-valued matrix transforms a vector on the unit circle in
general, and eigenvectors of unit length in particular, we have created the function Assignments/

Week09/matlab/showeig.m (inspired by such a function that used to be part of Matlab). You may
now want to do a "git pull" to update your local copy of the Assignments directory.

Once you have uploaded this function to Matlab, in the command window, first create a 2× 2
matrix in array A and then execute showeig( A ).

Here are some matrices to try:

A = [ 2 0
0 -0.5 ]

A = [ 2 1

332

https://www.youtube.com/watch?v=PFDu9oVAE-g
https://www.youtube.com/watch?v=S_OgLYAh2Jk
Assignments/Week09/matlab/showeig.m
Assignments/Week09/matlab/showeig.m
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0 -0.5 ]

A = [ 2 1
1 -0.5 ]

theta = pi/4;
A = [ cos( theta) -sin( theta )

sin( theta ) cos( theta ) ]

A = [ 2 1
0 2 ]

A = [ 2 -1
-1 0.5 ]

A = [ 2 1.5
1 -0.5 ]

A = [ 2 -1
1 0.5 ]

Can you explain some of what you observe? [Solution]

9.1.2 Overview
• 9.1 Opening Remarks

◦ 9.1.1 Relating diagonalization to eigenvalues and eigenvectors
◦ 9.1.2 Overview
◦ 9.1.3 What you will learn

• 9.2 Basics

◦ 9.2.1 Singular matrices and the eigenvalue problem
◦ 9.2.2 The characteristic polynomial
◦ 9.2.3 More properties of eigenvalues and vectors
◦ 9.2.4 The Schur and Spectral Decompositions
◦ 9.2.5 Diagonalizing a matrix
◦ 9.2.6 Jordan Canonical Form

• 9.3 The Power Method and related approaches

◦ 9.3.1 The Power Method
◦ 9.3.2 The Power Method: Convergence
◦ 9.3.3 The Inverse Power Method
◦ 9.3.4 The Rayleigh Quotient Iteration
◦ 9.3.5 Discussion
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• 9.4 Enrichments

• 9.5 Wrap Up

◦ 9.5.1 Additional homework
◦ 9.5.2 Summary

9.1.3 What you will learn
This week, you are reintroduced to the theory of eigenvalues, eigenvectors, and diagonalization.
Building on this, we start our discovery of practical algorithms.

Upon completion of this week, you should be able to

• Connect the algebraic eigenvalue problem to the various ways in which singular matrices can
be characterized.

• Relate diagonalization of a matrix to the eigenvalue problem.

• Link the eigenvalue problem to the Schur and Spectral Decompositions of a matrix.

• Translate theoretical insights into a practical Power Method and related methods.

• Investigate the convergence properties of practical algorithms.

9.2 Basics

9.2.1 Singular matrices and the eigenvalue problem

YouTube: https://www.youtube.com/watch?v=j85zII8u2-I

Definition 9.2.1.1 Eigenvalue, eigenvector, and eigenpair. Let A ∈ Cm×m. Then λ ∈ C
and nonzero x ∈ Cm are said to be an eigenvalue and corresponding eigenvector if Ax = λx. The
tuple (λ, x) is said to be an eigenpair. ♦

Ax = λx means that the action of A on an eigenvector x is as if it were multiplied by a scalar. In
other words, the direction does not change and only its length is scaled. "Scaling" and "direction"
should be taken loosely here: an eigenvalue can be negative (in which case the vector ends up
pointing in the opposite direction) or even complex-valued.

As part of an introductory course on linear algebra, you learned that the following statements
regarding an m×m matrix A are all equivalent:

• A is nonsingular.

https://www.youtube.com/watch?v=j85zII8u2-I
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• A has linearly independent columns.

• There does not exist a nonzero vector x such that Ax = 0.

• N (A) = {0}. (The null space of A is trivial.)

• dim(N (A)) = 0.

• det(A) 6= 0.

Since Ax = λx can be rewritten as (λI − A)x = 0, we note that the following statements are
equivalent for a given m×m matrix A:

• There exists a vector x 6= 0 such that (λI −A)x = 0.

• (λI −A) is singular.

• (λI −A) has linearly dependent columns.

• The null space of λI −A is nontrivial.

• dim(N (λI −A)) > 0.

• det(λI −A) = 0.

It will become important in our discussions to pick the right equivalent statement in a given
situation.

YouTube: https://www.youtube.com/watch?v=K-yDVqijSYw
We will often talk about "the set of all eigenvalues." This set is called the spectrum of a matrix.

Definition 9.2.1.2 Spectrum of a matrix. The set of all eigenvalues of A is denoted by Λ(A)
and is called the spectrum of A. ♦

The magnitude of the eigenvalue that is largest in magnitude is known as the spectral radius.
The reason is that all eigenvalues lie in the circle in the complex plane, centered at the origin, with
that radius.
Definition 9.2.1.3 Spectral radius. The spectral radius of A, ρ(A), equals the absolute value
of the eigenvalue with largest magnitude:

ρ(A) = max
λ∈Λ(A)

|λ|.

♦
In Subsection 7.3.3 we used the spectral radius to argue that the matrix that comes up when

finding the solution to Poisson’s equation is nonsingular. Key in that argument is a result known
as the Gershgorin Disk Theorem.

https://www.youtube.com/watch?v=K-yDVqijSYw
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YouTube: https://www.youtube.com/watch?v=rla9Q4E6hVI

Theorem 9.2.1.4 Gershgorin Disk Theorem. Let A ∈ Cm×m,

A =


α0,0 α0,1 · · · α0,m−1
α1,0 α1,1 · · · α1,m−1
...

...
...

αm−1,0 αm−1,1 · · · αm−1,m−1

 ,

ρi(A) =
∑
j 6=i
|αi,j |,

and
Ri(A) = {x s.t. |x− αi,i| ≤ ρi}.

In other words, ρi(A) equals the sum of the absolute values of the off diagonal elements of A in
row i and Ri(A) equals the set of all points in the complex plane that are within a distance ρi of
diagonal element αi,i. Then

Λ(A) ⊂ ∪iRi(A).

In other words, the eigenvalues lie in the union of these disks.
Proof. Let λ ∈ Λ(A). Then (λI − A)x = 0 for some nonzero vector x. W.l.o.g. assume that index
i has the property that 1 = χi ≥ |χj | for j 6= i. Then

−αi,0χ0 − · · · − αi,i−1χi−1 + (λ− αi,i)− αi,i+1χi+1 − · · · − αi,m−1χm−1 = 0

or, equivalently,

λ− αi,i = αi,0χ0 + · · ·+ αi,i−1χi−1 + αi,i+1χi+1 + · · ·+ αi,m−1χm−1.

Hence
|λ− αi,i|

=
|αi,0χ0 + · · ·+ αi,i−1χi−1 + αi,i+1χi+1 + · · ·+ αi,m−1χm−1|
≤

|αi,0χ0|+ · · ·+ |αi,i−1χi−1|+ |αi,i+1χi+1|+ · · ·+ |αi,m−1χm−1|
=

|αi,0||χ0|+ · · ·+ |αi,i−1||χi−1|+ |αi,i+1||χi+1|+ · · ·+ |αi,m−1||χm−1|
≤

|αi,0|+ · · ·+ |αi,i−1|+ |αi,i+1|+ · · ·+ |αi,m−1|
≤

ρi(A).
�

https://www.youtube.com/watch?v=rla9Q4E6hVI
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YouTube: https://www.youtube.com/watch?v=19FXch2X7sQ
It is important to note that it is not necessarily the case that each such disk has exactly one

eigenvalue in it. There is, however, a slightly stronger result than Theorem 9.2.1.4.

Corollary 9.2.1.5 Let A and Ri(A) be as defined in Theorem 9.2.1.4. Let K and KC be disjoint
subsets of {0, . . . ,m − 1} such that K ∪ KC = {0, . . . ,m − 1}. In other words, let K and KC

partition {0, . . . ,m− 1}. If

(∪k∈KRk(A)) ∩
(
∪j∈KCRj(A)

)
= ∅

then ∪k∈KRk(A) contains exactly |K| eigenvalues of A (multiplicity counted). In other words, if
∪k∈KRk(A) does not intersect with any of the other disks, then it contains as many eigenvalues of
A (multiplicity counted) as there are elements of K.
Proof. The proof splits A = D + (A −D) where D equals the diagonal of A and considers Aω =
D + ω(A−D), which varies continuously with ω. One can argue that the disks Ri(A0) start with
only one eigenvalue each and only when they start intersecting can an eigenvalue "escape" the disk
in which it started. We skip the details since we won’t need this result in this course. �

Through a few homeworks, let’s review basic facts about eigenvalues and eigenvectors.

Homework 9.2.1.1 Let A ∈ Cm×m.
TRUE/FALSE: 0 ∈ Λ(A) if and only A is singular. [Answer] [Solution]

Homework 9.2.1.2 Let A ∈ Cm×m be Hermitian.
ALWAYS/SOMETIMES/NEVER: All eigenvalues of A are real-valued. [Answer] [Solution]

Homework 9.2.1.3 Let A ∈ Cm×m be Hermitian positive definite (HPD).
ALWAYS/SOMETIMES/NEVER: All eigenvalues of A are positive. [Answer] [Solution]
The converse is also always true, but we are not ready to prove that yet.

Homework 9.2.1.4 Let A ∈ Cm×m be Hermitian, (λ, x) and (µ, y) be eigenpairs associated with
A, and λ 6= µ.

ALWAYS/SOMETIMES/NEVER: xHy = 0 [Answer] [Solution]

Homework 9.2.1.5 Let A ∈ Cm×m, (λ, x) and (µ, y) be eigenpairs, and λ 6= µ. Prove that x and
y are linearly independent. [Solution]

We now generalize this insight.

Homework 9.2.1.6 Let A ∈ Cm×m, k ≤ m, and (λi, xi) for 1 ≤ i < k be eigenpairs of this matrix.
Prove that if λi 6= λj when i 6= j then the eigenvectors xi are linearly independent. In other words,
given a set of distinct eigenvalues, a set of vectors created by taking one eigenvector per eigenvalue
is linearly independent. [Hint] [Solution]

We now return to some of the matrices we saw in Week 7.

https://www.youtube.com/watch?v=19FXch2X7sQ
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Homework 9.2.1.7 Consider the matrices

A =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2


and 

4 −1 −1
−1 4 −1 −1

−1 4 −1 −1
−1 4 −1

−1 4 −1 −1

−1 −1 4 −1 . . .
−1 −1 4 −1

−1 −1 4

−1 4 . . .
. . . . . . . . .


ALWAYS/SOMETIMES/NEVER: All eigenvalues of these matrices are nonnegative.
ALWAYS/SOMETIMES/NEVER: All eigenvalues of the first matrix are positive. [Answer]

[Solution]

9.2.2 The characteristic polynomial

YouTube: https://www.youtube.com/watch?v=NUvfjg-JUjg
We start by discussing how to further characterize eigenvalues of a given matrix A. We say

"characterize" because none of the discussed insights lead to practical algorithms for computing
them, at least for matrices larger than 4× 4.

Homework 9.2.2.1 Let
A =

(
α0,0 α0,1
α1,0 α1,1

)
be a nonsingular matrix. Show that(

α0,0 α0,1
α1,0 α1,1

)−1

= 1
α0,0α1,1 − α1,0α0,1

(
α1,1 −α0,1
−α1,0 α0,0

)
.

[Solution]

https://www.youtube.com/watch?v=NUvfjg-JUjg
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YouTube: https://www.youtube.com/watch?v=WvwcrDM_K3k
What we notice from the last exercises is that α0,0α1,1 − α1,0α0,1 characterizes whether A has

an inverse or not:
A =

(
α0,0 α0,1
α1,0 α1,1

)
is nonsingular if and only if α0,0α1,1 − α1,0α0,1 6= 0. The expression α0,0α1,1 − α1,0α0,1. is known
as the determinant of the 2× 2 matrix and denoted by det(A):

Definition 9.2.2.1 The determinant of

A =
(
α0,0 α0,1
α1,0 α1,1

)

is given by
det(A) = α0,0α1,1 − α1,0α0,1.

♦
Now, λ is an eigenvalue of A if and only if λI −A is singular. For our 2× 2 matrix

λI −A =
(
λ− α0,0 −α0,1
−α1,0 λ− α1,1

)

is singular if and only if

(λ− α0,0)(λ− α1,1)− (−α1,0)(−α0,1) = 0.

In other words, λ is an eigenvalue of this matrix if and only if λ is a root of

pA(λ) = (λ− α0,0)(λ− α1,1)− (−α1,0)(−α0,1)
= λ2 − (α0,0 + α1,1)λ+ (α0,0α1,1 − α1,0α0,1),

which is a polynomial of degree two. A polynomial of degree two has two roots (counting multi-
plicity). This polynomial is known as the characteristic polynomial of the 2× 2 matrix.

We now have a means for computing eigenvalues and eigenvectors of a 2× 2 matrix:

• Form the characteristic polynomial pA(λ).

• Solve for its roots, λ0 and λ1.

• Find nonzero vectors x0 and x1 in the null spaces of λ0I −A and λ1I −A, respectively.

https://www.youtube.com/watch?v=WvwcrDM_K3k
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YouTube: https://www.youtube.com/watch?v=FjoULa2dMC8
The notion of a determinant of a matrix, det(A), generalizes to m×m matrices as does the fact

that A is nonsingular if and only if det(A) 6= 0. Similarly, the notion of a characteristic polynomial
is then generalized to m×m matrices:

Definition 9.2.2.2 Characteristic polynomial. The characteristic polynomial ofm×m matrix
A is given by

pA(λ) = det(λI −A).

♦
At some point in your education, you may have been taught how to compute the determinant of

an arbitrarym×mmatrix. For this course, such computations have no practical applicability, when
matrices are larger than 3×3 or so, and hence we don’t spend time on how to compute determinants.
What is important to our discussions is that for an m×m matrix A the characteristic polynomial
is a polynomial of degree m, a result we formalize in a theorem without giving a proof:

Theorem 9.2.2.3 If A ∈ Cm×m then pA(λ) = det(λI −A) is a polynomial of degree m.
This insight now allows us to further characterize the set of all eigenvalues of a given matrix:

Theorem 9.2.2.4 Let A ∈ Cm×m. Then λ ∈ Λ(A) if and only if pA(λ) = 0.
Proof. This follows from the fact that a matrix has a nontrivial null space if and only if its
determinant is zero. Hence, pA(λ) = 0 if and only if there exists x 6= 0 such that (λI − A)x = 0.
(λI −A)x = 0 if and only if Ax = λx. �

Recall that a polynomial of degree m,

pm(χ) = χm + · · ·+ γ1χ+ γ0,

can be factored as
pm(χ) = (χ− χ0)m0 · · · (χ− χk−1)mk ,

where the χi are distinct roots, mi equals the multiplicity of the root, and m0 + · · ·+mk−1 = m.
The concept of (algebraic) multiplicity carries over to eigenvalues.

Definition 9.2.2.5 Algebraic multiplicity of an eigenvalue. Let A ∈ Cm×m and pm(λ) its
characteristic polynomial. Then the (algebraic) multiplicity of eigenvalue λi equals the multiplicity
of the corresponding root of the polynomial. ♦

Often we will list the eigenvalues of A ∈ Cm×m as m eigenvalues λ0, . . . , λm−1 even when some
are equal (have algebraic multiplicity greater than one). In this case we say that we are counting
multiplicity. In other words, we are counting each eigenvalue (root of the characteristic polynomial)
separately, even if they are equal.

An immediate consequence is that A has m eigenvalues (multiplicity counted), since a polyno-
mial of degree m has m roots (multiplicity counted), which is captured in the following lemma.

https://www.youtube.com/watch?v=FjoULa2dMC8
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Lemma 9.2.2.6 If A ∈ Cm×m then A has m eigenvalues (multiplicity counted).
The relation between eigenvalues and the roots of the characteristic polynomial yields a discon-

certing insight: A general formula for the eigenvalues of an arbitrary m ×m matrix with m > 4
does not exist. The reason is that "Galois theory" tells us that there is no general formula for the
roots of a polynomial of degree m > 4 (details go beyond the scope of this course). Given any
polynomial pm(χ) of degree m, an m ×m matrix can be constructed such that its characteristic
polynomial is pm(λ). In particular, if

pm(χ) = χm + αm−1χ
m−1 + · · ·+ α1χ+ α0

and

A =



−αn−1 −αn−2 −αn−3 · · · −α1 −α0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 0


then

pm(λ) = det(λI −A).

(Since we don’t discuss how to compute the determinant of a general matrix, you will have to take
our word for this fact.) Hence, we conclude that no general formula can be found for the eigenvalues
for m ×m matrices when m > 4. What we will see is that we will instead create algorithms that
converge to the eigenvalues and/or eigenvectors of matrices.

Corollary 9.2.2.7 If A ∈ Rm×m is real-valued then some or all of its eigenvalues may be complex-
valued. If eigenvalue λ is complex-valued, then its conjugate, λ̄, is also an eigenvalue. Indeed, the
complex eigenvalues of a real-valued matrix come in complex pairs.
Proof. It can be shown that if A is real-valued, then the coefficients of its characteristic polynomial
are all real -valued. Complex roots of a polynomial with real coefficients come in conjugate pairs.

�
The last corollary implies that if m is odd, then at least one eigenvalue of a real-valued m×m

matrix must be real-valued.
Corollary 9.2.2.8 If A ∈ Rm×m is real-valued and m is odd, then at least one of the eigenvalues
of A is real-valued.

YouTube: https://www.youtube.com/watch?v=BVqdIKTK1SI
It would seem that the natural progression for computing eigenvalues and eigenvectors would

be

• Form the characteristic polynomial pA(λ).

https://www.youtube.com/watch?v=BVqdIKTK1SI
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• Solve for its roots, λ0, . . . , λm−1, which give us the eigenvalues of A.

• Find eigenvectors associated with the eigenvalues by finding bases for the null spaces of
λiI −A.

However, as mentioned, finding the roots of a polynomial is a problem. Moreover, finding vectors in
the null space is also problematic in the presence of roundoff error. For this reason, the strategy for
computing eigenvalues and eigenvectors is going to be to compute approximations of eigenvectors
hand in hand with the eigenvalues.

9.2.3 More properties of eigenvalues and vectors
No video for this unit

This unit reminds us of various properties of eigenvalue and eigenvectors through a sequence of
homeworks.
Homework 9.2.3.1 Let λ be an eigenvalue of A ∈ Cm×m and let

Eλ(A) = {x ∈ Cm|Ax = λx}.

be the set of all eigenvectors of A associated with λ plus the zero vector (which is not considered
an eigenvector). Show that Eλ(A) is a subspace. [Solution]

While there are an infinite number of eigenvectors associated with an eigenvalue, the fact that
they form a subspace (provided the zero vector is added) means that they can be described by a
finite number of vectors, namely a basis for that space.

Homework 9.2.3.2 Let D ∈ Cm×m be a diagonal matrix. Give all eigenvalues of D. For each
eigenvalue, give a convenient eigenvector. [Solution]

Homework 9.2.3.3 Compute the eigenvalues and corresponding eigenvectors of

A =

 −2 3 −7
0 1 1
0 0 2


(Recall: the solution is not unique.) [Solution]

Homework 9.2.3.4 Let U ∈ Cm×m be an upper triangular matrix. Give all eigenvalues of U . For
each eigenvalue, give a convenient eigenvector. [Solution]

In the next week, we will see that practical algorithms for computing the eigenvalues and
eigenvectors of a square matrix morph that matrix into an upper triangular matrix via a sequence
of transforms that preserve eigenvalues. The eigenvectors of that triangular matrix can then be
computed using techniques similar to those in the solution to the last homework. Once those have
been computed, they can be "back transformed" into the eigenvectors of the original matrix.
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9.2.4 The Schur and Spectral Decompositions

YouTube: https://www.youtube.com/watch?v=2AsK3KEtsso
Practical methods for computing eigenvalues and eigenvectors transform a given matrix into a

simpler matrix (diagonal or tridiagonal) via a sequence of transformations that preserve eigenvalues
known as similarity transformations.

Definition 9.2.4.1 Given a nonsingular matrix Y , the transformation Y −1AY is called a similarity
transformation (applied to matrix A). ♦

Definition 9.2.4.2 Matrices A and B are said to be similar if there exists a nonsingular matrix Y
such that B = Y −1AY . ♦

Homework 9.2.4.1 Let A,B, Y ∈ Cm×m, where Y is nonsingular, and (λ, x) an eigenpair of A.
Which of the follow is an eigenpair of B = Y −1AY :

• (λ, x).

• (λ, Y −1x).

• (λ, Y x).

• (1/λ, Y −1x).

[Answer] [Solution]
The observation is that similarity transformations preserve the eigenvalues of a matrix, as

summarized in the following theorem.

Theorem 9.2.4.3 Let A, Y,B ∈ Cm×m, assume Y is nonsingular, and let B = Y −1AY . Then
Λ(A) = Λ(B).
Proof. Let λ ∈ Λ(A) and x be an associated eigenvector. ThenAx = λx if and only if Y −1AY Y −1x =
Y −1λx if and only if B(Y −1x) = λ(Y −1x). �

It is not hard to expand the last proof to show that if A is similar to B and λ ∈ Λ(A) has
algebraic multiplicity k then λ ∈ Λ(B) has algebraic multiplicity k.

YouTube: https://www.youtube.com/watch?v=n02VjGJX5CQ

https://www.youtube.com/watch?v=2AsK3KEtsso
https://www.youtube.com/watch?v=n02VjGJX5CQ
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In Subsection 2.2.7, we argued that the application of unitary matrices is desirable, since they
preserve length and hence don’t amplify error. For this reason, unitary similarity transformations
are our weapon of choice when designing algorithms for computing eigenvalues and eigenvectors.

Definition 9.2.4.4 Given unitary matrix Q the transformation QHAQ is called a unitary similarity
transformation (applied to matrix A). ♦

YouTube: https://www.youtube.com/watch?v=mJNM4EYB-9s
The following is a fundamental theorem for the algebraic eigenvalue problem that is key to

practical algorithms for finding eigenvalues and eigenvectors.

Theorem 9.2.4.5 Schur Decomposition Theorem. Let A ∈ Cm×m. Then there exist a unitary
matrix Q and upper triangular matrix U such that A = QUQH . This decomposition is called the
Schur decomposition of matrix A.
Proof. We will outline how to construct Q so that QHAQ = U , an upper triangular matrix.

Since a polynomial of degree m has at least one root, matrix A has at least one eigenvalue, λ1,
and corresponding eigenvector q1, where we normalize this eigenvector to have length one. Thus
Aq1 = λ1q1. Choose Q2 so that Q =

(
q1 Q2

)
is unitary. Then

QHAQ
=(
q1 Q2

)H
A
(
q1 Q2

)
=(
qH1 Aq1 qH1 AQ2
QH2 Aq1 QH2 AQ2

)
=(
λ1 qH1 AQ2

λQH2 q1 QH2 AQ2

)
=(
λ1 wT

0 B

)
,

where wT = qH1 AQ2 and B = QH2 AQ2. This insight can be used to construct an inductive proof.
�

In other words: Given matrix A, there exists a unitary matrix Q such that applying the unitary
similarity transformation QHAQ yields an upper triangular matrix U . Since then Λ(A) = Λ(U),
the eigenvalues of A can be found on the diagonal of U . The eigenvectors of U can be computed
and from those the eigenvectors of A can be recovered.

One should not mistake the above theorem and its proof for a constructive way to compute

https://www.youtube.com/watch?v=mJNM4EYB-9s
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the Schur decomposition: finding an eigenvalue, λ1 and/or the eigenvector associated with it, q1,
is difficult. Also, completing the unitary matrix

(
q1 Q2

)
is expensive (requiring the equivalent

of a QR factorization).

Homework 9.2.4.2 Let A ∈ Cm×m, A = QUQH be its Schur decomposition, and X−1UX = Λ,
where Λ is a diagonal matrix and X is nonsingular.

• How are the elements of Λ related to the elements of U?

• How are the columns of X related to the eigenvectors of A?

[Solution]

YouTube: https://www.youtube.com/watch?v=uV5-0O_LBkA
If the matrix is Hermitian, then the Schur decomposition has the added property that U is

diagonal. The resulting decomposition is known as the Spectral decomposition.

Theorem 9.2.4.6 Spectral Decomposition Theorem. Let A ∈ Cm×m be Hermitian. Then
there exist a unitary matrix Q and diagonal matrix D ∈ Rm×m such that A = QDQH . This
decomposition is called the spectral decomposition of matrix A.
Proof. Let A = QUQH be the Schur decomposition of A. Then U = QHAQ. Since A is Hermitian,
so is U since UH = (QHAQ)H = QHAHQ = QHAQ = U . A triangular matrix that is Hermitian
is diagonal. Any Hermitian matrix has a real-valued diagonal and hence D has real-valued on its
diagonal. �

In practical algorithms, it will often occur that an intermediate result can be partitioned into
smaller subproblems. This is known as deflating the problem and builds on the following insights.

Theorem 9.2.4.7 Let A ∈ Cm×m be of form A =
(
ATL ATR

0 ABR

)
, where ATL and ABR are square

submatrices. Then Λ(A) = Λ(ATL) ∪ Λ(ABR).
The proof of the above theorem follows from the next homework regarding how the Schur

decomposition of A can be computed from the Schur decompositions of ATL and ABR.

Homework 9.2.4.3 Let A ∈ Cm×m be of form

A =
(
ATL ATR

0 ABR

)
,

where ATL and ABR are square submatrices with Schur decompositions

ATL = QTLUTLQ
H
TL and ABR = QBRUBRQ

H
BR.

Give the Schur decomposition of A. [Solution]

https://www.youtube.com/watch?v=uV5-0O_LBkA
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Homework 9.2.4.4 Generalize the result in the last homework for block upper triangular matrices:

A =


A0,0 A0,1 · · · A0,N−1

0 A1,1 · · · A1,N−1

0 0 . . . ...
0 0 · · · AN−1,N−1

 .

[Solution]

9.2.5 Diagonalizing a matrix

YouTube: https://www.youtube.com/watch?v=dLaFK2TJ7y8
The algebraic eigenvalue problem or, more simply, the computation of eigenvalues and eigen-

vectors is often presented as the problem of diagonalizing a matrix. We make that link in this
unit.
Definition 9.2.5.1 Diagonalizable matrix. A matrix A ∈ Cm×m is said to be diagonalizable
if and only if there exists a nonsingular matrix X and diagonal matrix D such that X−1AX = D.

♦

YouTube: https://www.youtube.com/watch?v=qW5lcD3K1RU
Why is this important? Consider the equality w = Av. Notice that we can write w as a linear

combination of the columns of X:
w = X (X−1w)︸ ︷︷ ︸

w̃

.

In other words, X−1w is the vector of coefficients when w is writen in terms of the basis that
consists of the columns of X. Similarly, we can write v as a linear combination of the columns of
X:

v = X (X−1v)︸ ︷︷ ︸
ṽ

.

Now, since X is nonsingular, w = Av is equivalent to X−1w = X−1AXX−1v, and hence X−1w =
D(X−1v).

https://www.youtube.com/watch?v=dLaFK2TJ7y8
https://www.youtube.com/watch?v=qW5lcD3K1RU


WEEK 9. EIGENVALUES AND EIGENVECTORS 347

Remark 9.2.5.2 We conclude that if we view the matrices in the right basis (namely the basis
that consists of the columns of X), then the transformation w := Av simplifies to w̃ := Dṽ. This
is a really big deal.

How is diagonalizing a matrix related to eigenvalues and eigenvectors? Let’s assume that
X−1AX = D. We can rewrite this as

AX = XD

and partition

A
(
x0 x1 · · · xm−1

)
=
(
x0 x1 · · · xm−1

)

δ0 0 · · · 0
0 δ1 · · · 0
...

... . . . ...
0 0 · · · δm−1

 .

Multiplying this out yields(
Ax0 Ax1 · · · Axm−1

)
=
(
δ0x0 δ1x1 · · · δm−1xm−1

)
.

We conclude that
Axj = δjxj

which means that the entries on the diagonal of D are the eigenvalues of A and the corresponding
eigenvectors are found as columns of X.

Homework 9.2.5.1 In Homework 9.2.3.3, we computed the eigenvalues and corresponding eigen-
vectors of

A =

 −2 3 −7
0 1 1
0 0 2

 .
Use the answer to that question to give a matrix X such that X−1AX = Λ. Check that AX = XΛ.
[Solution]

Now assume that the eigenvalues of A ∈ Cm×m are given by {λ0, λ1, . . . , λm−1}, where eigen-
values are repeated according to their algebraic multiplicity. Assume that there are m linearly
independent vectors {x0, x1, . . . , xm−1} such that Axj = λjxj . Then

A
(
x0 x1 · · · xm−1

)
=
(
x0 x1 · · · xm−1

)

λ0 0 · · · 0
0 λ1 · · · 0
...

... . . . ...
0 0 · · · λm−1

 .

Hence, if X =
(
x0 x1 · · · xm−1

)
and D = diag(λ0, λ1, . . . , λm−1) then X−1AX = D. In

other words, if A has m linearly independent eigenvectors, then A is diagonalizable.
These insights are summarized in the following theorem:

Theorem 9.2.5.3 A matrix A ∈ Cm×m is diagonalizable if and only if it has m linearly independent
eigenvectors.

Here are some classes of matrices that are diagonalizable:
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• Diagonal matrices.
If A is diagonal, then choosing X = I and A = D yields X−1AX = D.

• Hermitian matrices.
If A is Hermitian, then the spectral decomposition theorem tells us that there exists unitary
matrix Q and diagonal matrix D such that A = QDQH . Choosing X = Q yields X−1AX =
D.

• Triangular matrices with distinct diagonal elements.
If U is upper triangular and has distinct diagonal elements, then by Homework 9.2.3.4 we
know we can find an eigenvector associated with each diagonal element and by design those
eigenvectors are linearly independent. Obviously, this can be extended to lower triangular
matrices as well.

Homework 9.2.5.2 Let A ∈ Cm×m have distinct eigenvalues.
ALWAYS/SOMETIMES/NEVER: A is diagonalizable. [Answer] [Solution]

YouTube: https://www.youtube.com/watch?v=PMtZNl8CHzM

9.2.6 Jordan Canonical Form

YouTube: https://www.youtube.com/watch?v=amD2FOSXfls

Homework 9.2.6.1 Compute the eigenvalues of k × k matrix

Jk(µ) =



µ 1 0 · · · 0 0

0 µ 1 . . . 0 0
... . . . . . . . . . ...

...

0 0 0 . . . µ 1
0 0 0 · · · 0 µ


(9.2.1)

where k > 1. For each eigenvalue compute a basis for the subspace of its eigenvectors (including
the zero vector to make it a subspace). [Hint] [Solution]

https://www.youtube.com/watch?v=PMtZNl8CHzM
https://www.youtube.com/watch?v=amD2FOSXfls
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YouTube: https://www.youtube.com/watch?v=QEunPSiFZF0
The matrix in (9.2.1) is known as a Jordan block.
The point of the last exercise is to show that if A has an eigenvalue of algebraic multiplicity k,

then it does not necessarily have k linearly independent eigenvectors. That, in turn, means there
are matrices that do not have a full set of eigenvectors. We conclude that there are matrices that
are not diagonalizable. We call such matrices defective.

Definition 9.2.6.1 Defective matrix. A matrix A ∈ Cm×m that does not have m linearly
independent eigenvectors is said to be defective. ♦

Corollary 9.2.6.2 Matrix A ∈ Cm×m is diagonalizable if and only if it is not defective.
Proof. This is an immediate consequence of Theorem 9.2.5.3. �

Definition 9.2.6.3 Geometric multiplicity. Let λ ∈ Λ(A). Then the geometric multiplicity of
λ is defined to be the dimension of Eλ(A) defined by

Eλ(A) = {x ∈ Cm|Ax = λx}.

In other words, the geometric multiplicity of λ equals the number of linearly independent eigenvec-
tors that are associated with λ. ♦

Homework 9.2.6.2 Let A ∈ Cm×m have the form

A =
(
A00 0
0 A11

)

where A00 and A11 are square. Show that

• If (λ, x) is an eigenpair of A00 then (λ,
(
x
0

)
) is an eigenpair of A.

• If (µ, y) is an eigenpair of A11 then (µ,
(

0
y

)
) is an eigenpair of A.

• If (λ,
(
x
y

)
) is an eigenpair of A then (λ, x) is an eigenpair of A00 and (λ, y) is an eigenpair

of A11.

• Λ(A) = Λ(A00) ∪ Λ(A11).

[Solution]

https://www.youtube.com/watch?v=QEunPSiFZF0
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This last homework naturally extends to

A =


A00 0 · · · 0
0 A11 · · · 0
...

... . . . ...
0 0 · · · Akk


The following is a classic result in linear algebra theory that characterizes the relationship

between of a matrix and its eigenvectors:

YouTube: https://www.youtube.com/watch?v=RYg4xLKehDQ

Theorem 9.2.6.4 Jordan Canonical Form Theorem. Let the eigenvalues of A ∈ Cm×m be
given by λ0, λ1, · · · , λk−1, where an eigenvalue is listed as many times as its geometric multiplicity.
There exists a nonsingular matrix X such that

X−1AX =


Jm0(λ0) 0 · · · 0

0 Jm1(λ1) · · · 0
...

... . . . ...
0 0 · · · Jmk−1(λk−1)

 .
For our discussion, the sizes of the Jordan blocks Jmi(λi) are not particularly important. Indeed,

this decomposition, known as the Jordan Canonical Form of matrix A, is not particularly interesting
in practice. It is extremely sensitive to perturbation: even the smallest random change to a matrix
will make it diagonalizable. As a result, there is no practical mathematical software library or tool
that computes it. For this reason, we don’t give its proof and don’t discuss it further.

9.3 The Power Method and related approaches

9.3.1 The Power Method

YouTube: https://www.youtube.com/watch?v=gbhHORlNxNM
The Power Method is a simple method that under mild conditions yields a vector corresponding

to the eigenvalue that is largest in magnitude.

https://www.youtube.com/watch?v=RYg4xLKehDQ
https://www.youtube.com/watch?v=gbhHORlNxNM
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Throughout this section we will assume that a given matrix A ∈ Cm×m is diagonalizable. Thus,
there exists a nonsingular matrix X and diagonal matrix Λ such that A = XΛX−1. From the last
section, we know that the columns of X equal eigenvectors of A and the elements on the diagonal
of Λ equal the eigenvalues:

X =
(
x0 x1 · · · xm−1

)
and Λ =


λ0 0 · · · 0
0 λ1 · · · 0
...

... . . . ...
0 0 · · · λm−1


so that

Axi = λixi for i = 0, . . . ,m− 1.

For most of this section we will assume that

|λ0| > |λ1| ≥ · · · ≥ |λm−1|.

In particular, λ0 is the eigenvalue with maximal absolute value.

9.3.1.1 First attempt

YouTube: https://www.youtube.com/watch?v=sX9pxaH7Wvs
Let v(0) ∈ Cm×m be an ``initial guess’’. Our (first attempt at the) Power Method iterates as

follows:
Pick v(0)

for k = 0, . . .
v(k+1) = Av(k)

endfor

Clearly v(k) = Akv(0).
Let

v(0) = ψ0x0 + ψ1x1 + · · ·+ ψm−1xm−1.

Then
v(1) = Av(0) = A (ψ0x0 + ψ1x1 + · · ·+ ψm−1xm−1)

= ψ0Ax0 + ψ1Ax1 + · · ·+ ψm−1Axm−1
= ψ0λ0x0 + ψ1λ1x1 + · · ·+ ψm−1λm−1xm−1,

v(2) = Av(1) = A (ψ0λ0x0 + ψ1λ1x1 + · · ·+ ψm−1λm−1xm−1)
= ψ0λ0Ax0 + ψ1λ1Ax1 + · · ·+ ψm−1λm−1Axm−1
= ψ0λ

2
0x0 + ψ1λ

2
1x1 + · · ·+ ψm−1λ

2
m−1xm−1,

...
v(k) = Av(k−1) = ψ0λ

k
0x0 + ψ1λ

k
1x1 + · · ·+ ψm−1λ

k
m−1xm−1.

https://www.youtube.com/watch?v=sX9pxaH7Wvs
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Now, as long as ψ0 6= 0 clearly ψ0λ
k
0x0 will eventually dominate since

|λi|/|λ0| < 1.

This means that v(k) will start pointing in the direction of x0. In other words, it will start pointing
in the direction of an eigenvector corresponding to λ0. The problem is that it will become infinitely
long if |λ0| > 1 or infinitesimally short if |λ0| < 1. All is good if |λ0| = 1.

YouTube: https://www.youtube.com/watch?v=LTON9qw8B0Y
An alternative way of looking at this is to exploit the fact that the eigenvectors, xi, equal the

columns of X. Then

y =


ψ0
ψ1
...

ψm−1

 = X−1v(0)

and
v(0) = A0v(0) = Xy

v(1) = Av(0) = AXy = XΛy
v(2) = Av(1) = AXΛy = XΛ2y

...
v(k) = Av(k−1) = AXΛk−1y = XΛky

Thus

v(k) =
(
x0 x1 · · · xm−1

)

λk0 0 · · · 0
0 λk1 · · · 0
...

... . . . ...
0 0 · · · λkm−1




ψ0
ψ1
...

ψm−1


= ψ0λ

k
0x0 + ψ1λ

k
1x1 + · · ·+ ψm−1λ

k
m−1xm−1.

Notice how looking at v(k) in the right basis (the eigenvectors) simplified the explanation.

9.3.1.2 Second attempt

https://www.youtube.com/watch?v=LTON9qw8B0Y
https://www.youtube.com/watch?v=MGTGo_TGpTM
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YouTube: https://www.youtube.com/watch?v=MGTGo_TGpTM
Given an initial v(0) ∈ Cm, a second attempt at the Power Method iterates as follows:

Pick v(0)

for k = 0, . . .
v(k+1) = Av(k)/λ0

endfor

It is not hard to see that then

v(k) = Av(k−1)/λ0 = Akv(0)/λk0

= ψ0
(
λ0
λ0

)k
x0 + ψ1

(
λ1
λ0

)k
x1 + · · ·+ ψm−1

(
λm−1
λ0

)k
xm−1

= ψ0x0 + ψ1
(
λ1
λ0

)k
x1 + · · ·+ ψm−1

(
λm−1
λ0

)k
xm−1.

Clearly limk→∞ v
(k) = ψ0x0, as long as ψ0 6= 0, since

∣∣∣λkλ0

∣∣∣ < 1 for k > 0.
Another way of stating this is to notice that

Ak = (AA · · ·A)︸ ︷︷ ︸
times

= (XΛX−1)(XΛX−1) · · · (XΛX−1)︸ ︷︷ ︸
Λk

= XΛkX−1.

so that
v(k) = Akv(0)/λk0

= AkXy/λk0
= XΛkX−1Xy/λk0
= XΛky/λk0

= X
(
Λk/λk0

)
y = X


1 0 · · · 0
0

(
λ1
λ0

)k
· · · 0

...
... . . . ...

0 0 · · ·
(
λm−1
λ0

)k

 y.
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Now, since
∣∣∣λkλ0

∣∣∣ < 1 for k > 1 we can argue that

limk→∞ v
(k)

=

limk→∞X


1 0 · · · 0
0

(
λ1
λ0

)k
· · · 0

...
... . . . ...

0 0 · · ·
(
λm−1
λ0

)k

 y
=

X


1 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 y
=

Xψ0e0
=

ψ0Xe0 = ψ0x0.

Thus, as long as ψ0 6= 0 (which means v(0) must have a component in the direction of x0) this
method will eventually yield a vector in the direction of x0. However, this time the problem is that
we don’t know λ0 when we start.

9.3.1.3 A practical Power Method

The following algorithm, known as the Power Method, avoids the problem of v(k) growing or
shrinking in length without requiring λ0 to be known, by scaling it to be of unit length at each
step:

Pick v(0) of unit length
for k = 0, . . .
v(k+1) = Av(k)

v(k+1) = v(k+1)/‖v(k+1)‖
endfor

The idea is that we are only interested in the direction of the eigenvector, and hence it is convenient
to rescale the vector to have unit length at each step.

9.3.1.4 The Rayleigh quotient

A question is how to extract an approximation of λ0 given an approximation of x0. The following
insights provide the answer:

Definition 9.3.1.1 Rayleigh quotient. If A ∈ Cm×m and x 6= 0 ∈ Cm then

xHAx

xHx

is known as the Rayleigh quotient. ♦
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Homework 9.3.1.1 Let x be an eigenvector of A.
ALWAYS/SOMETIMES/NEVER: λ = xHAx/(xHx) is the associated eigenvalue of A. [An-

swer] [Solution]
If x is an approximation of the eigenvector x0 associated with λ0, then its Rayleigh quotient is

an approximation to λ0.

9.3.2 The Power Method: Convergence

YouTube: https://www.youtube.com/watch?v=P-U4dfwHMwM
Before we make the algorithm practical, let us examine how fast the iteration converges. This

requires a few definitions regarding rates of convergence.

Definition 9.3.2.1 Convergence of a sequence of scalars. Let α0, α1, α2, . . . ∈ R be an
infinite sequence of scalars. Then αk is said to converge to α if

lim
k→∞

|αk − α| = 0.

♦

Definition 9.3.2.2 Convergence of a sequence of vectors. Let x0, x1, x2, . . . ∈ Cm be an
infinite sequence of vectors. Then xk is said to converge to x if for any norm ‖ · ‖

lim
k→∞

‖xk − x‖ = 0.

♦
Because of the equivalence of norms, discussed in Subsection 1.2.6, if a sequence of vectors

converges in one norm, then it converges in all norms.

Definition 9.3.2.3 Rate of convergence. Let α0, α1, α2, . . . ∈ R be an infinite sequence of
scalars that converges to α. Then

• αk is said to converge linearly to α if for sufficiently large k

|αk+1 − α| ≤ C|αk − α|

for some constant C < 1. In other words, if

lim
k→∞

|αk+1 − α|
|αk − α|

= C < 1.

• αk is said to converge superlinearly to α if for sufficiently large k

|αk+1 − α| ≤ Ck|αk − α|

https://www.youtube.com/watch?v=P-U4dfwHMwM
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with Ck → 0. In other words, if

lim
k→∞

|αk+1 − α|
|αk − α|

= 0.

• αk is said to converge quadratically to α if for sufficiently large k

|αk+1 − α| ≤ C|αk − α|2

for some constant C. In other words, if

lim
k→∞

|αk+1 − α|
|αk − α|2

= C.

• αk is said to converge cubically to α if for large enough k

|αk+1 − α| ≤ C|αk − α|3

for some constant C. In other words, if

lim
k→∞

|αk+1 − α|
|αk − α|3

= C.

♦
Linear convergence can be slow. Let’s say that for k ≥ K we observe that

|αk+1 − α| ≤ C|αk − α|.

Then, clearly, |αk+n−α| ≤ Cn|αk−α|. If C = 0.99, progress may be very, very slow. If |αk−α| = 1,
then

|αk+1 − α| ≤ 0.99000
|αk+2 − α| ≤ 0.98010
|αk+3 − α| ≤ 0.97030
|αk+4 − α| ≤ 0.96060
|αk+5 − α| ≤ 0.95099
|αk+6 − α| ≤ 0.94148
|αk+7 − α| ≤ 0.93206
|αk+8 − α| ≤ 0.92274
|αk+9 − α| ≤ 0.91351

Quadratic convergence is fast. Now

|αk+1 − α| ≤ C|αk − α|2
|αk+2 − α| ≤ C|αk+1 − α|2 ≤ C(C|αk − α|2)2 = C3|αk − α|4
|αk+3 − α| ≤ C|αk+2 − α|2 ≤ C(C3|αk − α|4)2 = C7|αk − α|8

...
|αk+n − α| ≤ C2n−1|αk − α|2

n
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Even if C = 0.99 and |αk − α| = 1, then

|αk+1 − α| ≤ 0.99000
|αk+2 − α| ≤ 0.970299
|αk+3 − α| ≤ 0.932065
|αk+4 − α| ≤ 0.860058
|αk+5 − α| ≤ 0.732303
|αk+6 − α| ≤ 0.530905
|αk+7 − α| ≤ 0.279042
|αk+8 − α| ≤ 0.077085
|αk+9 − α| ≤ 0.005882
|αk+10 − α| ≤ 0.000034

If we consider α the correct result then, eventually, the number of correct digits roughly doubles
in each iteration. This can be explained as follows: If |αk − α| < 1, then the number of correct
decimal digits is given by

− log10 |αk − α|.

Since log10 is a monotonically increasing function,

log10 |αk+1 − α|
≤

log10C|αk − α|2
=

log10(C) + 2 log10 |αk − α|
≤

2 log10 |αk − α|

and hence
− log10 |αk+1 − α|︸ ︷︷ ︸
number of correct
digits in αk+1

≥ 2( − log10 |αk − α|︸ ︷︷ ︸
number of correct

digits in αk

).

Cubic convergence is dizzyingly fast: Eventually the number of correct digits triples from one
iteration to the next.

For our analysis for the convergence of the Power Method, we define a convenient norm.

Homework 9.3.2.1 LetX ∈ Cm×m be nonsingular. Define ‖·‖X−1 : Cm → R by ‖y‖X−1 = ‖X−1y‖
for some given norm ‖ · ‖ : Cm → R.

ALWAYS/SOMETIMES/NEVER: ‖ · ‖X−1 is a norm. [Solution]
What do we learn from this exercise? Recall that a vector z can alternatively be written as

X(X−1z) so that the vector ẑ = X−1z tells you how to represent the vector z in the basis given by
the columns of X. What the exercise tells us is that if we measure a vector by applying a known
norm in a new basis, then that is also a norm.
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With this insight, we can perform our convergence analysis:

v(k) − ψ0x0
=

Akv(0)/λk0 − ψ0x0
=

X


1 0 · · · 0
0

(
λ1
λ0

)k
· · · 0

...
... . . . ...

0 0 · · ·
(
λm−1
λ0

)k

X
−1v(0) − ψ0x0

=

X


1 0 · · · 0
0

(
λ1
λ0

)k
· · · 0

...
... . . . ...

0 0 · · ·
(
λm−1
λ0

)k

 y − ψ0x0

=

X


0 0 · · · 0
0

(
λ1
λ0

)k
· · · 0

...
... . . . ...

0 0 · · ·
(
λm−1
λ0

)k

 y

Hence

X−1(v(k) − ψ0x0) =


0 0 · · · 0
0

(
λ1
λ0

)k
· · · 0

...
... . . . ...

0 0 · · ·
(
λm−1
λ0

)k

 y

and

X−1(v(k+1) − ψ0x0) =


0 0 · · · 0
0 λ1

λ0
· · · 0

...
... . . . ...

0 0 · · · λm−1
λ0

X−1(v(k) − ψ0x0).

Now, let ‖ · ‖ be a p-norm and ‖ · ‖X−1 as defined in Homework 9.3.2.1. Then

‖v(k+1) − ψ0x0‖X−1 = ‖X−1(v(k+1) − ψ0x0)‖

=

∥∥∥∥∥∥∥∥∥∥


0 0 · · · 0
0 λ1

λ0
· · · 0

...
... . . . ...

0 0 · · · λm−1
λ0

X−1(v(k) − ψ0x0)

∥∥∥∥∥∥∥∥∥∥
≤

∣∣∣λ1
λ0

∣∣∣ ‖X−1(v(k) − ψ0x0)‖ =
∣∣∣λ1
λ0

∣∣∣ ‖v(k) − ψ0x0‖X−1 .
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This shows that, in this norm, the convergence of v(k) to ψ0x0 is linear: The difference between
current approximation, v(k), and the eventual vector in the direction of the desired eigenvector,
ψx0, is reduced by at least a constant factor in each iteration.

Now, what if
|λ0| = · · · = |λn−1| > |λn| ≥ . . . ≥ |λm−1|?

By extending the above analysis one can easily show that v(k) will converge to a vector in the
subspace spanned by the eigenvectors associated with λ0, . . . , λn−1.

An important special case is when n = 2: if A is real-valued then λ0 may be complex-valued
in which case its conjugate, λ̄0, is also an eigenvalue and hence has the same magnitude as λ0. We
deduce that v(k) will always be in the space spanned by the eigenvectors corresponding to λ0 and
λ̄0.

9.3.3 The Inverse Power Method

YouTube: https://www.youtube.com/watch?v=yrlYmNdYBCs

Homework 9.3.3.1 Let A ∈ Cm×m be nonsingular, and (λ, x) an eigenpair of A
Which of the follow is an eigenpair of A−1:

• (λ, x).

• (λ,A−1x).

• (1/λ,A−1x).

• (1/λ, x).

[Answer] [Solution]

YouTube: https://www.youtube.com/watch?v=pKPMuiCNC2s
The Power Method homes in on an eigenvector associated with the largest (in magnitude)

eigenvalue. The Inverse Power Method homes in on an eigenvector associated with the smallest
eigenvalue (in magnitude).

https://www.youtube.com/watch?v=yrlYmNdYBCs
https://www.youtube.com/watch?v=pKPMuiCNC2s
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Once again, we assume that a given matrix A ∈ Cm×m is diagonalizable so that there ex-
ist matrix X and diagonal matrix Λ such that A = XΛX−1. We further assume that Λ =
diag(λ0, · · · , λm−1) and

|λ0| ≥ |λ1| ≥ · · · ≥ |λm−2| > |λm−1| > 0.

Notice that this means that A is nonsingular.
Clearly, if

|λ0| ≥ |λ1| ≥ · · · ≥ |λm−2| > |λm−1| > 0,

then ∣∣∣∣ 1
λm−1

∣∣∣∣ > ∣∣∣∣ 1
λm−2

∣∣∣∣ ≥ ∣∣∣∣ 1
λm−3

∣∣∣∣ ≥ · · · ≥ ∣∣∣∣ 1
λ0

∣∣∣∣ .
Thus, an eigenvector associated with the smallest (in magnitude) eigenvalue of A is an eigenvector
associated with the largest (in magnitude) eigenvalue of A−1.

YouTube: https://www.youtube.com/watch?v=D6KF28ycRB0
This suggest the following naive iteration (which mirrors the second attempt for the Power

Method in Subsubsection 9.3.1.2, but iterating with A−1):

for k = 0, . . .
v(k+1) = A−1v(k)

v(k+1) = λm−1v
(k+1)

endfor

From the analysis of the convergence of in Subsection 9.3.2 for the Power Method algorithm, we
conclude that now

‖v(k+1) − ψm−1xm−1‖X−1 ≤
∣∣∣λm−1
λm−2

∣∣∣ ‖v(k) − ψm−1xm−1‖X−1 .

A more practical Inverse Power Method algorithm is given by

Pick v(0) of unit length
for k = 0, . . .
v(k+1) = A−1v(k)

v(k+1) = v(k+1)/‖v(k+1)‖
endfor

We would probably want to factor PA = LU (LU factorization with partial pivoting) once and
solve L(Uv(k+1)) = Pv(k) rather than multiplying with A−1.

https://www.youtube.com/watch?v=D6KF28ycRB0
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9.3.4 The Rayleigh Quotient Iteration

YouTube: https://www.youtube.com/watch?v=7OOJcvYxbxM
A basic idea that allows one to accelerate the convergence of the inverse iteration is captured

by the following exercise:

Homework 9.3.4.1 Let A ∈ Cm×m, ρ ∈ C, and (λ, x) an eigenpair of A .
Which of the follow is an eigenpair of the shifted matrix A− ρI:

• (λ, x).

• (λ,A−1x).

• (λ− ρ, x).

• (1/(λ− ρ), x).

[Answer] [Solution]

YouTube: https://www.youtube.com/watch?v=btFWxkXkXZ8
The matrix A− ρI is referred to as the matrix A that has been "shifted" by ρ. What the next

lemma captures is that shifting A by ρ shifts the spectrum of A by ρ:

Lemma 9.3.4.1 Let A ∈ Cm×m, A = XΛX−1 and ρ ∈ C. Then A− ρI = X(Λ− ρI)X−1.

Homework 9.3.4.2 Prove Lemma 9.3.4.1. [Solution]
This suggests the following (naive) iteration: Pick a value ρ close to λm−1. Iterate

Pick v(0) of unit length
for k = 0, . . .
v(k+1) = (A− ρI)−1v(k)

v(k+1) = (λm−1 − ρ)v(k+1)

endfor

Of course one would solve (A − ρI)v(k+1) = v(k) rather than computing and applying the inverse
of A.

https://www.youtube.com/watch?v=7OOJcvYxbxM
https://www.youtube.com/watch?v=btFWxkXkXZ8
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If we index the eigenvalues so that

|λm−1 − ρ| < |λm−2 − ρ| ≤ · · · ≤ |λ0 − ρ|

then
‖v(k+1) − ψm−1xm−1‖X−1 ≤

∣∣∣λm−1−ρ
λm−2−ρ

∣∣∣ ‖v(k) − ψm−1xm−1‖X−1 .

The closer to λm−1 the shift ρ is chosen, the more favorable the ratio (constant) that dictates the
linear convergence of this modified Inverse Power Method.

YouTube: https://www.youtube.com/watch?v=fCDYbunugKk
A more practical algorithm is given by

Pick v(0) of unit length
for k = 0, . . .
v(k+1) = (A− ρI)−1v(k)

v(k+1) = v(k+1)/‖v(k+1)‖
endfor

where instead of multiplying by the inverse one would want to solve the linear system (A −
ρI)v(k+1) = v(k) instead.

The question now becomes how to chose ρ so that it is a good guess for λm−1. Often an applica-
tion inherently supplies a reasonable approximation for the smallest eigenvalue or an eigenvalue of
particular interest. Alternatively, we know that eventually v(k) becomes a good approximation for
xm−1 and therefore the Rayleigh quotient gives us a way to find a good approximation for λm−1.
This suggests the (naive) Rayleigh-quotient iteration:

Pick v(0) of unit length
for k = 0, . . .
ρk = v(k)HAv(k)/(v(k)Hv(k))
v(k+1) = (A− ρkI)−1v(k)

v(k+1) = (λm−1 − ρk)v(k+1)

endfor

Here λm−1 is the eigenvalue to which the method eventually converges.

‖v(k+1) − ψm−1xm−1‖X−1 ≤
∣∣∣λm−1−ρk
λm−2−ρk

∣∣∣ ‖v(k) − ψm−1xm−1‖X−1

with
lim
k→∞

(λm−1 − ρk) = 0

which means superlinear convergence is observed. In fact, it can be shown that once k is large
enough

‖v(k+1) − ψm−1xm−1‖X−1 ≤ C‖v(k) − ψm−1xm−1‖2X−1 ,

https://www.youtube.com/watch?v=fCDYbunugKk
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thus achieving quadratic convergence. Roughly speaking this means that every iteration doubles the
number of correct digits in the current approximation. To prove this, one shows that |λm−1−ρk| ≤
K‖v(k) − ψm−1xm−1‖X−1 for some constant K. Details go beyond this discussion.

Better yet, it can be shown that if A is Hermitian, then (once k is large enough)

‖v(k+1) − ψm−1xm−1‖ ≤ C‖v(k) − ψm−1xm−1‖3

for some constant C and hence the naive Rayleigh Quotient Iteration achieves cubic convergence
for Hermitian matrices. Here our norm ‖ · ‖X−1 becomes any p-norm since the Spectral Decom-
position Theorem tells us that for Hermitian matrices X can be taken to equal a unitary matrix.
Roughly speaking this means that every iteration triples the number of correct digits in the current
approximation. This is mind-boggling fast convergence!

A practical Rayleigh Quotient Iteration is given by

v(0) = v(0)/‖v(0)‖2
for k = 0, . . .
ρk = v(k)HAv(k) (Now ‖v(k)‖2 = 1)
v(k+1) = (A− ρkI)−1v(k)

v(k+1) = v(k+1)/‖v(k+1)‖
endfor

Remark 9.3.4.2 A concern with the (Shifted) Inverse Power Method and Rayleigh Quotient
Iteration is that the matrix with which one solves is likely nearly singular. It turns out that this
actually helps: the error that is amplified most is in the direction of the eigenvector associated with
the smallest eigenvalue (after shifting, if appropriate).

9.3.5 Discussion
To summarize this section:

• The Power Method finds the eigenvector associated with the largest eigenvalue (in magnitude).
It requires a matrix-vector multiplication for each iteration, thus costing approximately 2m2

flops per iteration if A is a dense m×m matrix. The convergence is linear.

• The Inverse Power Method finds the eigenvector associated with the smallest eigenvalue (in
magnitude). It requires the solution of a linear system for each iteration. By performance
an LU factorization with partial pivoting, the investment of an initial O(m3) expense then
reduces the cost per iteration to approximately 2m2 flops. if A is a dense m×m matrix. The
convergence is linear.

• The Rayleigh Quotient Iteration finds an eigenvector, but with which eigenvalue it is associ-
ated is not clear from the start. It requires the solution of a linear system for each iteration.
If computed via an LU factorization with partial pivoting, the cost per iteration is O(m3) per
iteration, if A is a dense m×m matrix. The convergence is quadratic if A is not Hermitian,
and cubic if it is.

The cost of these methods is greatly reduced if the matrix is sparse, in which case each iteration
may require as little as O(m) per iteration.
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9.4 Enrichments

9.4.1 How to compute the eigenvalues of a 2× 2 matrix
We have noted that finding the eigenvalues of a 2×2 matrix requires the solution to the characteristic
polynomial. In particular, if a 2× 2 matrix A is real-valued and

A =
(
α00 α01
α10 α11

)

then

det(λI −A) = (λ− α00)(λ− α11)− α10α01 = λ2 −(α00 + α11)︸ ︷︷ ︸
β

λ+ (α00α11 − α10α10)︸ ︷︷ ︸
γ

.

It is then tempting to use the quadratic formula to find the roots: \[ \lambda_0 = \frac{-\beta
+ \sqrt{ \beta^2 - 4 \gamma } }{2} \] and \[ \lambda_0 = \frac{-\beta - \sqrt{ \beta^2 -
4 \gamma } }{2}. \] However, as discussed in Section C.2, one of these formulae may cause
catastrophic cancellation, if γ is small. When is γ small? When α00α11 −α10α10 is small. In other
words, when the determinant of A is small or, equivalently, when A has a small eigenvalue.

In the next week, we will discuss the QR algorithm for computing the Spectral Decomposition of
a Hermitian matrix. We do not discuss the QR algorithm for computing the Schur Decomposition
of a m×m non-Hermitian matrix, which uses the eigenvalues of(

αm−2,m−2 αm−2,m−1
αm−1,m−1 αm−1,m−1

)

to "shift" the matrix. (What this means will become clear next week.) This happened to come up in
Robert’s dissertation work. Making the "rookie mistake" of not avoiding catastrophic cancellation
when computing the roots of a quadratic polynomial cost him three weeks of his life (debugging his
code), since the algorithm that resulted did not converge correctly... Don’t repeat his mistakes!

9.5 Wrap Up

9.5.1 Additional homework
Homework 9.5.1.1 Let ‖ · ‖ be matrix norm induced by a vector norm ‖ · ‖. Prove that for any
A ∈ Cm×m, the spectral radius, ρ(A) satisfies ρ(A) ≤ ‖A‖.

Some results in linear algebra depend on there existing a consistent matrix norm ‖ · ‖ such that
‖A‖ < 1. The following exercise implies that one can alternatively show that the spectral radius is
bounded by one: ρ(A) < 1.

Homework 9.5.1.2 Given a matrix A ∈ Cm×m and ε > 0, there exists a consistent matrix norm
‖ · ‖ such that ‖A‖ ≤ ρ(A) + ε.
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9.5.2 Summary

Definition 9.5.2.1 Eigenvalue, eigenvector, and eigenpair. Let A ∈ Cm×m. Then λ ∈ C
and nonzero x ∈ Cm are said to be an eigenvalue and corresponding eigenvector if Ax = λx. The
tuple (λ, x) is said to be an eigenpair. ♦

For A ∈ Cm×m, the following are equivalent statements:

• A is nonsingular.

• A has linearly independent columns.

• There does not exist x 6= 0 such that Ax = 0.

• N (A) = {0}. (The null space of A is trivial.)

• dim(N (A)) = 0.

• det(A) 6= 0.

For A ∈ Cm×m, the following are equivalent statements:

• λ is an eigenvalue of A

• (λI −A) is singular.

• (λI −A) has linearly dependent columns.

• There exists x 6= 0 such that (λI −A)x = 0.

• The null space of λI −A is nontrivial.

• dim(N (λI −A)) > 0.

• det(λI −A) = 0.

Definition 9.5.2.2 Spectrum of a matrix. The set of all eigenvalues of A is denoted by Λ(A)
and is called the spectrum of A. ♦

Definition 9.5.2.3 Spectral radius. The spectral radius of A, ρ(A), equals the magnitude of
the largest eigenvalue, in magnitude:

ρ(A) = max
λ∈Λ(A)

|λ|.

♦

Theorem 9.5.2.4 Gershgorin Disk Theorem. Let A ∈ Cm×m,

A =


α0,0 α0,1 · · · αm−1,m−1
α0,0 α0,1 · · · αm−1,m−1
...

...
...

α0,0 α0,1 · · · αm−1,m−1

 ,

ρi(A) =
∑
j 6=i
|αi,j |,
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and
Ri(A) = {x s.t. |x− αi,i| ≤ ρi}.

In other words, ρi(A) equals the sum of the absolute values of the off diagonal elements of A in
row i and Ri(A) equals the set of all points in the complex plane that are within a distance ρi of
diagonal element αi,i. Then

Λ(A) ⊂ ∪iRi(A).

In other words, every eigenvalue lies in one of the disks of radius ρi(A) around diagonal element
αi,i.

Corollary 9.5.2.5 Let A and Ri(A) be as defined in Theorem 9.5.2.4. Let K and KC be disjoint
subsets of {0, . . . ,m− 1} such that K ∪KC = {0, . . . ,m− 1}. In other words, let K be a subset of
{0, . . . ,m− 1 and KC its complement. If

(∪k∈KRk(A)) ∩
(
∪j∈KCRj(A)

)
= ∅

then ∪k∈KRk(A) contains exactly |K| eigenvalues of A (multiplicity counted). In other words, if
∪k∈KRk(A) does not intersect with any of the other disks, then it contains as many eigenvalues of
A (multiplicity counted) as there are elements of K.
Some useful facts for A ∈ Cm×m:

• 0 ∈ Λ(A) if and only A is singular.

• The eigenvectors corresponding to distinct eigenvalues are linearly independent.

• Let A be nonsingular. Then (λ, x) is an eigenpair of A if and only if (1/λ, x) is an eigenpair
of A−1.

• (λ, x) is an eigenpair of A if and only if (λ− ρ, x) is an eigenpair of A− ρI.

Some useful facts for Hermitian A ∈ Cm×m:

• All eigenvalues are real-valued.

• A is HPD if and only if all its eigenvalues are positive.

• If (λ, x) and (µ, y) are both eigenpairs of Hermitian A, then x and y are orthogonal.

Definition 9.5.2.6 The determinant of

A =
(
α00 α01
α10 α11

)

is given by
det(A) = α00α11 − α10α01.

♦
The characteristic polynomial of

A =
(
α00 α01
α10 α11

)
is given by

det(λ− IA) = (λ− α00)(λ− α11)− α10α01.
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This is a second degree polynomial in λ and has two roots (multiplicity counted). The eigenvalues
of A equal the roots of this characteristic polynomial.

The characteristic polynomial of A ∈ Cm×m is given by

det(λ− IA).

This is a polynomial in λ of degree m and has m roots (multiplicity counted). The eigenvalues
of A equal the roots of this characteristic polynomial. Hence, A has m eigenvalues (multiplicity
counted).

Definition 9.5.2.7 Algebraic multiplicity of an eigenvalue. Let A ∈ Cm×m and pm(λ) its
characteristic polynomial. Then the (algebraic) multiplicity of eigenvalue λi equals the multiplicity
of the corresponding root of the polynomial. ♦

If
pm(χ) = α0 + α1χ+ · · ·+ αm−1χ

m−1 + χm

and

A =



−αn−1 −αn−2 −αn−3 · · · −α1 −α0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 0


then

pm(λ) = det(λI −A).
Corollary 9.5.2.8 If A ∈ Rm×m is real-valued then some or all of its eigenvalues may be complex-
valued. If eigenvalue λ is complex-valued, then its conjugate, λ̄, is also an eigenvalue. Indeed, the
complex eigenvalues of a real-valued matrix come in complex pairs.

Corollary 9.5.2.9 If A ∈ Rm×m is real-valued and m is odd, then at least one of the eigenvalues
of A is real-valued.

Let λ be an eigenvalue of A ∈ Cm×m and

Eλ(A) = {x ∈ Cm|Ax = λx}.

bet the set of all eigenvectors of A associated with λ plus the zero vector (which is not considered
an eigenvector). This set is a subspace.

The elements on the diagonal of a diagonal matrix are its eigenvalues. The elements on the
diagonal of a triangular matrix are its eigenvalues.

Definition 9.5.2.10 Given a nonsingular matrix Y , the transformation Y −1AY is called a simi-
larity transformation (applied to matrix A). ♦

Let A,B, Y ∈ Cm×m, where Y is nonsingular, B = Y −1AY , and (λ, x) an eigenpair of A. Then
(λ, Y −1x) is an eigenpair of B.

Theorem 9.5.2.11 Let A, Y,B ∈ Cm×m, assume Y is nonsingular, and let B = Y −1AY . Then
Λ(A) = Λ(B).
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Definition 9.5.2.12 Given a nonsingular matrix Q the transformation QHAQ is called a unitary
similarity transformation (applied to matrix A). ♦

Theorem 9.5.2.13 Schur Decomposition Theorem. Let A ∈ Cm×m. Then there exist a
unitary matrix Q and upper triangular matrix U such that A = QUQH . This decomposition is
called the Schur decomposition of matrix A.

Theorem 9.5.2.14 Spectral Decomposition Theorem. Let A ∈ Cm×m be Hermitian. Then
there exist a unitary matrix Q and diagonal matrix D ∈ Rm×m such that A = QDQH . This
decomposition is called the spectral decomposition of matrix A.

Theorem 9.5.2.15 Let A ∈ Cm×m be of form A =
(
ATL ATR

0 ABR

)
, where ATL and ABR are

square submatrices. Then Λ(A) = Λ(ATL) ∪ Λ(ABR).

Definition 9.5.2.16 Diagonalizable matrix. A matrix A ∈ Cm×m is said to be diagonalizable
if and only if there exists a nonsingular matrix X and diagonal matrix D such that X−1AX = D.

♦

Theorem 9.5.2.17 A matrix A ∈ Cm×m is diagonalizable if and only if it has m linearly indepen-
dent eigenvectors.

If A ∈ Cm×m has distinct eigenvalues, then it is diagonalizable.

Definition 9.5.2.18 Defective matrix. A matrix A ∈ Cm×m that does not have m linearly
independent eigenvectors is said to be defective. ♦

Corollary 9.5.2.19 Matrix A ∈ Cm×m is diagonalizable if and only if it is not defective.
Definition 9.5.2.20 Geometric multiplicity. Let λ ∈ Λ(A). Then the geometric multiplicity
of λ is defined to be the dimension of Eλ(A) defined by

Eλ(A) = {x ∈ Cm|Ax = λx}.

In other words, the geometric multiplicity of λ equals the number of linearly independent eigenvec-
tors that are associated with λ. ♦

Definition 9.5.2.21 Jordan Block. Define the k × k Jordan block with eigenvalue µ as

Jk(µ) =



µ 1 0 · · · 0 0

0 µ 1 . . . 0 0
... . . . . . . . . . ...

...

0 0 0 . . . µ 1
0 0 0 · · · 0 µ


♦

Theorem 9.5.2.22 Jordan Canonical Form Theorem. Let the eigenvalues of A ∈ Cm×m be
given by λ0, λ1, · · · , λk−1, where an eigenvalue is listed as many times as its geometric multiplicity.
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There exists a nonsingular matrix X such that

X−1AX =


Jm0(λ0) 0 · · · 0

0 Jm1(λ1) · · · 0
...

... . . . ...
0 0 · · · Jmk−1(λk−1)

 .
A practical Power Method for finding the eigenvector associated with the largest eigenvalue (in

magnitude):
Pick v(0) of unit length
for k = 0, . . .
v(k+1) = Av(k)

v(k+1) = v(k+1)/‖v(k+1)‖
endfor

Definition 9.5.2.23 Rayleigh quotient. If A ∈ Cm×m and x 6= 0 ∈ Cm then

xHAx

xHx

is known as the Rayleigh quotient. ♦

If x is an eigenvector of A, then
xHAx

xHx
is the associated eigenvalue.

Definition 9.5.2.24 Convergence of a sequence of scalars. Let α0, α1, α2, . . . ∈ R be an
infinite sequence of scalars. Then αk is said to converge to α if

lim
k→∞

|αk − α| = 0.

♦

Definition 9.5.2.25 Convergence of a sequence of vectors. Let x0, x1, x2, . . . ∈ Cm be an
infinite sequence of vectors. Then xk is said to converge to x if for any norm ‖ · ‖

lim
k→∞

‖xk − x‖ = 0.

♦

Definition 9.5.2.26 Rate of convergence. Let α0, α1, α2, . . . ∈ R be an infinite sequence of
scalars that converges to α. Then

• αk is said to converge linearly to α if for sufficiently large k

|αk+1 − α| ≤ C|αk − α|

for some constant C < 1.

• αk is said to converge superlinearly to α if for sufficiently large k

|αk+1 − α| ≤ Ck|αk − α|

with Ck → 0.
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• αk is said to converge quadratically to α if for sufficiently large k

|αk+1 − α| ≤ C|αk − α|2

for some constant C.

• αk is said to converge superquadratically to α if for sufficiently large k

|αk+1 − α| ≤ Ck|αk − α|2

with Ck → 0.

• αk is said to converge cubically to α if for large enough k

|αk+1 − α| ≤ C|αk − α|3

for some constant C.

♦
The convergence of the Power Method is linear.
A practical Inverse Power Method for finding the eigenvector associated with the smallest

eigenvalue (in magnitude):
Pick v(0) of unit length
for k = 0, . . .
v(k+1) = A−1v(k)

v(k+1) = v(k+1)/‖v(k+1)‖
endfor

The convergence of the Inverse Power Method is linear.
A practical Rayleigh quation iteration for finding the eigenvector associated with the smallest

eigenvalue (in magnitude):
Pick v(0) of unit length
for k = 0, . . .
ρk = v(k)HAv(k)

v(k+1) = (A− ρkI)−1v(k)

v(k+1) = v(k+1)/‖v(k+1)‖
endfor

The convergence of the Rayleigh Quotient Iteration is quadratic (eventually, the number of
correct digits doubles in each iteration). If A is Hermitian, the convergence is cubic (eventually,
the number of correct digits triples in each iteration).



Week 10

Practical Solution of the Hermitian Eigen-
value Problem

10.1 Opening Remarks

10.1.1 Subspace iteration with a Hermitian matrix

YouTube: https://www.youtube.com/watch?v=kwJ6HMSLv1U
The idea behind subspace iteration is to perform the Power Method with more than one vector

in order to converge to (a subspace spanned by) the eigenvectors associated with a set of eigenvalues.
We continue our discussion by restricting ourselves to the case where A ∈ Cm×m is Hermitian.

Why? Because the eigenvectors associated with distinct eigenvalues of a Hermitian matrix are
mutually orthogonal (and can be chosen to be orthonormal), which will simplify our discussion.
Here we repeat the Power Method:

v0 := random vector
v

(0)
0 := v0/‖v0‖2 normalize to have length one

for k := 0, . . .
v0 := Av

(k)
0

v
(k+1)
0 := v0/‖v0‖2 normalize to have length one

endfor

In previous discussion, we used v(k) for the current approximation to the eigenvector. We now add
the subscript to it, v(k)

0 , because we will shortly start iterating with multiple vectors.

Homework 10.1.1.1 You may want to start by executing git pull to update your directory
Assignments.

371

https://www.youtube.com/watch?v=kwJ6HMSLv1U
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Examine Assignments/Week10/matlab/PowerMethod.m which implements

[ lambda_0, v0 ] = PowerMethod( A, x, maxiters, illustrate, delay )

This routine implements the Power Method, starting with a vector x for a maximum number of
iterations maxiters or until convergence, whichever comes first. To test it, execute the script in
Assignments/Week10/matlab/test_SubspaceIteration.m which uses the Power Method to compute the
largest eigenvalue (in magnitude) and corresponding eigenvector for an m×m Hermitian matrix A
with eigenvalues 1, . . . ,m.

Be sure to click on "Figure 1" to see the graph that is created. [Solution]

YouTube: https://www.youtube.com/watch?v=wmuWfjwtgcI
Recall that when we analyzed the convergence of the Power Method, we commented on the fact

that the method converges to an eigenvector associated with the largest eigenvalue (in magnitude)
if two conditions are met:

• |λ0| > |λ1|.

• v
(0)
0 has a component in the direction of the eigenvector, x0, associated with λ0.

A second initial vector, v(0)
1 , does not have a component in the direction of x0 if it is orthogonal

to x0. So, if we know x0, then we can pick a random vector, subtract out the component in the
direction of x0, and make this our vector v(0)

1 with which we should be able to execute the Power
Method to find an eigenvector, x1, associated with the eigenvalue that has the second largest
magnitude, λ1 . If we then start the Power Method with this new vector (and don’t introduce
roundoff error in a way that introduces a component in the direction of x0), then the iteration
will home in on a vector associated with λ1 (provided A is Hermitian, |λ1| > |λ2|, and v(0)

1 has a
component in the direction of x1.) This iteration would look like

x0 := x0/‖x0‖2 normalize known eigenvector x0 to have length one
v1 := random vector
v1 := v1 − xH0 v1x0 make sure the vector is orthogonal to x0

v
(0)
1 := v1/‖v1‖2 normalize to have length one

for k := 0, . . .
v1 := Av

(k)
1

v
(k+1)
1 := v1/‖v1‖2 normalize to have length one

endfor

Homework 10.1.1.2 Copy Assignments/Week10/matlab/PowerMethod.m into PowerMethodLambda1.m.
Modify it by adding an input parameter v0, which is an eigenvector associated with λ0 (the eigen-
value with largest magnitude).
[ lambda_1, v1 ] = PowerMethodLambda1( A, x, x0, maxiters, illustrate, delay )

Assignments/Week10/matlab/PowerMethod.m
Assignments/Week10/matlab/test_SubspaceIteration.m
https://www.youtube.com/watch?v=wmuWfjwtgcI
Assignments/Week10/matlab/PowerMethod.m
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The new function should subtract this vector from the initial random vector as in the above algo-
rithm.

Modify the appropriate line in Assignments/Week10/matlab/test_SubspaceIteration.m, changing
(0) to (1), and use it to examine the convergence of the method.

What do you observe? [Solution]

YouTube: https://www.youtube.com/watch?v=OvBFQ84jTMw
Because we should be concerned about the introduction of a component in the direction of x0

due to roundoff error, we may want to reorthogonalize with respect to x0 in each iteration:

x0 := x0/‖x0‖2 normalize known eigenvector x0 to have length one
v1 := random vector
v1 := v1 − xH0 v1x0 make sure the vector is orthogonal to x0

v
(0)
1 := v1/‖v1‖2 normalize to have length one

for k := 0, . . .
v1 := Av

(k)
1

v1 := v1 − xH0 v1x0 make sure the vector is orthogonal to x0

v
(k+1)
1 := v1/‖v1‖2 normalize to have length one

endfor

Homework 10.1.1.3 Copy PowerMethodLambda1.m into PowerMethodLambda1Reorth.m and modify
it to reorthogonalize with respect to x0:
[ lambda_1, v1 ] = PowerMethodLambda1Reorth( A, x, v0, maxiters, illustrate, delay );

Modify the appropriate line in Assignments/Week10/matlab/test_SubspaceIteration.m, changing (0)
to (1), and use it to examine the convergence of the method.

What do you observe? [Solution]

YouTube: https://www.youtube.com/watch?v=751FAyKch1s
We now observe that the steps that normalize x0 to have unit length and then subtract out the

component of v1 in the direction of x0, normalizing the result, are exactly those performed by the
Gram-Schmidt process. More generally, it is is equivalent to computing the QR factorization of the

Assignments/Week10/matlab/test_SubspaceIteration.m
https://www.youtube.com/watch?v=OvBFQ84jTMw
Assignments/Week10/matlab/test_SubspaceIteration.m
https://www.youtube.com/watch?v=751FAyKch1s
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matrix
(
x0 v1

)
. This suggests the algorithm

v1 := random vector
(
(
x0 v

(0)
1 ), R

)
:= QR(

(
x0 v1

)
)

for k := 0, . . .
(
(
x0 v

(k+1)
1

)
, R) := QR(

(
x0 Av

(k)
1

)
)

endfor

Obviously, this redundantly normalizes x0. It puts us on the path of a practical algorithm for
computing the eigenvectors associated with λ0 and λ1.

The problem is that we typically don’t know x0 up front. Rather than first using the power
method to compute it, we can instead iterate with two random vectors, where the first converges
to a vector associated with λ0 and the second to one associated with λ1:

v0 := random vector
v1 := random vector
(
(
v

(0)
0 v

(0)
1 ), R

)
:= QR(

(
v0 v1

)
)

for k := 0, . . .
(
(
v

(k+1)
0 v

(k+1)
1

)
, R) := QR(A

(
v

(k)
0 v

(k)
1

)
)

endfor

We observe:

• If |λ0| > |λ1|, the vectors v(k)
0 will converge linearly to a vector in the direction of x0 at a rate

dictated by the ratio |λ1|/|λ0|.

• If |λ0| > |λ1| > |λ2|,, the vectors v(k)
1 will converge linearly to a vector in the direction of x1

at a rate dictated by the ratio |λ2|/|λ1|.

• If |λ0| ≥ |λ1| > |λ2| then Span({v(k)
0 , v

(k)
1 }) will eventually start approximating the subspace

Span({x0, x1}).

YouTube: https://www.youtube.com/watch?v=lhBEjMmWLiA
What we have described is a special case of subspace iteration. The associated eigenvalue

can be approximated via the Rayleigh quotient:

λ0 ≈ λ(k)
0 = v

(k)
0

H
Av

(k)
0 and λ1 ≈ λ(k)

1 = v
(k)
1

H
Av

(k)
1

Alternatively,

A(k) =
(
v

(k)
0 v

(k)
1

)H
A
(
v

(k)
0 v

(k)
1

)
converges to

(
λ0 0
0 λ1

)

https://www.youtube.com/watch?v=lhBEjMmWLiA
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if A is Hermitian, |λ1| > |λ2|, and v(0) and v(1) have components in the directions of x0 and x1,
respectively.

The natural extention of these observations is to iterate with n vectors:

V̂ := random m× n matrix
(V̂ (0), R) := QR(V̂ )
A(0) = V (0)HAV (0)

for k := 0, . . .
(V̂ (k+1), R) := QR(AV̂ (k))
A(k+1) = V̂ (k+1) HAV̂ (k+1)

endfor

By extending the reasoning given so far in this unit, if

• A is Hermitian,

• |λ0| > |λ1| > · · · > |λn−1| > |λn|, and

• each vj has a component in the direction of xj , an eigenvector associated with λj ,

then each v(j)
j will converge to a vector in the direction xj . The rate with which the component in

the direction of xp, 0 ≤ p < n, is removed from v
(k)
j , n ≤ j < m, is dictated by the ratio |λp|/|λj |.

If some of the eigenvalues have equal magnitude, then the corresponding columns of V̂ (k) will
eventually form a basis for the subspace spanned by the eigenvectors associated with those eigen-
values.
Homework 10.1.1.4 Copy PowerMethodLambda1Reorth.m into SubspaceIteration.m and modify
it to work with an m× n matrix V :
[ Lambda, V ] = SubspaceIteration( A, V, maxiters, illustrate, delay );

Modify the appropriate line in Assignments/Week10/matlab/test_SubspaceIteration.m, changing (0)
to (1), and use it to examine the convergence of the method.

What do you observe? [Solution]

10.1.2 Overview
• 10.1 Opening Remarks

◦ 10.1.1 Subspace iteration with a Hermitian matrix
◦ 10.1.2 Overview
◦ 10.1.3 What you will learn

• 10.2 From Power Method to a simple QR algorithm

◦ 10.2.1 A simple QR algorithm
◦ 10.2.2 A simple shifted QR algorithm
◦ 10.2.3 Deflating the problem
◦ 10.2.4 Cost of a simple QR algorithm

Assignments/Week10/matlab/test_SubspaceIteration.m
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• 10.3 A Practical Hermitian QR Algorithm

◦ 10.3.1 Reducing the cost of the QR algorithm
◦ 10.3.2 Reduction to tridiagonal form
◦ 10.3.3 Givens’ rotations
◦ 10.3.4 Simple tridiagonal QR algorithm
◦ 10.3.5 The implicit Q theorem
◦ 10.3.6 The Francis implicit QR Step
◦ 10.3.7 A complete algorithm

• 10.4 Enrichments

◦ 10.4.1 QR algorithm among the most important algorithms of the 20th century
◦ 10.4.2 Who was John Francis
◦ 10.4.3 Casting the reduction to tridiagonal form in terms of matrix-matrix multiplication
◦ 10.4.4 Optimizing the tridiagonal QR algorithm
◦ 10.4.5 The Method of Multiple Relatively Robust Representations (MRRR)

• 10.5 Wrap Up

◦ 10.5.1 Additional homework
◦ 10.5.2 Summary

10.1.3 What you will learn
This week, you explore practical methods for finding all eigenvalues and eigenvectors of a Hermitian
matrix, building on the insights regarding the Power Method that you discovered last week.

Upon completion of this week, you should be able to

• Formulate and analyze subspace iteration methods.

• Expose the relationship between subspace iteration and simple QR algorithms.

• Accelerate the convergence of QR algorithms by shifting the spectrum of the matrix.

• Lower the cost of QR algorithms by first reducing a Hermitian matrix to tridiagonal form.

• Cast all computation for computing the eigenvalues and eigenvectors of a Hermitian matrix
in terms of unitary similarity transformations, yielding the Francis Implicit QR Step.

• Exploit a block diagonal structure of a matrix to deflate the Hermitian eigenvalue problem
into smaller subproblems.

• Combine all these insights into a practical algorithm.
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10.2 From Power Method to a simple QR algorithm

10.2.1 A simple QR algorithm

YouTube: https://www.youtube.com/watch?v=_vlE7aJGoNE
We now morph the subspace iteration discussed in the last unit into a simple incarnation of

an algorithm known as the QR algorithm. We will relate this algorithm to performing subspace
iteration with an m×m (square) matrix so that the method finds all eigenvectors simultaneously
(under mild conditions). Rather than starting with a random matrix V , we now start with the
identity matrix. This yields the algorithm on the left in Figure 10.2.1.1. We contrast it with the
algorithm on the right.

V̂ := I
for k := 0, . . .

(V̂ , R̂) := QR(AV̂ )

Â = V̂ HAV̂
endfor

V = I
for k := 0, . . .

(Q,R) := QR(A)
A = RQ
V = V Q

endfor

Figure 10.2.1.1 Left: Subspace iteration started with V̂ = I. Right: Simple QR algorithm.
The magic lies in the fact that the matrices computed by the QR algorithm are identical to

those computed by the subspace iteration: Upon completion V̂ = V and the matrix Â on the left
equals the (updated) matrix A on the right. To be able to prove this, we annotate the algorithm
so we can reason about the contents of the matrices for each iteration.

Â(0) := A

V̂ (0) := I

R̂(0) := I
for k := 0, . . .

(V̂ (k+1), R̂(k+1)) := QR(AV̂ (k))
Â(k+1) := V̂ (k+1) HAV̂ (k+1)

endfor

A(0) := A

V (0) := I

R(0) := I
for k := 0, . . .

(Q(k+1), R(k+1)) := QR(A(k))
A(k+1) := R(k+1)Q(k+1)

V (k+1) := V (k)Q(k+1)

endfor
Let’s start by showing how the QR algorithm applies unitary equivalence transformations to

the matrices A(k).

Homework 10.2.1.1 Show that for the algorithm on the right A(k+1) = Q(k+1) HA(k)Q(k+1).
[Solution]

This last homework shows that A(k+1) is derived from A(k) via a unitary similarity transforma-
tion and hence has the same eigenvalues as does A(k). This means it also is derived from A via a

https://www.youtube.com/watch?v=_vlE7aJGoNE
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(sequence of) unitary similarity transformation and hence has the same eigenvalues as does A.
We now prove these algorithms mathematically equivalent.

Homework 10.2.1.2 In the above algorithms, for all k,
• Â(k) = A(k).

• R̂(k) = R(k).

• V̂ (k) = V (k).

[Hint] [Solution]

Homework 10.2.1.3 In the above algorithms, show that for all k
• V (k) = Q(0)Q(1) · · ·Q(k).

• Ak = V (k)R(k) · · ·R(1)R(0). (Note: Ak here denotes A raised to the kth power.)

Assume that Q(0) = I. [Solution]
This last exercise shows that

Ak = Q(0)Q(1) · · ·Q(k)︸ ︷︷ ︸
unitary V (k)

R(k) · · ·R(1)R(0)︸ ︷︷ ︸
upper triangular R̃(k)

which exposes a QR factorization of Ak. Partitioning V (k) by columns

V (k) =
(
v

(k)
0 · · · v

(k)
m−1

)
we notice that applying k iterations of the Power Method to vector e0 yields

Ake0 = V (k)R̃(k)e0 = V (k)ρ̃
(k)
0,0e0 = ρ̃

(k)
0,0V

(k)e0 = ρ̃
(k)
0,0v

(k)
0 ,

where ρ̃(k)
0,0 is the (0, 0) entry in matrix R̃(k). Thus, the first column of V (k) equals a vector that

would result from k iterations of the Power Method. Similarly, the second column of V (k) equals a
vector that would result from k iterations of the Power Method, but orthogonal to v(k)

0 .

YouTube: https://www.youtube.com/watch?v=t51YqvNWa0Q
We make some final observations:

• A(k+1) = Q(k)HA(k)Q(k). This means we can think of A(k+1) as the matrix A(k) but viewed
in a new basis (namely the basis that consists of the column of Q(k)).

• A(k+1) = (Q(0) · · ·Q(k))HAQ(0) · · ·Q(k) = V (k)HAV (k). This means we can think of A(k+1)

as the matrix A but viewed in a new basis (namely the basis that consists of the column of
V (k)).

https://www.youtube.com/watch?v=t51YqvNWa0Q
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• In each step, we compute
(Q(k+1), R(k+1)) = QR(A(k))

which we can think of as
(Q(k+1), R(k+1)) = QR(A(k) × I).

This suggests that in each iteration we perform one step of subspace iteration, but with matrix
A(k) and V = I:

(Q(k+1), R(k+1)) = QR(A(k)V ).

• The insight is that the QR algorithm is identical to subspace iteration, except that at each
step we reorient the problem (express it in a new basis) and we restart it with V = I.

Homework 10.2.1.4 Examine Assignments/Week10/matlab/SubspaceIterationAllVectors.m, which
implements the subspace iteration in Figure 10.2.1.1 (left). Examine it by executing the script in
Assignments/Week10/matlab/test_simple_QR_algorithm.m. [Solution]

Homework 10.2.1.5 Copy Assignments/Week10/matlab/SubspaceIterationAllVectors.m into SimpleQRAlg.m
and modify it to implement the algorithm in Figure 10.2.1.1 (right) as
function [ Ak, V ] = SimpleQRAlg( A, maxits, illustrate, delay )

Modify the appropriate line in Assignments/Week10/matlab/test_simple_QR_algorithms.m, changing
(0) to (1), and use it to examine the convergence of the method.

What do you observe? [Solution]

10.2.2 A simple shifted QR algorithm

YouTube: https://www.youtube.com/watch?v=HIxSCrFX1Ls
The equivalence of the subspace iteration and the QR algorithm tells us a lot about convergence.

Under mild conditions (|λ0| ≥ · · · ≥ |λn−1| > |λn| > · · · |λm−1|),

• The first n columns of V (k) converge to a basis for the subspace spanned by the eigenvectors
associated with λ0, . . . , λn−1.

• The last m−n columns of V (k) converge to the subspace orthogonal to the subspace spanned
by the eigenvectors associated with λ0, . . . , λn−1.

• If A is Hermitian, then the eigenvectors associated with λ0, . . . , λn−1, are orthogonal to those
associated with λn, . . . , λm−1. Hence, the subspace spanned by the eigenvectors associated
with λ0, . . . , λn−1 is orthogonal to the subspace spanned by the eigenvectors associated with
λn, . . . , λm−1.

• The rate of convergence with which these subspaces become orthogonal to each other is linear
with a constant |λn|/|λn−1|.

Assignments/Week10/matlab/SubspaceIterationAllVectors.m
Assignments/Week10/matlab/test_simple_QR_algorithm.m
Assignments/Week10/matlab/SubspaceIterationAllVectors.m
Assignments/Week10/matlab/test_simple_QR_algorithms.m
https://www.youtube.com/watch?v=HIxSCrFX1Ls
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What if in this situation we focus on n = m− 1? Then

• The last column of V (k) converges to point in the direction of the eigenvector associated with
λm−1, the smallest in magnitude.

• The rate of convergence of that vector is linear with a constant |λm−1|/|λm−2|.

In other words, the subspace iteration acts upon the last column of V (k) in the same way as would
an inverse iteration. This observation suggests that that convergence can be greatly accelerated by
shifting the matrix by an estimate of the eigenvalue that is smallest in magnitude.

Homework 10.2.2.1 Copy SimpleQRAlg.m into SimpleShiftedQRAlgConstantShift.m and mod-
ify it to implement an algorithm that executes the QR algorithm with a shifted matrix A− ρI:
function [ Ak, V ] = SimpleShiftedQRAlgConstantShift( A, rho, maxits, illustrate, delay )

Modify the appropriate line in Assignments/Week10/matlab/test_simple_QR_algorithms.m, changing
(0) to (1), and use it to examine the convergence of the method.

Try different values for ρ: 0.0, 0.9, 0.99, 1.0, 1.99, 1.5. What do you observe? [Solution]
We could compute the Rayleigh quotient with the last column of V (k) but a moment of reflection

tells us that that estimate is already available as the last element on the diagonal of A(k), because
the diagonal elements of A(k) converge to the eigenvalues. Thus, we arrive upon a simple shifted
QR algorithm in Figure 10.2.2.1. This algorithm inherits the cubic convergence of the Rayleigh
quotient iteration, for the last column of V .

V = I
for k := 0, . . .

(Q,R) := QR(A− αm−1,m−1I)
A = RQ+ αm−1,m−1I
V = V Q

endfor

Figure 10.2.2.1 Simple shifted QR algorithm.

YouTube: https://www.youtube.com/watch?v=Fhk0e5JFlsU
To more carefully examine this algorithm, let us annotate it as we did for the simple QR

Assignments/Week10/matlab/test_simple_QR_algorithms.m
https://www.youtube.com/watch?v=Fhk0e5JFlsU
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algorithm in the last unit.

A(0) = A

V (0) = I

R(0) = I
for k := 0, . . .
µk = α

(k)
m−1,m−1

(Q(k+1), R(k+1)) := QR(A(k) − µkI)
A(k+1) = R(k+1)Q(k+1) + µkI

V (k+1) = V (k)Q(k+1)

endfor

The following exercises clarify some of the finer points.

Homework 10.2.2.2 For the above algorithm, show that
• A(k+1) = Q(k+1)HA(k)Q(k+1).

• A(k+1) = V (k+1)HA(k)V (k+1).

[Solution]
This last exercise confirms that the eigenvalues of A(k) equal the eigenvalues of A.

Homework 10.2.2.3 For the above algorithm, show that

(A− µk−1I)(A− µk−2I) · · · (A− µ1I)(A− µ0I)
= Q(0)Q(1) · · ·Q(k)︸ ︷︷ ︸

unitary
R(k) · · ·R(1)R(0).︸ ︷︷ ︸
upper triangular

[Solution]

Homework 10.2.2.4 Copy SimpleShiftedQRAlgConstantShift.m into SimpleShiftedQRAlg and
modify it to implement an algorithm that executes the QR algorithm in Figure 10.2.2.1:
function [ Ak, V ] = SimpleShiftedQRAlg( A, maxits, illustrate, delay )

Modify the appropriate line in Assignments/Week10/matlab/test_simple_QR_algorithms.m, changing
(0) to (1), and use it to examine the convergence of the method.

What do you observe? [Solution]

10.2.3 Deflating the problem

YouTube: https://www.youtube.com/watch?v=rdWhh3lHuhY

Assignments/Week10/matlab/test_simple_QR_algorithms.m
https://www.youtube.com/watch?v=rdWhh3lHuhY


WEEK 10. PRACTICAL SOLUTION OF THE HERMITIAN EIGENVALUE PROBLEM 382

Recall that if
A =

(
A00 0
0 A11

)
, A00x = λx, and A11y = µy,

then (
A00 0
0 A11

)(
x

0

)
= λ

(
x

0

)
and

(
A00 0
0 A11

)(
0
y

)
= µ

(
0
y

)
.

In other words, Λ(A) = Λ(A00) ∪ Λ(A11) and eigenvectors of A can be easily constructed from
eigenvalues of A00 and A11.

This insight allows us to deflate a matrix when stategically placed zeroes (or, rather, acceptably
small entries) appear as part of the QR algorithm. Let us continue to focus on the Hermitian
eigenvalue problem.

Homework 10.2.3.1 Let A ∈ Cm×m be a Hermitian matrix and V ∈ Cm×m be a unitary matrix
such that

V HAV =
(
A00 0
0 A11

)
.

If V00 and V11 are unitary matrices such that V H
00A00V00 = Λ0 and V H

11A11V11 = Λ1, are both
diagonal, show that(

V

(
V00 0
0 V11

))H
A

(
V

(
V00 0
0 V11

))
=
(

Λ0 0
0 Λ1

)
.

[Solution]
The point of this last exercise is that if at some point the QR algorithm yields a block diagonal

matrix, then the algorithm can proceed to find the spectral decompositions of the blocks on the
diagonal, updating the matrix, V , in which the eigenvectors are accumulated.

Now, since it is the last colum of V (k) that converges fastest to an eigenvector, eventually we
expect A(k) computed as part of the QR algorithm to be of the form

A(k) =

 A
(k)
00 f

(k)
01

f
(k)
01

T
α

(k)
m−1,m−1

 ,
where f (k)

01 is small. In other words,

A(k) ≈
(
A

(k)
00 0
0 α

(k)
m−1,m−1

)
.

Once f (k)
01 is small enough, the algorithm can continue with A(k)

00 . The problem is thus deflated to
a smaller problem.

What criteria should we use to deflate. If the active matrix is m×m, for now we use the criteria

‖f01‖1 ≤ εmach(|α(k)
0,0 |+ · · ·+ |α

(k)
m−1,m−1|).

The idea is that if the magnitudes of the off-diagonal elements of the last row are small relative
to the eigenvalues, then they can be considered to be zero. The sum of the absolute values of the
diagonal elements is an estimate of the sizes of the eigenvalues. We will refine this criteria later.
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Homework 10.2.3.2 Copy SimpleShiftedQRAlg.m into SimpleShiftedQRAlgWithDeflation.m
and modify it to add deflation.
function [ Ak, V ] = SimpleShiftedQRAlgWithDeflation( A, maxits, illustrate, delay )

Modify the appropriate lines in Assignments/Week10/matlab/test_simple_QR_algorithm.m, changing
(0) to (1), and use it to examine the convergence of the method. [Solution]

Remark 10.2.3.1 It is possible that deflation can happen anywhere in the matrix and one should
check for that. However, it is most likely to happen in the last row and column of the active part
of the matrix.

10.2.4 Cost of a simple QR algorithm

YouTube: https://www.youtube.com/watch?v=c1zJG3T0D44
The QR algorithms that we have discussed incur the following approximate costs per iteration

for an m×m Hermitian matrix.

• A→ QR (QR factorization): 4
3m

3 flops.

• A := RQ. A naive implementation would take advantage of R being upper triangular, but not
of the fact that A will again be Hermitian, at a cost of m3 flops. If one also takes advantage
of the fact that A is Hermitian, that cost is reduced to 1

2m
3 flops.

• If the eigenvectors are desired (which is usually the case), the update V := V Q requires an
addition 2m3 flops.

Any other costs, like shifting the matrix, are inconsequential.
Thus, the cost, per iteration, equals approximately (4

3 + 1
2)m3 = 11

6 m
3 flops if only the eigen-

values are to be computed. If the eigenvectors are also required, then the cost increases by 2m3

flops to become 23
6 m

3 flops.
Let us now consider adding deflation. The rule of thumb is that it takes a few iterations per

eigenvalue that is found. Let’s say K iterations are needed. Every time an eigenvalue is found, the
problem deflates, decreasing in size by one. The cost then becomes

1∑
i=m

K
23
6 i

3 ≈ K 23
6

∫ m

0
x3dx = K

23
6

1
4x

4|m0 = K
23
24m

4.

The bottom line is that the computation requires O(m4) flops. All other factorizations we have
encountered so far require at most O(m3) flops. Generally O(m4) is considered prohibitively ex-
pensive. We need to do better!

Assignments/Week10/matlab/test_simple_QR_algorithm.m
https://www.youtube.com/watch?v=c1zJG3T0D44
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10.3 A Practical Hermitian QR Algorithm

10.3.1 Reduction to tridiagonal form

YouTube: https://www.youtube.com/watch?v=ETQbxnweKok
In this section, we see that if A(0) is a tridiagonal matrix, then so are all A(k). This reduces the

cost of each iteration of the QR algorithm from O(m3) flops to O(m) flops if only the eigenvalues
are computed and O(m2) flops if the eigenvectors are also desired. Thus, if matrix A is first
reduced to a tridiagonal matrix via (unitary) similarity transformations, then the cost of finding
its eigenvalues and eigenvectors is reduced from O(m4) to O(m3) flops. Fortunately, there is an
algorithm for reducing a matrix to tridiagonal form that requires O(m3) operations.

The basic algorithm for reducing a Hermitian matrix to tridiagonal form, overwriting the original
matrix with the result, can be explained as follows. We assume that A is stored only in the lower
triangular part of the matrix and that only the diagonal and subdiagonal of the tridiagonal matrix
is computed, overwriting those parts of A. Finally, the Householder vectors used to zero out parts
of A can overwrite the entries that they annihilate (set to zero), much like we did when computing
the Householder QR factorization.

Recall that in Subsubsection 3.3.3.3, we introduced the function[(
ρ
u2

)
, τ

]
:= Housev

((
χ1
x2

))

to compute the vector u =
(

1
u2

)
that reflects x into ± ‖x‖2e0 so that

I − 1
τ

(
1
u2

)(
1
u2

)H( χ1
x2

)
= ± n ‖x‖2︸ ︷︷ ︸

ρ

e0.

We are going to use a variation on this function:

[u, τ ] := Housev (x)

implemented by the function

function [ u, tau ] = Housev1( x )

We also reintroduce the notationH(x) for the transformation I− 1
τ uu

H where u and τ are computed
by Housev1(x).

We now describe an algorithm for reducing a Hermitian matrix to tridiagonal form:

https://www.youtube.com/watch?v=ETQbxnweKok
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• Partition A →
(
α11 ?
a21 A22

)
. Here the ? denotes a part of a matrix that is neither stored

nor updated.

• Update [a21, τ ] := Housev1(a21). This overwrites the first element of a21 with ± ‖a21‖2
and the remainder with all but the first element of the Householder vector u. Implicitly, the
elements below the first element equal zero in the updated matrix A.

• Update
A22 := H(a21)A22H(a21).

Since A22 is Hermitian both before and after the update, only the lower triangular part of
the matrix needs to be updated.

• Continue this process with the updated A22.

This approach is illustrated in Figure 10.3.1.1.

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

−→

× × 0 0 0
× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×

−→

× × 0 0 0
× × × 0 0
0 × × × ×
0 0 × × ×
0 0 × × ×

Original matrix First iteration Second iteration

−→

× × 0 0 0
× × × 0 0
0 × × × 0
0 0 × × ×
0 0 0 × ×

−→

× × 0 0 0
× × × 0 0
0 × × × 0
0 0 × × ×
0 0 0 × ×

Third iteration
Figure 10.3.1.1 An illustration of the reduction of a Hermitian matrix to tridiagonal form. The
×s denote nonzero elements in the matrix. The gray entries above the diagonal are not actually
updated.
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The update of A22 warrants closer scrutiny:

A22 := H(a21)A22H(a21)
= (I − 1

τ u21u
H
21)A22(I − 1

τ u21u
H
21)

= (A22 − 1
τ u21 uH21A22︸ ︷︷ ︸

yH21

)(I − 1
τ u21u

H
21)

= A22 − 1
τ u21y

H
21 − 1

τ A22u21︸ ︷︷ ︸
y21

uH21 + 1
τ2u21 yH21u21︸ ︷︷ ︸

2β

uH21

= A22 −
(

1
τ u21y

H
21 −

β
τ2u21u

H
21

)
−
(

1
τ y21u

H
21 −

β
τ2u21u

H
21

)
= A22 − u21

1
τ

(
yH21 −

β

τ
uH21

)
︸ ︷︷ ︸

wH21

− 1
τ

(
y21 −

β

τ
u21

)
︸ ︷︷ ︸

w21

uH21

= A22 − u21w
H
21 − w21u

H
21.︸ ︷︷ ︸

Hermitian
rank-2 update

This formulation has two advantages: it requires fewer computations and it does not generate an
intermediate result that is not Hermitian. An algorithm that implements all these insights is given
in Figure 10.3.1.2.

[A, t] := TriRed-unb(A, t)

A→
(
ATL ATR
ABL ABR

)
, t→

(
tT
tB

)
ATL is 0× 0 and tT has 0 elements

while m(ATL) < m(A)− 2(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 ,( tT
tB

)
→

 t0
τ1
t2


[a21, τ1] := Housev1(a21)
u21 = a21 with first element replaced with 1
Update A22 := H(u21)A22H(u21) via the steps

y21 := A22u21 (Hermitian matrix-vector multiply!)
β := uH21y21/2
w21 := (y21 − βu21/τ1)/τ1
A22 := A22 − tril(u21w

H
21 + w21u

H
21) (Hermitian rank-2 update)(

ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 ,( tT
tB

)
←

 t0
τ1
t2


endwhile

Figure 10.3.1.2 Basic algorithm for reduction of a Hermitian matrix to tridiagonal form.
During the first iteration, when updating (m−1)×(m−1) matrix A22, the bulk of computation

is in the computation of y21 := A22u21, at 2(m − 1)2 flops, and A22 := A22 − (u21w
H
21 + w21u

H
21),

at 2(m − 1)2 flops. The total cost for reducing m ×m matrix A to tridiagonal form is therefore
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approximately
m−1∑
k=0

4(m− k − 1)2 flops.

By substituting j = m− k − 1 we find that

m−1∑
k=0

4(m− k − 1)2 flops = 4
m−1∑
j=0

j2 flops ≈ 4
∫ m

0
x2dx = 4

3m
3 flops.

This equals, approximately, the cost of one QR factorization of matrix A.

Homework 10.3.1.1 A more straight forward way of updating A22 is given by

A22 := (I − 1
τ u21u

H
21)A22(I − 1

τ u21u
H
21)

= (A22 −
1
τ
u21 uH21A22︸ ︷︷ ︸

yH21

)

︸ ︷︷ ︸
B22

(I − 1
τ u21u

H
21)

= B22 − 1
τ B22u21︸ ︷︷ ︸

x21

uH21.

This suggests the steps
• Compute y21 = A22u21. (Hermitian matrix-vector multiplication).

• Compute B22 = A22 − 1
τ u21y

H
21. (Rank-1 update yielding a nonHermitian intermediate ma-

trix).

• Compute x21 = B22u21. (Matrix-vector multiplication).

• Compute A22 = B22 − 1
τ x21u

H
21. (Rank-1 update yielding a Hermitian final matrix).

Estimate the cost of this alternative approach. What other disadvantage(s) does this approach
have? [Solution]

The diagonal elements of a Hermitian matrix are real. Hence the tridiagonal matrix has real
values on its diagonal. A post process (that follows the reduction to tridiagonal form) can be used
to convert the elements of the subdiagonal to real values as well. The advantage of this is that in the
subsequent computation, that computes the eigenvalues of the tridiagonal matrix and accumulates
the eigenvectors, only needs to perform real (floating point) arithmetic.

Ponder This 10.3.1.2 Propose a postprocess that converts the off-diagonal elements of a tridi-
agonal Hermitian matrix to real values. The postprocess must be equivalent to applying a unitary
similarity transformation so that eigenvalues are preserved.

n You may want to start by looking at

A =
(
α0,0 α1,0
α1,0 α1,1

)
,

where the diagonal elements are real-valued and the off-diagonal elements are complex-valued. Then
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move on to

A =

 α0,0 α1,0 0
α1,0 α1,1 α2,1

0 α2,1 α2,2

 .
What is the pattern?
Homework 10.3.1.3 You may want to start by executing git pull to update your directory
Assignments.

In directory Assignments/Week10/matlab/, you will find the following files:
• Housev1.m: An implementation of the function Housev1, mentioned in the unit.

• TriRed.m: A code skeleton for a function that reduces a Hermitian matrix to a tridiagonal
matrix. Only the lower triangular part of the input and output are stored.

[ T, t ] = TriRed( A, t )

returns the diagonal and first subdiagonal of the tridiagonal matrix in T, stores the House-
holder vectors below the first subdiagonal, and returns the scalars τ in vector t.

• TriFromBi.m: A function that takes the diagonal and first subdiagonal in the input matrix
and returns the tridiagonal matrix that they define.

T = TriFromBi( A )

• test_TriRed.m: A script that tests TriRed.

With these resources, you are to complete TriRed by implementing the algorithm in Figure 10.3.1.2.
Be sure to look at the hint! [Hint] [Solution]

10.3.2 Givens’ rotations

YouTube: https://www.youtube.com/watch?v=XAvioT6ALAg
We now introduce another important class of orthogonal matrices known as Givens’ rotations.

Actually, we have seen these before, in Subsubsection 2.2.5.1, where we simply called them rotations.
It is how they are used that makes then Givens’ rotations.

Given a vector x =
(
χ1
χ2

)
∈ R2, there exists an orthogonal matrix G such that GTx =(

±‖x‖2
0

)
. The Householder transformation is one example of such a matrix G. An alternative

is the Givens’ rotation: G =
(
γ −σ
σ γ

)
where γ2 + σ2 = 1. (Notice that γ and σ can be thought

https://www.youtube.com/watch?v=XAvioT6ALAg
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of as the cosine and sine of an angle.) Then

GTG =
(
γ −σ
σ γ

)T (
γ −σ
σ γ

)
=
(

γ σ
−σ γ

)(
γ −σ
σ γ

)

=
(

γ2 + σ2 −γσ + γσ
γσ − γσ γ2 + σ2

)
=
(

1 0
0 1

)
,

which means that a Givens’ rotation is an orthogonal matrix.

Homework 10.3.2.1 Propose formulas for γ and σ such that(
γ −σ
σ γ

)T (
χ1
χ2

)
︸ ︷︷ ︸

x

=
(
‖x‖2

0

)
,

where γ2 + σ2 = 1. [Solution]

Remark 10.3.2.1 We only discuss real-valued Givens’ rotations and how they transform real-
valued vectors, since the output of our reduction to tridiagonal form, after postprocessing, yields a
real-valued tridiagonal symmatric matrix.

Ponder This 10.3.2.2 One could use 2 × 2 Householder transformations (reflectors) instead of
Givens’ rotations. Why is it better to use Givens’ rotations in this situation.

10.3.3 Simple tridiagonal QR algorithm

YouTube: https://www.youtube.com/watch?v=_IgDCL7OPdU
Now, consider the 4× 4 tridiagonal matrix

α0,0 α0,1 0 0
α1,0 α1,1 α1,2 0

0 α2,1 α2,2 α2,3
0 0 α3,2 α3,3

 .

From
(
α0,0
α1,0

)
, one can compute γ1,0 and σ1,0 so that

(
γ1,0 −σ1,0
σ1,0 γ1,0

)T (
α0,0
α1,0

)
=
(
α̂0,0

0

)
.

https://www.youtube.com/watch?v=_IgDCL7OPdU
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Then 
α̂0,0 α̂0,1 α̂0,2 0

0 α̂1,1 α̂1,2 0
0 α2,1 α2,2 α2,3
0 0 α3,2 α3,3

 =


γ1,0 σ1,0 0 0
−σ1,0 γ1,0 0 0

0 0 1 0
0 0 0 1



α0,0 α0,1 0 0
α1,0 α1,1 α1,2 0

0 α2,1 α2,2 α2,3
0 0 α3,2 α3,3

 .

Next, from
(
α̂1,1
α2,1

)
, one can compute γ2,1 and σ2,1 so that

(
γ2,1 −σ2,1
σ2,1 γ2,1

)T (
α̂1,1
α2,1

)
=
( ̂̂α1,1

0

)
.

Then 
α̂0,0 α̂0,1 α̂0,2 0

0 ̂̂α1,1 ̂̂α1,2 ̂̂α1,3
0 0 α̂2,2 α̂2,3
0 0 α3,2 α3,3

 =


1 0 0 0
0 γ2,1 σ2,1 0
0 −σ2,1 γ2,1 0
0 0 0 1



α̂0,0 α̂0,1 α̂0,2 0

0 α̂1,1 α̂1,2 0
0 α2,1 α2,2 α2,3
0 0 α3,2 α3,3



Finally, from
(
α̂2,2
α3,2

)
, one can compute γ3,2 and σ3,2 so that

(
γ3,2 −σ3,2
σ3,2 γ3,2

)T (
α̂2,2
α3,2

)
=( ̂̂α2,2

0

)
. Then


α̂0,0 α̂0,1 α̂0,2 0

0 ̂̂α1,1 ̂̂α1,2 ̂̂α1,3
0 0 ̂̂α2,2 ̂̂α2,3
0 0 0 α̂3,3

 =


1 0 0 0
0 1 0 0
0 0 γ3,2 σ3,2
0 0 −σ3,2 γ3,2



α̂0,0 α̂0,1 α̂0,2 0

0 ̂̂α1,1 ̂̂α1,2 ̂̂α1,3
0 0 α̂2,2 α̂2,3
0 0 α3,2 α3,3


The matrix Q is the orthogonal matrix that results from multiplying the different Givens’ rotations
together:

Q =


γ1,0 −σ1,0 0 0
σ1,0 γ1,0 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 γ2,1 −σ2,1 0
0 σ2,1 γ2,1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 γ3,2 −σ3,2
0 0 σ3,2 γ3,2

 . (10.3.1)

However, it needs not be explicitly formed, as we exploit next.
The next question is how to compute RQ given the QR factorization of the tridiagonal matrix.
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We notice that
α̂0,0 α̂0,1 α̂0,2 0

0 ̂̂α1,1 ̂̂α1,2 ̂̂α1,3
0 0 ̂̂α2,2 ̂̂α2,3
0 0 0 α̂3,3




γ1,0 −σ1,0 0 0
σ1,0 γ1,0 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸


1 0 0 0
0 γ2,1 −σ2,1 0
0 σ2,1 γ2,1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 γ3,2 −σ3,2
0 0 σ3,2 γ3,2



α̃0,0 α̃0,1 α̂0,2 0
α̃1,0 ˜̂α1,1 ̂̂α1,2 ̂̂α1,3

0 0 ̂̂α2,2 ̂̂α2,3
0 0 0 α̂3,3


︸ ︷︷ ︸

α̃0,0 ˜̃α0,1 α̃0,2 0
α̃1,0 ˜̃α1,1 α̃1,2 ̂̂α1,3

0 α̃2,1 α̃2,2 ̂̂α2,3
0 0 0 α̂3,3


︸ ︷︷ ︸

α̃0,0 ˜̃α0,1 α̃0,2 0
α̃1,0 ˜̃α1,1 ˜̃α1,2 α̃1,3

0 α̃2,1 ˜̃α2,2 α̃2,3
0 0 α̃3,2 α̃3,3

 .
A symmetry argument can be used to motivate that α̃0,2 = α̃1,3 = 0 (which is why they appear in
gray, if you look carefully). This also explains why none of the elements above the first superdiagonal
become nonzero.
Remark 10.3.3.1 An important observation is that if A is tridiagonal, then A → QR (QR
factorization) followed by A := RQ again yields a tridiagonal matrix. In other words, any QR
algorithm previously discussed (simple, shifted, with deflation) when started with a tridiagonal
matrix will generate a succession of tridiagonal matrices.

10.3.4 The implicit Q theorem

YouTube: https://www.youtube.com/watch?v=w6clp9UqRRE

Definition 10.3.4.1 Upper Hessenberg matrix. A matrix is said to be upper Hessenberg if
all entries below its first subdiagonal equal zero. ♦

https://www.youtube.com/watch?v=w6clp9UqRRE
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In other words, an m×m upper Hessenberg matrix looks like

A =



α0,0 α0,1 α0,2 · · · α0,m−1 α0,m−1
α1,0 α1,1 α1,2 · · · α1,m−1 α1,m−1

0 α2,1 α2,2 · · · α2,m−1 α2,m−1
... . . . . . . . . . ...

...

0 0 0 . . . αm−2,m−2 αm−2,m−1
0 0 0 · · · αm−1,m−2 αm−1,m−1


.

Obviously, a tridiagonal matrix is a special case of an upper Hessenberg matrix.
The following theorem sets the stage for one of the most remarkable algorithms in numeri-

cal linear algebra, which allows us to greatly streamline the implementation of the shifted QR
algorithm.

Theorem 10.3.4.2 Implicit Q Theorem. Let A,B ∈ Cm×m, where B is upper Hessenberg and
has only (real) positive elements on its first subdiagonal. Assume there exists a unitary matrix Q
such that QHAQ = B. Then Q and B are uniquely determined by A and the first column of Q.
Proof. Partition

Q =
(
q0 q1 q2 · · · qm−2 qm−1

)
and

B =



β0,0 β0,1 β0,2 · · · β0,m−2 β0,m−1
β1,0 β1,1 β1,2 · · · β1,m−2 β1,m−1
0 β2,1 β2,2 · · · β2,m−2 β2,m−1
0 0 β3,2 · · · β3,m−2 β3,m−1
...

...
... . . . ...

...
0 0 0 · · · βm−1,m−2 βm−1,m−1


.

Notice that AQ = QB and hence

A
(
q0 q1 q2 · · · qm−2 qm−1

)
=
(
q0 q1 q2 · · · qm−2 qm−1

)

β0,0 β0,1 β0,2 · · · β0,m−2 β0,m−1
β1,0 β1,1 β1,2 · · · β1,m−2 β1,m−1
0 β2,1 β2,2 · · · β2,m−1
0 0 β3,2 · · · β3,m−2 β3,m−1
...

...
... . . . ...

...
0 0 0 · · · βm−1,m−2 βm−1,m−1


.

Equating the first column on the left and right, we notice that

Aq0 = β0,0q0 + β1,0q1.

Now, q0 is given and ‖q0‖2 = 1 since Q is unitary. Hence

qH0 Aq0 = β0,0q
H
0 q0 + β1,0q

H
0 q1 = β0,0.

Next,
β1,0q1 = Aq0 − β0,0q0 = q̃1.
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Since ‖q1‖2 = 1 (it is a column of a unitary matrix) and β1,0 is assumed to be positive, then we
know that

β1,0 = ‖q̃1‖2.

Finally,
q1 = q̃1/β1,0.

The point is that the first column of B and second column of Q are prescribed by the first column
of Q and the fact that B has positive elements on the first subdiagonal. In this way, it can be
successively argued that, one by one, each column of Q and each column of B are prescribed. �

Homework 10.3.4.1 Give all the details of the above proof. [Solution]

Ponder This 10.3.4.2 Notice the similarity between the above proof and the proof of the existence
and uniqueness of the QR factorization!

This can be brought out by observing that

(
q0 A

)( 1 0
0

(
q0 q1 q2 · · · qm−2 qm−1

) )

=
(
q0 q1 q2 · · · qm−2 qm−1

)


1 β0,0 β0,1 β0,2 · · · β0,m−2 β0,m−1
0 β1,0 β1,1 β1,2 · · · β1,m−2 β1,m−1
0 0 β2,1 β2,2 · · · β2,m−1
0 0 0 β3,2 · · · β3,m−2 β3,m−1
...

...
...

... . . . ...
...

0 0 0 0 · · · βm−1,m−2 βm−1,m−1


.

Puzzle through this observation and interpret what it means.

YouTube: https://www.youtube.com/watch?v=1uDlTfWfH6s

Remark 10.3.4.3 In our case, A is symmetric tridiagonal, and so is B.

10.3.5 The Francis implicit QR Step

YouTube: https://www.youtube.com/watch?v=RSm_Mqi0aSA

https://www.youtube.com/watch?v=1uDlTfWfH6s
https://www.youtube.com/watch?v=RSm_Mqi0aSA
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In the last unit, we described how, when A(k) is tridiagonal, the steps

A(k) → Q(k)R(k)

A(k+1) := R(k)Q(k)

of an unshifted QR algorithm can be staged as the computation and application of a sequence of
Givens’ rotations. Obviously, one could explicitly form A(k) − µkI, perform these computations
with the resulting matrix, and then add µkI to the result to compute

A(k) − µkI → Q(k)R(k)

A(k+1) := R(k)Q(k) + µkI.

The Francis QR Step combines these separate steps into a single one, in the process casting all
computations in terms of unitary similarity transformations, which ensures numerical stability.

Consider the 4× 4 tridiagonal matrix
α0,0 α0,1 0 0
α1,0 α1,1 α1,2 0

0 α2,1 α2,2 α2,3
0 0 α3,2 α3,3

− µI

The first Givens’ rotation is computed from
(
α0,0 − µ
α1,0

)
, yielding γ1,0 and σ1,0 so that

(
γ1,0 −σ1,0
σ1,0 γ1,0

)T (
α0,0 − µ
α1,0

)

has a zero second entry. Now, to preserve eigenvalues, any orthogonal matrix that is applied from
the left must also have its transpose applied from the right. Let us compute

α̃0,0 α̂1,0 α̂2,0 0
α̂1,0 α̂1,1 α̂1,2 0
α̂2,0 α̂2,1 α2,2 α2,3

0 0 α3,2 α3,3



=


γ1,0 σ1,0 0 0
−σ1,0 γ1,0 0 0

0 0 1 0
0 0 0 1



α0,0 α0,1 0 0
α1,0 α1,1 α1,2 0

0 α2,1 α2,2 α2,3
0 0 α3,2 α3,3




γ1,0 −σ1,0 0 0
σ1,0 γ1,0 0 0
0 0 1 0
0 0 0 1

 .
This is known as "introducing the bulge."

Next, from
(
α̂1,0
α̂2,0

)
, one can compute γ2,0 and σ2,0 so that

(
γ2,0 −σ2,0
σ2,0 γ2,0

)T (
α̂1,0
α̂2,0

)
=
(
α̃1,0

0

)
.
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Then 
α̃0,0 α̃1,0 0 0
α̃1,0 α̃1,1 ̂̂α2,1 α̂3,1

0 ̂̂α2,1 α̂2,2 α̂2,3
0 α̂3,1 α̂3,2 α3,3



=


1 0 0 0
0 γ2,0 σ2,0 0
0 −σ2,0 γ2,0 0
0 0 0 1



α̃0,0 α̂1,0 α̂2,0 0
α̂1,0 α̂1,1 α̂1,2 0
α̂2,0 α̂2,1 α2,2 α2,3

0 0 α3,2 α3,3




1 0 0 0
0 γ2,0 −σ2,0 0
0 σ2,0 γ2,0 0
0 0 0 1


again preserves eigenvalues. Finally, from (

α̂2,1
α̂3,1

)
,

one can compute γ3,1 and σ3,1 so that(
γ3,1 −σ3,1
σ3,1 γ3,1

)T (
α̂2,1
α̂3,1

)

=
(
α̃2,1

0

)
.

Then 
α̃0,0 α̃1,0 0 0
α̃1,0 α̃1,1 α̃2,1 0

0 α̃2,1 α̃2,2 α̃2,3
0 0 α̃3,2 α̃3,3



=


1 0 0 0
0 1 0 0
0 0 γ3,2 σ3,2
0 0 −σ3,2 γ3,2



α̃0,0 α̃1,0 0 0
α̃1,0 α̃1,1 ̂̂α2,1 α̂3,1

0 ̂̂α2,1 α̂2,2 α̂2,3
0 α̂3,1 α̂3,2 α3,3




1 0 0 0
0 1 0 0
0 0 γ3,1 −σ3,1
0 0 σ3,1 γ3,1

 ,
yielding a tridiagonal matrix. The process of transforming the matrix that results from intro-
ducing the bulge (the nonzero element α̂2,0) back into a tridiagonal matrix is commonly referred
to as "chasing the bulge." Moving the bulge one row and column down the matrix is illustrated
in Figure 10.3.5.1. The process of determining the first Givens’ rotation, introducing the bulge,
and chasing the bulge is know as a Francis Implicit QR step. An algorithhm for this is given in
Figure 10.3.5.2.
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Figure 10.3.5.1 Illustration of how the bulge is chased one row and column forward in the matrix.
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T := ChaseBulge(T )

T →

 TTL ? ?

TML TMM ?

0 TBM TBR


TTL is 0× 0 and TMM is 3× 3

while m(TBR) > 0 TTL ? 0
TML TMM ?

0 TBM TBR

→

T00 ? 0 0 0
tT10 τ11 ? 0 0
0 t21 T22 ? 0
0 0 tT32 τ33 ?
0 0 0 t43 T44


Compute (γ, σ) s.t. GTγ,σt21 =

(
τ21
0

)
, and assign t21 :=

(
τ21
0

)
T22 := GTγ,σT22Gγ,σ

tT32 := tT32Gγ,σ (not performed during final step) TTL ? 0
TML TMM ?

0 TBM TBR

←

T00 ? 0 0 0
tT10 τ11 ? 0 0
0 t21 T22 ? 0
0 0 tT32 τ33 ?

0 0 0 t43 T44


endwhile

Figure 10.3.5.2 Algorithm for "chasing the bulge" that, given a tridiagonal matrix with an addi-
tional nonzero α2,0 element, reduces the given matrix back to a tridiagonal matrix.

The described process has the net result of updating A(k+1) = QTA(k)Q(k), where Q is the
orthogonal matrix that results from multiplying the different Givens’ rotations together:

Q =


γ1,0 −σ1,0 0 0
σ1,0 γ1,0 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 γ2,0 −σ2,0 0
0 σ2,0 γ2,0 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 γ3,1 −σ3,1
0 0 σ3,1 γ3,1

 .
Importantly, the first column of Q, given by

γ1,0
σ1,0
0
0

 ,
is exactly the same first column had Q been computed as in Subsection 10.3.3 (10.3.1). Thus, by
the Implicit Q Theorem, the tridiagonal matrix that results from this approach is equal to the
tridiagonal matrix that would be computed by applying the QR factorization from that section to
A − µI, A − µI → QR followed by the formation of RQ + µI using the algorithm for computing
RQ in Subsection 10.3.3.

Remark 10.3.5.3 In Figure 10.3.5.2, we use a variation of the notation we have encountered when
presenting many of our algorithms, n including most recently the reduction to tridiagonal form.
The fact is that when implementing the implicitly shifted QR algorithm, it is best to do so by
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explicitly indexing into the matrix. This tridiagonal matrix is typically stored as just two vectors:
one for the diagonal and one for the subdiagonal.
Homework 10.3.5.1 A typical step when "chasing the bulge" one row and column further down
the matrix involves the computation

αi−1,i−1 × × 0
α̂i,i−1 α̂i,i × 0

0 α̂i+1,i α̂i+1,i+1 ×
0 α̂i+2,i α̂i+2,i+1 αi+2,i+2

 =


1 0 0 0
0 γi σi 0
0 −σi γi 0
0 0 0 1



αi−1,i−1 × × 0
αi,i−1 αi,i × 0
αi+1,i−1 αi+1,i αi+1,i+1 ×

0 0 αi+2,i+1 αi+2,i+2




1 0 0 0
0 γi −σi 0
0 σi γi 0
0 0 0 1


Give a strategy (or formula) for computing α̂i,i−1 α̂i,i

α̂i+1,i α̂i+1,i+1
α̂i+2,i α̂i+2,i+1


[Solution]

Ponder This 10.3.5.2 Write a routine that performs one Francis implicit QR step. Use it to write
an implicitly shifted QR algorithm.

10.3.6 A complete algorithm

YouTube: https://www.youtube.com/watch?v=fqiex-FQ-JU

YouTube: https://www.youtube.com/watch?v=53XcY9IQDU0
The last unit shows how one iteration of the QR algorithm can be performed on a tridiagonal

matrix by implicitly shifting and then "chasing the bulge." All that is left to complete the algorithm

https://www.youtube.com/watch?v=fqiex-FQ-JU
https://www.youtube.com/watch?v=53XcY9IQDU0
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is to note that

• The shift µk can be chosen to equal αm−1,m−1 (the last element on the diagonal, which tends
to converge to the eigenvalue smallest in magnitude). In practice, choosing the shift to be an
eigenvalue of the bottom-right 2 × 2 matrix works better. This is known as the Wilkinson
shift.

• If A = QTQT reduced A to the tridiagonal matrix T before the QR algorithm commenced,
then the Givens’ rotations encountered as part of the implicitly shifted QR algorithm can be
applied from the right to the appropriate columns of Q so that upon completion Q is left
overwritten with the eigenvectors of A. Let’s analyze this:

◦ Reducing the matrix to tridiagonal form requires O(m3) computations.
◦ Forming Q from the Householder vectors requires O(m3) computations.
◦ Applying Givens’ rotation to a pairs of columns of Q requires O(m) computation per

Givens’ rotation. For each Francis implicit QR step O(n) Givens’ rotations are com-
puted, making the application of Givens’ rotations to Q of cost O(m2) per iteration of
the implicitly shifted QR algorithm. Typically a few (2-3) iterations are needed per
eigenvalue that is uncovered (when deflation is incorporated), meaning that O(m) iter-
ations are needed. Thus, a QR algorithm with a tridiagonal matrix that accumulates
eigenvectors requires O(m3) computation.

Thus, the total cost of computing the eigenvalues and eigenvectors is O(m3).

• If an element on the subdiagonal becomes zero (or very small), and hence the corresponding
element of the superdiagonal, then

T =
(
T00 0
0 T11

)
× ×
× × ×
× × ×
× × 0

0 × ×
× × ×
× ×

then

◦ The computation can continue separately with T00 and T11.
◦ One can pick the shift from the bottom-right of T00 as one continues finding the eigen-

values of T00, thus accelerating that part of the computation.k
◦ One can pick the shift from the bottom-right of T11 as one continues finding the eigen-

values of T11, thus accelerating that part of the computation.
◦ One must continue to accumulate the eigenvectors by applying the rotations to the
appropriate columns of Q.
◦ Because of the connection between the QR algorithm and the Inverse Power Method,
subdiagonal entries near the bottom-right of T are more likely to converge to a zero, so
most deflation will happen there.
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◦ A question becomes when an element on the subdiagonal, τi+1,i can be considered to
be zero. The answer is when |τi+1,i| is small relative to |τi| and |τi+1,i+1|. A typical
condition that is used is

|τi+1,i| ≤ εmach

√
|τi,i|+ |τi+1,i+1|.

For details, see some of our papers mentioned in the enrichments.

10.4 Enrichments

10.4.1 QR algorithm among the most important algorithms of the 20th century
An article published in SIAM News, a publication of the Society for Industrial and Applied Math-
ermatics, lists the QR algorithm among the ten most important algorithms of the 20th century
[10]:

• Barry A. Cipra, The Best of the 20th Century: Editors Name Top 10 Algorithms, SIAM
News, Volume 33, Number 4, 2000.

10.4.2 Who was John Francis
Below is a posting by the late Gene Golub in NA Digest Sunday, August 19, 2007 Volume 07 :
Issue 34.

From: Gene H Golub
Date: Sun, 19 Aug 2007 13:54:47 -0700 (PDT)
Subject: John Francis, Co-Inventor of QR

Dear Colleagues,

For many years, I have been interested in meeting J G F Francis, one of
the co-inventors of the QR algorithm for computing eigenvalues of general
matrices. Through a lead provided by the late Erin Brent and with the aid
of Google, I finally made contact with him.

John Francis was born in 1934 in London and currently lives in Hove, near
Brighton. His residence is about a quarter mile from the sea; he is a
widower. In 1954, he worked at the National Research Development Corp
(NRDC) and attended some lectures given by Christopher Strachey.
In 1955,'56 he was a student at Cambridge but did not complete a degree.
He then went back to NRDC as an assistant to Strachey where he got
involved in flutter computations and this led to his work on QR.

After leaving NRDC in 1961, he worked at the Ferranti Corp and then at the
University of Sussex. Subsequently, he had positions with various
industrial organizations and consultancies. He is now retired. His
interests were quite general and included Artificial Intelligence,

https://archive.siam.org/pdf/news/637.pdf
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computer languages, systems engineering. He has not returned to numerical
computation.

He was surprised to learn there are many references to his work and
that the QR method is considered one of the ten most important
algorithms of the 20th century. He was unaware of such developments as
TeX and Math Lab. Currently he is working on a degree at the Open
University.

John Francis did remarkable work and we are all in his debt. Along with
the conjugate gradient method, it provided us with one of the basic tools
of numerical analysis.

Gene Golub

10.4.3 Casting the reduction to tridiagonal form in terms of matrix-matrix mul-
tiplication

For many algorithms, we have discussed blocked versions that cast more computation in terms of
matrix-matrix multiplication, thus achieving portable high performance (when linked to a high-
performance implementation of matrix-matrix multiplication). The inconvenient truth is that re-
duction to tridiagonal form can only be partially cast in terms of matrix-matrix multiplication.
This is a severe hindrance to high performance for that first step towards computing all eigenvalues
and eigenvector of a Hermitian matrix. Worse, a considerable fraction of the total cost of the
computation is in that first step.

For a detailed discussion on the blocked algorithm for reduction to tridiagonal form, we recom-
mend

• [48] Field G. Van Zee, Robert A. van de Geijn, Gregorio Quintana-Ortí, G. Joseph Elizondo,
Families of Algorithms for Reducing a Matrix to Condensed Form, ACM Transactions on
Mathematical Software (TOMS) , Vol. 39, No. 1, 2012.

Tridiagonal form is one case of what is more generally referred to as "condensed form."

10.4.4 Optimizing the tridiagonal QR algorithm
As the Givens’ rotations are applied to the tridiagonal matrix, they are also applied to a matrix
in which eigenvectors are accumulated. While one Implicit Francis QR Step requires O(n) com-
putation for chasing the bulge, this accumulation of the eigenvectors requires O(n2) computation
with O(n2) data per step. This inherently means the cost of accessing data dominates on current
architectures.

In a paper, we showed how accumulating the Givens’ rotations for several Francis Steps before
applying these to the matrix in which the eigenvectors are being computed allows one to attain
high performance similar to that attained by a matrix-matrix multiplication.

• [47] Field G. Van Zee, Robert A. van de Geijn, Gregorio Quintana-Ortí, Restructuring the
Tridiagonal and Bidiagonal QR Algorithms for Performance, ACM Transactions on Mathe-
matical Software (TOMS), Vol. 40, No. 3, 2014.
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For computing all eigenvalues and eigenvectors of a dense Hermitian matrix, this approach is
competitive with the Method of Relatively Robust Representations (MRRR), which we mention in
Subsection 10.4.5

10.4.5 The Method of Multiple Relatively Robust Representations (MRRR)
The Method of Multiple Relative Robust Representations (MRRR) computes the eigenvalues and
eigenvectors of a m ×m tridiagonal matrix in O(m2) time. It can be argued that this is within a
constant factor of the lower bound for computing these eigenvectors since the eigenvectors constitute
O(m2) data that must be written upon the completion of the computation.

When computing the eigenvalues and eigenvectors of a dense Hermitian matrix, MRRR can
replace the implicitly shifted QR algorithm for finding the eigenvalues and eigenvectors of the
tridiagonal matrix. The overall steps then become

• Reduce matrix A to tridiagonal form:

A→ QATQ
H
A

where T is a tridiagonal real valued matrix. The matrix QA is not explicitly formed but
instead the Householder vectors that were computed as part of the reduction to tridiagonal
form are stored.

• Compute the eigenvalues and eigenvectors of the tridiagonal matrix T :

T → QTDQ
T
T .

• "Back transform" the eigenvectors by forming QAQT (applying the Householder transforma-
tions that define QA to QT ).

The details of that method go beyond the scope of this note. We refer the interested reader to

• [12] Inderjit S. Dhillon and Beresford N. Parlett, Multiple Representations to Compute Or-
thogonal Eigenvectors of Symmetric Tridiagonal Matrices, Lin. Alg. Appl., Vol. 387, 2004.

• [3] Paolo Bientinesi, Inderjit S. Dhillon, Robert A. van de Geijn, A Parallel Eigensolver
for Dense Symmetric Matrices Based on Multiple Relatively Robust Representations, SIAM
Journal on Scientific Computing, 2005

Remark 10.4.5.1 An important feature of MRRR is that it can be used to find a subset of
eigenvectors. This is in contrast to the QR algorithm, which computes all eigenvectors.

10.5 Wrap Up

10.5.1 Additional homework
Homework 10.5.1.1 You may want to do a new "git pull" to update directory Assignments .

In Assignments/Week10/matlab you will find the files

• Givens_rotation.m: A function that computes a Givens’ rotation from a 2× 1 vector x.

Assignments/Week10/matlab/Givens_rotation.m
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• Francis_Step.m: A function that performs a Francis Implicit QR Step with a tridiagonal
matrix T (stored as the diagonal and subdiagonal of T).

• Test_Francis_Step.m: A very rudimentary script that performs a few calls to the function
Francis_Step. Notice that our criteria for the routine being correct is that the matrix retains
the correct eigenvalues.

With this,

1. Investigate the convergence of the (m,m− 1) element of matrix T1.

2. Write a function

function T = Spectral_Decomposition_Lambda( T )

That returns Λ such that T = QΛQT is the Spectral Decomposition of T . The input matrix
T is a tridiagonal matrix where only the lower triangular part of the matrix is stored in the
diagonal and first subdiagonal of array T. The diagonal matrix Λ is returned in T . The
upper triangular part of the array should not change values. You are encouraged to call the
function Francis_Step from the function Spectral_Decomposition_Lambda. Obviously, you
need to incorporate deflation in your implementation. How to handle the final 2 × 2 matrix
is an interesting question... (You may use the matlab function eig for this.)

10.5.2 Summary
It is important to relate subspace iteration that starts with the identity matrix (below left) to a
simple QR algorithm (below right):

Â(0) := A

V̂ (0) := I

R̂(0) := I
for k := 0, . . .

(V̂ (k+1), R̂(k+1)) := QR(AV̂ (k))
Â(k+1) := V̂ (k+1) HAV̂ (k+1)

endfor

A(0) := A

V (0) := I

R(0) := I
for k := 0, . . .

(Q(k+1), R(k+1)) := QR(A(k))
A(k+1) := R(k+1)Q(k+1)

V (k+1) := V (k)Q(k+1)

endfor
For these algorithms, the following observations hold:

• A(k+1) = Q(k+1) HA(k)Q(k+1).

• Â(k) = A(k).

• R̂(k) = R(k).

• V̂ (k) = V (k).

• V (k) = Q(0)Q(1) · · ·Q(k).

• Ak = V (k)R(k) · · ·R(1)R(0) (Note: Ak here denotes A raised to the kth power.)

Assignments/Week10/matlab/Francis_Step.m
Assignments/Week10/matlab/Test_Francis_Step.m
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• Ak = Q(0)Q(1) · · ·Q(k)︸ ︷︷ ︸
unitary V (k)

R(k) · · ·R(1)R(0)︸ ︷︷ ︸
upper triangular R̃(k)

which exposes a QR factorization of Ak.

• Partitioning V (k) by columns

V (k) =
(
v

(k)
0 · · · v

(k)
m−1

)
we notice that applying k iterations of the Power Method to vector e0 yields

Ake0 = V (k)R̃(k)e0 = V (k)ρ̃
(k)
0,0e0 = ρ̃

(k)
0,0V

(k)e0 = ρ̃
(k)
0,0v

(k)
0 ,

where ρ̃(k)
0,0 is the (0, 0) entry in matrix R̃(k). Thus, the first column of V (k) equals a vector

that would result from k iterations of the Power Method.

• Similarly, the second column of V (k) equals a vector that would result from k iterations of
the Power Method, but orthogonal to v(k)

0 . And so forth for the remaining columns.

Observations:

• A(k+1) = Q(k)HA(k)Q(k). This means we can think of A(k+1) as the matrix A(k) but viewed
in a new basis (namely the basis that consists of the column of Q(k)).

• A(k+1) = (Q(0) · · ·Q(k))HAQ(0) · · ·Q(k) = V (k)HAV (k). This means we can think of A(k+1)

as the matrix A but viewed in a new basis (namely the basis that consists of the column of
V (k)).

• In each step, we compute
(Q(k+1), R(k+1)) = QR(A(k))

which we can think of as
(Q(k+1), R(k+1)) = QR(A(k) × I).

This suggests that in each iteration we perform one step of subspace iteration, but with matrix
A(k) and V = I:

(Q(k+1), R(k+1)) = QR(A(k)V ).

• The insight is that the QR algorithm is identical to subspace iteration, except that at each
step we reorient the problem (express it in a new basis) and we restart it with V = I.

A simple shifted QR algorithm, annotated with the iteration index k, is give by

A(0) = A

V (0) = I

R(0) = I
for k := 0, . . .
µk = α

(k)
m−1,m−1

(Q(k+1), R(k+1)) := QR(A(k) − µkI)
A(k+1) = R(k+1)Q(k+1) + µkI

V (k+1) = V (k)Q(k+1)

endfor

For this algorithm,
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• A(k+1) = Q(k+1)HA(k)Q(k+1).

• A(k+1) = V (k+1)HAV (k+1).

• (A− µk−1I)(A− µk−2I) · · · (A− µ1I)(A− µ0I)
= Q(0)Q(1) · · ·Q(k)︸ ︷︷ ︸

unitary
R(k) · · ·R(1)R(0).︸ ︷︷ ︸
upper triangular

If
A =

(
A00 0
0 A11

)
, A00x = λx, and A11y = µy,

then (
A00 0
0 A11

)(
x

0

)
= λ

(
x

0

)
and

(
A00 0
0 A11

)(
0
y

)
= µ

(
0
y

)
.

Hence Λ(A) = Λ(A00) ∪ Λ(A11) and eigenvectors of A can be easily constructed from eigenvalues
of A00 and A11.

Let A ∈ Cm×m be a Hermitian matrix and V ∈ Cm×m be a unitary matrix such that

V HAV =
(
A00 0
0 A11

)
.

If V00 and V11 are unitary matrices such that V H
00A00V00 = Λ0 and V H

11A11V11 = Λ1, are both
diagonal, then (

V

(
V00 0
0 V11

))H
A

(
V

(
V00 0
0 V11

))
=
(

Λ0 0
0 Λ1

)
.

This observation allows one to deflate the algebraic eigenvalue problem is this special block structure
is encountered.

For the simple shifted QR algorithm we typically expect convergence so that eventually

A(k) =

 A
(k)
00 f

(k)
01

f
(k)
01

T
α

(k)
m−1,m−1

 ,
where f (k)

01 is small. In other words,

A(k) ≈
(
A

(k)
00 0
0 α

(k)
m−1,m−1

)
.

Thus, once f (k)
01 is small enough, the algorithm can continue with A(k)

00 , deflating the problem into
a small one.

A preprocessing step to make the shifted QR algorithm practical (for Hermitian matrices) first
reduces the matrix to tridiagonal form by computing Householder transformations that are applied
from the left and right, as illustrated by

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

−→

× × 0 0 0
× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×

−→

× × 0 0 0
× × × 0 0
0 × × × ×
0 0 × × ×
0 0 × × ×
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Original matrix First iteration Second iteration

−→

× × 0 0 0
× × × 0 0
0 × × × 0
0 0 × × ×
0 0 0 × ×

−→

× × 0 0 0
× × × 0 0
0 × × × 0
0 0 × × ×
0 0 0 × ×

Third iteration
To maintain symmetry at each step, the Householder transformations is applied from the left

and right so that the updated involves a Hermitian rank-2 update:
A22 := H(a21)A22H(a21)

= (I − 1
τ u21u

H
21)A22(I − 1

τ u21u
H
21)

= (A22 − 1
τ u21 uH21A22︸ ︷︷ ︸

yH21

)(I − 1
τ u21u

H
21)

= A22 − 1
τ u21y

H
21 − 1

τ A22u21︸ ︷︷ ︸
y21

uH21 + 1
τ2u21 yH21u21︸ ︷︷ ︸

2β

uH21

= A22 −
(

1
τ u21y

H
21 −

β
τ2u21u

H
21

)
−
(

1
τ y21u

H
21 −

β
τ2u21u

H
21

)
= A22 − u21

1
τ

(
yH21 −

β

τ
uH21

)
︸ ︷︷ ︸

wH21

− 1
τ

(
y21 −

β

τ
u21

)
︸ ︷︷ ︸

w21

uH21

= A22 − u21w
H
21 − w21u

H
21.︸ ︷︷ ︸

Hermitian
rank-2 update

This yields the algorithm given by

[A, t] := TriRed-unb(A, t)

A→
(
ATL ATR
ABL ABR

)
, t→

(
tT
tB

)
ATL is 0× 0 and tT has 0 elements

while m(ATL) < m(A)− 2(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 ,( tT
tB

)
→

 t0
τ1
t2


[a21, τ1] := Housev1(a21)
u21 = a21 with first element replaced with 1
Update A22 := H(u21)A22H(u21) via the steps

y21 := A22u21 (Hermitian matrix-vector multiply!)
β := uH21y21/2
w21 := (y21 − βu21/τ1)/τ1
A22 := A22 − tril(u21w

H
21 + w21u

H
21) (Hermitian rank-2 update)(

ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 ,( tT
tB

)
←

 t0
τ1
t2


endwhile
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The cost, in flops, for reducing a symmetric matrix to tridiagonal form is given by (approximately)

4
3m

3.

(For a Hermitian matrix, this is multiplied by 4 since each complex flop requires 4 real flops.)
A Givens’ rotation is a 2× 2 unitary matrix such that(

γ −σ
σ γ

)T (
χ1
χ2

)
︸ ︷︷ ︸

x

=
(
‖x‖2

0

)
,

where γ2 + σ2 = 1. In other words, γ and σ can be thought of as the cosine and sine of an angle θ.

Theorem 10.5.2.1 Implicit Q Theorem. Let A,B ∈ Cm×m, where B is upper Hessenberg and
has only (real) positive elements on its first subdiagonal. Assume there exists a unitary matrix Q
such that QHAQ = B. Then Q and B are uniquely determined by A and the first column of Q.

The Francis Implicit Q step is one of the most elegant insights in numerical linear algebra. It
cannot be succinctly summarized. Hence, one should carefully internalize Subsection 10.3.5. In
particular, it is important to understand the "chasing of the bulge" captured by Subsection 10.3.5.
How this fits into a complete implicitly shifted QR algorithm for computing the eigenvalues and
eigenvectors of a Hermitian matrix is discussed in Subsection 10.3.6.



Week 11

Computing the SVD

11.1 Opening Remarks

11.1.1 Linking the Singular Value Decomposition to the Spectral Decomposition

YouTube: https://www.youtube.com/watch?v=LaYzn2x_Z8Q
Week 2 introduced us to the Singular Value Decomposition (SVD) of a matrix. For any matrix

A ∈ Cm×n, there exist unitary matrix U ∈ Cm×m, unitary matrix V ∈ Cn×n, and Σ ∈ Rm×n of the
form

Σ =
(

ΣTL 0r×(n−r)
0(m−r)×r 0(m−r)×(n−r)

)
, with ΣTL = diag(σ0, . . . , σr−1),

and σ0 ≥ σ1 ≥ · · · ≥ σr−1 > 0
(11.1.1)

such that A = UΣV H , the SVD of matrix A. We can correspondingly partition U =
(
UL UR

)
and V =

(
VL VR

)
, where UL and VL have r columns, in which case

A = ULΣTLV
H
L

equals the Reduced Singular Value Decomposition. We did not present practical algorithms for
computing this very important result in Week 2, because we did not have the theory and practical
insights in place to do so. With our discussion of the QR algorithm in the last week, we can now
return to the SVD and present the fundamentals that underlie its computation.

In Week 10, we discovered algorithms for computing the Spectral Decomposition of a Hermitian
matrix. The following exercises link the SVD of A to the Spectral Decomposition of B = AHA,
providing us with a first hint as to how to practically compute the SVD.

408

https://www.youtube.com/watch?v=LaYzn2x_Z8Q


WEEK 11. COMPUTING THE SVD 409

Homework 11.1.1.1 Let A ∈ Cm×n and A = UΣV H its SVD, where Σ has the structure indicated
in (11.1.1). Give the Spectral Decomposition of the matrix AHA. [Solution]

Homework 11.1.1.2 Let A ∈ Cm×n and A = UΣV H its SVD, where Σ has the structure indicated
in (11.1.1). Give the Spectral Decomposition of the matrix AAH . [Solution]

Last two homeworks expose how to compute the Spectral Decomposition of AHA or AAH from
the SVD of matrix A. We already discovered practical algorithms for computing the Spectral
Decomposition in the last week. What we really want to do is to turn this around: How do we
compute the SVD of A from the Spectral Decomposition of AHA and/or AAH?

11.1.2 Overview
• 11.1 Opening Remarks

◦ 11.1.1 Linking the Singular Value Decomposition to the Spectral Decomposition
◦ 11.1.2 Overview
◦ 11.1.3 What you will learn

• 11.2 Practical Computation of the Singular Value Decomposition

◦ 11.2.1 Computing the SVD from the Spectral Decomposition
◦ 11.2.2 A strategy for computing the SVD
◦ 11.2.3 Reduction to bidiagonal form
◦ 11.2.4 Implicitly shifted bidiagonal QR algorithm

• 11.3 Jacobi’s Method

◦ 11.3.1 Jacobi rotation
◦ 11.3.2 Jacobi’s method for computing the Spectral Decomposition
◦ 11.3.3 Jacobi’s method for computing the Singular Value Decomposition

• 11.4 Enrichments

◦ 11.4.1 Casting the reduction to bidiagonal form in terms of matrix-matrix multiplication
◦ 11.4.2 Optimizing the bidiagonal QR algorithm

• 11.5 Wrap Up

◦ 11.5.1 Additional homework
◦ 11.5.2 Summary

11.1.3 What you will learn
This week, you finally discover practical algorithms for computing the Signgular Value Decompo-
sition.

Upon completion of this week, you should be able to

• Link the (Reduced) SIngular Value Decomposition of A to the Spectral Decomposition of
AHA.
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• Reduce a matrix to bidiagonal form.

• Transform the implicitly shifted QR algorithm into the implicitly shifted bidiagonal QR al-
gorithm.

• Use Jacobi rotations to propose alternative algorithms, known as Jacobi’s Methods, for com-
puting the Spectral Decomposition of a symmetric matrix and Singular Value Decomposition
of a general real-valued matrix.

11.2 Practical Computation of the Singular Value Decomposition

11.2.1 Computing the SVD from the Spectral Decomposition

YouTube: https://www.youtube.com/watch?v=aSvGPY09b48
Let’s see if we can turn the discussion from Subsection 11.1.1 around: Given the Spectral

Decomposition of AHA, how can we extract the SVD of A?

Homework 11.2.1.1 Let A ∈ Cm×m be nonsingular and AHA = QDQH , the Spectral Decompo-
sition of AHA. Give a formula for U , V , and Σ so that A = UΣV H is the SVD of A. (Notice that
A is square.) [Solution]

YouTube: https://www.youtube.com/watch?v=sAbXHD4TMSE
Not all matrices are square and nonsingular. In particular, we are typically interested in the SVD

of matrices where m > n. Let’s examine how to extract the SVD from the Spectral Decomposition
of AHA for such matrices.
Homework 11.2.1.2 Let A ∈ Cm×n have full column rank and let AHA = QDQH , the Spectral
Decomposition of AHA. Give a formula for the Reduced SVD of A. [Solution]

The last two homeworks gives us a first glimpse at a practical procedure for computing the
(Reduced) SVD from the Spectral Decomposition, for the simpler case where A has full column
rank.

• Form B = AHA.

https://www.youtube.com/watch?v=aSvGPY09b48
https://www.youtube.com/watch?v=sAbXHD4TMSE
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• Compute the Spectral Decomposition B = QDQH via, for example, the QR algorithm.

• Permute the columns of Q and diagonal elements of D so that the diagonal elements are
ordered from largest to smallest. If P is the permutation matrix such that PDP T reorders
the diagonal of D appropriately, then

AHA
= < Spectral Decomposition >

QDQH

= < insert identities >

= Q P TP︸ ︷︷ ︸
I

D P TP︸ ︷︷ ︸
I

QH

= < associativity >
(QP T )(PDP T )(PQH)

= < (BC)H = CHBHH >
(QP T )(PDP T )(QP T )H

• Let V = QP T , Σ = (PDP T )1/2 (which is diagonal), and UL = AV Σ−1.

With these insights, we find the Reduced SVD of a matrix with linearly independent columns. If
in addition A is square (and hence nonsingular), then U = UL and A = UΣV H is its SVD.

x Let us now treat the problem in full generality.

Homework 11.2.1.3 Let A ∈ Cm×n be of rank r and

AHA =
(
QL QR

)( DTL 0r×(n−r)
0(n−r)×r 0(n−r)×(n−r)

)(
QL QR

)H
be the Spectral Decomposition of AHA, where QL ∈ Cn×r and, for simplicity, we assume the
diagonal elements of DTL are ordered from largest to smallest. Give a formula for the Reduced
SVD of A. [Solution]

Although the discussed approaches give us a means by which to compute the (Reduced) SVD
that is mathematically sound, the Achilles heel of these is that it hinges on forming AHA. While
beyond the scope of this course, the conditioning of computing a Spectral Decomposition of a
Hermitian matrix is dictated by the condition number of the matrix, much like solving a linear
system is. We recall from Subsection 4.2.5 that we avoid using the Method of Normal Equations to
solve the linear least squares problem when a matrix is ill-conditioned. Similarly, we try to avoid
computing the SVD from AHA. The problem here is even more acute: it is often the case that
A is (nearly) rank deficient (for example, in situations where we desire a low rank approximation
of a given matrix) and hence it is frequently the case that the condition number of A is very
unfavorable. The question thus becomes, how can we avoid computing AHA while still benefiting
from the insights in this unit?

Homework 11.2.1.4 Compute the SVD of

A =
( √

2 1
0
√

2

)
.

[Hint] [Solution]
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11.2.2 A strategy for computing the SVD
Remark 11.2.2.1 In this section, we discuss both the QR factorization and the QR algorithm.
The QR factorization, discussed in Week 3, is given by A = QR. The QR algorithm, which we
discussed in Week 10, instead computes the Spectral Decomposition of a Hermitian matrix. It can
be modified to compute the Schur Decomposition instead, which we don’t discuss in this course. It
can also be modified to compute the SVD of a matrix, which we discuss in this, and subsequent,
units.

YouTube: https://www.youtube.com/watch?v=SXP12WwhtJA
The first observation that leads to a practical algorithm is that matrices for which we wish to

compute the SVD are often tall and skinny, by which we mean that they have many more rows
than they have columns, and it is the Reduced SVD of this matrix that is desired. The methods
we will develop for computing the SVD are based on the implicitly shifted QR algorithm that
was discussed in Subsection 10.3.5, which requires O(n3) computation when applied to an n × n
matrix. Importantly, the leading n3 term has a very large constant relative to, say, the cost of a
QR factorization of that same matrix.

Rather than modifying the QR algorithm to work with a tall and skinny matrix, we start by
computing its QR factorization, A = QR. After this, the SVD of the smaller, n× n sized, matrix
R is computed. The following homework shows how the Reduced SVD of A can be extracted from
Q and the SVD of R.

Homework 11.2.2.1 Let A ∈ Cm×n, with m ≥ n, and A = QR be its QR factorization where, for
simplicity, we assume that n × n upper triangular matrix R is nonsingular. If R = Û Σ̂V̂ H is the
SVD of R, give the Reduced SVD of A. [Solution]

YouTube: https://www.youtube.com/watch?v=T0NYsbdaC78
While it would be nice if the upper triangular structure of R was helpful in computing its SVD,

it is actually the fact that that matrix is square and small (if n� m) that is significant. For this
reason, we now assume that we are interested in finding the SVD of a square matrix A, and ignore
the fact that that matrix may be triangular.

https://www.youtube.com/watch?v=SXP12WwhtJA
https://www.youtube.com/watch?v=T0NYsbdaC78
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YouTube: https://www.youtube.com/watch?v=sGBD0-PSMN8
Here are some more observations, details of which will become clear in the next units:

• In Subsection 10.3.1, we saw that an m×m Hermitian matrix can be reduced to tridiagonal
form via a sequence of Householder transformations that are applied from the left and the
right to the matrix. This then greatly reduced the cost of the QR algorithm that was used
to compute the Spectral Decomposition.
In the next unit, we will see that one can similarly reduce a matrix to bidiagonal form,
a matrix that has only a nonzero diagonal and super diagonal. In other words, there is a
similarity transformation such that

A = QABQ
H
A ,

where B is bidiagonal. Conveniently, B can also be forced to be real-valued.

• The observation now is that BTB is a real-valued tridiagonal matrix. Thus, if we explicitly
form T = BTB, then we can employ the implicitly shifted QR algorithm (or any other
tridiagonal eigensolver) to compute its Spectral Decomposition and from that construct the
SVD of B, the SVD of the square matrix A, and the Reduced SVD of whatever original m×n
matrix we started with.

• We don’t want to explicitly form BTB because the condition number of B equals the condition
number of the original problem (since they are related via unitary transformations).

• In the next units, we will find that we can again employ the Implicit Q Theorem to compute
the SVD of B, inspired by the implicitly shifted QR algorithm. The algorithm we develop
again casts all updates to B in terms of unitary transformations, yielding a highly accurate
algorithm.

Putting these observations together yields a practical methodology for computing the Reduced
SVD of a matrix.

11.2.3 Reduction to bidiagonal form

https://www.youtube.com/watch?v=sGBD0-PSMN8
https://www.youtube.com/watch?v=2OW5Yi6QOdY
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YouTube: https://www.youtube.com/watch?v=2OW5Yi6QOdY
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Homework 11.2.3.1 Let B ∈ Rm×m be a bidiagonal matrix:

B =


β0,0 β0,1 0 · · · 0 0
0 β1,1 β1,2 · · · 0 0
... . . . . . . . . . ...

...
0 0 0 · · · βm−2,m−2 βm−2,m−1
0 0 0 · · · 0 βm−1,m−1

 .

Show that T = BTB is a tridiagonal symmetric matrix. [Solution]
Given that we can preprocess our problem by computing its QR factorization, we focus now on

the case where A ∈ Cm×m. The next step is to reduce this matrix to bidiagonal form by multiplying
the matrix from the left and right by two sequences of unitary matrices.

Once again, we employ Householder transformations. In Subsubsection 3.3.3.3, we introduced
the function [(

ρ
u2

)
, τ

]
:= Housev

((
χ1
x2

))
,

implemented by

function [ rho, ...
u2, tau ] = Housev( chi1, ...

x2 ),

to compute the vector u =
(

1
u2

)
that reflects x into ± ‖x‖2e0 so that

I − 1
τ

(
1
u2

)(
1
u2

)H( χ1
x2

)
= ± ‖x‖2︸ ︷︷ ︸

ρ

e0.

In Subsection 10.3.1, we introduced a variation on this function:

[u, τ ] := Housev1 (x)

implemented by the function

function [ u, tau ] = Housev1( x ).

They differ only in how the input and output are passed to and from the function. We also introduce
the notation H(u, τ) for the transformation I − 1

τ uu
H .

We now describe an algorithm for reducing a square matrix to bidiagonal form:

• Partition A→
(
α11 aT12
a21 A22

)
.

• Update [
(
α11
a21

)
, τ1] := Housev(

(
α11
a21

)
). This overwrites α11 with ±

∥∥∥∥∥
(
α11
a21

)∥∥∥∥∥
2
and

a21 with u21. Implicitly, a21 in the updated matrix equals the zero vector.
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• Update (
aT12
A22

)
:= H(

(
1
u21

)
, τ1)

(
aT12
A22

)
.

This introduces zeroes below the first entry in the first column, as illustrated by
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 −→


× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×
0 × × × ×


The Householder vector that introduced the zeroes is stored over those zeroes.

Next, we introduce zeroes in the first row of this updated matrix.

• The matrix is still partitioned as A→
(
α11 aT12
0 A22

)
, where the zeroes have been overwritten

with u21.

• We compute [u12, ρ1] := Housev1((aT12)T ). The first element of u12 now holds ± ‖(aT12)T ‖2
and the rest of the elements define the Householder transformation that introduces zeroes in
(aT12)T below the first element. We store uT12 in aT12.

• After setting the first entry of u12 explicitly to one, we update A22 := A22H(u12, ρ1).
This introduces zeroes to the right of the first entry of aT12, as illustrated by

× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×
0 × × × ×

 −→


× × 0 0 0
0 × × × ×
0 × × × ×
0 × × × ×
0 × × × ×


The Householder vector that introduced the zeroes is stored over those zeroes.

The algorithm continues this with the updated A22 as illustrated in Figure 11.2.3.1.

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

−→

× × 0 0 0
0 × × × ×
0 × × × ×
0 × × × ×
0 × × × ×

−→

× × 0 0 0
0 × × 0 0
0 0 × × ×
0 0 × × ×
0 0 × × ×

Original matrix First iteration Second iteration

−→

× × 0 0 0
0 × × 0 0
0 0 × × 0
0 0 0 × ×
0 0 0 × ×

−→

× × 0 0 0
0 × × 0 0
0 0 × × 0
0 0 0 × ×
0 0 0 0 ×

Third iteration Fourth iteration
Figure 11.2.3.1 An illustration of the reduction of a square matrix to bidiagonal form. The ×s
denote nonzero elements in the matrix.
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Ponder This 11.2.3.2 Fill in the details for the above described algorithm that reduces a square
matrix to bidiagonal form. In particular:

• For the update (
aT12
A22

)
:= H(

(
1
u21

)
, τ1)

(
aT12
A22

)
,

describe how all the different parts of (
aT12
A22

)

are updated. (Hint: look at the QR factorization algorithm in Subsection 3.3.4.)

• For the update A22 := A22H(u12, ρ1), describe explicitly how A22 is updated. (Hint: look at
Homework 10.3.1.1.)

Next, state the algorithm by completing the skeleton in Figure 11.2.3.2.
Finally, analyze the approximate cost of the algorithm, when started with a m×m matrix.

[A, t, r] := BiRed-unb(A)

A→
(
ATL ATR
ABL ABR

)
, t→

(
tT
tB

)
, r →

(
rT
rB

)
ATL is 0× 0, tT , rT have 0 elements

while m(ATL) < m(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 ,( tT
tB

)
→

 t0
τ1
t2

 ,( rT
rB

)
→

 r0
ρ1
r2



Update via the steps
Update via the steps(
ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22

 ,( tT
tB

)
←

 t0
τ1
t2

 ,( rT
rB

)
←

 r0
ρ1
r2


endwhile

Figure 11.2.3.2 Algorithm skeleton for reduction of a square matrix to bidiagonal form.
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Ponder This 11.2.3.3 Once you have derived the algorithm in Ponder This 11.2.3.2, implement
it.

You may want to start by executing git pull to update your directory Assignments.
In directory Assignments/Week11/matlab/, you will find the following files:

• Housev.m and Housev1.m: Implementations of the function Housev and Housev1.

• BiRed.m: A code skeleton for a function that reduces a square matrix to bidiagonal form.

[ B, t, r ] = BiRed( A, t, r )

returns the diagonal and first superdiagonal of the bidiagonal matrix in B, stores the House-
holder vectors below the subdiagonal and above the first superdiagonal, and returns the scalars
τ and ρ in vectors t and r .

• BiFromB.m: A function that extracts the bidiagonal matrix from matrix B, which also has the
Householder vector information in it.

Bbi = BiFromB( B )

• test_BiRed.m: A script that tests BiRed.

These resources give you the tools to implement and test the reduction to bidiagonal form.

11.2.4 Implicitly shifted bidiagonal QR algorithm

YouTube: https://www.youtube.com/watch?v=V2PaGe52ImQ
Converting a (tridiagonal) implicitly shifted QR algorithm into a (bidiagonal) implicitly shifted

QR algorithm now hinges on some key insights, which we will illustrate with a 4× 4 example.

• We start with a bidiagonal matrix B(k)

B(k) =


β0,0 β0,1 0 0
0 β1,1 β1,2 0
0 0 β2,2 β2,3
0 0 0 β3,3

 ,
which is our "current iteration."

https://www.youtube.com/watch?v=V2PaGe52ImQ
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• If we explicitly form T (k) = B(k)TB(k), then we would have to form

T (k) =


τ0,0 τ1,0 0 0
τ1,0 τ1,1 τ2,1 0
0 τ2,1 τ2,2 τ3,2
0 0 τ3,2 τ3,3



=


β2

0,0 β0,1β0,0 0 0
β0,1β0,0 β2

0,1 + β2
1,1 β1,2β1,1 0

0 β1,2β1,1 β2
1,2 + β2

2,2 β2,3β2,2
0 0 β2,3β2,2 β2

2,3 + β2
3,3


• The Francis Implicit QR Step would then compute a first Givens’ rotation so that(

γ0 −σ0
σ0 γ0

)T
︸ ︷︷ ︸

GT0

(
τ0,0 − τ3,3

τ1,0

)
=
(
×
0

)
. (11.2.1)

• With this Givens’ rotation, it would introduce a bulge
× × × 0
× × × 0
× × × ×
0 0 × ×



=

 GT0 0 0
0 1 0
0 0 1



τ0,0 τ1,0 0 0
τ1,0 τ1,1 τ2,1 0
0 τ2,1 τ2,2 τ3,2
0 0 τ3,2 τ3,3


 G0 0 0

0 1 0
0 0 1



• Finally, the bulge would be chased out

T (k+1) =


× × 0 0
× × × 0
0 × × ×
0 0 × ×


=

 1 0 0
0 1 0
0 0 GT2


 1 0 0

0 GT1 0
0 0 1



× × × 0
× × × 0
× × × ×
0 0 × ×


 1 0 0

0 G1 0
0 0 1




︸ ︷︷ ︸
× × 0 0
× × × ×
0 × × ×
0 × × ×



 1 0 0
0 1 0
0 0 G2

 .
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Obviously, this extends.
Let us examine what would happen if we instead apply these Givens’ rotations to B(k)TB(k).

Since T (k) = B(k)TB(k), we find that

T (k+1) =


× × 0 0
× × × 0
0 × × ×
0 0 × ×



=

 1 0 0
0 1 0
0 0 GT2


 1 0 0

0 GT1 0
0 0 1


 GT0 0 0

0 1 0
0 0 1




β0,0 β0,1 0 0
0 β1,1 β1,2 0
0 0 β2,2 β2,3
0 0 β3,3


T

×


β0,0 β0,1 0 0
0 β1,1 β1,2 0
0 0 β2,2 β2,3
0 0 β3,3



 G0 0 0

0 1 0
0 0 1


 1 0 0

0 G1 0
0 0 1


 1 0 0

0 1 0
0 0 G2


=

β0,0 β0,1 0 0
0 β1,1 β1,2 0
0 0 β2,2 β2,3
0 0 β3,3


 G0 0 0

0 1 0
0 0 1


 1 0 0

0 G1 0
0 0 1


 1 0 0

0 1 0
0 0 G2



T

×



β0,0 β0,1 0 0
0 β1,1 β1,2 0
0 0 β2,2 β2,3
0 0 β3,3


 G0 0 0

0 1 0
0 0 1


 1 0 0

0 G1 0
0 0 1


 1 0 0

0 1 0
0 0 G2


 .

The observation now is that if we can find two sequences of Givens’ rotations such that

B(k+1) =


× × 0 0
0 × × 0
0 0 × ×
0 0 0 ×


=

 1 0 0
0 1 0
0 0 ĜT2


 1 0 0

0 ĜT1 0
0 0 1


 ĜT0 0 0

0 1 0
0 0 1



×


β0,0 β0,1 0 0
0 β1,1 β1,2 0
0 0 β2,2 β2,3
0 0 β3,3


×

 G0 0 0
0 1 0
0 0 1


 1 0 0

0 G̃1 0
0 0 1


 1 0 0

0 1 0
0 0 G̃2


︸ ︷︷ ︸

Q

(11.2.2)
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then, by the Implicit Q Theorem,

B(k+1)TB(k+1)

=
× × 0 0
0 × × 0
0 0 × ×
0 0 0 ×


T 

× × 0 0
0 × × 0
0 0 × ×
0 0 0 ×


=
× × 0 0
× × × 0
0 × × ×
0 0 × ×


=

T (k+1)

=
QTT (k)Q.

If we iterate in this way, we know that T (k) converge to a diagonal matrix (under mild conditions).
This means that the matrices B(k) converge to a diagonal matrix, ΣB. If we accumulate all Givens’
rotations into matrices UB and VB, then we end up with the SVD of B:

B = UBΣBV
T
B ,

modulo, most likely, a reordering of the diagonal elements of ΣB and a corresponding reordering of
the columns of UB and VB.

This leaves us with the question of how to find the two sequences of Givens’ rotations mentioned
in (11.2.2).

• We know G0, which was computed from (11.2.1). Importantly, computing this first Givens’
rotation requires only that the elements τ0,0, τ1,0, and τm−1,m−1 of T (k) to be explicitly formed.

• If we apply it to B(k), we introduce a bulge:
× × 0 0
× × × 0
0 0 × ×
0 0 0 ×

 =


β0,0 β0,1 0 0
0 β1,1 β1,2 0
0 0 β2,2 β2,3
0 0 β3,3


 G0 0 0

0 1 0
0 0 1

 .

• We next compute a Givens’ rotation, Ĝ0, that changes the nonzero that was introduced below
the diagonal back into a zero.

× × × 0
0 × × 0
0 0 × ×
0 0 0 ×

 =

 ĜT0 0 0
0 1 0
0 0 1



× × 0 0
× × × 0
0 0 × ×
0 0 0 ×

 .
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• This means we now need to chase the bulge that has appeared above the superdiagonal:
× × 0 0
0 × × 0
0 × × ×
0 0 0 ×

 =


× × × 0
0 × × 0
0 0 × ×
0 0 0 ×


 1 0 0

0 G̃1 0
0 0 1


• We continue like this until the bulge is chased out the end of the matrix.

The net result is an implicitly shifted bidiagonal QR algorithm that is applied directly to the
bidiagonal matrix, maintains the bidiagonal form from one iteration to the next, and converges to
a diagonal matrix that has the singular values of B on its diagonal. Obviously, deflation can be
added to this scheme to further reduce its cost.

11.3 Jacobi’s Method

11.3.1 Jacobi rotation

YouTube: https://www.youtube.com/watch?v=OoMPkg994ZE
Given a symmetric 2× 2 matrix A, with

A =
(
α0,0 α0,1
α1,0 α1,1

)

There exists a rotation,

J =
(
γ −σ
σ γ

)
,

where γ = cos(θ) and σ = sin(θ) for some angle θ, such that

JTAJ =
(

γ σ
−σ γ

)(
α0,0 α0,1
α1,0 α1,1

)(
γ −σ
σ γ

)
=
(
λ0 0
0 λ1

)
= Λ.

We recognize that
A = JΛJT

is the Spectral Decomposition of A. The columns of J are eigenvectors of length one and the
diagonal elements of Λ are the eigenvalues.

Ponder This 11.3.1.1 Give a geometric argument that Jacobi rotations exist. [Hint]
It is important to note that to determine J we do not need to compute θ. We merely need to

find one eigenvector of the 2 × 2 matrix from which we can then compute an eigenvector that is
orthogonal. These become the columns of J . So, the strategy is to

https://www.youtube.com/watch?v=OoMPkg994ZE
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• Form the characteristic polynomial

det(λI −A) = (λ− α0,0)(λ− α1,1)− α2
1,0

= λ2 − (α0,0 + α1,1)λ+ (α0,0α1,1 − α2
1,0),

and solve for its roots, which give us the eigenvalues of A. Remember to us the stable formula
for computing the roots of a second degree polynomial, discussed in Subsection 9.4.1.

• Find an eigenvector associated with one of the eigenvalues, scaling it to have unit length and
to lie in either Quadrant I or Quadrant II. This means that the eigenvector has the form(

γ
σ

)

if it lies in Quadrant I or (
−σ
γ

)
if it lies in Quadrant II.

This gives us the γ and σ that define the Jacobi rotation.

Homework 11.3.1.2With Matlab, use the eig function to explore the eigenvalues and eigenvectors
of various symmetric matrices:
[ Q, Lambda ] = eig( A )

Try, for example

A = [
-1 2
2 3

]

A = [
2 -1

-1 -2
]

How does the matrix Q relate to a Jacobi rotation? How would Q need to be altered for it to be a
Jacobi rotation? [Solution]

11.3.2 Jacobi’s method for computing the Spectral Decomposition

https://www.youtube.com/watch?v=mBn7d9jUjcs
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YouTube: https://www.youtube.com/watch?v=mBn7d9jUjcs
The oldest algorithm for computing the eigenvalues and eigenvectors of a (symmetric) matrix

is due to Jacobi and dates back to 1846.

• [23] C. G. J. Jacobi, Über ein leichtes Verfahren, die in der Theorie der Säkular-störungen
vorkommenden Gleichungen numerisch aufzulösen, Crelle’s Journal 30, 51-94 (1846).

If we recall correctly (it has been 30 years since we read the paper in German), the paper thanks
Jacobi’s student Seidel for performing the calculations for a 5 × 5 matrix, related to the orbits of
the planets, by hand...

This is a method that keeps resurfacing, since it parallelizes easily. The operation count tends
to be higher (by a constant factor) than that of reduction to tridiagonal form followed by the
tridiagonal QR algorithm.

Jacobi’s original idea went as follows:

• We start with a symmetric matrix:

A =


α0,0 α0,1 α0,2 α0,3
α1,0 α1,1 α1,2 α1,3
α2,0 α2,1 α2,2 α2,3
α3,0 α3,1 α3,2 α3,3

 .

• We find the off-diagonal entry with largest magnitude. Let’s say it is α3,1.

• We compute a Jacobi rotation so that(
γ3,1 σ3,1
−σ3,1 γ3,1

)(
α1,1 α1,3
α3,1 α3,3

)(
γ3,1 −σ3,1
σ3,1 γ3,1

)
=
(
× 0
0 ×

)
,

where the ×s denote nonzero entries.

• We now apply the rotation as a unitary similarity transformation from the left to the rows of
A indexed with 1 and 3, and from the right to columns 1 and 3:

α0,0 × α0,2 ×
× × × 0
α2,0 × α2,2 ×
× 0 × ×

 =


1 0 0 0
0 γ3,1 0 σ3,1
0 0 1 0
0 −σ3,1 0 γ3,1



α0,0 α0,1 α0,2 α0,3
α1,0 α1,1 α1,2 α1,3
α2,0 α2,1 α2,2 α2,3
α3,0 α3,1 α3,2 α3,3




1 0 0 0
0 γ3,1 0 −σ3,1
0 0 1 0
0 σ3,1 0 γ3,1

 .
The ×s here denote elements of the matrix that are changed by the application of the Jacobi
rotation.

• This process repeats, reducing the off-diagonal element that is largest in magnitude to zero
in each iteration.
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Notice that each application of the Jacobi rotation is a unitary similarity transformation, and hence
preserves the eigenvalues of the matrix. If this method eventually yields a diagonal matrix, then
the eigenvalues can be found on the diagonal of that matrix. We do not give a proof of convergence
here.

YouTube: https://www.youtube.com/watch?v=lC5VKYR7sEM

Homework 11.3.2.1 Note: In the description of this homework, we index like Matlab does:
starting at one. This is in contrast to how we usually index in these notes, starting at zero.

In Assignments/Week11/matlab, you will find the following files:

• Jacobi_rotation.m: A function that computes a Jacobi rotation from a 2 × 2 symmetric
matrix.

• Seidel.m: A script that lets you apply Jacobi’s method to a 5 × 5 matrix, much like Seidel
did by hand. Fortunately, you only indicate the off-diagonal element to zero out. Matlab
then does the rest.

Use this to gain insight into how Jacobi’s method works. You will notice that finding the off-
diagonal element that has largest magnitude is bothersome. You don’t need to get it right every
time.

Once you have found the diagonal matrix, restart the process. This time, zero out the off-
diagonal elements in systematic "sweeps," zeroing the elements in the order.

( 2,1 ) - ( 3,1 ) - ( 4,1 ) - ( 5,1 ) -
( 3,2 ) - ( 4,2 ) - ( 5,2 ) -

( 4,3 ) - ( 5,3 ) -
( 5,4 )

and repeating this until convergence. A sweep zeroes every off-diagonal element exactly once (in
symmetric pairs). [Solution]

The key insight is that applying a Jacobi rotation to zero an element, αi,j , reduces the square
of the Frobenius norm of the off-diagonal elements of the matrix by α2

i,j . In other words, let off(A)
equal the matrix A but with its diagonal elements set to zero. If Ji,j zeroes out αi,j (and αj,i), then

‖off(JTi,jAJi,j)‖2F = ‖off(A)‖2F − 2α2
i,j .

Homework 11.3.2.2 Partition matrix A like
A00 a10 AT20 a30 AT40
aT10 α11 aT21 α31 aT41
A20 a21 A22 a32 AT42
aT30 α31 aT32 α33 aT43
A40 a41 A42 a43 A44



https://www.youtube.com/watch?v=lC5VKYR7sEM
Assignments/Week11/matlab/Jacobi_rotation.m
Assignments/Week11/matlab/Seidel.m
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and let J equal the Jacobi rotation that zeroes the element denoted with α31:

JTAJ =
I 0 0 0 0
0 γ11 0 σ31 0
0 0 I 0 0
0 −σ31 0 γ33 0
0 0 0 0 I




A00 a10 AT20 a30 AT40
aT10 α11 aT21 α31 aT41
A20 a21 A22 a32 AT42
aT30 α31 aT32 α33 aT43
A40 a41 A42 a43 A44




I 0 0 0 0
0 γ11 0 −σ13 0
0 0 I 0 0
0 σ31 0 γ33 0
0 0 0 0 I



=


A00 â10 AT20 â30 AT40
âT10 α̂11 âT21 0 âT41
A20 â21 A22 â32 AT42
âT30 0 âT32 α̂33 âT43
A40 â41 A42 â43 A44

 = Â.

Show that ‖off(Â)‖2F = ‖off(A)‖2F − 2α2
31. [Solution]

From this exercise, we learn:

• The good news: every time a Jacobi rotation is used to zero an off-diagonal element, off(A)
decreases by twice the square of that element.

• The bad news: a previously introduced zero may become nonzero in the process.

The original algorithm developed by Jacobi searched for the largest (in absolute value) off-
diagonal element and zeroed it, repeating this processess until all off-diagonal elements were small.
The problem with this is that searching for the largest off-diagonal element in an m ×m matrix
requires O(m2) comparisons. Computing and applying one Jacobi rotation as a similarity trans-
formation requires O(m) flops. For large m this is not practical. Instead, it can be shown that
zeroing the off-diagonal elements by columns (or rows) also converges to a diagonal matrix. This is
known as the column-cyclic Jacobi algorithm. Zeroing out every pair of off-diagonal elements once
is called a sweep. We illustrate this in Figure 11.3.2.1. Typically only a few sweeps (on the order
of five) are needed to converge sufficiently.
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Sweep 1
× 0 × ×
0 × × ×
× × × ×
× × × ×

→

× × 0 ×
× × × ×
0 × × ×
× × × ×

→

× × × 0
× × × ×
× × × ×
0 × × ×

→

zero (1, 0) zero (2, 0) zero (3, 0)

× × × ×
× × 0 ×
× 0 × ×
× × × ×

→

× × × ×
× × × 0
× × × ×
× 0 × ×

→

× × × ×
× × × ×
× × × 0
× × 0 ×

→

zero (2, 1) zero (3, 1) zero (3, 2)

Sweep 2
× 0 × ×
0 × × ×
× × × ×
× × × ×

→

× × 0 ×
× × × ×
0 × × ×
× × × ×

→

× × × 0
× × × ×
× × × ×
0 × × ×

→

zero (1, 0) zero (2, 0) zero (3, 0)

× × × ×
× × 0 ×
× 0 × ×
× × × ×

→

× × × ×
× × × 0
× × × ×
× 0 × ×

→

× × × ×
× × × ×
× × × 0
× × 0 ×

→

zero (2, 1) zero (3, 1) zero (3, 2)

Figure 11.3.2.1 Column-cyclic Jacobi algorithm.
We conclude by noting that the matrix Q such that A = QΛQH can be computed by accumu-

lating all the Jacobi rotations (applying them to the identity matrix).

11.3.3 Jacobi’s method for computing the Singular Value Decomposition

YouTube: https://www.youtube.com/watch?v=VUktLhUiR7w
Just like the QR algorithm for computing the Spectral Decomposition was modified to compute

the SVD, so can the Jacobi Method for computing the Spectral Decomposition.
The insight is very simple. Let A ∈ Rm×n and partition it by columns:

A =
(
a0 a1 · · · an−1

)
.

https://www.youtube.com/watch?v=VUktLhUiR7w
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One could form B = ATA and then compute Jacobi rotations to diagonalize it:

· · · JT3,1JT2,1︸ ︷︷ ︸
QT

B J2,1J3,1 · · ·︸ ︷︷ ︸
Q

= D.

We recall that if we order the columns of Q and diagonal elements of D appropriately, then choosing
V = Q and Σ = D1/2 yields

A = UΣV T = UD1/2QT

or, equivalently,
AQ = UΣ = UD1/2.

This means that if we apply the Jacobi rotations J2,1, J3,1, . . . from the right to A,

UD1/2 = ((AJ2,1)J3,1) · · · ,

then, once B has become (approximately) diagonal, the columns of Â = ((AJ2,1)J3,1) · · · are mutu-
ally orthogonal. By scaling them to have length one, setting Σ = diag(‖â0‖2, ‖â1‖2, . . . , ‖ân−1‖2),
we find that

U = ÂΣ−1 = AQ(D1/2)−1.

The only problem is that in forming B, we may introduce unnecessary error since it squares the
condition number.

Here is a more practical algorithm. We notice that

B = ATA =


aT0 a0 aT0 a1 · · · aT0 an−1
aT1 a0 aT1 a1 · · · aT1 an−1
...

...
...

aTn−1a0 aTn−1a1 · · · aTn−1an−1

 .

We observe that we don’t need to form all of B. When it is time to compute Ji,j , we need only
compute (

βi,i βj,i
βj,i βj,j

)
=
(
aTi ai aTj ai
aTj ai aTj aj

)
,

from which Ji,j can be computed. By instead applying this Jacobi rotation to B, we observe that

JTi,jBJi,j = JTi,jA
TAJi,j = (AJi,j)T (AJi,j)

and hence the Jacobi rotation can instead be used to take linear combinations of the ith and jth
columns of A: (

ai aj
)

:=
(
ai aj

)( γi,j −σi,j
σi,j γi,j

)
.

We have thus outlined an algorithm:

• Starting with matrix A, compute a sequence of Jacobi rotations (e.g., corresponding to a
column-cyclic Jacobi method) until the off-diagonal elements of ATA (parts of which are
formed as Jacobi rotations are computed) become small. Every time a Jacobi rotation is
computed, it updates the appropriate columns of A.
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• Accumulate the Jacobi rotations into matrix V , by applying them from the right to an identity
matrix:

V = ((I × J2,1)J3,1) · · ·

• Upon completion,
Σ = diag(‖a0‖2, ‖a1‖2, . . . , ‖an−1‖2)

and
U = AΣ−1,

meaning that each column of the updated A is divided by its length.

• If necessary, reorder the columns of U and V and the diagonal elements of Σ.

Obviously, there are variations on this theme. Such methods are known as one-sided Jacobi
methods.

11.4 Enrichments

11.4.1 Principal Component Analysis
The Spectral Decomposition and Singular Value Decomposition are fundamental to a technique in
data sciences known as Principal Component Analysis (PCA). The following tutorial makes
that connection.

• [37] Jonathon Shlens, A Tutorial on Principal Component Analysis, arxiv 1404.1100, 2014.

11.4.2 Casting the reduction to bidiagonal form in terms of matrix-matrix mul-
tiplication

As was discussed in Subsection 10.4.3 for the reduction to tridiagonal form, reduction to bidiagonal
form can only be partly cast in terms of matrix-matrix multiplication. As for the reduction to
tridiagonal form, we recommend

• [48] Field G. Van Zee, Robert A. van de Geijn, Gregorio Quintana-Ortí, G. Joseph Elizondo,
Families of Algorithms for Reducing a Matrix to Condensed Form, ACM Transactions on
Mathematical Software (TOMS) , Vol. 39, No. 1, 2012.

Bidiagonal, tridiagonal, and upper Hessenberg form are together referred to as condensed form.

11.4.3 Optimizing the bidiagonal QR algorithm
As the Givens’ rotations are applied to the bidiagonal matrix, they are also applied to matrices
in which the left and right singular vectors are accumulated (matrices U and V ). If we start with
an m ×m matrix, one step of introducing the bulge and chasing it out the matrix requires O(m)
computation. Accumulating the Givens’ rotations into U and V requires O(m2) computation for
each such step, with O(m2) data. As was discussed in Subsection 10.4.4 for the implicitly shifted
QR algorithm, this inherently means the cost of accessing data dominates on current architectures.

The paper also mentioned in Subsection 10.4.4, also describes techniques for applying the
Givens’ rotations for several steps of the Implicitly shifted bidiagonal QR algorithm at the same
time, which allows one to attain high performance similar to that attained by a matrix-matrix
multiplication.

https://arxiv.org/abs/1404.1100
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• [47] Field G. Van Zee, Robert A. van de Geijn, Gregorio Quintana-Ortí, Restructuring the
Tridiagonal and Bidiagonal QR Algorithms for Performance, ACM Transactions on Mathe-
matical Software (TOMS), Vol. 40, No. 3, 2014.

To our knowledge, this yields the fastest implementation for finding the SVD of a bidiagonal
matrix.

11.5 Wrap Up

11.5.1 Additional homework
No additional homework yet.

11.5.2 Summary

Let A ∈ Cm×n and A = UΣV H its SVD, where Σ has the structure indicated by

Σ =
(

ΣTL 0r×(n−r)
0(m−r)×r 0(m−r)×(n−r)

)
, with ΣTL = diag(σ0, . . . , σr−1),

and σ0 ≥ σ1 ≥ · · · ≥ σr−1 > 0

Then a Spectral Decomposition of AHA is given by

AHA = V ΣΣTΣV H = V

(
Σ2
TL 0r×(n−r)

0(n−r)×r 0(n−r)×(n−r)

)
V H

a Spectral Decomposition of AAH is given by

AAH = UΣTΣUH = U

(
Σ2
TL 0r×(m−r)

0(m−r)×r 0(m−r)×(m−r)

)
UH .

Let A ∈ Cm×n be of rank r and

AHA =
(
QL QR

)( DTL 0r×(n−r)
0(n−r)×r 0(n−r)×(n−r)

)(
QL QR

)H
be the Spectral Decomposition of AHA, where QL ∈ Cn×r and, for simplicity, we assume the
diagonal elements of DTL are ordered from largest to smallest. Then the Reduced SVD of A is
given by A = ULΣTLV

H
L , where VL = QL and ΣTL = D

1/2
TL , and UL = AVLΣ−1

TL = AQLD
−1/2
TL .

Let A ∈ Cm×n, with m ≥ n, and A = QR be its QR factorization where, for simplicity, we
assume that n× n upper triangular matrix R is nonsingular. If R = Û Σ̂V̂ H is the SVD of R, then

A
=

QR =
QÛΣRV̂

H =
(QÛ)︸ ︷︷ ︸
U

Σ̂︸︷︷︸
Σ

V̂ H .︸︷︷︸
V H
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which exposes the Reduced SVD of A.
Figure 11.2.3.1 illustrates the reduction of a matrix to bidiagonal form, via Householder trans-

formations computed from, and applied to, the left and the right.
A practical algorithm for computing the SVD first reduces a matrix to bidiagonal form and

then performs an implicitly shifted bidiagonal QR algorithm, as described in Subsection 10.3.5.
Given a symmetric 2× 2 matrix A, with

A =
(
α0,0 α0,1
α1,0 α1,1

)

There exists a rotation,

J =
(
γ −σ
σ γ

)
,

where γ = cos(θ) and σ = sin(θ) for some angle θ, such that

JTAJ =
(

γ σ
−σ γ

)(
α0,0 α0,1
α1,0 α1,1

)(
γ −σ
σ γ

)
=
(
λ0 0
0 λ1

)
= Λ.

This is known as a Jacobi rotation.
A Jacobi rotation, when applied from the left and right symmetrically to selected rows and

columns of a symmetric matrix, can be used to strategically introduce zeroes in a matrix. Since
this is a unitary similarity transformation, it preserves eigenvalues. Iterating so that every off-
diagonal element is zeroed exactly once is known as a (Jacobi) sweep. Applying multiple sweeps
will yield a sequence of matrices that eventually converge to a diagonal matrix. Approximations
for the eigenvalues can then be found on the diagonal of that matrix and corresponding eigenvalues
can be recovered by accommulating the Jacobi rotations. This is known as Jacobi’s method (for
solving the symmetric eigenvalue problem).

Jacobi’s method can be modified so that it computes the SVD of a general matrix. This is
known as the one-sided Jacobi’s method.



Week 12

Attaining High Performance

12.1 Opening Remarks

12.1.1 Simple Implementation of matrix-matrix multiplication
The current coronavirus crisis hit UT-Austin on March 14, 2020, a day we spent quickly making
videos for Week 11. We have not been back to the office, to create videos for Week 12, since then.
We will likely add such videos as time goes on. For now, we hope that the notes suffice.

Remark 12.1.1.1 The exercises in this unit assume that you have installed the BLAS-like Library
Instantiation Software (BLIS), as described in Subsection 0.2.4.

Let A, B, and C be m × k, k × n, and m × n matrices, respectively. We can expose their
individual entries as

A =


α0,0 α0,1 · · · α0,k−1
α1,0 α1,1 · · · α1,k−1
...

...
...

αm−1,0 αm−1,1 · · · αm−1,k−1

 , B =


β0,0 β0,1 · · · β0,n−1
β1,0 β1,1 · · · β1,n−1
...

...
...

βk−1,0 βk−1,1 · · · βk−1,n−1

 ,

and

C =


γ0,0 γ0,1 · · · γ0,n−1
γ1,0 γ1,1 · · · γ1,n−1
...

...
...

γm−1,0 γm−1,1 · · · γm−1,n−1

 .
The computation C := AB + C, which adds the result of the matrix-matrix multiplication AB to
a matrix C, is defined element-wise as

γi,j :=
k−1∑
p=0

αi,pβp,j + γi,j (12.1.1)

for all 0 ≤ i < m and 0 ≤ j < n. We add to C because this will make it easier to play with the
orderings of the loops when implementing matrix-matrix multiplication. The following pseudo-code

432
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computes C := AB + C:
for i := 0, . . . ,m− 1

for j := 0, . . . , n− 1
for p := 0, . . . , k − 1
γi,j := αi,pβp,j + γi,j

end
end

end

The outer two loops visit each element of C and the inner loop updates γi,j with (12.1.1). We use
C programming language macro definitions in order to explicitly index into the matrices, which are
passed as one-dimentional arrays in which the matrices are stored in column-major order.

Remark 12.1.1.2 For a more complete discussion of how matrices are mapped to memory, you may
want to look at 1.2.1 Mapping matrices to memory in our MOOC titled LAFF-On Programming
for High Performance. If the discussion here is a bit too fast, you may want to consult the entire
Section 1.2 Loop orderings of that course.
#define alpha( i,j ) A[ (j)*ldA + i ] // map alpha( i,j ) to array A
#define beta( i,j ) B[ (j)*ldB + i ] // map beta( i,j ) to array B
#define gamma( i,j ) C[ (j)*ldC + i ] // map gamma( i,j ) to array C

void MyGemm( int m, int n, int k, double *A, int ldA,
double *B, int ldB, double *C, int ldC )

{
for ( int i=0; i<m; i++ )
for ( int j=0; j<n; j++ )
for ( int p=0; p<k; p++ )
gamma( i,j ) += alpha( i,p ) * beta( p,j );

}

Figure 12.1.1.3 Implementation, in the C programming language, of the IJP ordering for com-
puting matrix-matrix multiplication.

Homework 12.1.1.1 In the file Assignments/Week12/C/Gemm_IJP.c you will find the simple imple-
mentation given in Figure 12.1.1.3 that computes C := AB+C. In a terminal window, the directory
Assignments/Week12/C, execute
make IJP

to compile, link, and execute it. You can view the performance attained on your computer with
the Matlab Live Script in Assignments/Week12/C/data/Plot_IJP.mlx (Alternatively, read and execute
Assignments/Week12/C/data/Plot_IJP_m.m.)

On Robert’s laptop, Homework 12.1.1.1 yields the graph

http://www.cs.utexas.edu/users/flame/laff/pfhp/week1-mapping-matrices-to-memory.html
http://www.cs.utexas.edu/users/flame/laff/pfhp/
http://www.cs.utexas.edu/users/flame/laff/pfhp/
http://www.cs.utexas.edu/users/flame/laff/pfhp/week1-loop-orderings.html
Assignments/Week12/C/Gemm_IJP.c
Assignments/Week12/C/data/Plot_IJP.mlx
Assignments/Week12/C/data/Plot_IJP_m.m
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as the curve labeled with IJP. The time, in seconds, required to compute matrix-matrix mul-
tiplication as a function of the matrix size is plotted, where m = n = k (each matrix is square).
"Irregularities" in the time required to complete can be attributed to a number of factors, including
that other processes that are executing on the same processor may be disrupting the computation.
One should not be too concerned about those.

The performance of a matrix-matrix multiplication implementation is measured in billions of
floating point operations per second (GFLOPS). We know that it takes 2mnk flops to compute
C := AB + C when C is m × n, A is m × k, and B is k × n. If we measure the time it takes to
complete the computation, T (m,n, k), then the rate at which we compute is given by

2mnk
T (m,n, k) × 10−9 GFLOPS.

For our implementation, this yields
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Again, don’t worry too much about the dips in the curves in this and future graphs. If we
controlled the environment in which we performed the experiments (for example, by making sure
no other compute-intensive programs are running at the time of the experiments), these would
largely disappear.

Remark 12.1.1.4 The Gemm in the name of the routine stands for General Matrix-Matrix multi-
plication. Gemm is an acronym that is widely used in scientific computing, with roots in the Basic
Linear Algebra Subprograms (BLAS) interface which we will discuss in Subsection 12.2.5.

Homework 12.1.1.2 The IJP ordering is one possible ordering of the loops. How many distinct
reorderings of those loops are there? [Answer] [Solution]

Homework 12.1.1.3 In directory Assignments/Week12/C make copies of Assignments/Week12/C/

Gemm_IJP.c into files with names that reflect the different loop orderings (Gemm_IPJ.c, etc.). Next,
make the necessary changes to the loops in each file to reflect the ordering encoded in its name.
Test the implementions by executing
make IPJ
make JIP

...

for each of the implementations and view the resulting performance by making the indicated
changes to the Live Script in Assignments/Week12/C/data/Plot_All_Orderings.mlx (Alternatively, use
the script in Assignments/Week12/C/data/Plot_All_Orderings_m.m). If you have implemented them
all, you can test them all by executing

make All_Orderings

[Solution]

Assignments/Week12/C/Gemm_IJP.c
Assignments/Week12/C/Gemm_IJP.c
Assignments/Week12/C/data/Plot_All_Orderings.mlx
Assignments/Week12/C/data/Plot_All_Orderings_m.m
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Figure 12.1.1.5 Performance comparison of all different orderings of the loops, on Robert’s laptop.

Homework 12.1.1.4 In directory Assignments/Week12/C/ execute
make JPI

and view the results with the Live Script in Assignments/Week12/C/data/Plot_Opener.mlx. (This
may take a little while, since the Makefile now specifies that the largest problem to be executed is
m = n = k = 1500.)

Next, change that Live Script to also show the performance of the reference implementation
provided by the BLAS-like Library Instantion Software (BLIS): Change

% Optionally show the reference implementation performance data
if ( 0 )

to

% Optionally show the reference implementation performance data
if ( 1 )

and rerun the Live Script. This adds a plot to the graph for the reference implementation.
What do you observe? Now are you happy with the improvements you made by reordering the

loops> [Solution]

Remark 12.1.1.6 There are a number of things to take away from the exercises in this unit.
• The ordering of the loops matters. Why? Because it changes the pattern of memory access.

Accessing memory contiguously (what is often called "with stride one") improves performance.

• Compilers, which translate high-level code written in a language like C, are not the answer.
You would think that they would reorder the loops to improve performance. The widely-used
gcc compiler doesn’t do so very effectively. (Intel’s highly-acclaimed icc compiler does a much

Assignments/Week12/C/data/Plot_Opener.mlx
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/Intel_C%2B%2B_Compiler
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better job, but still does not produce performance that rivals the reference implementation.)

• Careful implementation can greatly improve performance.

• One solution is to learn how to optimize yourself. Some of the fundamentals can be discovered
in our MOOC LAFF-On Programming for High Performance. The other solution is to use
highly optimized libraries, some of which we will discuss later in this week.

12.1.2 Overview
• 12.1 Opening Remarks

◦ 12.1.1 Simple Implementation of matrix-matrix multiplication
◦ 12.1.2 Overview
◦ 12.1.3 What you will learn

• 12.2 Linear Algebra Building Blocks

◦ 12.2.1 A simple model of the computer
◦ 12.2.2 Opportunities for optimization
◦ 12.2.3 Basics of optimizing matrix-matrix multiplication
◦ 12.2.4 Optimizing matrix-matrix multiplication, the real story
◦ 12.2.5 BLAS and BLIS

• 12.3 Casting Computation in Terms of Matrix-Matrix Multiplication

◦ 12.3.1 Blocked Cholesky factorization
◦ 12.3.2 Blocked LU factorization
◦ 12.3.3 Other high-performance dense linear algebra algorithms
◦ 12.3.4 Libraries for higher level dense linear algebra functionality
◦ 12.3.5 Sparse algorithms

• 12.4 Enrichments

◦ 12.4.1 Optimizing matrix-matrix multiplication - We’ve got a MOOC for that!
◦ 12.4.2 Deriving blocked algorithms - We’ve got a MOOC for that too!
◦ 12.4.3 Parallel high-performance algorithms

• 12.5 Wrap Up

◦ 12.5.1 Additional homework
◦ 12.5.2 Summary

http://ulaff.net


WEEK 12. ATTAINING HIGH PERFORMANCE 438

12.1.3 What you will learn
This week, you explore how algorithms and architectures interact.

Upon completion of this week, you should be able to

• Amortize the movement of data between memory layers over useful computation to overcome
the discrepency between the speed of floating point computation and the speed with which
data can be moved in and out of main memory.

• Block matrix-matrix multiplication for multiple levels of cache.

• Cast matrix factorizations as blocked algorithms that cast most computation in terms of
matrix-matrix operations.

• Recognize that the performance of some algorithms is inherently restricted by the memory
operations that must be performed.

• Utilize interfaces to high-performance software libraries.

• Find additional resources for further learning.

12.2 Linear Algebra Building Blocks

12.2.1 A simple model of the computer
The following is a relevant video from our course "LAFF-On Programming for High Performance"
(Unit 2.3.1).

The good news about modern processors is that they can perform floating point operations
at very high rates. The bad news is that "feeding the beast" is often a bottleneck: In order to
compute with data, that data must reside in the registers of the processor and moving data from
main memory into a register requires orders of magnitude more time than it does to then perform
a floating point computation with that data.

In order to achieve high performance for the kinds of operations that we have encountered,
one has to have a very high-level understanding of the memory hierarchy of a modern processor.
Modern architectures incorporate multiple (compute) cores in a single processor. In our discussion,
we blur this and will talk about the processor as if it has only one core.

It is useful to view the memory hierarchy of a processor as a pyramid.

http://www.cs.utexas.edu/users/flame/laff/pfhp/week2-a-simple-model-of-memory-and-registers.html
http://www.cs.utexas.edu/users/flame/laff/pfhp/week2-a-simple-model-of-memory-and-registers.html
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At the bottom of the pyramid is the computer’s main memory. At the top are the processor’s
registers. In between are progressively larger cache memories: the L1, L2, and L3 caches. (Some
processors now have an L4 cache.) To compute, data must be brought into registers, of which there
are only a few. Main memory is very large and very slow. The strategy for overcoming the cost (in
time) of loading data is to amortise that cost over many computations while it resides in a faster
memory layer. The question, of course, is whether an operation we wish to perform exhibits the
opportunity for such amortization.

Ponder This 12.2.1.1 For the processor in your computer, research the number of registers it
has, and the sizes of the various caches.

12.2.2 Opportunities for optimization
We now examine the opportunity for the reuse of data for different linear algebra operations that
we have encountered. In our discussion, we assume that scalars, the elements of vectors, and the
elements of matrices are all stored as floating point numbers and that arithmetic involves floating
point computation.

Example 12.2.2.1 Consider the dot product

ρ := xT y + ρ,

where ρ is a scalar, and x and y are vectors of size m.
• How many floating point operations (flops) are required to compute this operation?
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• If the scalar ρ and the vectors x and y are initially stored in main memory and are written
back to main memory, how many reads and writes (memops) are required? (Give a reasonably
tight lower bound.)

• What is the ratio of flops to memops?

Solution.

• How many floating point operations are required to compute this operation?
The dot product requires m multiplies and m additions, for a total of 2m flops.

• If the scalar ρ and the vectors x and y are initially stored in main memory and (if neces-
sary) are written back to main memory, how many reads and writes (memory operations) are
required? (Give a reasonably tight lower bound.)

◦ The scalar ρ is moved into a register and hence only needs to be read once and written
once.
◦ The m elements of x and m elements of y must be read (but not written).

Hence the number of memops is 2(m+ 1) ≈ 2m.

• What is the ratio of flops to memops?

2m flops
2(m+ 1) memops ≈ 1 flops

memops .

We conclude that the dot product does not exhibit an opportunity for the reuse of most data. �
Homework 12.2.2.1 Consider the axpy operation

y := αx+ y,

where α is a scalar, and x and y are vectors of size m.
• How many floating point operations (flops) are required to compute this operation?

• If the scalar α and the vectors x and y are initially stored in main memory and are written
back to main memory (if necessary), how many reads and writes (memops) are required?
(Give a reasonably tight lower bound.)

• What is the ratio of flops to memops?

[Solution]
The time for performing a floating point operation is orders of magnitude less than that of

moving a floating point number from and to memory. Thus, for an individual dot product or axpy
operation, essentially all time will be spent in moving the data and the attained performance, in
GFLOPS, will be horrible. The important point is that there just isn’t much reuse of data when
executing these kinds of "vector-vector" operations.

Example 12.2.2.1 and Homework 12.2.2.1 appear to suggest that, for example, when computing
a matrix-vector multiplication, one should do so by taking dot products of rows with the vector
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rather than by taking linear combinations of the columns, which casts the computation in terms
of axpy operations. It is more complicated than that: the fact that the algorithm that uses axpys
computes with columns of the matrix, which are stored contiguously when column-major order is
employed, makes accessing memory cheaper.

Homework 12.2.2.2 Consider a matrix-vector multiplication

y := Ax+ y,

where A is m×m and x and y are vectors of appropriate size.
• How many floating point operations (flops) are required to compute this operation?

• If the matrix and vectors are initially stored in main memory and are written back to main
memory (if necessary), how many reads and writes (memops) are required? (Give a reasonably
tight lower bound.)

• What is the ratio of flops to memops?

[Solution]
What we notice is that there is a (slighly) better opportunity for reuse of data when computing

a matrix-vector multiplication than there is when computing a dot product or axpy operation. Can
the lower bound on data movement that is given in the solution be attained? If you bring y into,
for example, the L1 cache, then it only needs to be read from main memory once and is kept in a
layer of the memory that is fast enough to keep up with the speed of floating point computation
for the duration of the matrix-vector multiplication. Thus, it only needs to be read and written
once from and to main memory. If we then compute y := Ax+ y by taking linear combinations of
the columns of A, staged as axpy operations, then at the appropriate moment an element of x with
which an axpy is performed can be moved into a register and reused. This approach requires each
element of A to be read once, each element of x to be read once, and each element of y to be read
and written (from and to main memory) once. If the vector y is too large for the L1 cache, then
it can be partitioned into subvectors that do fit. This would require the vector x to be read into
registers multiple times. However, x itself might then be reused from one of the cache memories.

Homework 12.2.2.3 Consider the rank-1 update

A := xyT +A,

where A is m×m and x and y are vectors of appropriate size.
• How many floating point operations (flops) are required to compute this operation?

• If the matrix and vectors are initially stored in main memory and are written back to main
memory (if necessary), how many reads and writes (memops) are required? (Give a reasonably
tight lower bound.)

• What is the ratio of flops to memops?

[Solution]
What we notice is that data reuse when performing a matrix-vector multiplication with anm×m

matrix is twice as favorable as is data reuse when performing a rank-1 update. Regardless, there
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isn’t much reuse and since memory operations are much slower than floating point operations in
modern processors, none of the operations discussed so far in the unit can attain high performance
(if the data starts in main memory).

Homework 12.2.2.4 Consider the matrix-matrix multiplication

C := AB + C,

where A, B, and C are all m×m matrices.
• How many floating point operations (flops) are required to compute this operation?

• If the matrices are initially stored in main memory and (if necessary) are written back to main
memory, how many reads and writes (memops) are required? (Give a simple lower bound.)

• What is the ratio of flops to memops for this lower bound?

[Solution]
The lower bounds that we give in this unit are simple, but useful. There is actually a tight lower

bound on the number of reads and writes that must be performed by a matrix-matrix multiplication.
Details can be found in

• [54] Tyler Michael Smith, Bradley Lowery, Julien Langou, Robert A. van de Geijn, A Tight
I/O Lower Bound for Matrix Multiplication, arxiv.org:1702.02017v2, 2019. (To appear in
ACM Transactions on Mathematical Software.)

The bottom line: operations like matrix-matrix multiplication exhibit the opportunity for reuse
of data.

12.2.3 Basics of optimizing matrix-matrix multiplication
Let us again consider the computation

C := AB + C,

where A, B, and C are m×m matrices. If m is small enough, then we can read the three matrices
into the L1 cache, perform the operation, and write the updated matrix C back to memory. In this
case,

• During the computation, the matrices are in a fast memory (the L1 cache), which can keep
up with the speed of floating point computation and

• The cost of moving each floating point number from main memory into the L1 cache is
amortized over m/2 floating point computations.

If m is large enough, then the cost of moving the data becomes insignificant. (If carefully orches-
trated, some of the movement of data can even be overlapped with computation, but that is beyond
our discussion.)

We immediately notice there is a tension: m must be small so that all three matrices can fit in
the L1 cache. Thus, this only works for relatively small matrices. However, for small matrices, the
ratio m/2 may not be favorable enough to offset the very slow main memory.

https://arxiv.org/abs/1702.02017v2
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Fortunately, matrix-matrix multiplication can be orchestrated by partitioning the matrices that
are involved into submatrices, and computing with these submatrices instead. We recall that if we
partition

C =


C0,0 C0,1 · · · C0,N−1
C1,0 C1,1 · · · C1,N−1
...

...
...

CM−1,0 CM−1,1 · · · CM−1,N−1

 ,

A =


A0,0 A0,1 · · · A0,K−1
A1,0 A1,1 · · · A1,K−1
...

...
...

AM−1,0 AM−1,1 · · · AM−1,K−1

 ,
and

B =


B0,0 B0,1 · · · B0,N−1
B1,0 B1,1 · · · B1,N−1
...

...
...

BK−1,0 BK−1,1 · · · BK−1,N−1

 ,
where Ci,j is mi × nj , Ai,p is mi × kp, and Bp,j is kp × nj , with

∑M−1
i=0 mi = m,

∑N−1
j=0 ni = n, and∑K−1

p=0 ki = k, then

Ci,j :=
K−1∑
p=0

Ai,pBp,j + Ci,j .

If we choose each mi, nj , and kp small enough, then the submatrices fit in the L1 cache. This still
leaves us with the problem that these sizes must be reasonably small if the ratio of flops to memops
is to be sufficient. The answer to that is to block for multiple levels of caches.

12.2.4 Optimizing matrix-matrix multiplication, the real story
High-performance implementations of matrix-matrix multiplication (and related operations) block
the computation for multiple levels of caches. This greatly reduces the overhead related to data
movement between memory layers. In addition, at some level the implementation pays very careful
attention to the use of vector registers and vector instructions so as to leverage parallelism in the
architecture. This allows multiple floating point operations to be performed simultaneous within a
single processing core, which is key to high performance on modern processors.

Current high-performance libraries invariably build upon the insights in the paper

• [53] Kazushige Goto and Robert van de Geijn, Anatomy of High-Performance Matrix Mul-
tiplication, ACM Transactions on Mathematical Software, Vol. 34, No. 3: Article 12, May
2008.

This paper is generally considered a "must read" paper in high-performance computing. The tech-
niques in that paper were "refactored" (carefully layered so as to make it more maintainable) in
BLIS, as described in

• [56] Field G. Van Zee and Robert A. van de Geijn, BLIS: A Framework for Rapidly Instan-
tiating BLAS Functionality, ACM Journal on Mathematical Software, Vol. 41, No. 3, June
2015.
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The algorithm described in both these papers can be captured by the picture in Figure 12.2.4.1.

Picture adapted from [55]. Click to enlarge. PowerPoint source (step-by-step).

Figure 12.2.4.1 Blocking for multiple levels of cache, with packing.
This is not the place to go into great detail. Once again, we point out that the interested learner

will want to consider our Massive Open Online Course titled "LAFF-On Programming for High
Performance" [42]. In that MOOC, we illustrate issues in high performance by exploring how high
performance matrix-matrix multipication is implemented in practice.

images/Week12/BLISPicturePackAnimated.pptx
http://www.ulaff.net
http://www.ulaff.net
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12.2.5 BLAS and BLIS
To facilitate portable high performance, scientific and machine learning software is often written
in terms of the Basic Linear Algebra Subprograms (BLAS) interface [25] [15] [14]. This interface
supports widely-used basic linear algebra functionality. The idea is that if optimized implemen-
tations of this interface are available for different target computer architectures, then a degree of
portable high performance can be achieved by software that is written in terms of this interface.
The interface was designed for the Fortran programming language starting in the 1970s. In our
discussions, we will also show how to interface to it from the C programming language. As we
discuss the BLAS, it may be useful to keep the "Quick Reference Guide" [9] to this interface handy.

In addition, our own BLAS-like Library Instantiation Software (BLIS) [56][51] is not only a
framework for the rapid instantiation of high-performing BLAS through the traditional BLAS
interface, but also an extended interface that, we believe, is more natural for C programming. We
refer to this interface as the BLIS typed interface [52], to distinguish it from the traditional
BLAS interface and the object based BLIS Object API.

A number of open source and vendors high-performance implementations of the BLAS interface
are availabe. For example,

• Our BLAS-like Library Instantiation Software (BLIS) is a widely-used open source imple-
mentation of the BLAS for modern CPUs. It underlies AMD’s Optimizing CPU Libraries
(AOCL).

• Arm’s Arm Performance Libraries.

• Cray’s Cray Scientific and Math Libraries (CSML).

• IBM’s Engineering and Scientific Subroutine Library (ESSL).

• Intel’s Math Kernels Library (MKL).

• NVIDIA’s cuBLAS.

12.2.5.1 Level-1 BLAS (vector-vector functionality)

The original BLAS [25] interface was proposed in the 1970s, when vector supercomputers like the
Cray 1 and Cray 2 reigned supreme. On this class of computers, high performance was achieved
if computation could be cast in terms of vector-vector operations with vectors that were stored
contiguous in memory (with "stride one"). These are now called "level-1 BLAS" because they
perform O(n) computation on O(n) data (when the vectors have size n). The "1" refers to O(n) =
O(n1) computation.

We here list the vector-vector functionality that is of importance in this course, for the case
where we compute with double precision real-valued floating point numbers.

• DOT: Returns xT y, the dot product of real-valued x and y.

◦ Traditional BLAS interface:
FUNCTION DDOT( N, X, INCX, Y, INCY )

◦ C:

http://www.netlib.org/blas/blasqr.pdf
https://github.com/flame/blis/blob/master/docs/BLISTypedAPI.md
https://github.com/flame/blis/blob/master/docs/BLISObjectAPI.md
https://github.com/flame/blis
https://developer.amd.com/amd-aocl/blas-library/
https://developer.amd.com/amd-aocl/blas-library/
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/arm-performance-libraries
https://pubs.cray.com/content/S-2529/17.05/xctm-series-programming-environment-user-guide-1705-s-2529/cray-scientific-and-math-libraries-csml
https://www.ibm.com/support/knowledgecenter/en/SSFHY8/essl_welcome.html
https://software.intel.com/en-us/mkl
https://developer.nvidia.com/cublas
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double ddot_( int* n, double* x, int* incx, double* y, int* incy );

◦ BLIS typed interface for computing ρ := αxT y + βρ (details):
void bli_ddotxv( conj_t conjx, conj_t conjy, dim_t n,

double* alpha, double* x, inc_t incx, double* y, inc_t incy,
double* beta, double* rho );

• AXPY: Updates y := αx+ y, the scaled vector addition of x and y.

◦ Traditional BLAS interface:
SUBROUTINE DAXPY( N, ALPHA, X, INCX, Y, INCY )

◦ C:
void daxpy_( int* n, double* alpha, double* x, int* incx,

double* y, int* incy );

◦ BLIS typed interface (details):
void bli_daxpyf( conj_t conjx, dim_t n,

double* alpha, double* x, inc_t incx, double* y, inc_t incy );

• IAMAX: Returns the index of the element of x with maximal absolute value (indexing starts
at 1).

◦ Traditional BLAS interface:
FUNCTION IDAMAX( N, X, INCX )

◦ C:
int idamax_( int* n, double* x, int* incx );

◦ BLIS typed interface (details):
void bli_damaxv( dim_t n, double* x, inc_t incx, dim_t* index );

• NRM2: Returns ‖x‖2, the 2-norm of real-valued x.

◦ Traditional BLAS interface:
FUNCTION DNRM2( N, X, INCX )

◦ C:
double dnrm2_( int* n, double* x, int* incx );

◦ BLIS typed interface (details):
void bli_dnormfv( dim_t n, double* x, inc_t incx, double* norm );

Versions of these interfaces for single precision real, single precision complex, and double precision
complex can be attained by replacing the appropriate D with S, C, or Z in the call to the Fortran
BLAS interface, or d with s, c, or z in the C and BLIS typed interfaces.

https://github.com/flame/blis/blob/master/docs/BLISTypedAPI.md#dotxv
https://github.com/flame/blis/blob/master/docs/BLISTypedAPI.md#axpyv
https://github.com/flame/blis/blob/master/docs/BLISTypedAPI.md#amaxv
https://github.com/flame/blis/blob/master/docs/BLISTypedAPI.md#normfv
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12.2.5.2 Level-2 BLAS (matrix-vector functionality)

In addition to providing portable high performance, a second purpose of the BLAS is to improve
readability of code. Many of the algorithms we have encountered are cast in terms of matrix-vector
operations like matrix-vector multiplication and the rank-1 update. By writing the code in terms
of routines that implement such operations, the code more closely resembles the algorithm that
is encoded. The level-2 BLAS [15] interface provides matrix-vector functionality. The "level-2"
captures that they perform O(n2) computation (on O(n2) data), when the matrix invoved is of size
n× n.

We here list the the matrix-vector operations that are of importance in this course, for the case
where we compute with double precision real-valued floating point numbers.

• GEMV: Updates y := αop(A)x+ βy, where op(A) indicates whether A is to be transposed.

◦ Traditional BLAS interface:
SUBROUTINE DGEMV( TRANSA, M, N, ALPHA, A, LDA, X, INCX,

BETA, Y, INCY )

◦ C:
void dgemv_( char* transa, int* m, int* n,

double* alpha, double* a, int* lda, double* x, int* incx,
double* beta, double* y, int* incy );

◦ BLIS typed interface for computing y := αopA(A)opx(x) + βy (details):
void bli_dgemv( trans_t transa, conj_t conjx, dim_t m, dim_t n,

double* alpha, double* A, inc_t rsa, inc_t csa,
double* x, inc_t incx, double* beta, double* y, inc_t incy );

• SYMV: Updates y := αAx+βy, where A is symmetric and only the upper or lower triangular
part is stored.

◦ Traditional BLAS interface:
SUBROUTINE DSYMV( UPLO, N, ALPHA, A, LDA, X, INCX,

BETA, Y, INCY )

◦ C:
void dsymv_( char* uplo, int* n,

double* alpha, double* a, int* lda, double* x, int* incx,
double* beta, double* y, int* incy );

◦ BLIS typed interface (details):
void bli_dhemv( uplo_t uploa, conj_t conja, conj_t conjx, dim_t n,

double* alpha, double* A, inc_t rsa, inc_t csa,
double* x, inc_t incx, double* beta, double* y, inc_t incy );

• TRSV: Updates x := αop(A)−1x, where op(A) indicates whether A is to be transposed and
A is either (unit) upper or lower triangular.

◦ Traditional BLAS interface:
SUBROUTINE DTRSV( UPLO, TRANSA, DIAG, N, A, LDA, X, INCX )

https://github.com/flame/blis/blob/master/docs/BLISTypedAPI.md#gemv
https://github.com/flame/blis/blob/master/docs/BLISTypedAPI.md#symv
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◦ C:
void dtrsv_( char* uplo, char* transa, char* diag, int* n,

double* a, int* lda, double* x, int* incx )

◦ BLIS typed interface (details):
void bli_dtrsv( uplo_t uploa, trans_t transa, diag_t diag, dim_t n,

double* alpha, double* A, inc_t rsa, inc_t csa,
double* x, inc_t incx );

• GER: Updates A := αxyT +A:

◦ Traditional BLAS interface:
SUBROUTINE DGER( M, N, ALPHA, X, INCX, Y, INCY, A, LDA )

◦ C:
void dger_( int* m, int* n, double* alpha, double* x, int* incx,

double* y, int* incy, double* a, int* lda );

◦ BLIS typed interface (details):
void bli_dger( conj_t conjx, conj_t conjy, dim_t m, dim_t n,

double* alpha, double* x, inc_t incx, double* y, inc_t incy,
double* A, inc_t rsa, inc_t csa );

• SYR: Updates A := αxxT + A, where A is symmetric and stored in only the upper or lower
triangular part of array A:

◦ Traditional BLAS interface:
SUBROUTINE DSYR( UPLO, N, ALPHA, X, INCX, A, LDA )

◦ C:
void dsyr_( char* uplo, int* n, double* alpha, double* x, int* incx,

double* a, int* lda );

◦ BLIS typed interface (details):
void bli_dher( uplo_t uploa, conj_t conjx, dim_t n,

double* alpha, double* x, inc_t incx, double* A, inc_t rsa, inc_t csa );

• SYR2: Updates A := α(xyT + yxT ) +A , where A is symmetric and stored in only the upper
or lower triangular part of array A:

◦ Traditional BLAS interface:
SUBROUTINE DSYR2( UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA )

◦ C:
void dsyr2_( char* uplo, int* n, double* alpha, double* x, int* incx,

double* y, int* incy, double* a, int* lda );

◦ BLIS typed interface (details):
void bli_dher2( uplo_t uploa, conj_t conjx, conj_t conjy, dim_t n,

double* alpha, double* x, inc_t incx, double* y, inc_t incy,
double* A, inc_t rsa, inc_t csa );

https://github.com/flame/blis/blob/master/docs/BLISTypedAPI.md#trsv
https://github.com/flame/blis/blob/master/docs/BLISTypedAPI.md#ger
https://github.com/flame/blis/blob/master/docs/BLISTypedAPI.md#her
https://github.com/flame/blis/blob/master/docs/BLISTypedAPI.md#her2
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12.2.5.3 Level-3 BLAS (matrix-matrix functionality)

To attain high performance, computation has to be cast in terms of operations that reuse data
many times (for many floating point operations). Matrix-matrix operations that are special cases
of matrix-matrix multiplication fall into this category. The strategy is to cast higher level linear
algebra functionality can be implemented so that most computation is in terms of matrix-matrix
operations by calling the level-3 BLAS routines [14]. The "level-3" captures that these perform
O(n3) computation (on O(n2) data), when the matrices involved are of size n× n.

We here list the the matrix-matrix operations that are of importance in this course, for the case
where we compute with double precision real-valued floating point numbers.

• GEMM: Updates C := αopA(A)opB(B) + βC, where opA(A) and opA(A) indicate whether A
and/or B are to be transposed.

◦ Traditional BLAS interface:
SUBROUTINE DGEMM( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,

BETA, C, LDC )

◦ C:
void dgemm_( char* transa, char* transb, int* m, int* n, int* k,

double* alpha, double* a, int* lda, double* b, int* ldb,
double* beta, double* c, int* ldc );

◦ BLIS typed interface for computing C := αopA(A)opB(B) + βC (details):
void bli_dgemm( trans_t transa, trans_t transb,

dim_t m, dim_t n, dim_t k,
double* alpha, double* A, inc_t rsa, inc_t csa,
double* B, inc_t rsB, inc_t csb,
double* beta, double* C, inc_t rsc, inc_t csc );

• SYMM: Updates C := αAB + βC or C := αBA + βC, where A is symmetric and only the
upper or lower triangular part is stored.

◦ Traditional BLAS interface:
SUBROUTINE DSYMM( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,

BETA, C, LDC )

◦ C:
void dsymm_( char* uplo, char* uplo, int* m, int* n,

double* alpha, double* a, int* lda, double* b, int* ldb,
double* beta, double* c, int* ldc );

◦ BLIS typed interface (details):
void bli_dhemm( side_t sidea, uplo_t uploa, conj_t conja, trans_t transb,

dim_t m, dim_t n, double* alpha, double* A, inc_t rsa, inc_t csa,
double* B, inc_t rsb, inc_t csb,
double* beta, double* C, inc_t rsc, inc_t csc );

• TRSM: Updates B := αop(A)−1B or B := αBop(A)−1, where op(A) indicates whether A is
to be transposed and A is either (unit) upper or lower triangular.

https://github.com/flame/blis/blob/master/docs/BLISTypedAPI.md#gemm
https://github.com/flame/blis/blob/master/docs/BLISTypedAPI.md#symm
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◦ Traditional BLAS interface:
SUBROUTINE DTRSM( SIDE, UPLO, TRANSA, DIAG, M, N,

ALPHA, A, LDA, B, LDB, C, LDC )

◦ C:
void dtrsm_( char* side, char* uplo, char* transa, char* diag,

int* m, int*, n, double *alpha, double* a, int* lda,
double* b, int* ldb )

◦ BLIS typed interface (details):
void bli_dtrsm( side_t sidea, uplo_t uploa, trans_t transa, diag_t diag,

dim_t m, dim_t n, double* alpha, double* A, inc_t rsa, inc_t csa,
double* B, inc_t rsb, inc_t csb );

• SYRK: Updates C := αAAT + βC or C := αATA+ βC, where C is symmetric and stored in
only the upper or lower triangular part of array C:

◦ Traditional BLAS interface:
SUBROUTINE DSYRK( UPLO, TRANS, N, K, ALPHA, A, LDA,

BETA, C, LDC )

◦ C:
void dsyrk_( char* uplo, char* trans, int* n, int* k,

double* alpha, double* A, int* lda, double* beta, double* C, int* ldc );

◦ BLIS typed interface (details):
void bli_dherk( uplo_t uploc, transt_t transa, dim_t n, dim_t k,

double* alpha, double* A, inc_t rsa, inc_t csa
double* beta, double* C, inc_t rsc, inc_t csc );

• SYR2K: Updates C := α(ABT + BAT ) + βC or C := α(ATB + BTA) + βC , where C is
symmetric and stored in only the upper or lower triangular part of array C:

◦ Traditional BLAS interface:
SUBROUTINE DSYR2K( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB,

BETA, C, LDC )

◦ C:
void dsyr2k_( char* uplo, char *trans, int* n, int* k, double* alpha, double* A, int* lda,

double* b, int* ldb, double* beta, double* c, int* ldc );

◦ BLIS typed interface (details):
void bli_dher2k( uplo_t uploc, trans_t transab, dim_t n, dim_t k,

double* alpha, double* A, inc_t rsa, inc_t csa,
double* B, inc_t rsc, inc_t csc,
double* beta, double* C, inc_t rsc, inc_t csc );
);

These operations are often of direct importance to scientific or machine learning applications.
In the next next section, we show how higher-level linear algebra operations can be cast in terms
of this basic functionality.

https://github.com/flame/blis/blob/master/docs/BLISTypedAPI.md#trsm
https://github.com/flame/blis/blob/master/docs/BLISTypedAPI.md#herk
https://github.com/flame/blis/blob/master/docs/BLISTypedAPI.md#her2k
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12.3 Casting Computation in Terms of Matrix-Matrix Multiplica-
tion

12.3.1 Blocked Cholesky factorization
In the following video, we demonstrate how high-performance algorithms can be quickly translated
to code using the FLAME abstractions. It is a long video that was recorded in a single sitting and
has not been edited. (You need not watch the whole video if you "get the point.") The purpose
is to convey the importance of programming in a way that reflects how one naturally derives and
explains an algorithm. In the next unit, you will get to try such implementation yourself, for the
LU factorization.

YouTube: https://www.youtube.com/watch?v=PJ6ektH977o

• The notes to which this video refers can be found at http://www.cs.utexas.edu/users/flame/

Notes/NotesOnChol.pdf.

• You can find all the implementations that are created during the video in the directory
Assignments/Week12/Chol/. They have been updated slightly since the video was created in
2011. In particular, the Makefile was changed so that now the BLIS implementation of the
BLAS is used rather than OpenBLAS.

• The Spark tool that is used to generate code skeletons can be found at http://www.cs.utexas.
edu/users/flame/Spark/.

• The following reference may be useful:

◦ A Quick Reference Guide to the FLAME API to BLAS functionality can be found at
http://www.cs.utexas.edu/users/flame/pubs/FLAMEC-BLAS-Quickguide.pdf.
◦ [46] Field Van Zee, libflame: The Complete Reference, http://www.lulu.com, 2009.

12.3.2 Blocked LU factorization
Homework 12.3.2.1 Consider the LU factorization A = LU , where A is an m × m matrix,
discussed in Subsection 5.1.1 and subsequent units. The right-looking algorithm for computing it
is given by

https://www.youtube.com/watch?v=PJ6ektH977o
http://www.cs.utexas.edu/users/flame/Notes/NotesOnChol.pdf
http://www.cs.utexas.edu/users/flame/Notes/NotesOnChol.pdf
http://www.cs.utexas.edu/users/flame/Spark/
http://www.cs.utexas.edu/users/flame/Spark/
http://www.cs.utexas.edu/users/flame/pubs/FLAMEC-BLAS-Quickguide.pdf
http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html#Books
http://www.lulu.com
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A = LU(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ATL) < n(A)(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


a21 := a21/α11
A22 := A22 − a21a

T
12(

ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


endwhile

Figure 12.3.2.1 Right-looking LU factorization algorithm.
For simplicity, we do not consider pivoting yet.

• How many floating point operations (flops) are required to compute this operation?

• If the matrix is initially stored in main memory and is written back to main memory, how
many reads and writes (memops) are required? (Give a simple lower bound.)

• What is the ratio of flops to memops for this lower bound?

[Solution]
The insight is that the ratio of computation to memory operations, m/3, does not preclude

high performance. However, the algorithm in Figure 12.3.2.1 casts most computation in terms of
rank-1 updates and hence will not achieve high performance. The reason is that the performance
of each of those individual updates is limited by the unfavorable ratio of floating point operations
to memory operations.

Just like it is possible to rearrange the computations for a matrix-matrix multiplication in order
to reuse data that is brought into caches, one could carefully rearrange the computations needed to
perform an LU factorization. While one can do so for an individual operation, think of the effort
that this would involve for every operation in (dense) linear algebra. Not only that, this effort
would likely have to be repeated for new architectures as they become available.

Remark 12.3.2.2 The key observation is that if we can cast most computation for the LU fac-
torization in terms of matrix-matrix operations (level-3 BLAS functionality) and we link an im-
plementation to a high-performance library with BLAS functionality, then we can achieve portable
high performance for our LU factorization algorithm.

Let us examine how to cast most computation for the LU factorization in terms of matrix-matrix
operations. You may want to start by reviewing the discussion of how to derive the (unblocked)
algorithm in Figure 12.3.2.1, in Subsection 5.2.2, which we repeat below on the left. The derivation
of a so-called blocked algorithm is given to its right.
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Partition

A→
(
α11 aT12
a21 A22

)
, L→

(
1 0
l21 L22

)
,

and U→
(
υ11 uT12
0 U22

)
.

Partition

A→
(
A11 A12
A21 A22

)
, L→

(
L11 0
L21 L22

)
,

and U→
(
U11 U12
0 U22

)
,

where A11, L11, and U11 are b× b.
Plug partitioned matrices into A = LU .(

α11 aT12
a21 A22

)

=
(

1 0
l21 L22

)(
υ11 uT12
0 U22

)
︸ ︷︷ ︸(

υ11 uT12
υ11l21 l21u

T
12 + L22U22

)
.

Plug partitioned matrices into A = LU .(
A11 A12
A21 A22

)

=
(
L11 0
L21 L22

)(
U11 U12
0 U22

)
︸ ︷︷ ︸(
L11U11 L11U12
L21U11 L21U12 + L22U22

)
.

Equate the submatrices and manipulate

• α11 := υ11 = α11 (No-op).

• aT12 := uT12 = aT12 (No-op).

• a21 := l21 = a21/υ11 = a21/α11.

• A22 := A22 − l21u
T
12 = A22 − a21a

T
12.

Equate the submatrices and manipulate

• A11 := L\U11 (overwrite A11 with its LU
factorization).

• A12 := U12 = L−1
11 A12 (triangular solve

with multiple right-hand sides).

• A21 := L21 = A21U
−1
11 (triangular solve

with multiple right-hand sides).

• A22 := A22 − L21U12 = A22 − A21A12
(matrix-matrix multiplication).

The derivation on the left yields the algorithm
in Figure 12.3.2.1.

The derivation on the right yields the algorithm
in Figure 12.3.2.3.
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A = LU-blk(A, b)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ATL) < n(A)
choose block size b(

ATL ATR
ABL ABR

)
→

 A00 A01 A02
A10 A11 A12
A20 A21 A22


A11 is (at most) b× b
A11 := L\U11 = LU(A11) LU factorization
A12 := U12 = L−1

11 A12 TRSM
A21 := A21U

−1
11 TRSM

A22 := A22 −A21A12 GEMM(
ATL ATR
ABL ABR

)
←

 A00 A01 A02
A10 A11 AT12
A20 A21 A22


endwhile

Figure 12.3.2.3 Blocked right-looking LU factorization algorithm.
Let us comment on each of the operations in Figure 12.3.2.3.

• A11 := L\U11 = LU(A11) indicates that we need to compute the LU factorization of A11,
overwriting that matrix with the unit lower triangular matrix L11 and upper triangular matrix
U11. Since A11 is b× b and we usually take b � m, not much of the total computation is in
the operation, and it can therefore be computed with, for example, an unblocked algorithm.
Also, if it is small enough, it will fit in one of the smaller caches and hence the memory
overhead of performing the rank-1 updates will not be as dramatic.

• A12 := U12 = L−1
11 A12 is an instance of solving LX = B with unit lower triangular matrix L

for X. This is referred to as a triangular solve with multiple right-hand sides (TRSM)
since we can partition B and X by columns so that

L
(
x0 x1 · · ·

)
︸ ︷︷ ︸(
Lx0 Lx1 · · ·

) =
(
b0 b1 · · ·

)
,

and hence for each column of the right-hand side, bj , we need to solve a triangular system,
Lxj = bj .

• A21 := L21 = A21U
−1
11 is an instance of solving XU = B, where U is upper triangular. We
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notice that if we partition X and B by rows, then
x̃T0
x̃T1
...

U
︸ ︷︷ ︸

x̃T0 U

x̃T1 U
...



=


b̃T0
b̃T1
...



and we recognize that each row, x̃Ti , is computed from x̃Ti U = b̃Ti or, equivalently, by solving
UT (x̃Ti )T = (b̃Ti )T . We observe it is also a triangular solve with multiple right-hand sides
(TRSM).

• The update A22 := A22 −A21A12 is an instance of C := αAB + βC, where the k (inner) size
is small. This is often referred to as a rank-k update.

In the following homework, you will determine that most computation is now cast in terms of the
rank-k update (matrix-matrix multiplication).

Homework 12.3.2.2 For the algorithm in Figure 12.3.2.3, analyze the (approximate) number of
flops that are performed by the LU factorization of A11 and updates of A21 and A12, aggregated
over all iterations. You may assume that the size of A, m, is an integer multiple of the block size
b, so that m = Kb. Next, determine the ratio of the flops spent in the indicated operations to the
total flops. [Solution]

From this last exercise, we learn that if b is fixed and m gets large, essentially all computation
is in the update A22 := A22 −A21A12, which we know can attain high performance.

Homework 12.3.2.3 In directory Assignments/Week12/matlab/, you will find the following files:
• LU_right_looking.m: an implementation of the unblocked right-looking LU factorization.

• LU_blk_right_looking.m: A code skeleton for a function that implements a blocked LU
factorization.

[ A_out ] = LU_blk_right_looking( A, nb_alg )

performs a blocked LU factorization with block size b equal to nb_alg, overwriting A_out with
L and U .

• time_LU.m: A test routine that tests the various implementations.

These resources give you the tools to implement and test the blocked LU factorization.

1. Translate the blocked LU factorization in Figure 12.3.2.3 into code by completing LU_blk_right_looking.m.

2. Test your implementation by executing time_LU.m.

3. Once you get the right answer, try different problem sizes to see how the different implemen-
tations perform. Try m = 500, 1000, 1500, 2000.

On the discussion forum, discuss what you think are some of the reasons behind the performance
you observe. [Hint] [Solution]

Assignments/Week12/matlab/LU_right_looking.m
Assignments/Week12/matlab/time_LU.m
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Homework 12.3.2.4 For this exercise you will implement the unblocked and blocked algorithm
in C. To do so, you need to install the BLAS-like Library Instantiation Software (BLAS) (see
Subsubsection 0.2.4.1) and the libflame library (see Subsubsection 0.2.4.2). Even if you have not
previously programmed in C, you should be able to follow along.

In Assignments/Week12/LU/FLAMEC/, you will find the following files:
• LU_unb_var5.c : a skeleton for implementing the unblocked right-looking LU factorization

(which we often call "Variant 5").

• LU_blk_var5.c : a skeleton for implementing the blocked right-looking LU factorization.

• REF_LU.c: A simple triple-nested loop implementation of the algorithm.

• driver.c: A "driver" for testing various implementations. This driver creates matrices of
different sizes and checks the performance and correctness of the result.

• Makefile: A "makefile" that compiles, links, and executes. To learn about Makefiles, you may
want to check Wikipedia. (search for "Make" and choose "Make (software)".)

Our libflame library allows a simple translation from algorithms that have been typeset with the
FLAME notation (like those in Figure 12.3.2.1 and Figure 12.3.2.3). The BLAS functionality
discussed earlier in this week is made available through an interface that hides details like size,
stride, etc. A Quick Reference Guide for this interface can be found at http://www.cs.utexas.edu/

users/flame/pubs/FLAMEC-BLAS-Quickguide.pdf.
With these resources, complete

• LU_unb_var5.c and

• LU_blk_var5.c.

You can skip the testing of LU_blk_var5 by changing the appropriate TRUE to FALSE in driver.c.
Once you have implemented one or both, you can test by executing make test in a terminal

session (provided you are in the correct directory). This will compile and link, yieding the executable
driver.x, and will then execute this driver. The output is redirected to the file output.m. Here is
a typical line in the output:

data_REF( 10, 1:2 ) = [ 2000 2.806644e+00 ];
data_FLAME( 10, 1:2 ) = [ 2000 4.565624e+01 ];
data_unb_var5( 10, 1:3 ) = [ 2000 3.002356e+00 4.440892e-16];
data_blk_var5( 10, 1:3 ) = [ 2000 4.422223e+01 7.730705e-12];

• The first line reports the performance of the reference implementation (a simple triple-nested
loop implementation of LU factorization without pivoting). The last number is the rate of
computation in GFLOPS.

• The second line reports the performance of the LU factorization without pivoting that is part
of the libflame library. Again, the last number reports the rate of computation in GFLOPS.

• The last two lines report the rate of performance (middle number) and difference of the
result relative to the reference implementation (last number), for your unblocked and blocked
implementations. It is important to check that the last number is small. For larger problem
sizes, the reference implementation is not executed, and this difference is not relevant.

https://en.wikipedia.org/wiki/Make_(software)
http://www.cs.utexas.edu/users/flame/pubs/FLAMEC-BLAS-Quickguide.pdf
http://www.cs.utexas.edu/users/flame/pubs/FLAMEC-BLAS-Quickguide.pdf
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The fact that the blocked version shows a larger difference than does the unblocked is not
significant here. Both have roundoff error in the result (as does the reference implementation)
and we cannot tell which is more accurate.

You can cut and past the output.m file into matlab to see the performance data presented as a
graph.
Ponder This 12.3.2.5 In Subsection 5.5.1, we discuss five unblocked algorithms for computing
LU factorization. Can you derive the corresponding blocked algorithms? You can use the materials
in Assignments/Week12/LU/FLAMEC/ to implement and test all five.

12.3.3 Other high-performance dense linear algebra algorithms
Throughout this course, we have pointed to papers that discuss the high-performance implemen-
tation of various operations. Here we review some of these.

12.3.3.1 High-performance QR factorization

We saw in Week 3 that the algorithm of choice for computing the QR factorization is based on
Householder transformations. The reason is that this casts the computation in terms of the appli-
cation of unitary transformations, which do not amplify error. In Subsection 3.4.1, we discussed
how the Householder QR factorization algorithm can be cast in terms of matrix-matrix operations.

An important point to note is that in order to cast the computation in terms of matrix-matrix
multiplication, one has to form the "block Householder transformation"

I + UT−1UH .

When the original matrix ism×n, this requires O(mb2) floating point operations to be performed to
compute the upper triangular matrix T in each iteration, which adds O(mnb) to the total cost of the
QR factorization. This is computation that an unblocked algorithm does not perform. In return,
the bulk of the computation is performed much faster, which in the balance benefits performance.
Details can be found in, for example,

• [24] Thierry Joffrain, Tze Meng Low, Enrique S. Quintana-Orti, Robert van de Geijn, Field
G. Van Zee, Accumulating Householder transformations, revisited, ACM Transactions on
Mathematical Software, Vol. 32, No 2, 2006.

Casting the Rank-Revealing QR factorization, discussed in Subsection 4.5.2, in terms of matrix-
matrix multiplications is trickier. In order to determine what column should be swapped at each
step, the rest of the matrix has to be at least partially updated. One solution to this is to use a
randomized algorithm, as discussed in

• [26] Per-Gunnar Martinsson, Gregorio Quintana-Orti, Nathan Heavner, Robert van de Geijn,
Householder QR Factorization With Randomization for Column Pivoting (HQRRP), SIAM
Journal on Scientific Computing, Vol. 39, Issue 2, 2017.

12.3.3.2 Optimizing reduction to condensed form

In Subsection 10.3.1 and Subsection 11.2.3, we discussed algorithms for reducing a matrix to tridi-
agonal and bidiagonal form, respectively. These are special cases of the reduction of a matrix to
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condensed form. The algorithms in those sections cast most of the computation in terms of matrix-
vector multiplication and rank-1 or rank-2 updates, which are matrix-vector operations that do not
attain high performance. In enrichments in those chapters, we point to papers that cast some of
the computation in terms of matrix-matrix multiplication. Here, we discuss the basic issues.

When computing the LU, Cholesky, or QR factorization, it is possible to factor a panel of
columns before applying an accumulation of the transformations that are encounted to the rest
of the matrix. It is this that allows the computation to be mostly cast in terms of matrix-matrix
operations. When computing the reduction to tridiagonal or bidiagonal form, this is not possible.
The reason is that if we have just computed a unitary transformation, this transformation must be
applied to the rest of the matrix both from the left and from the right. What this means is that
the next transformation to be computed depends on an update that involves the rest of the matrix.
This in turn means that inherently a matrix-vector operation (involving the "rest of the matrix")
must be performed at every step at a cost of O(m2) computation per iteration (if the matrix is
m×m). The insight is that O(m3) computation is cast in terms of matrix-vector operations, which
is of the same order as the total computation.

While this is bad news, there is still a way to cast about half the computation in terms of
matrix-matrix multiplication for the reduction to tridiagonal form. Notice that this means the
computation is sped up by at most a factor two, since even if the part that is cast in terms of
matrix-matrix multiplication takes no time at all relative to the rest of the computation, this only
cuts the time to completion in half.

The reduction to bidiagonal form is trickier yet. It requires the fusing of a matrix-vector
multiplication with a rank-1 update in order to reuse data that is already in cache.

Details can be found in, for example,

• [48] Field G. Van Zee, Robert A. van de Geijn, Gregorio Quintana-Ortí, G. Joseph Elizondo,
Families of Algorithms for Reducing a Matrix to Condensed Form, ACM Transactions on
Mathematical Software (TOMS) , Vol. 39, No. 1, 2012.

12.3.3.3 Optimizing the implicitly shifted QR algorithm

Optimizing the QR algorithm for computing the Spectral Decomposition or Singular Value De-
composition gets even trickier. Part of the cost is in the reduction to condensed form, which we
already have noted exhibits limited opportunity for casting computation in terms of matrix-matrix
multiplication. Once the algorithm proceeds to the implicitly shifted QR algorithm, most of the
computation is in the accumulation of the eigenvectors or singular vectors. In other words, it is in
the application of the Givens’ rotations from the right to the columns of a matrix Q in which the
eigenvectors are being computed. Let us look at one such application to two columns, qi and qj :

(
qi qj

)
:=
(
qi qj

)( γ −σ
σ γ

)
=
(
γqi + σqj −σqi + γqj

)
.

The update of each column is a vector-vector operation, requiring O(m) computation with O(m)
data (if the vectors are of size m). We have reasoned that for such an operation it is the cost of
accessing memory that dominates. In

• [47] Field G. Van Zee, Robert A. van de Geijn, Gregorio Quintana-Ortí, Restructuring the
Tridiagonal and Bidiagonal QR Algorithms for Performance, ACM Transactions on Mathe-
matical Software (TOMS), Vol. 40, No. 3, 2014.
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we discuss how the rotations from many Francis Steps can be saved up and applied to Q at the
same time. By carefully orchestrating this so that data in cache can be reused, the performance
can be improved to rival that attained by a matrix-matrix operation.

12.3.4 Libraries for higher level dense linear algebra functionality
The Linear Algebra Package (LAPACK) is the most widely used interface for higher level linear
algebra functionality like LU, Cholesky, and QR factorization and related solvers as well as eigen-
solvers. LAPACK was developed as an open source linear algebra software library which was then
embraced as an implementation and/or interface by scientific software libraries that are supported
by vendors.

A number of open source and vendors high-performance implementations of the BLAS interface
are availabe. For example,

• The original open source LAPACK implementation [1] available from netlib at http://www.netlib.org/
lapack/.

• Our libflame library is an open source implementation of LAPACK functionality that leverages
a programming style that is illustated in Subsection 12.3.1 and Subsection 12.3.2. It includes
an LAPACK-compatable interface. It underlies AMD’s Optimizing CPU Libraries (AOCL).

• Arm’s Arm Performance Libraries.

• Cray’s Cray Scientific and Math Libraries (CSML).

• IBM’s Engineering and Scientific Subroutine Library (ESSL).

• Intel’s Math Kernels Library (MKL).

• NVIDIA’s cuBLAS.

12.3.5 Sparse algorithms
Iterative methods inherently perform few floating point operations relative to the memory op-
erations that need to be performed. For example, the Conjugate Gradient Method discussed in
Section 8.3 typically spends most of its time in a sparse matrix-vector multiplication, where only two
floating point operations are performed per nonzero element in the matrix. As a result, attaining
high performance with such algorithms is inherently difficult.

A (free) text that gives a nice treatment of high performance computing, including sparse
methods, is

• [17] Victor Eijkhout, Introduction to High-Performance Scientific Computing, lulu.com. http:
//pages.tacc.utexas.edu/~eijkhout/istc/istc.html

12.4 Enrichments

12.4.1 BLIS and beyond
One of the strengths of the approach to implementing matrix-matrix multiplication described in
Subsection 12.2.4 is that it can be applied to related operations. A recent talk discusses some of
these.

http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
https://github.com/flame/libflame
https://developer.amd.com/amd-aocl/
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/arm-performance-libraries
https://pubs.cray.com/bundle/XC_Series_Programming_Environment_User_Guide_1705_S-2529/page/Cray_Scientific_and_Math_Libraries__CSML_.html
https://www.ibm.com/support/knowledgecenter/en/SSFHY8/essl_welcome.html
https://software.intel.com/en-us/mkl
https://developer.nvidia.com/cublas
www.lulu.com
http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html
http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html
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• Robert van de Geijn and Field Van Zee, "The BLIS Framework: Experiments in Portability,"
SIAM Conference on Parallel Processing for Scientific Computing (PP20). SIAM Activitiy
group on Supercomputing Best Paper Prize talk. 2020. https://www.youtube.com/watch?v=

1biep1Rh_08

12.4.2 Optimizing matrix-matrix multiplication - We’ve got a MOOC for that!
We reiterate that we offer a Massive Open Online Course titled "LAFF-On Programming for High
Performance" in which we use matrix-matrix multiplication as an example through which we illus-
trate how high performance can be achieved on modern CPUs.

• [42] "LAFF-On Programming for High Performance", a four week Massive Open Online Course
offered on the edX platform (free for auditors).

12.4.3 Deriving blocked algorithms - We’ve got a MOOC for that too!
Those who delve deeper into how to achieve high performance for matrix-matrix multiplication
find out that it is specifically a rank-k update, the case of C := αAB + βC where the k (inner)
size is small, that achieves high performance. The blocked LU factorization that we discussed in
Subsection 5.5.2 takes advantage of this by casting most of its computation in the matrix-matrix
multiplication A22 := A22 − A21A12. A question becomes: how do I find blocked algorithms that
cast most computation in terms of a rank-k updates?

The FLAME notation that we use in this course has made it possible for us to develop a
systematic methodology for discovering (high-performance) algorithms. This was published in

• [4] Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Orti, Robert
A. van de Geijn, The science of deriving dense linear algebra algorithms, ACM Transactions
on Mathematical Software (TOMS), 2005.

and various other publications that can be found on the FLAME project publication web site
http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html.

You can learn these techniques, which derive algorithms hand-in-hand with their proofs of
correctness, through our Massive Open Online Course

• [29] "LAFF-On Programming for Correctness", a six week Massive Open Online Course offered
on the edX platform (free for auditors).

12.4.4 Parallel high-performance algorithms
Modern processors achieve high performance by extracting parallelism at the instruction level and
by incorporating multiple cores that can collaborate to compute an operation. Beyond that, parallel
supercomputers consist of computational nodes, each of which consists of multiple processing cores
and local memory, that can communicate through a communication network.

Many of the issues encountered when mapping (dense) linear algebra algorithms to such dis-
tributed memory computers can be illustrated by studying matrix-matrix multiplication. A classic
paper is

• [45] Robert van de Geijn and Jerrell Watts, SUMMA: Scalable Universal Matrix Multiplica-
tion Algorithm, Concurrency: Practice and Experience, Volume 9, Number 4, 1997.

https://www.youtube.com/watch?v=1biep1Rh_08
https://www.youtube.com/watch?v=1biep1Rh_08
http://www.ulaff.net
https://www.edx.org/course/laff-on-programming-for-high-performance
http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html
http://www.ulaff.net
https://www.edx.org/course/laff-on-programming-for-correctness-2
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The techniques described in that paper are generalized in the more recent paper

• [35] Martin D. Schatz, Robert A. van de Geijn, and Jack Poulson, Parallel Matrix Multipli-
cation: A Systematic Journey, SIAM Journal on Scientific Computing, Volume 38, Issue 6,
2016.

12.5 Wrap Up

12.5.1 Additional homework
No additional homework yet.

12.5.2 Summary
This chapter highlights a few things that may serve you well:

• How your computation accesses data and how it reuses data is of crucial importance if high
performance is to be attained.

• Compilers are typically not sophisticated enough to automagically transform a simple im-
plementation into a high-performance implementation. You experienced this for the Gnu C
compiler (gcc). It should be noted that some commercial compilers, for example Intel’s icc
compiler, does much better than a typical open source compiler.

The memory hierarchy of a modern CPU can be visualized as a pyramid:
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• At the top, there are a few registers where data must reside before the floating point unit of
the processor can compute on that data. Accessing data that are in registers is fast.

• At the bottom, we depict the main memory of the processor. It typically takes orders of
magnitude more time to bring data in from main memory than it takes to computer with
that data. The main memory of a modern processor is very large.

• In between are cache memories. The higher level the cache, the larger that cache can be and
the longer it takes for the data to reach the registers.

To achieve high performance, the name of the game is to move data into an appropriate layer of
the cache and to then reuse that data for many computations so as to amortize the cost of the
movement of the data.

Optimizing the performance requires a combination of techniques:

• If possible, at the low level computation must take advantage of instruction-level parallelism.

• As mentioned above, to overcome long access times to memory, data that is moved between
memory layers needs to be reused.

• Data locality is important: accessing data that is contiguous in memory typically benefits
performance.

Some operations exhibit an opportunity for reuse of data while others don’t.

• When computing a "vector-vector" operation, like a dot product or axpy operation, there is
little opportunity for reuse of data: A computation with vectors of size m involves O(m)
computation with O(m) data.

• When computing a "matrix-vector" operation, like a matrix-vector multiplication or rank-1
update, there is still little opportunity for reuse of data: Such computation with matrices of
size m×m involves O(m2) computation with O(m2) data.

• When computing a "matrix-matrix" operation, like a matrix-matrix multiplication, there is
considerable opportunity for reuse of data: Such computation with matrices of size m ×m
involves O(m3) computation with O(m2) data.

In order to facilitate portable high performance, the computational science community proposed
an interface, the Basic Linear Algebra Subprograms (BLAS), for basic linear algebra functionality.
The idea was that by standardizing such an interface, the community could expect that computer
and third party software vendors would provide high-performance implementations of that interface.
Much scientific and, increasingly, data science software is implemented in terms of the BLAS.

Rather than painstakingly implementing higher-level functionality, like LU factorization with
pivoting or QR factorization, at a low level in order to improve the ratio of computation to memory
operations, libraries like LAPACK formulate their implementations so that most computation is
performed in a matrix-matrix operation. This retains most of the benefit of reuse of data without
the need to reimplement such functionality when new architectures come along.

The opportunity for reusing data is much less for operations that involve sparse matrices.
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Are you ready?

We have created a document "Advanced Linear Algebra: Are You Ready?" that a learner can use
to self-assess their readiness for a course on numerical linear algebra.
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Appendix B

Notation

B.0.1 Householder notation
Alston Householder introduced the convention of labeling matrices with upper case Roman letters
(A, B, etc.), vectors with lower case Roman letters (a, b, etc.), and scalars with lower case Greek
letters (α, β, etc.). When exposing columns or rows of a matrix, the columns of that matrix are
usually labeled with the corresponding Roman lower case letter, and the the individual elements of
a matrix or vector are usually labeled with "the corresponding Greek lower case letter," which we
can capture with the triplets {A, a, α}, {B, b, β}, etc.

A =
(
a0 a1 · · · an−1

)
=


α0,0 α0,1 · · · α0,n−1
α1,0 α1,1 · · · α1,n−1
...

...
...

αm−1,0 αm−1,1 · · · αm−1,n−1


and

x =


χ0
χ1
...

χm−1

 ,
where α and χ is the lower case Greek letters "alpha" and "chi," respectively. You will also notice
that in this course we start indexing at zero. We mostly adopt this convention (exceptions include
i, j, p, m, n, and k, which usually denote integer scalars.)
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Appendix C

Knowledge from Numerical Analysis

Typically, an undergraduate numerical analysis course is considered a prerequisite for a graduate
level course on numerical linear algebra. There are, however, relatively few concepts from such a
course that are needed to be successful in this course. In this appendix, we very briefly discuss
some of these concepts.

C.1 Cost of basic linear algebra operations
We play a little quick and loose when analysing the "cost" of various operations. The reason is
that througout most of the course we discuss matrix computations with complex-valued matrices.
However, when giving the cost, we don’t distinguish between the cost of a floating point operation
with real-valued operands and a floating point operation with complex-valued operands. Let’s start
by explaining the difference.

C.1.1 Computation with scalars
Most computation with matrices and vectors in the end comes down to the addition, subtraction,
or multiplication with floating point numbers:

χ op ψ

where χ and ψ are scalars and op is one of +,−,×. Each of these is counted as one floating point
operation. However, not all such floating point operations are created equal: computation with
complex-valued (double precision) numbers is four times more expensive than computation with
real-valued (double precision) numbers. As mentioned: usually we just pretend we are dealing with
real-valued numbers when counting the cost. We assume you know how to multiply by four.

Dividing two scalars is a lot more expensive. Frequently, instead of dividing by α we can instead
first compute 1/α and then reuse that result for many multiplications, instead of dividing many
times. Thus, the number of divisions in an algorithm is usually a "lower order term" and hence we
can ignore it.

Another observation is that almost all computation we encounter involves a "Fused Multiply
Accumulate":

αχ+ ψ,

which requires two flops: a multiply and an add.
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C.1.2 Vector-vector operations
These "vector-vector" operations play an important role.

• Dot product: α := xT y, where x, y ∈ Rm.
Notice that

xT y = χ0ψ0 + χ1ψ1 + · · ·+ χm−1ψm−1.

It is easy to see that this requires m multiplications and m−1 additions for a total of 2m−1.
We usually say that the cost of this dot product is 2m flops. The reason is that very often
we actually want to compute α := xT y + α, which then incurs an additional addition. Also,
the computer usually performs FMAs instead, so that even the one multiplication that is not
matched up with a multiply requires also an addition. In other words, in practice α := xT y
is computed as α := xT y + 0.

• Axpy: y := αx+ y, where x, y ∈ Rm.
For each pair χi and ψi we have to perform a multiplication and an addition:

ψi := αχi + ψi.

Hence, this operation requires 2m flops.

• Multiplying a scalar times a vector: x := αx, where x ∈ Rm.
This operation requires m multiplications.

• Dividing a vector by a scalar: x := x/α, where x ∈ Rm.
What is the cost of this operation? We noted that a division is expensive. However, this
operation can instead be implemented as

x := (1/α)x,

which exposes the fact that we can form 1/α once and then perform m multiplications. If
m is large enough, the cost of the division is inconsequential, and the cost is taken to equal
approximately m flops.

operation cost (in flops) comment
dot α := xT y 2m x, y ∈ Rm, α ∈ R
axpy y := αx+ y 2m x, y ∈ Rm, α ∈ R
scal x := αx m x ∈ Rm, α ∈ R
invscal x := x/α m x ∈ Rm, α ∈ R

Figure C.1.2.1 Cost of various vector-vector operations.
We observe that such vector-vector operations with vectors of size m require O(m) flops.

C.1.3 Matrix-vector operations
The following "matrix-vector" operations play an important role.



APPENDIX C. KNOWLEDGE FROM NUMERICAL ANALYSIS 467

• Matrix-vector multiplication: y := αAx+ βy, where A ∈ Rm×n.
Let’s ignore β because it almost always equals 1. If not, we can start by scaling y. Next, we
observe that

αAx+ y = α


ãT0
...

ãTm−1

x+ y =


α(ãT0 x) + ψ0

...
α(ãTm−1x) + ψm−1

 .
We notice that the cost equals, roughly, m dot products with vectors of size n for a total of
(approximately) 2mn flops.

• Rank-1 update: A := αxyT +A, where A ∈ Rm×n.
Notice that

αxyT +A = αx
(
ψ0 · · · ψn−1

)
+
(
a0 · · · an−1

)
=

(
(αψ0)x+ a0 · · · (αψn−1)x+ an−1

)
.

We notice that the cost equals, roughly, n axpy operations products with vectors of size m
for a total of (approximately) 2mn flops.

operation cost (in flops) comment
gemv y := αAx+ βy 2mn A ∈ Rm×n, x ∈ Rn, y ∈ Rm, α, β ∈ R

general matrix-vector multiplication
ger A := αxyT +A 2mn A ∈ Rm×n, x ∈ Rm, y ∈ Rn, α ∈ R

rank-1 update
syr A := αxxT +A m2 A ∈ Rm×m, x ∈ Rm, α ∈ R

A is symmetric
symmetric rank-1 update

syr2 A := α(xyT + yxT ) +A 2m2 A ∈ Rm×m, x, y ∈ Rm, α ∈ R
A is symmetric
symmetric rank-2 update

trsv x := A−1x m2 A ∈ Rm×m, x ∈ Rm
A is a triangular matrix
triangular solve

Figure C.1.3.1 Cost of various matrix-vector operations. For symmetric matrices, only the upper
or lower triangular part is stored and updated. This (approximately) halves the cost. Instead of
computing x := A−1x when A is triangular, one solves Az = x and overwrites x with the result.
Matrix-vector operations with an m× n matrix require O(mn) flops.

C.1.4 Matrix-matrix operations
The archetypical matrix-matrix operation is matrix-matrix multiplication:

C := αAB + βC,

where C, A, and B are m×n, m× k, and k×n, respectively. We will ignore β since C can always
be scaled by β first.
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Notice that
AB + C = A

(
b0 · · · bn−1

)
+
(
c0 · · · cn−1

)
=

(
Ab0 + c0 · · · Abn−1 + cn−1

)
.

Hence, this matrix-matrix multiplication requires n matrix-vector multiplications with a matrix of
size m× n for a cost of 2n(mk) = 2mnk.

operation cost (in flops) comment
gemm C := αAB + βC 2mnk C ∈ Rm×n, A ∈ Rm×k, B ∈ Rk×n, α, β ∈ R

general matrix-vector multiplication
syrk C := αAAT + βC m2k C ∈ Rm×m, A ∈ Rm×k, α, β ∈ R

C is symmetric
symmetric rank-k update

trsm B := αA−1B m2n A ∈ Rm×m, B ∈ Rm×n, α ∈ R
A is a triangular matrix
triangular solve with
multiple right-hand sides

Figure C.1.4.1 Cost of various matrix-matrix operations. For symmetric matrices, only the upper
or lower triangular part is stored and updated. This (approximately) halves the cost. Instead of
computing B := A−1B when A is triangular, one solves AX = B and overwrites B with the result.

C.1.5 Summary
We repeat the various tables regarding the cost of the various operations.

operation cost (in flops) comment
dot α := xT y 2m x, y ∈ Rm, α ∈ R
axpy y := αx+ y 2m x, y ∈ Rm, α ∈ R
scal x := αx m x ∈ Rm, α ∈ R
invscal x := x/α m x ∈ Rm, α ∈ R

Figure C.1.5.1 Cost of various vector-vector operations.
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operation cost (in flops) comment
gemv y := αAx+ βy 2mn A ∈ Rm×n, x ∈ Rn, y ∈ Rm, α, β ∈ R

general matrix-vector multiplication
ger A := αxyT +A 2mn A ∈ Rm×n, x ∈ Rm, y ∈ Rn, α ∈ R

rank-1 update
syr A := αxxT +A m2 A ∈ Rm×m, x ∈ Rm, α ∈ R

A is symmetric
symmetric rank-1 update

syr2 A := α(xyT + yxT ) +A 2m2 A ∈ Rm×m, x, y ∈ Rm, α ∈ R
A is symmetric
symmetric rank-2 update

trsv x := A−1x m2 A ∈ Rm×m, x ∈ Rm
A is a triangular matrix
triangular solve

Figure C.1.5.2 Cost of various matrix-vector operations. For symmetric matrices, only the upper
or lower triangular part is stored and updated. This (approximately) halves the cost. Instead of
computing x := A−1x when A is triangular, one solves Az = x and overwrites x with the result.

operation cost (in flops) comment
gemm C := αAB + βC 2mnk C ∈ Rm×n, A ∈ Rm×k, B ∈ Rk×n, α, β ∈ R

general matrix-vector multiplication
syrk C := αAAT + βC m2k C ∈ Rm×m, A ∈ Rm×k, α, β ∈ R

C is symmetric
symmetric rank-k update

trsm B := αA−1B m2n A ∈ Rm×m, B ∈ Rm×n, α ∈ R
A is a triangular matrix
triangular solve with
multiple right-hand sides

Figure C.1.5.3 Cost of various matrix-matrix operations. For symmetric matrices, only the upper
or lower triangular part is stored and updated. This (approximately) halves the cost. Instead of
computing B := A−1B when A is triangular, one solves AX = B and overwrites B with the result.

C.2 Catastrophic cancellation
Recall that if

χ2 + βχ+ γ = 0
then the quadratic formula gives the largest root of this quadratic equation:

χ = −β +
√
β2 − 4γ

2 .

Example C.2.0.1 We use the quadratic equation in the exact order indicated by the parentheses
in

χ =


[
−β +

[√
[[β2]− [4γ]]

]]
2

 ,
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truncating every expression within square brackets to three significant digits, to solve

χ2 + 25χ+ γ = 0

χ =
[[
−25+

[√
[[252]−[4]]

]]
2

]
=
[[
−25+

[√
[625−4]

]]
2

]
=

[
[−25+[√621]]

2

]
=
[

[−25+24.9]
2

]
=
[
−0.1

2

]
= −0.05.

Now, if you do this to the full precision of a typical calculator, the answer is instead approxi-
mately −0.040064. The relative error we incurred is, approximately, 0.01/0.04 = 0.25.

What is going on here? The problem comes from the fact that there is error in the 24.9 that is
encountered after the square root is taken. Since that number is close in magnitude, but of opposite
sign to the −25 to which it is added, the result of −25 + 24.9 is mostly error.

This is known as catastrophic cancelation: adding two nearly equal numbers of opposite sign,
at least one of which has some error in it related to roundoff, yields a result with large relative
error.

Now, one can use an alternative formula to compute the root:

χ = −β +
√
β2 − 4γ

2 = −β +
√
β2 − 4γ

2 × −β −
√
β2 − 4γ

−β −
√
β2 − 4γ

,

which yields
χ = 2γ

−β −
√
β2 − 4γ

.

Carrying out the computations, rounding intermediate results, yields −.0401. The relative error is
now 0.00004/0.040064 ≈ .001. It avoids catastrophic cancellation because now the two numbers of
nearly equal magnitude are added instead. �

Remark C.2.0.2 The point is: if possible, avoid creating small intermediate results that amplify
into a large relative error in the final result.

Notice that in this example it is not inherently the case that a small relative change in the input
is amplified into a large relative change in the output (as is the case when solving a linear system
with a poorly conditioned matrix). The problem is with the standard formula that was used. Later
we will see that this is an example of an unstable algorithm.
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GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <http://www.fsf.

org/>
Everyone is permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

0. PREAMBLE. The purpose of this License is to make a manual, textbook, or other functional
and useful document “free” in the sense of freedom: to assure everyone the effective freedom to
copy and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their work,
while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS. This License applies to any manual or other
work, in any medium, that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and is addressed
as “you”. You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section
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may not explain any mathematics.) The relationship could be a matter of historical connection
with the subject or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this License.
If a section does not fit the above definition of Secondary then it is not allowed to be designated as
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that is suitable for input to text
formatters or for automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent. An
image format is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you
modify the Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING. You may copy and distribute the Document in any medium,
either commercially or noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in all copies, and that you
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add no other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute. However,
you may accept compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY. If you publish printed copies (or copies in media that com-
monly have printed covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover.
Both covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes limited to the covers, as long
as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of the
Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS. You may copy and distribute a Modified Version of the Document
under the conditions of sections 2 and 3 above, provided that you release the Modified Version
under precisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors
of the Document (all of its principal authors, if it has fewer than five), unless they release
you from this requirement.
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C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled “History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a
network location for a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with
any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of Invari-
ant Sections in the Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties — for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.
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You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on behalf
of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS. You may combine the Document with other documents
released under this License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled “Ac-
knowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.

6. COLLECTIONS OF DOCUMENTS. You may make a collection consisting of the Doc-
ument and other documents released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in the collection, provided
that you follow the rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS. A compilation of the Document
or its derivatives with other separate and independent documents or works, in or on a volume
of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the
compilation is not used to limit the legal rights of the compilation’s users beyond what the individual
works permit. When the Document is included in an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear on printed covers that
bracket the whole aggregate.
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8. TRANSLATION. Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing Invariant Sections with trans-
lations requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in the Document, and any
Warranty Disclaimers, provided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION. You may not copy, modify, sublicense, or distribute the Document except
as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copy-
right holder notifies you of the violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that copyright holder, and you cure
the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated and
not permanently reinstated, receipt of a copy of some or all of the same material does not give you
any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE. The Free Software Foundation may
publish new, revised versions of the GNU Free Documentation License from time to time. Such
new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as a
draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which
future versions of this License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Document.

11. RELICENSING. “Massive Multiauthor Collaboration Site” (or “MMC Site”) means any
World Wide Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of such a

http://www.gnu.org/copyleft/
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server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set
of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business in
San Francisco, California, as well as future copyleft versions of that license published by that same
organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were
first published under this License somewhere other than this MMC, and subsequently incorporated
in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus
incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA
on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents. To use this License in a
document you have written, include a copy of the License in the document and put the following
copyright and license notices just after the title page:

Copyright (C) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with. . .
Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.
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Appendix E

Answers and Solutions to Homeworks

Orthogonality
1 · Norms
2 · The Singular Value Decomposition
3 · The QR Decomposition
4 · Linear Least Squares
1 · Norms
1.1 · Opening Remarks
1.1.1 · Why norms?
Homework 1.1.1.1 Solution. 1 −2 1

0 −1 −1
0 0 2


 −1

2
1

 =

 −4
−3

2


Homework 1.1.1.2 Solution. We can recognize the relation between this problem and Home-
work 1.1.1.1 and hence deduce the answer without computation: χ0

χ1
χ2

 =

 −1
2
1


Homework 1.1.1.3 Solution. A script with the described commands can be found in

• Assignments/Week01/matlab/Test_Upper_triangular_solve_3.m.

Some things we observe:

• x̂ − x does not equal zero. This is due to the fact that the computer stores floating point
numbers and computes with floating point arithmetic, and as a result roundoff error happens.

• The difference is small (notice the 1.0e-15∗ before the vector, which shows that each entry in
x̂− x is around 10−15.

• The residual b− Ux̂ is small.
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• Repeating this with a much larger n make things cumbersome since very long vectors are
then printed.

Homework 1.1.1.4 Solution. A script with the described commands can be found in Assignments/

Week01/matlab/Test_Upper_triangular_solve_100.m

Some things we observe:

• norm(x̂− x), the Euclidean length of x̂− x, is huge. Matlab computed the wrong answer!

• However, the computed x̂ solves a problem that corresponds to a slightly different right-hand
side. Thus, x̂ appears to be the solution to an only slightly changed problem.

Homework 1.1.1.5 Solution.
• When is an upper triangular matrix singular?

Answer:
If and only if there is a zero on its diagonal.

• How large is the smallest element on the diagonal of the U from Homework 1.1.1.4? (min(
abs( diag( U ) ) ) returns it!)
Answer:
It is small in magnitude. This is not surprising, since it is a random number and hence as
the matrix size increases, the chance of placing a small entry (in magnitude) on the diagonal
increases.

• If U were singular, how many solutions to Ux̂ = b would there be? How can we characterize
them?
Answer:
The might be no answer or there might be an infinite number. Any vector in the null space
can be added to a specific solution to create another solution.
In the setting of this problem, we generated a right-hand side from a known solution. Hence,
there would be an infinite number of solutions (unless roundoff error in computing the right-
hand side created a problem for which there is no solution).

• What is the relationship between x̂− x and U?
Answer:
It maps almost to the zero vector. In other words, it is close to a vector in the null space of
the matrix U that has its smallest entry (in magnitude) on the diagonal changed to a zero.

What have we learned? The :"wrong" answer that Matlab computed was due to the fact that matrix
U was almost singular.

1.2 · Vector Norms
1.2.1 · Absolute value
Homework 1.2.1.1 Solution.

1. (1 + i)(2− i) = 2 + 2i− i− i2 = 2 + i+ 1 = 3 + i

2. (2− i)(1 + i) = 2− i+ 2i− i2 = 2 + i+ 1 = 3 + i

Assignments/Week01/matlab/Test_Upper_triangular_solve_100.m
Assignments/Week01/matlab/Test_Upper_triangular_solve_100.m
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3. (1− i)(2− i) = (1 + i)(2− i) = 2− i+ 2i− i2 = 3 + i

4. (1− i)(2− i) = (1 + i)(2− i) = 2− i+ 2i− i2 = 2 + i+ 1 = 3 + i = 3− i

5. (2− i)(1− i) = (2 + i)(1− i) = 2− 2i+ i− i2 = 2− i+ 1 = 3− i

6. (1− i)(2− i) = (1− i)(2 + i) = 2 + i− 2i− i2 = 2− i+ 1 = 3− i

Homework 1.2.1.2 Hint. Let α = αr + αci and β = βr + βci, where αr, αc, βr, βc ∈ R.
Answer.

1. ALWAYS: αβ = βα.

2. SOMETIMES: αβ = βα.

Solution.

1. ALWAYS: αβ = βα.
Proof:

αβ
= < substitute >

(αr + αci)(βr + βci)
= < multiply out >

αrβr + αrβci+ αcβri− αcβc
= < commutativity of real multiplication >

βrαr + βrαci+ βcαri− βcαc
= < factor >

(βr + βci)(αr + αci)
= < substitute >

βα.

2. SOMETIMES: αβ = βα.
An example where it is true: α = β = 0.
An example where it is false: α = 1 and β = i. Then αβ = 1× i = i and βα = −i× 1 = −i.

Homework 1.2.1.3 Hint. Let α = αr + αci and β = βr + βci, where αr, αc, βr, βc ∈ R.
Answer. ALWAYS

Now prove it!
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Solution 1.
αβ

= < α = αr + αci;β = βr + βci >

(αr + αci)(βr + βci)
= < conjugate α >

(αr − αci)(βr + βci)
= < multiply out >

(αrβr − αcβri+ αrβci+ αcβc)
= < conjugate >

αrβr + αcβri− αrβci+ αcβc
= < rearrange >

βrαr + βrαci− βcαri+ βcαc
= < factor >

(βr − βci)(αr + αci)
= < definition of conjugation >

(βr + βci)(αr + αci)
= < α = αr + αci;β = βr + βci >

βα

Solution 2. Proofs in mathematical textbooks seem to always be wonderfully smooth arguments
that lead from the left-hand side of an equivalence to the right-hand side. In practice, you may
want to start on the left-hand side, and apply a few rules:

αβ
= < α = αr + αci;β = βr + βci >

(αr + αci)(βr + βci)
= < conjugate α >

(αr − αci)(βr + βci)
= < multiply out >

(αrβr − αcβri+ αrβci+ αcβc)
= < conjugate >

αrβr + αcβri− αrβci+ αcβc

and then move on to the right-hand side, applying a few rules:

βα
= < α = αr + αci;β = βr + βci >

(βr + βci)(αr + αci)
= < conjugate β >

(βr − βci)(αr + αci)
= < multiply out >

βrαr + βrαci− βcαri+ βcαc.

At that point, you recognize that

αrβr + αcβri− αrβci+ αcβc = βrαr + βrαci− βcαri+ βcαc

since the second is a rearrangement of the terms of the first. Optionally, you then go back and
presents these insights as a smooth argument that leads from the expression on the left-hand side
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to the one on the right-hand side:

αβ
= < α = αr + αci;β = βr + βci >

(αr + αci)(βr + βci)
= < conjugate α >

(αr − αci)(βr + βci)
= < multiply out >

(αrβr − αcβri+ αrβci+ αcβc)
= < conjugate >

αrβr + αcβri− αrβci+ αcβc
= < rearrange >

βrαr + βrαci− βcαri+ βcαc
= < factor >

(βr − βci)(αr + αci)
= < definition of conjugation >

(βr + βci)(αr + αci)
= < α = αr + αci;β = βr + βci >

βα.

Solution 3. Yet another way of presenting the proof uses an "equivalence style proof." The idea
is to start with the equivalence you wish to prove correct:

αβ = βα

and through a sequence of equivalent statements argue that this evaluates to TRUE:

αβ = βα
⇔ < α = αr + αci;β = βr + βci >

(αr + αci)(βr + βci) = (βr + βci)(αr + αci)
⇔ < conjugate × 2 >

(αr − αci)(βr + βci) = (βr − βci)(αr + αci)
⇔ < multiply out × 2 >

αrβr + αrβci− αcβri+ αcβc = βrαr + βrαci− βcαri+ βcαc
⇔ < conjugate >

αrβr − αrβci+ αcβri+ αcβc = βrαr + βrαci− βcαri+ βcαc
⇔ < subtract equivalent terms from left-hand side and right-hand side >

0 = 0
⇔ < algebra >

TRUE.

By transitivity of equivalence, we conclude that αβ = βα is TRUE.

Homework 1.2.1.4 Answer. ALWAYS.
Now prove it!
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Solution. Let α = αr + αci. Then

αα
= < instantiate >

(αr + αci)(αr + αci)
= < conjugate >

(αr − αci)(αr + αci)
= < multiply out >

α2
r + α2

c ,

which is a real number.
Homework 1.2.1.5 Solution.

|αβ| = |α||β|
⇔ < squaring both sides simplifies >

|αβ|2 = |α|2|β|2
⇔ < instantiate >

|(αr + αci)(βr + βci)|2 = |αr + αci|2|βr + βci|2
⇔ < algebra >

|(αrβr − αcβc) + (αrβc + αcβr)i|2 = (α2
r + α2

c)(β2
r + β2

c )
⇔ < algebra >

(αrβr − αcβc)2 + (αrβc + αcβr)2 = (α2
r + α2

c)(β2
r + β2

c )
⇔ < algebra >

α2
rβ

2
r − 2αrαcβrβc + α2

cβ
2
c + α2

rβ
2
c + 2αrαcβrβc + α2

cβ
2
r

= α2
rβ

2
r + α2

rβ
+
c α

2
cβ

2
r + α2

cβ
2
c

⇔ < subtract equivalent terms from both sides >
0 = 0
⇔ < algebra >

T

Homework 1.2.1.6 Answer. ALWAYS
Now prove it!

Solution. Let α = αr + αci.

|α|
= < instantiate >

|αr + αci|
= < conjugate >

|αr − αci|
= < definition of | · | >√

α2
r + α2

c

= < definition of | · | >
|αr + αci|

= < instantiate >
|α|

1.2.2 · What is a vector norm?
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Homework 1.2.2.1 Hint. From context, you should be able to tell which of these 0’s denotes
the zero vector of a given size and which is the scalar 0.

0x = 0 (multiplying any vector x by the scalar 0 results in a vector of zeroes).
Answer. TRUE.

Now prove it.
Solution. Let x ∈ Cm and, just for clarity this first time, ~0 be the zero vector of size m so that
0 is the scalar zero. Then

ν(~0)
= < 0 · x = ~0 >

ν(0 · x)
= < ν(· · · ) is homogeneous >

0ν(x)
= < algebra >

0

1.2.3 · The vector 2-norm (Euclidean length)
Homework 1.2.3.2 Solution. To prove this, we merely check whether the three conditions are
met:

Let x, y ∈ Cm and α ∈ C be arbitrarily chosen. Then

• x 6= 0⇒ ‖x‖2 > 0 (‖ · ‖2 is positive definite):
Notice that x 6= 0 means that at least one of its components is nonzero. Let’s assume that
χj 6= 0. Then

‖x‖2 =
√
|χ0|2 + · · ·+ |χm−1|2 ≥

√
|χj |2 = |χj | > 0.

• ‖αx‖2 = |α|‖x‖2 (‖ · ‖2 is homogeneous):

‖αx‖2
= < scaling a vector scales its components; definition >√
|αχ0|2 + · · ·+ |αχm−1|2
= < algebra >√
|α|2|χ0|2 + · · ·+ |α|2|χm−1|2
= < algebra >√
|α|2(|χ0|2 + · · ·+ |χm−1|2)
= < algebra >

|α|
√
|χ0|2 + · · ·+ |χm−1|2

= < definition >
|α|‖x‖2.

• ‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2 (‖ · ‖2 obeys the triangle inequality):
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‖x+ y‖22
= < ‖z‖22 = zHz >

(x+ y)H(x+ y)
= < distribute >

xHx+ yHx+ xHy + yHy
= < β + β = 2Real(β) >

xHx+ 2Real(xHy) + yHy
≤ < algebra >

xHx+ 2|Real(xHy)|+ yHy
≤ < algebra >

xHx+ 2|xHy|+ yHy
≤ < algebra; Cauchy-Schwarz >

‖x‖22 + 2‖x‖2‖y‖2 + ‖y‖22
= < algebra >

(‖x‖2 + ‖y‖2)2.

Taking the square root (an increasing function that hence maintains the inequality) of both
sides yields the desired result.

Homework 1.2.3.3 Answer. ALWAYS
Now prove it!

Solution.
‖x‖22

= < partition vector >∥∥∥∥∥∥∥∥∥∥


x0
x1
...

xM−1


∥∥∥∥∥∥∥∥∥∥

2

2
= < equivalent definition >
x0
x1
...

xM−1


H 

x0
x1
...

xM−1


= < dot product of partitioned vectors >

xH0 x0 + xH1 x1 + · · ·+ xHM−1xM−1
= < equivalent definition >

‖x0‖22 + ‖x1‖22 + · · ·+ ‖xM−1‖22
≥ < algebra >

‖xi‖22
so that ‖xi‖22 ≤ ‖x‖22. Taking the square root of both sides shows that ‖xi‖2 ≤ ‖x‖2.

1.2.4 · The vector p-norms
Homework 1.2.4.1 Solution. We show that the three conditions are met:

Let x, y ∈ Cm and α ∈ C be arbitrarily chosen. Then

• x 6= 0⇒ ‖x‖1 > 0 (‖ · ‖1 is positive definite):
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Notice that x 6= 0 means that at least one of its components is nonzero. Let’s assume that
χj 6= 0. Then

‖x‖1 = |χ0|+ · · ·+ |χm−1| ≥ |χj | > 0.

• ‖αx‖1 = |α|‖x‖1 (‖ · ‖1 is homogeneous):

‖αx‖1 = < scaling a vector-scales-its-components; definition >
|αχ0|+ · · ·+ |αχm−1|

= < algebra >
|α||χ0|+ · · ·+ |α||χm−1|

= < algebra >
|α|(|χ0|+ · · ·+ |χm−1|)

= < definition >
|α|‖x‖1.

• ‖x+ y‖1 ≤ ‖x‖1 + ‖y‖1 (‖ · ‖1 obeys the triangle inequality):

‖x+ y‖1
= < vector addition; definition of 1-norm >

|χ0 + ψ0|+ |χ1 + ψ1|+ · · ·+ |χm−1 + ψm−1|
≤ < algebra >

|χ0|+ |ψ0|+ |χ1|+ |ψ1|+ · · ·+ |χm−1|+ |ψm−1|
= < commutivity >

|χ0|+ |χ1|+ · · ·+ |χm−1|+ |ψ0|+ |ψ1|+ · · ·+ |ψm−1|
= < associativity; definition >

‖x‖1 + ‖y‖1.

Homework 1.2.4.2 Solution. We show that the three conditions are met:
Let x, y ∈ Cm and α ∈ C be arbitrarily chosen. Then

• x 6= 0⇒ ‖x‖∞ > 0 (‖ · ‖∞ is positive definite):
Notice that x 6= 0 means that at least one of its components is nonzero. Let’s assume that
χj 6= 0. Then

‖x‖∞ = m−1max
i=0
|χi| ≥ |χj | > 0.

• ‖αx‖∞ = |α|‖x‖∞ (‖ · ‖∞ is homogeneous):

‖αx‖∞ = maxm−1
i=0 |αχi|

= maxm−1
i=0 |α||χi|

= |α|maxm−1
i=0 |χi|

= |α|‖x‖∞.

• ‖x+ y‖∞ ≤ ‖x‖∞ + ‖y‖∞ (‖ · ‖∞ obeys the triangle inequality):

‖x+ y‖∞ = maxm−1
i=0 |χi + ψi|

≤ maxm−1
i=0 (|χi|+ |ψi|)

≤ maxm−1
i=0 |χi|+ maxm−1

i=0 |ψi|
= ‖x‖∞ + ‖y‖∞.
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1.2.5 · Unit ball
Homework 1.2.5.1 Solution.

(a) ‖x‖2 = 1. (3)

(b) ‖x‖1 = 1. (1)

(c) ‖x‖∞ = 1. (2)

1.2.6 · Equivalence of vector norms
Homework 1.2.6.1 Solution.

x ‖x‖1 ‖x‖∞ ‖x‖2 1
0
0

 1 1 1

 1
1
1

 3 1
√

3

 1
−2
−1

 4 2
√

12 + (−2)2 + (−1)2 =
√

6

Homework 1.2.6.2 Solution. We need to prove that

σ‖x‖ ≤ |||x|||.

From the first part of the proof of Theorem 1.2.6.1, we know that there exists a ρ > 0 such that

‖x‖ ≤ ρ|||x|||
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and hence
1
ρ
‖x‖ ≤ |||x|||.

We conclude that
σ‖x‖ ≤ |||x|||

where σ = 1/ρ.

Homework 1.2.6.3 Hint. ‖x‖1 ≤
√
m‖x‖2:

This is the hardest one to prove. Do it last and use the following hint:

Consider y =

 χ0/|χ0|
...

χm−1/|χm−1|

 and employ the Cauchy-Schwarz inequality.

(How do you modify this hint to cover the case where one or more elements equal zero?)
Solution 1 (‖x‖1 ≤ C1,2‖x‖2). ‖x‖1 ≤

√
m‖x‖2:

Consider y =

 ψ0
...

ψm−1

 =

 χ0/|χ0|
...

χm−1/|χm−1|

 . Then

|xHy| =
∣∣∣∣∣
m−1∑
i=0

χiχi/|χi|
∣∣∣∣∣ =

∣∣∣∣∣
m−1∑
i=0
|χi|2/|χi|

∣∣∣∣∣ =
∣∣∣∣∣
m−1∑
i=0
|χi|

∣∣∣∣∣ = ‖x‖1.

We also notice that ‖y‖2 =
√
m.

From the Cauchy-Swartz inequality we know that

‖x‖1 = |xHy| ≤ ‖x‖2‖y‖2 =
√
m‖x‖2.

The problem with the above argument is that one of more χi may equal zero. The argument
can be fixed by choosing

ψi =
{
χi/|χi| if χi 6= 0
0 otherwise

or
ψi =

{
χi/|χi| if χi 6= 0
1 otherwise.

To demonstrate that equality is attained for at least one non-zero vector, we choose

x =

 1
...
1


then ‖x‖1 = m and ‖x‖2 =

√
m so that ‖x‖1 =

√
m‖x‖2.

Solution 2 (‖x‖1 ≤ C1,∞‖x‖∞). ‖x‖1 ≤ m‖x‖∞:
See Example 1.2.6.2.

Solution 3 (‖x‖2 ≤ C2,1‖x‖1:). ‖x‖2 ≤ ‖x‖1:
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‖x‖22
= < definition >∑m−1
i=0 |χi|2
≤ < algebra >(∑m−1
i=0 |χi|

)2

= < definition >
‖x‖21.

Taking the square root of both sides yields ‖x‖2 ≤ ‖x‖1.
If we now choose

x =



0
...
0
1
0
...
0


then ‖x‖2 = ‖x‖1.
Solution 4 (‖x‖2 ≤ C2,∞‖x‖∞). ‖x‖2 ≤

√
m‖x‖∞:

‖x‖22
= < definition >∑m−1
i=0 |χi|2
≤ < algebra >∑m−1
i=0

(
maxm−1

j=0 |χj |
)2

= < definition >∑m−1
i=0 ‖x‖2∞
= < algebra >

m‖x‖2∞.

Taking the square root of both sides yields ‖x‖2 ≤
√
m‖x‖∞.

Consider

x =

 1
...
1


then ‖x‖2 =

√
m and ‖x‖∞ = 1 so that ‖x‖2 =

√
m‖x‖∞.

Solution 5 (‖x‖∞ ≤ C∞,1‖x‖1:). ‖x‖∞ ≤ ‖x‖1:

‖x‖∞
= < definition >

maxm−1
i=0 |χi|
≤ < algebra >∑m−1
i=0 |χi|
= < definition >

‖x‖1.
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Consider

x =



0
...
0
1
0
...
0


.

Then ‖x‖∞ = 1 = ‖x‖1.
Solution 6 (‖x‖∞ ≤ C∞,2‖x‖2). ‖x‖∞ ≤ ‖x‖2:

‖x‖2∞
= < definition >(

maxm−1
i=0 |χi|

)2

= < algebra >

maxm−1
i=0 |χi|2
≤ < algebra >∑m−1
i=0 |χi|2
= < definition >

‖x‖22.

Taking the square root of both sides yields ‖x‖∞ ≤ ‖x‖2.
Consider

x =



0
...
0
1
0
...
0


.

Then ‖x‖∞ = 1 = ‖x‖2.
Solution 7 (Table of constants).

‖x‖1 ≤
√
m‖x‖2 ‖x‖1 ≤ m‖x‖∞

‖x‖2 ≤ ‖x‖1 ‖x‖2 ≤
√
m‖x‖∞

‖x‖∞ ≤ ‖x‖1 ‖x‖∞ ≤ ‖x‖2

1.3 · Matrix Norms
1.3.2 · What is a matrix norm?
Homework 1.3.2.1 Hint. Review the proof on Homework 1.2.2.1.
Answer. ALWAYS.

Now prove it.
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Solution. Let A ∈ Cm×n. Then

ν(0)
= < 0 ·A = 0 >

ν(0 ·A)
= < ‖ · ‖ν is homogeneous >

0ν(A)
= < algebra >

0

1.3.3 · The Frobenius norm
Homework 1.3.3.1 Solution.

‖A‖F
= < definition >√∑m−1
i=0

∑n−1
j=0 |αi,j |2

= < commutativity of addition >√∑n−1
j=0

∑m−1
i=0 |αi,j |2

= < definition of vector 2-norm >√∑n−1
j=0 ‖aj‖22

Homework 1.3.3.2 Solution. Establishing that this function is positive definite and homoge-
neous is straight forward. To show that the triangle inequality holds it helps to realize that if
A =

(
a0 a1 · · · an−1

)
then

‖A‖F
= < definition >√∑m−1
i=0

∑n−1
j=0 |αi,j |2

= < commutativity of addition >√∑n−1
j=0

∑m−1
i=0 |αi,j |2

= < definition of vector 2-norm >√∑n−1
j=0 ‖aj‖22

= < definition of vector 2-norm >√√√√√√√√√
∥∥∥∥∥∥∥∥∥∥


a0
a1
...

an−1


∥∥∥∥∥∥∥∥∥∥

2

2

.

In other words, it equals the vector 2-norm of the vector that is created by stacking the columns
of A on top of each other. One can then exploit the fact that the vector 2-norm obeys the triangle
inequality.
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Homework 1.3.3.3 Solution.

‖A‖F
= < definition >√∑m−1
i=0

∑n−1
j=0 |αi,j |2

= < definition of vector 2-norm >√∑m−1
i=0 ‖ãi‖22.

Homework 1.3.3.4 Solution.

(AB)H
= < XH = XT >

(AB)T
= < you once discovered that (AB)T = BTAT >

BTAT

= < you may check separately that XY = XY >

BT AT

= < XT = X
T
>

BHAH

Homework 1.3.3.5 Answer. ALWAYS
Solution.

‖A‖F
= < definition >√∑m−1
i=0

∑n−1
j=0 |αi,j |2

= < commutativity of addition >√∑n−1
j=0

∑m−1
i=0 |αi,j |2

= < change of variables >√∑n−1
i=0

∑m−1
j=0 |αj,i|2

= < algebra >√∑n−1
i=0

∑m−1
j=0 |αj,i|2

= < definition >
‖AH‖F

1.3.4 · Induced matrix norms
Homework 1.3.4.1 Answer. ALWAYS
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Solution.

|||y|||
= < definition >

maxx 6=0
‖yx‖p
‖x‖p

= < x is a scalar since y is a matrix with one column. Then ‖x‖p = ‖(χ0)‖p = p
√
|χ0|p = |χ0| >

maxχ0 6=0 |χ0|‖y‖p|χ0|
= < algebra >

maxχ0 6=0 ‖y‖p
= < algebra >

‖y‖p

1.3.5 · The matrix 2-norm
Homework 1.3.5.1 Solution. First, we show that ‖D‖2 = max‖x‖2=1 ‖Dx‖2 ≤ maxm−1

i=0 |δi|:

‖D‖22
= < definition >

max‖x‖2=1 ‖Dx‖22
= < diagonal vector multiplication >

max‖x‖2=1

∥∥∥∥∥∥∥
 δ0χ0

...
δm−1χm−1


∥∥∥∥∥∥∥

2

2
= < definition >

max‖x‖2=1
∑m−1
i=0 |δiχi|2

= < homogeneity >

max‖x‖2=1
∑m−1
i=0 |δi|2|χi|2

≤ < algebra >

max‖x‖2=1
∑m−1
i=0

[
maxm−1

j=0 |δj |
]2
|χi|2

= < algebra >[
maxm−1

j=0 |δj |
]2

max‖x‖2=1
∑m−1
i=0 |χi|2

= < ‖x‖2 = 1 >[
maxm−1

j=0 |δj |
]2
.

Next, we show that there is a vector y with ‖y‖2 = 1 such that ‖Dy‖2 = maxm−1
i=0 |δi|:
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Let j be such that |δj | = maxm−1
i=0 |δi| and choose y = ej . Then

‖Dy‖2
= < y = ej >

‖Dej‖2
= < D = diag(δ0, . . . , δm−1) >

‖δjej‖2
= < homogeneity >

|δj |‖ej‖2
= < ‖ej |2 = 1 >

|δj |
= < choice of j >

maxm−1
i=0 |δi|

Hence ‖D‖2 = maxm−1
j=0 |δj |.

Homework 1.3.5.2 Hint. Prove that ‖yxH‖2 ≤ ‖y‖2‖x‖2 and that there exists a vector z so
that ‖yx

Hz‖2
‖z‖2

= ‖y‖2‖x‖2.
Answer. ALWAYS

Now prove it!
Solution. W.l.o.g. assume that x 6= 0.

We know by the Cauchy-Schwarz inequality that |xHz| ≤ ‖x‖2‖z‖2. Hence

‖yxH‖2
= < definition >

max‖z‖2=1 ‖yxHz‖2
= < ‖ · ‖2 is homogenius >

max‖z‖2=1 |xHz|‖y‖2
≤ < Cauchy-Schwarz inequality >

max‖z‖2=1 ‖x‖2‖z‖2‖y‖2
= < ‖z‖2 = 1 >

‖x‖2‖y‖2.

But also
‖yxH‖2

= < definition >
maxz 6=0 ‖yxHz‖2/‖z‖2
≥ < specific z >

‖yxHx‖2/‖x‖2
= < xHx = ‖x‖22; homogeneity >

‖x‖22‖y‖2/‖x‖2
= < algebra >

‖y‖2‖x‖2.

Hence
‖yxH‖2 = ‖y‖2‖x‖2.
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Homework 1.3.5.3 Hint. What vector has the property that aj = Ax?
Answer. ALWAYS.

Now prove it!
Solution.

‖aj‖2
=

‖Aej‖2
≤

max‖x‖2=1 ‖Ax‖2
=

‖A‖2.

Homework 1.3.5.4 Hint. Proving ‖A‖2 = max‖x‖2=‖y‖2=1 |yHAx| requires you to invoke the
Cauchy-Schwarz inequality from Theorem 1.2.3.3.
Solution.

• ‖A‖2 = max‖x‖2=‖y‖2=1 |yHAx|:

max‖x‖2=‖y‖2=1 |yHAx|
≤ < Cauchy-Schwarz >

max‖x‖2=‖y‖2=1 ‖y‖2‖Ax‖2
= < ‖y‖2 = 1 >

max‖x‖2=1 ‖Ax‖2
= < definition >

‖A‖2.

Also, we know there exists x with ‖x‖2 = 1 such that ‖A‖2 = ‖Ax‖2. Let y = Ax/‖Ax‖2.
Then

|yHAx|
= < instantiate >∣∣∣ (Ax)H(Ax)
‖Ax‖2

∣∣∣
= < zHz = ‖z‖22 >∣∣∣‖Ax‖2

2
‖Ax‖2

∣∣∣
= < algebra >

‖Ax‖2
= < x was chosen so that ‖Ax‖2 = ‖A‖2 >

‖A‖2

Hence the bound is attained. We conclude that ‖A‖2 = max‖x‖2=‖y‖2=1 |yHAx|.

• ‖AH‖2 = ‖A‖2:
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‖AH‖2
= < first part of homework >

max‖x‖2=‖y‖2=1 |yHAHx|
= < |α| = |α| >

max‖x‖2=‖y‖2=1 |xHAy|
= < first part of homework >

‖A‖2.

• ‖AHA‖2 = ‖A‖22:

‖AHA‖2
= < first part of homework >

max‖x‖2=‖y‖2=1 |yHAHAx|
≥ < restricts choices of y >

max‖x‖2=1 |xHAHAx|
= < zHz = ‖z‖22 >

max‖x‖2=1 ‖Ax‖22
= < algebra >(

max‖x‖2=1 ‖Ax‖2
)2

= < definition >
‖A‖22.

So, ‖AHA‖2 ≥ ‖A‖22.
Now, let’s show that ‖AHA‖2 ≤ ‖A‖22. This would be trivial if we had already discussed the
fact that ‖ · · · ‖2 is a submultiplicative norm (which we will in a future unit). But let’s do it
from scratch. First, we show that ‖Ax‖2 ≤ ‖A‖2‖x‖2 for all (appropriately sized) matrices A
and x:

‖Ax‖2
= < norms are homogeneus >

‖A x
‖x‖2
‖2‖x‖2

≤ < algebra >
max‖y‖2=1 ‖Ay‖2‖x‖2

= < definition of 2-norm
‖A‖2‖x‖2.

With this, we can then show that

‖AHA‖2
= < definition of 2-norm >

max‖x‖2=1 ‖AHAx‖2
≤ < ‖Az‖2 ≤ ‖A‖2‖z‖2 >

max‖x‖2=1(‖AH‖2‖Ax‖2)
= < algebra >

‖AH‖2 max‖x‖2=1 ‖Ax‖2)
= < definition of 2-norm >

‖AH‖2‖A‖2
= < ‖AH‖2 = ‖A‖ >

‖A‖22
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Alternatively, as suggested by one of the learners in the course, we can use the Cauchy-Schwarz
inequality:

‖AHA‖2
= < part (a) of this homework >

max‖x‖2=‖y‖2=1 |xHAHAy|
= < simple manipulation >

max‖x‖2=‖y‖2=1 |(Ax)HAy|
≤ < Cauchy-Schwarz inequality >

max‖x‖2=‖y‖2=1 ‖Ax‖2‖Ay‖2
= < algebra >

max‖x‖2=1 ‖Ax‖2 max‖y‖2=1 ‖Ay‖2
= < definition >

‖A‖2‖A‖2
= < algebra >

‖A‖22

Homework 1.3.5.5 Hint. Using Homework 1.3.5.4 choose vj and wi such that ‖Ai,j‖2 = |wHi Ai,jvj |.
Solution. Choose vj and wi such that ‖Ai,j‖2 = |wHi Ai,jvj |. Next, choose v and w such that

v =



0
...
0
vj
0
...
0


, w =



0
...
0
wi
0
...
0


.

You can check (using partitioned multiplication and the last homework) that wHAv = wHi Ai,jvj .
Then, by Homework 1.3.5.4

‖A‖2
= < last homework >

max‖x‖2=‖y‖2=1 |yHAx|
≥ < w and v are specific vectors >

|wHAv|
= < partitioned multiplication >

|wHi Ai,jvj |
= < how wi and vj were chosen >

‖Ai,j‖2.

1.3.6 · Computing the matrix 1-norm and ∞-norm
Homework 1.3.6.1 Hint. Prove it for the real valued case first.
Answer. ALWAYS
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Solution. Let J be chosen so that max0≤j<n ‖aj‖1 = ‖aJ‖1. Then

‖A‖1
= < definition >

max‖x‖1=1 ‖Ax‖1
= < expose the columns of A and elements of x >

max‖x‖1=1

∥∥∥∥∥∥∥∥∥∥
(
a0 a1 · · · an−1

)


χ0
χ1
...

χn−1


∥∥∥∥∥∥∥∥∥∥

1
= < definition of matrix-vector multiplication >

max‖x‖1=1 ‖χ0a0 + χ1a1 + · · ·+ χn−1an−1‖1
≤ < triangle inequality >

max‖x‖1=1 (‖χ0a0‖1 + ‖χ1a1‖1 + · · ·+ ‖χn−1an−1‖1)
= < homogeneity >

max‖x‖1=1 (|χ0|‖a0‖1 + |χ1|‖a1‖1 + · · ·+ |χn−1|‖an−1‖1)
≤ < choice of aJ >

max‖x‖1=1 (|χ0|‖aJ‖1 + |χ1|‖aJ‖1 + · · ·+ |χn−1|‖aJ‖1)
= < factor out ‖aJ‖1 >

max‖x‖1=1 (|χ0|+ |χ1|+ · · ·+ |χn−1|) ‖aJ‖1
= < algebra >

‖aJ‖1.

Also,
‖aJ‖1

= < eJ picks out column J >
‖AeJ‖1
≤ < eJ is a specific choice of x >

max‖x‖1=1 ‖Ax‖1.

Hence
‖aJ‖1 ≤ max

‖x‖1=1
‖Ax‖1 ≤ ‖aJ‖1

which implies that
max
‖x‖1=1

‖Ax‖1 = ‖aJ‖1 = max
0≤j<n

‖aj‖1.

Homework 1.3.6.2 Hint. Prove it for the real valued case first.
Answer. ALWAYS
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Solution. Partition A =


ãT0
...

ãTm−1

. Then
‖A‖∞

= < definition >
max‖x‖∞=1 ‖Ax‖∞

= < expose rows >

max‖x‖∞=1

∥∥∥∥∥∥∥∥


ãT0
...

ãTm−1

x
∥∥∥∥∥∥∥∥
∞

= < matrix-vector multiplication >

max‖x‖∞=1

∥∥∥∥∥∥∥∥


ãT0 x
...

ãTm−1x


∥∥∥∥∥∥∥∥
∞

= < definition of ‖ · · · ‖∞ >

max‖x‖∞=1
(
max0≤i<m |ãTi x|

)
= < expose ãTi x >

max‖x‖∞=1 max0≤i<m |
∑n−1
p=0 αi,pχp|

≤ < triangle inequality >

max‖x‖∞=1 max0≤i<m
∑n−1
p=0 |αi,pχp|

= < algebra >

max‖x‖∞=1 max0≤i<m
∑n−1
p=0 (|αi,p||χp|)

≤ < algebra >

max‖x‖∞=1 max0≤i<m
∑n−1
p=0 (|αi,p|(maxk |χk|))

= < definition of ‖ · ‖∞ >

max‖x‖∞=1 max0≤i<m
∑n−1
p=0 (|αi,p|‖x‖∞)

= < ‖x‖∞ = 1 >
max0≤i<m

∑n−1
p=0 |αi,p|

= < definition of ‖ · ‖1 >
max0≤i<m ‖ãi‖1

so that ‖A‖∞ ≤ max0≤i<m ‖ãi‖1.
We also want to show that ‖A‖∞ ≥ max0≤i<m ‖ãi‖1. Let k be such that max0≤i<m ‖ãi‖1 =

‖ãk‖1 and pick y =

 ψ0
...

ψn−1

 so that ãTk y = |αk,0| + |αk,1| + · · · + |αk,n−1| = ‖ãk‖1. (This is a

matter of picking ψj = |αk,j |/αk,j if αk,j 6= 0 and ψj = 1 otherwise. Then |ψj | = 1, and hence
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‖y‖∞ = 1 and ψjαk,j = |αk,j |.) Then

‖A‖∞
= < definition >

max‖x‖∞=1 ‖Ax‖∞
= < expose rows >

max‖x‖∞=1

∥∥∥∥∥∥∥∥


ãT0
...

ãTm−1

x
∥∥∥∥∥∥∥∥
∞

≥ < y is a specific x >∥∥∥∥∥∥∥∥


ãT0
...

ãTm−1

 y
∥∥∥∥∥∥∥∥
∞

= < matrix-vector multiplication >∥∥∥∥∥∥∥∥


ãT0 y
...

ãTm−1y


∥∥∥∥∥∥∥∥
∞

≥ < algebra >
|ãTk y|

= < choice of y >
‖ãk‖1.

= < choice of k >
max0≤i<m ‖ãi‖1

1.3.7 · Equivalence of matrix norms
Homework 1.3.7.1 Hint. For the second and third, you may want to use Homework 1.3.5.2
when computing the 2-norm.
Solution.

A ‖A‖1 ‖A‖∞ ‖A‖F ‖A‖2 1 0 0
0 1 0
0 0 1

 1 1
√

3 1


1 1 1
1 1 1
1 1 1
1 1 1

 4 3 2
√

3 2
√

3

 0 1 0
0 1 0
0 1 0

 3 1
√

3
√

3

To compute the 2-norm of I, notice that

‖I‖2 = max
|x|2=1

‖Ix‖2 = max
|x|2=1

‖x‖2 = 1.
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Next, notice that 
1 1 1
1 1 1
1 1 1
1 1 1

 =


1
1
1
1

( 1 1 1
)
.

and  0 1 0
0 1 0
0 1 0

 =

 1
1
1

( 0 1 0
)
.

which allows us to invoke the result from Homework 1.3.5.2.
Homework 1.3.7.2 Solution. Next week, we will learn about the SVD. Let us go ahead and
insert that proof here, for future reference.

Let A = UΣV H be the Singular Value Decomposition of A, where U and V are unitary and
Σ = diag(σ0, . . . , σmin(m,n)) with σ0 ≥ σ1 ≥ . . . ≥ σmin(m,n) ≥ 0. Then

‖A‖2 = ‖UΣV H‖2 = σ0

and
‖A‖F = ‖UΣV H‖F = ‖Σ‖F =

√
σ2

0 + . . .+ σ2
min(m,n).

Hence, ‖A‖2 ≤ ‖A‖F .

Homework 1.3.7.3 Solution.
• ‖A‖1 ≤

√
m‖A‖2:

‖A‖1
= < definition >

maxx 6=0
‖Ax‖1
‖x‖1

≤ < ‖z‖1 ≤
√
m‖z‖2 >

maxx 6=0
√
m‖Ax‖2
‖x‖1

≤ < ‖z‖1 ≥ ‖z‖2 >
maxx 6=0

√
m‖Ax‖2
‖x‖2

= < algebra; definition >√
m‖A‖2

Equality is attained for A =


1
1
...
1

.
• ‖A‖1 ≤ m‖A‖∞:



APPENDIX E. ANSWERS AND SOLUTIONS TO HOMEWORKS 506

‖A‖1
= < definition >

maxx 6=0
‖Ax‖1
‖x‖1

≤ < ‖z‖1 ≤ m‖z‖∞ >

maxx 6=0
m‖Ax‖∞
‖x‖1

≤ < ‖z‖1 ≥ ‖z‖∞ >

maxx 6=0
m‖Ax‖∞
‖x‖∞

= < algebra; definition >
m‖A‖∞

Equality is attained for A =


1
1
...
1

.
• ‖A‖1 ≤

√
m‖A‖F :

It pays to show that ‖A‖2 ≤ ‖A‖F first. Then

‖A‖1
≤ < last part >√
m‖A‖2
≤ < some other part:‖A‖2 ≤ ‖A‖F >√
m‖A‖F .

Equality is attained for A =


1
1
...
1

.
• ‖A‖2 ≤

√
n‖A‖1:

‖A‖2
= < definition >

maxx6=0
‖Ax‖2
‖x‖2

≤ < ‖z‖2 ≤ ‖z‖1 >
maxx6=0

‖Ax‖1
‖x‖2

≤ <
√
n‖z‖2 ≥ ‖z‖1 when z is of size n >

maxx 6=0
√
n‖Ax‖1
‖x‖1

= < algebra; definition >√
n‖A‖1.

Equality is attained for A =
(

1 1 · · · 1
)
.
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• ‖A‖2 ≤
√
m‖A‖∞:

‖A‖2
= < definition >

maxx 6=0
‖Ax‖2
‖x‖2

≤ < ‖z‖2 ≤
√
m‖z‖∞ >

maxx 6=0
√
m‖Ax‖∞
‖x‖2

≤ < ‖z‖2 ≥ ‖z‖∞ >

maxx 6=0
√
m‖Ax‖∞
‖x‖∞

= < algebra; definition >√
m‖A‖∞.

Equality is attained for A =


1
1
...
1

.
• ‖A‖2 ≤ ‖A‖F :

(See Homework 1.3.7.2, which requires the SVD, as mentioned...)

• Please share more solutions!

1.3.8 · Submultiplicative norms
Homework 1.3.8.1 Answer. Both are ALWAYS true.

Now prove it.
Solution. We first prove that the matrix 2-norm is subordinate to the vector 2-norm.

W.l.o.g., assume x 6= 0. (Why? Because if x = 0 than obviously ‖Ax‖µ ≤ ‖A‖µ,ν‖x‖ν .)

‖Ax‖2
= < this is the trick... >

‖Ax‖2
‖x‖2
‖x‖2

≤ < if f(z) is nonnegative for all z 6= 0 then f(x) ≤ maxy 6=0 f(y) >
maxy 6=0

‖Ay‖2
‖y‖2
‖x‖2

= < definition of the 2-norm >
= ‖A‖2‖x‖2.

The second result follows from the fact that ‖A‖2 ≤ ‖A‖F . We showed that in Homework 1.3.7.2.

Homework 1.3.8.2 Solution. W.l.o.g. assume that x 6= 0. (Why? Because if x = 0 than
obviously ‖Ax‖µ ≤ ‖A‖µ,ν‖x‖ν .)

‖A‖µ,ν = max
y 6=0

‖Ay‖µ
‖y‖ν

≥ ‖Ax‖µ
‖x‖ν

.

Rearranging this establishes the result.
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Homework 1.3.8.3 Solution.

‖AB‖µ
= < definition >

max‖x‖µ=1 ‖ABx‖µ
≤ < last homework >

max‖x‖µ=1 ‖A‖µ,ν‖Bx‖ν
= < algebra >

‖A‖µ,ν max‖x‖µ=1 ‖Bx‖ν
= < definition >

‖A‖µ,ν‖B‖ν,µ

Homework 1.3.8.4 Solution.

‖AB‖2F
= < partition >∥∥∥∥∥∥∥∥∥∥


ãT0
ãT1
...

ãTm−1


(
b0 b1 · · · bn−1

)
∥∥∥∥∥∥∥∥∥∥

2

F
= < partitioned matrix-matrix multiplication >∥∥∥∥∥∥∥∥∥∥


ãT0 b0 ãT0 b1 · · · ãT0 bn−1
ãT1 b0 ãT1 b1 · · · ãT1 bn−1
...

...
...

ãTm−1b0 ãTm−1b1 · · · ãTm−1bn−1


∥∥∥∥∥∥∥∥∥∥

2

F
= < definition of Frobenius norm >∑
i

∑
j |ãTi bj |2

= < definition of Hermitian transpose vs transpose >∑
i

∑
j |ãi

H
bj |2

≤ < Cauchy-Schwarz inequality >∑
i

∑
j ‖ãi‖22‖bj‖22

= < algebra and ‖x‖2 = ‖x‖2 >(∑
i ‖ãi‖22

) (∑
j ‖bj‖22

)
= < previous observations about the Frobenius norm >

‖A‖2F ‖B‖2F

Hence ‖AB‖2F ≤ ‖A‖2F ‖B‖2F . Taking the square root of both sides leaves us with ‖AB‖F ≤
‖A‖F ‖B‖F .

This proof brings to the forefront that the notation ãTi leads to some possible confusion. In this
particular situation, it is best to think of ãi as a vector that, when transposed, becomes the row of
A indexed with i. In this case, ãTi = ãi

H and (ãTi )H = ãi (where, recall, x equals the vector with
all its entries conjugated). Perhaps it is best to just work through this problem for the case where
A and B are real-valued, and not worry too much about the details related to the complex-valued
case...
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Homework 1.3.8.5 Answer.
1. TRUE

2. TRUE

Solution.

1. This is a norm. You can prove this by checking the three conditions.

2. It is a consistent norm since it is defined for all m and n.
Homework 1.3.8.6 Answer. ALWAYS

Now prove it!
Solution. Partition A by rows:

A =

 ãT0
...

ãTm−1

 .
We know that there exists k such that ‖ãk‖1 = ‖A‖∞. Now

‖ãk‖1
= < definition of 1-norm >

|αk,0|+ · · ·+ |αk,n−1|
= < algebra >

|αk,0|
αk,0

αk,0 + · · ·+ |αk,n−1|
αk,n−1

αk,n−1.

where we take |αk,j |αk,j
= 1 whenever αk,j = 0. Vector

x =


|αk,0|
αk,0
...

|αk,n−1|
αk,n−1


has the desired property.

1.4 · Condition Number of a Matrix
1.4.1 · Conditioning of a linear system
Homework 1.4.1.1 Answer. TRUE
Solution.

‖I‖ = max
‖x‖=1

‖Ix‖ = max
‖x‖=1

‖x‖ = 1

Homework 1.4.1.2 Answer. TRUE
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Solution.
1

= < last homework >
‖I‖

= < A is invertible >
‖AA−1‖
≤ < ‖ · ‖ is submultiplicative >

‖A‖‖A−1‖.

1.4.2 · Loss of digits of accuracy
Homework 1.4.2.1 Solution. Let α = −14.24123 and α̂ = −14.24723. Compute

• |α| = 14.24123

• |α− α̂| = 0.006

• |α−α̂|
|α| ≈ 0.00042

• log10

(
|α−α̂|
|α|

)
≈ −3.4

The point of this exercise is as follows:

• If you compare α = −14.24123
α̂ = −14.24723 and you consider α̂ to be an approximation of α, then α̂ is accurate to four
digits: −14.24 is accurate.

• Computing log10

(
|α−α̂|
|α|

)
tells you approximately how many decimal digits are accurate: 3.4

digits.

1.6 · Wrap Up
1.6.1 · Additional homework
Homework 1.6.1.8 Solution. Obviously, if x = ej then ‖x‖1 = ‖x|2 = 1.

Assume x 6= ej . Then |χi| < 1 for all i. But then ‖x‖2 =
√
|χ0|2 + · · ·+ |χm−1|2 <

√
|χ0|+ · · ·+ |χm−1| =√

1 = 1.

2 · The Singular Value Decomposition
2.1 · Opening Remarks
2.1.1 · Low rank approximation
Homework 2.1.1.1 Solution.

• A is m× k.

• X is k × n.

A total of (m+ n)k entries are in A and X.

Homework 2.1.1.2 Solution. The matrix AX has rank at most equal to k (it is a rank-k matrix)
since each of its columns can be written as a linear combinations of the columns of A and hence it
has at most k linearly independent columns.
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2.2 · Orthogonal Vectors and Matrices
2.2.1 · Orthogonal vectors
Homework 2.2.1.1 Answer. ALWAYS

Now prove it!
Solution.

xHy =
m−1∑
i=0

χiψi =
m−1∑
i=0

χiψi =
m−1∑
i=0

ψiχi = yHx.

Homework 2.2.1.2 Answer. ALWAYS
Now prove it!

Solution. By the last homework,
xHx = xHx,

A complex number is equal to its conjugate only if it is real-valued.

2.2.2 · Component in the direction of a vector
Homework 2.2.2.1 Answer. ALWAYS.

Now prove it.
Solution. (

aaH

aHa

) (
aaH

aHa

)
= < multiply numerators and denominators >

aaHaaH

(aHa)(aHa)
= < associativity >

a(aHa)aH
(aHa)(aHa)

= < aHa is a scalar and hence commutes to front >
aHaaaH

(aHa)(aHa)
= < scalar division >

aaH

aHa
.

Interpretation: orthogonally projecting the orthogonal projection of a vector yields the orthog-
onal projection of the vector.

Homework 2.2.2.2 Answer. ALWAYS.
Now prove it.

Solution. (
aaH

aHa

) (
I − aaH

aHa

)
= < distribute >(

aaH

aHa

)
−
(
aaH

aHa

) (
aaH

aHa

)
= < last homework >(

aaH

aHa

)
−
(
aaH

aHa

)
=

0.

Interpretation: first orthogonally projecting onto the space orthogonal to vector a and then
orthogonally projecting the resulting vector onto that a leaves you with the zero vector.
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Homework 2.2.2.3 Answer. ALWAYS.
Now prove it.

Solution.
b̂Hb⊥

= < substitute b̂ and b⊥ >(
aaH

aHa
b
)H

(b− b̂)
= < (Ax)H = xHAH ; substitute b− b̂ >

bH
(
aaH

aHa

)H
(I − aaH

aHa
)b

= < (((xyH)/α)H = yxH/α if α is real >
bH aaH

aHa
(I − aaH

aHa
)b

= < last homework >
bH0b

= < 0x = 0; yH0 = 0 >
0.

2.2.3 · Orthonormal vectors and matrices
Homework 2.2.3.1 Answer. ALWAYS.

Now prove it.
Solution. ∥∥∥ u

‖u‖2

∥∥∥
2

= < homogeneity of norms >
‖u‖2
‖u‖2

= < algebra >
1

Homework 2.2.3.2 Answer. TRUE
Now prove it!

Solution. Let Q ∈ Cm×n (with n ≤ m). Partition Q =
(
q0 q1 · · · qn−1

)
. Then

QHQ =
(
q0 q1 · · · qn−1

)H (
q0 q1 · · · qn−1

)

=


qH0
qH1
...

qHn−1


(
q0 q1 · · · qn−1

)

=


qH0 q0 qH0 q1 · · · qH0 qn−1
qH1 q0 qH1 q1 · · · qH1 qn−1
...

...
...

qHn−1q0 qHn−1q1 · · · qHn−1qn−1

 .
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Now consider that QHQ = I:
qH0 q0 qH0 q1 · · · qH0 qn−1
qH1 q0 qH1 q1 · · · qH1 qn−1
...

...
...

qHn−1q0 qHn−1q1 · · · qHn−1qn−1

 =


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

 .

Clearly Q is orthonormal if and only if q0, q1, . . . , qn−1 are mutually orthonormal.

Homework 2.2.3.3 Answer. SOMETIMES.
Now explain why.

Solution.

• If Q is a square matrix (m = n) then QHQ = I means Q−1 = QH . But then QQ−1 = I and
hence QQH = I.

• If Q is not square, then QHQ = I means m > n. Hence Q has rank equal to n which in turn
means QQH is a matrix with rank at most equal to n. (Actually, its rank equals n.). Since I
has rank equal to m (it is an m×m matrix with linearly independent columns), QQH cannot
equal I.

More concretely: let m > 1 and n = 1. Choose Q =
(
e0
)
. Then QHQ = eH0 e0 = 1 = I.

But

QQH = e0e
H
0 =

 1 0 · · ·
0 0 · · ·
...

...

 .
2.2.4 · Unitary matrices
Homework 2.2.4.1 Answer. SOMETIMES

Now explain it!
Solution. If Q is unitary, then it is an orthonormal matrix and square. Because it is an orthonor-
mal matrix, QHQ = I. If A,B ∈ Cm×m, the matrix B such that BA = I is the inverse of A. Hence
Q−1 = QH . Also, if BA = I then AB = I and hence QQH = I.

However, an orthonormal matrix is not necessarily square. For example, the matrix Q =( √
2

2√
2

2

)
is an orthonormal matrix: QTQ = I. However, it doesn’t have an inverse because it is not

square.
Homework 2.2.4.2 Answer. ALWAYS

Now explain it!
Solution. If Q is unitary, then it is square and QHQ = I. Hence Q−1 = QH and QQH = I.
Homework 2.2.4.3 Answer. TRUE

Now prove it!
Solution. Clearly, UH is square. Also, (UH)HUH = (UUH)H = I by the last homework.

Homework 2.2.4.4 Answer. ALWAYS
Now prove it!

Solution. Obviously, U0U1 is a square matrix.
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Now,
(U0U1)H(U0U1) = UH1 UH0 U0︸ ︷︷ ︸

I

U1 = UH1 U1︸ ︷︷ ︸
I

= I.

Hence U0U1 is unitary.

Homework 2.2.4.5 Answer. ALWAYS
Now prove it!

Solution. Strictly speaking, we should do a proof by induction. But instead we will make the
more informal argument that

(U0U1 · · ·Uk−1)HU0U1 · · ·Uk−1 = UHk−1 · · ·UH1 UH0 U0U1 · · ·Uk−1
= UHk−1 · · · UH1 UH0 U0︸ ︷︷ ︸

I

U1

︸ ︷︷ ︸
I

· · ·

︸ ︷︷ ︸
I

Uk−1

︸ ︷︷ ︸
I

= I.

(When you see a proof that involed · · ·, it would be more rigorous to use a proof by induction.)

Homework 2.2.4.6 Solution.

‖Ux‖22
= < alternative definition >

(Ux)HUx
= < (Az)H = zHAH >

xHUHUx
= < U is unitary >

xHx
= < alternative definition >

‖x‖22.

Homework 2.2.4.7 Solution.

‖U‖2
= < definition >

max‖x‖2=1 ‖Ux‖2
= < unitary matrices preserve length >

max‖x‖2=1 ‖x‖2
= < algebra >

1
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Homework 2.2.4.8 Solution.

κ2U
= < definition >

‖U‖2‖U−1‖2
= < both U and U−1 are unitary ; last homework >

1× 1
= < arithmetic >

1

Homework 2.2.4.9 Hint. Exploit the definition of the 2-norm:

‖A‖2 = max
‖x‖2=1

‖Ax‖2.

Solution.

•
‖UHA‖2

= < definition of 2-norm >
max‖x‖2=1 ‖UHAx‖2

= < U is unitary and unitary matrices preserve length >
max‖x‖2=1 ‖Ax‖2

= < definition of 2-norm >
‖A‖2.

•
‖AV ‖2

= < definition of 2-norm >
max‖x‖2=1 ‖AV x‖2

= < V H is unitary and unitary matrices preserve length >
max‖V x‖2=1 ‖A(V x)‖2

= < substitute y = V x >
max‖y‖2=1 ‖Ay‖2

= < definition of 2-norm >
‖A‖2.

• The last part follows immediately from the previous two:

‖UHAV ‖2 = ‖UH(AV )‖2 = ‖AV ‖2 = ‖A‖2.

Homework 2.2.4.10 Hint. How does ‖A‖F relate to the 2-norms of its columns?
Solution.

• Partition
A =

(
a0 · · · an−1

)
.

Then we saw in Subsection 1.3.3 that ‖A‖2F =
∑n−1
j=0 ‖a‖22.
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Now,
‖UHA‖2F

= < partition A by columns >
‖UH

(
a0 · · · an−1

)
‖2F

= < property of matrix-vector multiplication >

‖
(
UHa0 · · · UHan−1

)
‖2F

= < exercise in Chapter 1 >∑n−1
j=0 ‖UHaj‖22
= < unitary matrices preserve length >∑n−1
j=0 ‖aj‖22
= < exercise in Chapter 1 >

‖A‖2F .

• To prove that ‖AV ‖F = ‖A‖F recall that ‖AH‖F = ‖A‖F .

• The last part follows immediately from the first two parts.

2.2.5 · Examples of unitary matrices
2.2.5.1 · Rotations
Homework 2.2.5.1 Hint. Hint: use c for cos(θ) and s for sin(θ) to save yourself a lot of writing!
Solution. (

cos(θ) − sin(θ)
sin(θ) cos(θ)

)H (
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
= < the matrix is real valued >(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)T (
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
= < transpose >(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
= < multiply >(

cos2(θ) + sin2(θ) − cos(θ) sin(θ) + sin(θ) cos(θ)
− sin(θ) cos(θ) + cos(θ) sin(θ) sin2(θ) + cos2(θ)

)
= < geometry; algebra >(
1 0
0 1

)
Homework 2.2.5.2 Solution. Undoing a rotation by an angle θ means rotating in the opposite
direction through angle θ or, equivalently, rotating through angle −θ. Thus, the inverse of Rθ is
R−θ. The matrix that represents Rθ is given by(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
and hence the matrix that represents R−θ is given by(

cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)
.
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Since R−θ is the inverse of Rθ we conclude that(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)−1

=
(

cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)
.

But we just discovered that(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)−1

=
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)T
=
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
.

Hence (
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)
. =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
from which we conclude that cos(−θ) = cos(θ) and sin(−θ) = − sin(θ).

2.2.5.2 · Reflections
Homework 2.2.5.3 Solution.

• If you scale a vector first and then reflect it, you get the same result as if you reflect it first
and then scale it.

• If you add two vectors first and then reflect, you get the same result as if you reflect them
first and then add them.

Homework 2.2.5.4 Hint. Rearrange x− 2(uTx)u.
Solution. We notice that

x− 2(uTx)u
= < αx = xα >

x− 2u(uTx)
= < associativity >

Ix− 2uuTx
= < distributivity >

(I − 2uuT )x.

Hence M(x) = (I − 2uuT )x and the matrix that represents M is given by I − 2uuT .

Homework 2.2.5.5 Solution. If you take a vector, x, and reflect it with respect to the mirror
defined by u, and you then reflect the result with respect to the same mirror, you should get the
original vector x back. Hence, the matrix that represents the reflection should be its own inverse.
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Homework 2.2.5.6 Solution. Pushing through the math we find that

(I − 2uuT )T (I − 2uuT )
= < (A+B)T = AT +BT >

(IT − (2uuT )T )(I − 2uuT )
= < (αABT )T = αBAT >

(I − 2uuT )(I − 2uuT )
= < distributivity >

(I − 2uuT )− (I − 2uuT )(2uuT )
= < distributivity >

I − 2uuT − 2uuT + 2uuT 2uuT
= < uTu = 1 >

I − 4uuT + 4uuT
= < A−A = 0 >

I.

2.2.6 · Change of orthonormal basis
Homework 2.2.6.1 Solution. There are a number of approaches to this. One way is to try to
remember the formula you may have learned in a pre-calculus course about change of coordinates.
Let’s instead start by recognizing (from geometry or by applying the Pythagorean Theorem) that

u0 =
( √

2/2√
2/2

)
=
√

2
2

(
1
1

)
and u1 =

(
−
√

2/2√
2/2

)
=
√

2
2

(
−1
1

)
.

Here are two ways in which you can employ what you have discovered in this course:
• Since u0 and u1 are orthonormal vectors, you know that

x
= < u0 and u1 are orthonormal >

(uT0 x)u0︸ ︷︷ ︸
component in the
direction of u0

+ (uT1 x)u1︸ ︷︷ ︸
component in the
direction of u1

= < instantiate u0 and u1 >√2
2

(
1
1

)T (
−2
1

)u0 +

√2
2

(
−1
1

)T (
−2
1

)u1

= < evaluate >

−
√

2
2 u0 + 3

√
2

2 u1.

• An alternative way to arrive at the same answer that provides more insight. Let U =
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(
u0 u1

)
. Then

x
= < U is unitary (or orthogonal since it is real valued) >

UUTx
= < instantiate U >(
u0 u1

)( uT0
uT1

)
x

= < matrix-vector multiplication >(
u0 u1

)( uT0 x

uT1 x

)
= < instantiate >

(
u0 u1

)


√
2

2

(
1
1

)T (
−2
1

)
√

2
2

(
−1
1

)T (
−2
1

)


= < evaluate >(
u0 u1

)( −√2
2

3
√

2
2

)
= < simplify >(
u0 u1

)(√
2

2

(
−1
3

))

2.2.7 · Why we love unitary matrices
Homework 2.2.7.1 Solution. Since x = A−1y we know that

‖x‖ ≤ ‖A−1‖‖y‖

and hence
1
‖y‖
≤ ‖A−1‖ 1

‖x‖
. (E.0.1)

Subtracting y = Ax from y + δy = A(x+ δx) yields

δy = Aδx

and hence
‖δy‖ ≤ ‖A‖‖δx‖. (E.0.2)

Combining (E.0.1) and (E.0.2) yields the desired result.

2.3 · The Singular Value Decomposition
2.3.1 · The Singular Value Decomposition Theorem
Homework 2.3.1.1 Solution. We will employ a proof by contradiction. Assume that ‖B‖2 > σ1.
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Then there exists a vector z with ‖z‖2 = 1 such that ‖B‖2 = ‖Bz‖2 = max‖x‖2=1 ‖Bx‖2. But then

‖A‖2
= < definition >

max‖x‖2=1 ‖Ax‖2
≥ < pick a specific vector with 2− norm equal to one >∥∥∥∥∥A
(

0
z

)∥∥∥∥∥
2

= < instantiate A >∥∥∥∥∥
(
σ1 0
0 B

)(
0
z

)∥∥∥∥∥
2

= < partitioned matrix-vector multiplication >∥∥∥∥∥
(

0
Bz

)∥∥∥∥∥
2

= <

∥∥∥∥∥
(
y0
y1

)∥∥∥∥∥
2

2
= ‖y0‖22 + ‖y1‖22 >

‖Bz‖2
= < assumption about z >

‖B‖2
> < assumption >

σ1.

which is a contradiction.
Hence ‖B‖2 ≤ σ1.

Homework 2.3.1.2 Answer. ALWAYS
Now prove it.

Solution. Yes, you have seen this before, in Homework 1.3.5.1. We repeat it here because of its
importance to this topic.
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‖Σ‖22 = max‖x‖2=1 ‖Σx‖22

= max‖x‖2=1

∥∥∥∥∥∥∥∥∥∥


σ0 0 · · · 0
0 σ1 · · · 0
...

... . . . ...
0 0 · · · σn−1




χ0
χ1
...

χn−1


∥∥∥∥∥∥∥∥∥∥

2

2

= max‖x‖2=1

∥∥∥∥∥∥∥∥∥∥


σ0χ0
σ1χ1
...

σn−1χn−1


∥∥∥∥∥∥∥∥∥∥

2

2
= max‖x‖2=1

[∑n−1
j=0 |σjχj |2

]
= max‖x‖2=1

[∑n−1
j=0

[
|σj |2|χj |2

]]
≤ max‖x‖2=1

[∑n−1
j=0

[
maxn−1

i=0 |σi|2|χj |2
]]

= max‖x‖2=1
[
maxn−1

i=0 |σi|2
∑n−1
j=0 |χj |2

]
=

(
maxn−1

i=0 |σi|
)2

max‖x‖2=1 ‖x‖22
=

(
maxn−1

i=0 |σi|
)2
.

so that ‖Σ‖2 ≤ maxn−1
i=0 |σi|.

Also, choose j so that |σj | = maxn−1
i=0 |σi|. Then

‖Σ‖2 = max‖x‖2=1 ‖Σx‖2 ≥ ‖Σej‖2 = ‖σjej‖2 = |σj |‖ej‖2 = |σj | = maxn−1
i=0 |σi|.

so that maxn−1
i=0 |σi| ≤ ‖Σ‖2 ≤ maxn−1

i=0 |σi|, which implies that ‖Σ‖2 = maxn−1
i=0 |σi|.

Homework 2.3.1.3 Solution. Let A = UAΣAV
H
A be the SVD of A. Then B = UUAΣAV

H
A V H =

(UUA)ΣA(V VA)H where both UUA and V VA are unitary. This gives us the SVD for B and it shows
that the singular values of B equal the singular values of A.

Homework 2.3.1.4 Answer. ALWAYS
Solution.

AH = (UΣV H)H = (V H)HΣTUH = V ΣTUH

since Σ is real valued. Notice that Σ is only "sort of diagonal" (it is possibly rectangular) which is
why ΣT 6= Σ.

Homework 2.3.1.5 Hint. Consider the SVD of B = AH

Solution. Let B = AH . Since it is n × m with n ≥ m its SVD exists: B = UBΣBV
H
B . Then

A = BH = VBΣT
BU

H
B and hence A = UΣV H with U = VB, Σ = ΣT

B, and V = UB.

2.3.4 · The Reduced Singular Value Decomposition

Homework 2.3.4.1 Solution. Let A = UΣV H =
(
UL UR

)( ΣTL 0
0 0

)(
VL VR

)H
be

the SVD of A, where UL ∈ Cm×r, VL ∈ Cn×r and ΣTL ∈ Rr×r with ΣTL = diag(σ0, σ1, · · · , σr−1)
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and σ0 ≥ σ1 ≥ · · · ≥ σr−1 > 0. Then

A
= < SVD of A >

UΣV T

= < Partitioning >(
UL UR

)( ΣTL 0
0 0

)(
VL VR

)H
= < partitioned matrix −matrix multiplication >

ULΣTLV
H
L .

2.3.5 · SVD of nonsingular matrices
Homework 2.3.5.1 Answer. TRUE
Solution. Σ = UHAV . The product of square matrices is nonsingular if and only if each individ-
ual matrix is nonsingular. Since U and V are unitary, they are nonsingular.

Homework 2.3.5.2 Answer. TRUE
Solution. By the last homework, A is nonsingular if and only if Σ is nonsingular. A diagonal
matrix is nonsingular if and only if its diagonal elements are all nonzero. σ0 ≥ · · · ≥ σm−1 > 0.
Hence the diagonal elements of Σ are nonzero if and only if σm−1 6= 0.

Homework 2.3.5.3 Answer. SOMETIMES
Explain it!

Solution. It would seem that the answer is ALWAYS: A−1 = (UΣV H)−1 = (V H)−1Σ−1U−1 =
V Σ−1UH with

Σ−1

= <>
σ0 0 · · · 0
0 σ1 · · · 0
...

... . . . ...
0 0 · · · σm−1


−1

= <>
1/σ0 0 · · · 0

0 1/σ1 · · · 0
...

... . . . ...
0 0 · · · 1/σm−1

 .
However, the SVD requires the diagonal elements to be positive and ordered from largest to smallest.

So, only if σ0 = σ1 = · · · = σm−1 is it the case that V Σ−1UH is the SVD of A−1. In other
words, when Σ = σ0I.

Homework 2.3.5.4 Answer. 3. and 4.
Explain it!

Solution. This question is a bit tricky.

1. It is the case that A−1 = V Σ−1UH . However, the diagonal elements of Σ−1 are ordered from
smallest to largest, and hence this is not its SVD.
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2. This is just Answer 1. but with the columns of U and V , and the elements of Σ, exposed.

3. This answer corrects the problems with the previous two answers: it reorders colums of U
and V so that the diagonal elements of Σ end up ordered from largest to smallest.

4. This answer is just a reformulation of the last answer.

Homework 2.3.5.5 Answer. TRUE
Solution.

‖A−1‖2
= < definition >

maxx 6=0
‖A−1x‖2
‖x‖2

= < algebra >
maxx 6=0

1
‖x‖2

‖A−1x‖2
= < algebra >

1
minx 6=0

‖x‖2
‖A−1x‖2

= < substitute z = A−1x >
1

minAz 6=0
‖Az‖2
‖z‖2

= < A is nonsingular >
1

minz 6=0
‖Az‖2
‖z‖2

= < x = z/‖z‖2 >
1

min‖x‖2=1 ‖Ax‖2

2.3.6 · Best rank-k approximation
Homework 2.3.6.1 Solution. W.l.o.g. assume n ≤ m. Rewrite A = UΣV H as AV = UΣ.
Then

AV = UΣ = < partition >

A
(
v0 · · · vn−1

)

=
(
u0 · · · un−1 un · · · um−1

)


σ0 · · · 0
... . . . ...
0 · · · σn−1
0 · · · 0
...

...
0 0


= < multiply out >(
Av0 · · · Avn−1

)
=
(
σ0u0 · · · σn−1un−1

)
.

Hence Avj = σjuj for 0 ≤ j < n.

Homework 2.3.6.2 Solution.
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Figure E.0.0.1 Distribution of singular values for the picture.
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k = 1 k = 2

k = 5 k = 10

k = 25 Original picture

Figure E.0.0.2 Multiple pictures as generated by the code.

2.5 · Wrap Up
2.5.1 · Additional homework
Homework 2.5.1.1 Hint. Revisit the proof of Homework 2.2.4.6.
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Homework 2.5.1.2 Answer. TRUE
Now prove it!

Homework 2.5.1.3 Hint. Use the SVD of A.
Homework 2.5.1.4 Answer. ALWAYS

Now prove it!

3 · The QR Decomposition
3.1 · Opening Remarks
3.1.1 · Choosing the right basis
Homework 3.1.1.1 Hint. You may want to use the recurrence xj+1 = xxj and the fact that the
.∗ operator in Matlab performs an element-wise multiplication.
Solution.

• Here is our implementation: Assignments/Week03/answers/Vandermonde.m.
(Assignments/Week03/answers/Vandermonde.m)

• The graph of the condition number, κ(X), as a function of n is given by

• The parent functions 1, x, x2, . . . on the interval [0, 1] are visualized as

Assignments/Week03/answers/Vandermonde.m
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Notice that the curves for xj and xj+1 quickly start to look very similar, which explains why
the columns of the Vandermonde matrix quickly become approximately linearly dependent.

Think about how this extends to even more columns of A.
Homework 3.1.1.2 Solution.

• Here is our implementation: Assignments/Week03/answers/ShiftedLegendre.m. (Assignments/
Week03/answers/ShiftedLegendre.m)

• The graph of the condition number, as a function of n is given by

Assignments/Week03/answers/ShiftedLegendre.m
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We notice that the matrices created from shifted Legendre polynomials have a very good
condition numbers.

• The shifted Legendre polynomials are visualized as

• The columns of the matrix X are now reasonably orthogonal:
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X^T * X for n=5:

ans =

5000 0 1 0 1
0 1667 0 1 0
1 0 1001 0 1
0 1 0 715 0
1 0 1 0 556

3.2 · Gram-Schmidt Orthogonalization
3.2.2 · Gram-Schmidt and the QR factorization
Ponder This 3.2.2.1 Solution. If aj is the first column such that {a0, . . . , aj} are linearly
dependent, then a⊥j will equal the zero vector and the process breaks down.

When a vector with a⊥j equal to the zero vector is encountered, the columns can be rearranged
(permuted) so that that column (or those columns) come last.

Again, if a⊥j = 0 for some j, then the columns are linearly dependent since then aj can be
written as a linear combination of the previous columns.

3.2.3 · Classical Gram-Schmidt algorithm
Homework 3.2.3.1 Solution. See Assignments/Week03/answers/CGS_QR.m. (Assignments/Week03/
answers/CGS_QR.m)

3.2.4 · Modified Gram-Schmidt (MGS)
Homework 3.2.4.1 Solution.

qHi (y − ρ0,kq0 − · · · − ρi−1,kqi−1)
= < distribute >

qHi y − qHi ρ0,kq0 − · · · − qHi ρi−1,kqi−1
= < ρ0,k is a scalar >

qHi y − ρ0,k q
H
i q0︸ ︷︷ ︸
0

− · · · − ρi−1,kq
H
i qi−1︸ ︷︷ ︸

0

Ponder This 3.2.4.2 Solution. Consider the fact that A = QR. Then, multiplying the parti-
tioned matrices, (

AL AR
)

=
(
QL QR

)( RTL RTR
0 RBR

)
=

(
QLRTL QLRTR +QRRBR

)
.

Hence
AL = QLRTL and AR = QLRTR +QRRBR. (E.0.3)

1. The left equality in (E.0.3) answers 1.

2. C(AL) = C(QL) can be shown by noting that R is upper triangular and nonsingular and hence
RTL is upper triangular and nonsingular, and using this to show that C(AL) ⊂ C(QL) and
C(QL) ⊂ C(AL):

Assignments/Week03/answers/CGS_QR.m
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• C(AL) ⊂ C(QL): Let y ∈ C(AL). Then there exists x such that ALx = y. But then
QLRTLx = y and hence QL(RTLx) = y which means that y ∈ C(QL).

• C(QL) ⊂ C(AL): Let y ∈ C(QL). Then there exists x such that QLx = y. But then
ALR

−1
TLx = y and hence AL(R−1

TLx) = y which means that y ∈ C(AL).

This answers 2.

3. Take AR −QLRTR = QRRBR and multiply both side by QHL :

QHL (AR −QLRTR) = QHLQRRBR

is equivalent to
QHLAR − QHLQL︸ ︷︷ ︸

I

RTR = QHLQR︸ ︷︷ ︸
0

RBR = 0.

Rearranging yields 3.

4. Since AR −QLRTR = QRRBR we find that (AR −QLRTR)HQL = (QRRBR)HQL and

(AR −QLRTR)HQL = RHBRQ
H
RQL = 0.

5. Similar to the proof of 2.

6. Rearranging the right equality in (E.0.3) yields AR −QLRTR = QRRBR., which answers 5.

7. Letting Â denote the original contents of A, at a typical point,

• AL has been updated with QL.
• RTL and RTR have been computed.
• AR = ÂR −QLRTR.

Homework 3.2.4.3 Solution. See Assignments/Week03/answers/MGS_QR.m.

3.2.5 · In practice, MGS is more accurate
Homework 3.2.5.1 Solution. The complete calculation is given by

Assignments/Week03/answers/MGS_QR.m
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images/Chapter03/GS-accuracy-example-fixed.pdf to enlarge.

images/Chapter03/GS-accuracy-example-fixed.pdf
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CGS yields the approximate matrix

Q ≈


1 0 0
ε −

√
2

2 −
√

2
2

0
√

2
2 0

0 0
√

2
2


while MGS yields

Q ≈


1 0 0
ε −

√
2

2 −
√

6
6

0
√

2
2 −

√
6

6
0 0

√
6

3


Clearly, they don’t compute the same answer.

If we now ask the question "Are the columns of Q orthonormal?" we can check this by computing
QHQ, which should equal I, the identity.

• For CGS:
QHQ

=
1 0 0
ε −

√
2

2 −
√

2
2

0
√

2
2 0

0 0
√

2
2


H 

1 0 0
ε −

√
2

2 −
√

2
2

0
√

2
2 0

0 0
√

2
2


= 1 + εmach −

√
2

2 ε −
√

2
2 ε

−
√

2
2 ε 1 1

2
−
√

2
2 ε

1
2 1

 .
Clearly, the computed second and third columns of Q are not mutually orthonormal.
What is going on? The answer lies with how a⊥2 is computed in the last step a⊥2 := a2 −
(qH0 a2)q0 − (qH1 a2)q1. Now, q0 has a relatively small error in it and hence qH0 a2q0 has a
relatively small error in it. It is likely that a part of that error is in the direction of q1.
Relative to qH0 a2q0, that error in the direction of q1 is small, but relative to a2 − qH0 a2q0 it is
not. The point is that then a2− qH0 a2q0 has a relatively large error in it in the direction of q1.
Subtracting qH1 a2q1 does not fix this and since in the end a⊥2 is small, it has a relatively large
error in the direction of q1. This error is amplified when q2 is computed by normalizing a⊥2 .



APPENDIX E. ANSWERS AND SOLUTIONS TO HOMEWORKS 533

• For MGS:
QHQ

=
1 0 0
ε −

√
2

2 −
√

6
6

0
√

2
2 −

√
6

6
0 0

√
6

3


H 

1 0 0
ε −

√
2

2 −
√

6
6

0
√

2
2 −

√
6

6
0 0

√
6

3


= 1 + εmach −

√
2

2 ε −
√

6
6 ε

−
√

2
2 ε 1 0

−
√

6
6 ε 0 1

 .
Why is the orthogonality better? Consider the computation of a⊥2 := a2 − (qH1 a2)q1:

a⊥2 := a⊥2 − qH1 a⊥2 q1 = [a2 − (qH0 a2)q0]− (qH1 [a2 − (qH0 a2)q0])q1.

This time, if a2 − qH0 a
⊥
2 q0 has an error in the direction of q1, this error is subtracted out

when (qH1 a⊥2 )q1 is subtracted from a⊥2 . This explains the better orthogonality between the
computed vectors q1 and q2.

3.2.6 · Cost of Gram-Schmidt algorithms
Homework 3.2.6.1 Solution. During the kth iteration (0 ≤ k < n), A0 has k columns and A2
has n− k − 1 columns. In each iteration

Operation Approximate cost
(in flops)

r01 := AH0 a1 2mk
a1 := a1 −A0r01 2mk
ρ11 := ‖a1‖2 2m
a1 := a1/ρ11 m

Thus, the total cost is (approximately)∑n−1
k=0 [2mk + 2mk + 2m+m]
=∑n−1
k=0 [3m+ 4mk]
=

3mn+ 4m
∑n−1
k=0 k

≈ <
∑n−1
k=0 k = n(n− 1)/2 ≈ n2/2 >

3mn+ 4mn2

2
=

3mn+ 2mn2

≈ < 3mn is of lower order >
2mn2

Homework 3.2.6.2 Solution. During the kth iteration (0 ≤ k < n), A0 has k columns. and A2
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has n− k − 1 columns. In each iteration

Operation Approximate cost
(in flops)

ρ11 := ‖a1‖2 2m
a1 := a1/ρ11 m

rT12 := aH1 A2 2m(n− k − 1)
A2 := A2 − a1r

T
12 2m(n− k − 1)

Thus, the total cost is (approximately)∑n−1
k=0 [2m(n− k − 1) + 2m(n− k − 1) + 2m+m]
=∑n−1
k=0 [3m+ 4m(n− k − 1)]
=

3mn+ 4m
∑n−1
k=0(n− k − 1)

= < Substitute j = (n− k − 1) >
3mn+ 4m

∑n−1
j=0 j

≈ <
∑n−1
j=0 j = n(n− 1)/2 ≈ n2/2 >

3mn+ 4mn2

2
=

3mn+ 2mn2

≈ < 3mn is of lower order >
2mn2

Homework 3.2.6.3 Solution. They require the approximately same number of flops.
A more careful analysis shows that, in exact arithmetic, they perform exactly the same compu-

tations, but in a different order. Hence the number of flops is exactly the same.

3.3 · Householder QR Factorization
3.3.1 · Using unitary matrices
Homework 3.3.1.1 Solution.

Q

(
R
0

)
=
(
QL QR

)( R
0

)
= QLR,

3.3.2 · Householder transformation
Homework 3.3.2.1 Solution. Show that if H is a reflector, then

• HH = I (reflecting the reflection of a vector results in the original vector).
Solution:

(I − 2uuH)(I − 2uuH)
=

I − 2uuH − 2uuH + 4u uHu︸︷︷︸
1

uH

=
I − 4uuH + 4uuH = I

• H = HH .
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Solution:
(I − 2uuH)H

=
I − 2(uH)HuH

=
I − 2uuH

• HHH = I (a reflector is unitary).
Solution:

HHH
=

HH
=

I

3.3.3 · Practical computation of the Householder vector
3.3.3.3 · A routine for computing the Householder vector
Homework 3.3.3.1 Solution. Assignments/Week03/answers/Housev-alt.m

3.3.4 · Householder QR factorization algorithm
Homework 3.3.4.1 Solution. I 0

0 I − 1
τ1

(
1
u21

)(
1
u21

)H  = I −

 0 0

0 1
τ1

(
1
u21

)(
1
u21

)H 
= I − 1

τ1

 0 0

0
(

1
u21

)(
1
u21

)H 
= I − 1

τ1

 0 0 0
0 1 uH21
0 u21 u21u

H
21


=

I − 1
τ1

 0
1
u21


 0

1
u21


H .

Homework 3.3.4.2 Solution. The bulk of the computation is in

wT12 = (aT12 + uH21A22)/τ1

and
A22 − u21w

T
12.

During the kth iteration (when RTL is k × k), this means a matrix-vector multiplication (uH21A22)
and rank-1 update with matrix A22 which is of size approximately (m− k)× (n− k) for a cost of

Assignments/Week03/answers/Housev-alt.m
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4(m− k)(n− k) flops. Thus the total cost is approximately∑n−1
k=0 4(m− k)(n− k)
=

4
∑n−1
j=0 (m− n+ j)j

=
4(m− n)

∑n−1
j=0 j + 4

∑n−1
j=0 j

2

=
2(m− n)n(n− 1) + 4

∑n−1
j=0 j

2

≈
2(m− n)n2 + 4

∫ n
0 x

2dx
=

2mn2 − 2n3 + 4
3n

3

=
2mn2 − 2

3n
3.

Homework 3.3.4.3 Solution. See Assignments/Week03/answers/HQR.m. Warning: it only checks
if R is computed correctly.

3.3.5 · Forming Q

Homework 3.3.5.1 Answer. ALWAYS
Solution. The proof of this is by induction on k:

• Base case: k = n. Then Bn =
(
In×n

0

)
, which has the desired form.

Assignments/Week03/answers/HQR.m
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• Inductive step: Assume the result is true for Bk. We show it is true for Bk−1:

Bk−1
=

Hk−1Hk · · ·Hn−1

(
In×n

0

)
=

Hk−1Bk
=

Hk−1

(
Ik×k 0

0 B̃k

)
= I(k−1)×(k−1) 0

0 I − 1
τk

(
1
uk

)(
1 uHk

)

 I(k−1)×(k−1) 0 0

0 1 0
0 0 B̃k


= I(k−1)×(k−1) 0

0
(
I − 1

τk

(
1
uk

)(
1 uHk

))( 1 0
0 B̃k

) 
= < choose yTk = uHk B̃k/τk > I(k−1)×(k−1) 0

0
(

1 0
0 B̃k

)
−
(

1
uk

)(
1/τk yTk

)


= I(k−1)×(k−1) 0

0
(

1− 1/τk −yTk
−uk/τk B̃k − ukyTk

) 
= I(k−1)×(k−1) 0 0

0 1− 1/τk −yTk
0 −uk/τk B̃k − ukyTk


=(
I(k−1)×(k−1) 0

0 B̃k−1

)
.

• By the Principle of Mathematical Induction the result holds for B0, . . . , Bn.

Homework 3.3.5.2 Solution. See Assignments/Week03/answers/FormQ.m

Homework 3.3.5.3 Hint. Modify the answer for Homework 3.3.4.2.
Solution. When computing the Householder QR factorization, the bulk of the cost is in the
computations

wT12 := (aT12 + uH21A22)/τ1

and
A22 − u21w

T
12.

Assignments/Week03/answers/FormQ.m
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When forming Q, the cost is in computing

aT12 := −(aH21A22)/τ1

and
A22 := A22 + u21w

T
12.

During the iteration when ATL is k × k, these represent, essentially, identical costs: the matrix-
vector multiplication (uH21A22) and rank-1 update with matrix A22 which is of size approximately
(m− k)× (n− k) for a cost of 4(m− k)(n− k) flops. Thus the total cost is approximately∑0

k=n−1 4(m− k)(n− k)
= < reverse the order of the summation >∑n−1
k=0 4(m− k)(n− k)
=

4
∑n
j=1(m− n+ j)j

=
4(m− n)

∑n
j=1 j + 4

∑n
j=1 j

2

=
2(m− n)n(n+ 1) + 4

∑n
j=1 j

2

≈
2(m− n)n2 + 4

∫ n
0 x

2dx
=

2mn2 − 2n3 + 4
3n

3

=
2mn2 − 2

3n
3.

3.3.6 · Applying QH

Homework 3.3.6.1 Solution. The cost of this algorithm can be analyzed as follows: When yT
is of length k, the bulk of the computation is in a dot product with vectors of length m− k− 1 (to
compute ω1) and an axpy operation with vectors of length m − k − 1 to subsequently update ψ1
and y2. Thus, the cost is approximately given by

n−1∑
k=0

4(m− k − 1) = 4
n−1∑
k=0

m− 4
n−1∑
k=0

(k − 1) ≈ 4mn− 2n2.

Notice that this is much cheaper than forming Q and then multiplying QHy.

3.3.7 · Orthogonality of resulting Q

Homework 3.3.7.1 Solution. Try Assignments/Week03/answers/test_orthogonality.m.

Assignments/Week03/answers/test_orthogonality.m
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3.5 · Wrap Up
3.5.1 · Additional homework
Homework 3.5.1.1 Solution.(

A

B

)
=
(
QARA

B

)
=
(
QA 0
0 I

)(
RA
B

)
=
(
QA 0
0 I

)
QBRB

Also,
(
A

B

)
= QR. By the uniqueness of the QR factorization (when the diagonal elements of the

triangular matrix are restricted to be positive), Q =
(
QA 0
0 I

)
QB and R = RB.

4 · Linear Least Squares
4.2 · Solution via the Method of Normal Equations
4.2.1 · The four fundamental spaces of a matrix
Homework 4.2.1.1 Solution. Pick arbitrary x ∈ R(A) and y ∈ N (A). We need to show that
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these two vectors are orthogonal. Then

xHy
= < x ∈ R(A) iff there exists z s.t. x = AHz >

(AHz)Hy
= < transposition of product >

zHAy
= < y ∈ N (A) >

zH0 = 0.

Homework 4.2.1.2 Solution. Pick arbitrary x ∈ C(A) and y ∈ N (AH). Then

xHy
= < x ∈ C(A) iff there exists z s.t. x = Az >

(Az)Hy
= < transposition of product >

zHAHy
= < y ∈ N (AH) >

zH0 = 0.

Homework 4.2.1.3 Solution. We are going to prove the equivalence of all the statements by
showing that 1. implies 2., 2. implies 3., 3. implies 4., and 4. implies 1.

• 1. implies 2.
Subspaces S and T are orthogonal if any vectors x ∈ S and y ∈ T are orthogonal. Obviously,
this means that si is orthogonal to tj for 0 ≤ i < r and 0 ≤ j < k.

• 2. implies 3.
This is true by definition of what it means for two sets of vectors to be orthogonoal.

• 3. implies 4.

(
s0 · · · sr−1

)H (
t0 · · · tk−1

)
=

 sH0 t0 sH0 t1 · · ·
sH1 t0 sH1 t1 · · ·
...

...


• 4. implies 1.

We need to show that if x ∈ S and y ∈ T then xHy = 0.
Notice that

x =
(
s0 · · · sr−1

) χ̂0
...

χ̂r−1

 and y =
(
t0 · · · tk−1

)
ψ̂0
...

ψ̂k−1


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for appropriate choices of x̂ and ŷ. But then

xHy =

( s0 · · · sr−1
) χ̂0

...
χ̂r−1



H (

t0 · · · tk−1
)

ψ̂0
...

ψ̂k−1


=

 χ̂0
...

χ̂r−1


H (

s0 · · · sr−1
)H (

t0 · · · tk−1
)

︸ ︷︷ ︸
0r×k


ψ̂0
...

ψ̂k−1


= 0

Homework 4.2.1.4 Hint. Let r be the rank of matrix A. In a basic linear algebra course you
learned that then the dimension of the row space, R(A), is r and the dimension of the null space,
N (A), is n− r.

Let {w0, · · · , wr−1} be a basis for R(A) and {wr, · · · , wn−1} be a basis for N (A).
Answer. TRUE

Now prove it!
Solution. Let r be the rank of matrix A. In a basic linear algebra course you learned that then
the dimension of the row space, R(A), is r and the dimension of the null space, N (A), is n− r.

Let {w0, · · · , wr−1} be a basis for R(A) and {wr, · · · , wn−1} be a basis for N (A). Since
we know that these two spaces are orthogonal, we know that {w0, · · · , wr−1} are orthogonal to
{wr, · · · , wn−1}. Hence {w0, · · · , wn−1} are linearly independent and form a basis for Cn. Thus,
there exist coefficients {α0, · · · , αn−1} such that

x = α0w0 + · · ·+ αn−1wn−1
= < split the summation >

α0w0 + · · ·+ αr−1wr−1︸ ︷︷ ︸
xr

+ αrwr + · · ·+ αn−1wn−1︸ ︷︷ ︸
xn

.

4.2.2 · The Method of Normal Equations
Homework 4.2.2.1 Solution.

AA† = A(AHA)−1AH = AA−1A−HAH = II = I.

Homework 4.2.2.2 Hint. Consider A =
(
e0
)
.

Answer. SOMETIMES
Solution. An example where AA† = I is the case where m = n and hence A is nonsingular.
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An example where AA† 6= I is A = e0 for m > 1. Then

AA†

= < instantiate >

 1
0
...



 1

0
...


H  1

0
...


︸ ︷︷ ︸

1



−1

︸ ︷︷ ︸
1

 1
0
...


H

= < simplify > 1
0
...

( 1 0 · · ·
)

= < multiply out > 1 0 · · ·
0 0 · · ·
...

...


= < m > 1 >

6= I.

4.2.4 · Conditioning of the linear least squares problem
Homework 4.2.4.1 Hint. Use the reduced SVD of A.
Solution. Let A = ULΣTLV

H be the reduced SVD of A, where V is square because A has linearly
independent columns. Then

‖(AHA)−1AH‖2
=

‖((ULΣTLV
H)HULΣTLV

H)−1(ULΣTLV
H)H‖2

=
‖(V ΣTLU

H
L ULΣTLV

H)−1V ΣTLU
H
L ‖2

=
‖(V Σ−1

TLΣ−1
TLV

H)V ΣTLU
H
L ‖2

=
‖V Σ−1

TLU
H
L ‖2

=
‖Σ−1

TLU
H
L ‖2

=
1/σn−1.

This last step needs some more explanation: Clearly ‖ΣTLU
H
L ‖2 ≤ ‖ΣTL‖2‖UHL ‖2 = σ0‖UHL ‖2 ≤

σ0. We need to show that there exists a vector x with ‖x‖2 = 1 such that ‖ΣTLU
H
L x‖2 = ‖ΣTLU

H
L ‖2.

If we pick x = u0 (the first column of UL), then ‖ΣTLU
H
L x‖2 = ‖ΣTLU

H
L u0‖2 = ‖ΣTLe0‖2 =

‖σ0e0‖2 = σ0.



APPENDIX E. ANSWERS AND SOLUTIONS TO HOMEWORKS 543

4.2.5 · Why using the Method of Normal Equations could be bad
Homework 4.2.5.1 Hint. Use the SVD of A.
Solution. Let A = UΣV H be the reduced SVD of A. Then

κ2(AHA) = ‖AHA‖2‖(AHA)−1‖2
= ‖(UΣV H)HUΣV H‖2‖((UΣV H)HUΣV H)−1‖2
= ‖V Σ2V H‖2‖V (Σ−1)2V H‖2
= ‖Σ2‖2‖(Σ−1)2‖2
= σ2

0
σ2
n−1

=
(

σ0
σn−1

)2
= κ2(A)2.

4.3 · Solution via the SVD
4.3.1 · The SVD and the four fundamental spaces
Homework 4.3.1.1 Solution. R(A) = C(VL):

The slickest way to do this is to recognize that if A = ULΣTLV
H
L is the Reduced SVD of A then

AH = VLΣTLU
H
L is the Reduced SVD of AH . One can then invoke the fact that C(A) = C(UL)

where in this case A is replaced by AH and UL by VL.

Homework 4.3.1.3 Answer.
• ALWAYS: r = rank(A) = dim(C(A)) = dim(C(UL)),

• ALWAYS: r = dim(R(A)) = dim(C(VL)),

• ALWAYS: n− r = dim(N (A)) = dim(C(VR)), and

• ALWAYS: m− r = dim(N (AH)) = dim(C(UR)).

Now prove it.
Solution.

• ALWAYS: r = rank(A) = dim(C(A)) = dim(C(UL)),
The dimension of a space equals the number of vectors in a basis. A basis is any set of linearly
independent vectors such that the entire set can be created by taking linear combinations of
those vectors. The rank of a matrix is equal to the dimension of its columns space which is
equal to the dimension of its row space.
Now, clearly the columns of UL are linearly independent (since they are orthonormal) and form
a basis for C(UL). This, together with Theorem 4.3.1.1, yields the fact that r = rank(A) =
dim(C(A)) = dim(C(UL)).

• ALWAYS: r = dim(R(A)) = dim(C(VL)),
There are a number of ways of reasoning this. One is a small modification of the proof that
r = rank(A) = dim(C(A)) = dim(C(UL)). Another is to look at AH and to apply the last
subproblem.

• ALWAYS: n− r = dim(N (A)) = dim(C(VR)).
We know that dim(N (A)) + dim(R(A)) = n. The answer follows directly from this and the
last subproblem.
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• ALWAYS: m− r = dim(N (AH)) = dim(C(UR)).
We know that dim(N (AH)) + dim(C(A)) = m. The answer follows directly from this and the
first subproblem.

Homework 4.3.1.4 Answer. TRUE
Now prove it!

Solution.
x = Ix = V V Hx

=
(
VL VR

) (
VL VR

)H
x

=
(
VL VR

)( V H
L

V H
R

)
x

=
(
VL VR

)( V H
L x
V H
R x

)
= VLV

H
L x︸ ︷︷ ︸
xr

+ VRV
H
R x︸ ︷︷ ︸

xn

.

4.3.3 · Case 2: General case
Homework 4.3.3.1 Solution. The important insight is that

x? = VLΣ−1
TLU

H
L b︸ ︷︷ ︸

x̂

+ VRzB

and that
VLΣ−1

TLU
H
L b and VRzB

are orthogonal to each other (since V H
L VR = 0). If uHv = 0 then ‖u+ v‖22 = ‖u‖22 + ‖v‖22. Hence

‖x?‖22 = ‖x̂+ VRzB‖22 = ‖x̂‖22 + ‖VRzB‖22 ≥ ‖x̂‖22

and hence ‖x̂‖2 ≤ ‖x?‖2.

4.4 · Solution via the QR factorization
4.4.1 · A has linearly independent columns
Homework 4.4.1.1 Solution. Recall that we saw in Subsection 4.2.2 that, if A has linearly
independent columns, the LLS solution is given by x̂ = (AHA)−1AHb (the solution to the normal
equations). Also, if A has linearly independent columns and A = QR is its QR factorization, then
the upper triangular matrix R is nonsingular (and hence has no zeroes on its diagonal).
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Now,
x̂

= < Solution to the Normal Equations >
(AHA)−1AHb

= < A = QR >[
(QR)H(QR)

]−1
(QR)Hb

= < (BC)H = (CHBH) >[
RHQHQR

]−1
RHQHb

= < QHQ = I >[
RHR

]−1
RHQHb

= < (BC)−1 = C−1B−1 >
R−1R−HRHQHb

= < R−HRH = I >
R−1QHb.

Thus, the x̂ that solves Rx̂ = QHb solves the LLS problem.
Solving Linear Systems

5 · The LU and Cholesky Factorizations
6 · Numerical Stability
7 · Solving Sparse Linear Systems
8 · Descent Methods
5 · The LU and Cholesky Factorizations
5.1 · Opening Remarks
5.1.1 · Of Gaussian elimination and LU factorization
Homework 5.1.1.1 Solution.

2 −1 1 1
−1 1 2 0

2 −2 3 3

Homework 5.1.1.2 Solution.

L =

 1 0 0
−1 1 0

2 −2 1

 and U =

 2 −1 1
0 1 2
0 0 3

 .

LU =

 1 0 0
−1 1 0

2 −2 1


 2 −1 1

0 1 2
0 0 3

 =

 2 −1 1
−2 2 1

4 −4 1

 = Â.

5.2 · From Gaussian elimination to LU factorization
5.2.1 · Gaussian elimination
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Homework 5.2.1.1 Answer.  χ0
χ1
χ2

 =

 −1
2
−2

 .
Solution. We employ Gaussian elimination applied to an appended system:

•  2 −1 1 −6
−4 0 1 2

4 0 −2 0


• Compute the multiplier λ10 = (−4)/(2) = −2

• Subtract λ10 = −2 times the first row from the second row, yielding 2 −1 1 −6
0 −2 3 −10
4 0 −2 0


• Compute the multiplier λ20 = (4)/(2) = 2

• Subtract λ20 = 2 times the first row from the third row, yielding 2 −1 1 −6
0 −2 3 −10
0 2 −4 12


• Compute the multiplier λ21 = (2)/(−2) = −1

• Subtract λ21 = −1 times the second row from the third row, yielding 2 −1 1 −6
0 −2 3 −10
0 0 −1 2


• Solve the triangular system 2 −1 1

0 −2 3
0 0 −1


 χ0
χ1
χ2

 =

 −6
−10

2


to yield  χ0

χ1
χ2

 =

 −1
2
−2

 .
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Homework 5.2.1.2 Answer.  2 −1 1
−2 −2 3

2 −1 −1


Solution. Partition:  2 −1 1

−4 0 1
4 0 −2


• First iteration:

◦ α21 := λ21 = α21/α11:  2 −1 1
−2 0 1

2 0 −2


◦ A22 := A22 − a21a

T
12:  2 −1 1

−2 −2 3
2 2 −4


◦ State at bottom of iteration:  2 −1 1

−2 −2 3
2 2 −4


• Second iteration:

◦ α21 := λ21 = α21/α11:  2 −1 1
−2 −2 3

2 −1 −4


◦ A22 := A22 − a21a

T
12:  2 −1 1

−2 −2 3
2 −1 −1


◦ State at bottom of iteration:  2 −1 1

−2 −2 3
2 −1 −1


• Third iteration:

◦ α21 := λ21 = α21/α11:  2 −1 1
−2 −2 3

2 −1 −1


(computation with empty vector).
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◦ A22 := A22 − a21a
T
12:  2 −1 1

−2 −2 3
2 −1 −1


(update of empty matrix)
◦ State at bottom of iteration:  2 −1 1

−2 −2 3
2 −1 −1


The upper triangular matrix computed in Homework 5.2.1.1 was 2 −1 1

0 −2 3
0 0 −1


which can be found in the upper triangular part of the updated matrix A.

Homework 5.2.1.3 Answer. Magic! B = A!
Solution.

B = LU =

 1 0 0
−2 1 0

2 −1 1


 2 −1 1

0 −2 3
0 0 −1

 =

 2 −1 1
−4 0 1

4 0 −2

 = A.

5.2.2 · LU factorization: The right-looking algorithm
Homework 5.2.2.1 Answer. Approximately 2

3n
3 flops.

Solution. Consider the iteration where ATL is (initially) k × k. Then

• a21 is of size n− k − 1. Thus a21 := a21/α11 is typically computed by first computing 1/α11
and then a21 := (1/α11)a21, which requires (n − k − 1) flops. (The cost of computing 1/α11
is inconsequential when n is large, so it is usually ignored.)

• A22 is of size (n − k − 1) × (n − k − 1) and hence the rank-1 update A22 := A22 − a21a
T
12

requires 2(n− k − 1)(n− k − 1) flops.

Now, the cost of updating a21 is small relative to that of the update of A22 and hence will be
ignored. Thus, the total cost is given by, approximately,

n−1∑
k=0

2(n− k − 1)2 flops.
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Let us now simplify this:∑n−1
k=0 2(n− k − 1)2

= < change of variable: j = n− k − 1 >∑n−1
j=0 2j2

= < algebra >

2
∑n−1
j=0 j

2

≈ <
∑n−1
j=0 j

2 ≈
∫ n

0 x
2dx = n3/3 >

2
3n

3

Homework 5.2.2.2 Answer. Approximately mn2 − 1
3n

3 flops.
Solution. Consider the iteration where ATL is (initially) k × k. Then

• a21 is of size m− k − 1. Thus a21 := a21/α11 is typically computed by first computing 1/α11
and then a21 := (1/α11)a21, which requires (m− k − 1) flops. (The cost of computing 1/α11
is inconsequential when m is large.)

• A22 is of size (m − k − 1) × (n − k − 1) and hence the rank-1 update A22 := A22 − a21a
T
12

requires 2(m− k − 1)(n− k − 1) flops.

Now, the cost of updating a21 is small relative to that of the update of A22 and hence will be
ignored. Thus, the total cost is given by, approximately,

n−1∑
k=0

2(m− k − 1)(n− k − 1) flops.

Let us now simplify this:∑n−1
k=0 2(m− k − 1)(n− k − 1)
= < change of variable: j = n− k − 1 >∑n−1
j=0 2(m− (n− j − 1)− 1)j
= < simplify >∑n−1
j=0 2(m− n+ j)j
= < algebra >

2(m− n)
∑n−1
j=0 j + 2

∑n−1
j=0 j

2

≈ <
∑n−1
j=0 j ≈ n2/2 and

∑n−1
j=0 j

2 ≈ n3/3 >
(m− n)n2 + 2

3n
3

= < simplify >
mn2 − 1

3n
3

Homework 5.2.2.3 Solution. See Assignments/Week05/answers/LU_right_looking.m. (Assignments/
Week05/answers/LU_right_looking.m)

5.2.3 · Existence of the LU factorization
Homework 5.2.3.1 Hint. You may use the fact that a triangular matrix has an inverse if and
only if it has no zeroes on its diagonal.
Solution. The proof hinges on the fact that a triangular matrix is nonsingular if and only if it
doesn’t have any zeroes on its diagonal. Hence we can instead prove that A = LU is nonsingular

Assignments/Week05/answers/LU_right_looking.m
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if and only if U is nonsingular ( since L is unit lower triangular and hence has no zeroes on its
diagonal).

• (⇒): Assume A = LU is nonsingular. Since L is nonsingular, U = L−1A. We can show that
U is nonsingular in a number of ways:

◦ We can explicitly give its inverse:

U(A−1L) = L−1AA−1L = I.

Hence U has an inverse and is thus nonsingular.
◦ Alternatively, we can reason that the product of two nonsingular matrices, namely L−1

and A, is nonsingular.

• (⇐): Assume A = LU and U has no zeroes on its diagonal. We then know that both L−1

and U−1 exist. Again, we can either explicitly verify a known inverse of A:

A(U−1L−1) = LUU−1L−1 = I

or we can recall that the product of two nonsingular matrices, namely U−1 and L−1, is
nonsingular.

Homework 5.2.3.2 Solution. Consider the iteration where ATL is (initially) k × k. Then
• Solving L00u01 = a21 requires approximately k2 flops.

• Updating α11 := α11 − aT10a01 requires approximately 2k flops, which we will ignore.

• Updating a21 := a21 −A20a01 requires approximately 2(m− k − 1)k flops.

• Updating a21 := a21/α11 requires approximately (m− k − 1) flops, which we will ignore.

Thus, the total cost is given by, approximately,

n−1∑
k=0

(
k2 + 2(m− k − 1)k

)
flops.

Let us now simplify this:∑n−1
k=0

(
k2 + 2(m− k − 1)k

)
= < algebra >∑n−1
k=0 k

2 + 2
∑n−1
k=0(m− k − 1)k

= < algebra >∑n−1
k=0 2(m− 1)k −

∑n−1
k=0 k

2

≈ <
∑n−1
j=0 j ≈ n2/2 and

∑n−1
j=0 j

2 ≈ n3/3 >
(m− 1)n2 − 1

3n
3

Had we not ignored the cost of α11 := α11− aT10a01, which approximately 2k, then the result would
have been approximately

mn2 − 1
3n

3
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instead of (m−1)n2− 1
3n

3, which is identical to that of the right-looking algorithm in Figure 5.2.2.1.
This makes sense, since the two algorithms perform the same operations in a different order.

Of course, regardless,
(m− 1)n2 − 1

3n
3 ≈ mn2 − 1

3n
3

if m is large.

Homework 5.2.3.4 Solution. See Assignments/Week05/answers/LU_left_looking.m. (Assignments/
Week05/answers/LU_left_looking.m)

5.2.4 · Gaussian elimination via Gauss transforms
Homework 5.2.4.1 Solution. Ik 0 0

0 1 0
0 −l21 I


 A00 a01 A02

0 α11 aT12
0 a21 A22


=

 A00 a01 A02
0 α11 aT12
0 −l21α11 + a21 −l21a

T
12 +A22


=

 A00 a01 A02
0 α11 aT12
0 a21 − α11l21 A22 − l21a

T
12


If l21 = a21/α11 then ã21 = a21 − α11a21/α11 = 0.

Homework 5.2.4.2 Hint. To show that B = A−1, it suffices to show that BA = I (if A and B
are square).
Solution.  Ik 0 0

0 1 0
0 −l21 I(n−k−1)×(n−k−1)


 Ik 0 0

0 1 0
0 l21 I


=

 Ik 0 0
0 1 0
0 −l21 + l21 I


=

 Ik 0 0
0 1 0
0 0 I


Homework 5.2.4.3 Solution.

L̃k = L−1
0 L−1

1 · · ·Lk−1L
−1
k = L̃k−1L

−1
k

=

 L00 0 0
lT10 1 0
L20 0 I


 Ik 0 0

0 1 0
0 l21 I


=

 L00 0 0
lT10 1 0
L20 l21 I

 .
Ponder This 5.2.4.4 Hint. Revisit Homework 1.3.5.5.

Assignments/Week05/answers/LU_left_looking.m
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5.3 · LU factorization with (row) pivoting
5.3.1 · Gaussian elimination with row exchanges
Homework 5.3.1.1 Solution. The appended system is given by(

0 1 2
1 0 1

)
.

In the first step, the multiplier is computed as λ1,0 = 1/0 and the algorithm fails. Yet, it is clear
that the (unique) solution is (

χ0
χ1

)
=
(

1
2

)
.

Homework 5.3.1.2 Solution. The appended system is given by(
10−k 1 1

1 0 1

)
.

In the first step, the multiplier is computed as λ1,0 = 10k and the updated appended system
becomes (

10−k 1 1
0 −10k 1− 10k

)
which is rounded to (

10−k 1 1
0 −10k −10k

)
.

We then compute
χ1 = (−10k)/(−10k) = 1

and
χ0 = (1− χ1)/10−k = (1− 1)/10−k = 0.

If we instead start with the equivalent system(
1 0 1

10−k 1 1

)
.

the appended system after one step becomes(
1 0 1
0 1 1− 10−k

)

which yields the solution (
χ0
χ1

)
=
(

1
1− 10−k

)
.

which becomes (
χ0
χ1

)
=
(

1
1

)
.

as k gets large.
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What this illustrates is how a large multiple of a row being added to another row can wipe
out information in that second row. After one step of Gaussian elimination, the system becomes
equivalent to one that started with (

10−k 1 1
1 0 0

)
.

5.3.2 · Permutation matrices
Homework 5.3.2.1 Solution.

P (p)x
= < definition >
eTπ0...
eTπn−1

x
= < matrix-vector multiplication by rows >
eTπ0x...
eTπn−1x


= < eTj x = xj > χπ0

...
χπn−1


Homework 5.3.2.2 Solution.

P (p)A
= < definition >
eTπ0...
eTπn−1

A
= < matrix-matrix multiplication by rows >
eTπ0A...
eTπn−1A


= < eTj A = ãTj >
ãTπ0...
ãTπn−1


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Homework 5.3.2.3 Solution.

AP (p)T
= < definition >

A


eTπ0...
eTπn−1


T

= < transpose P (p) >
A
(
eπ0 · · · eπn−1

)
= < matrix-matrix multiplication by columns >(
Aeπ0 · · · Aeπn−1

)
= < Aej = aj >(
aπ0 · · · aπn−1

)
Homework 5.3.2.4 Answer. P (p)P (p)T = I

Solution.
P (p)P (p)T

= < definition >
eTπ0...
eTπn−1




eTπ0...
eTπn−1


T

= < transpose P (p) >
eTπ0...
eTπn−1

( eπ0 · · · eπn−1

)
= < evaluate >
eTπ0eπ0 eTπ0eπ1 · · · eTπ0eπn−1

eTπ1eπ0 eTπ1eπ1 · · · eTπ1eπn−1
...

...
...

eTπn−1eπ0 eTπn−1eπ1 · · · eTπn−1eπn−1


= < eTi ej = · · · >
1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1


5.3.3 · LU factorization with partial pivoting
Homework 5.3.3.1 Solution. See Assignments/Week05/answers/LUpiv_right_looking.m. (Assign-
ments/Week05/answers/LUpiv_right_looking.m)

5.3.5 · Solving with a triangular matrix
5.3.5.1 · Algorithmic Variant 1

Assignments/Week05/answers/LUpiv_right_looking.m
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Homework 5.3.5.1 Solution. Multiplying this out yields(
U00x0 + u01χ1

υ11χ1

)
=
(
z0
ζ1

)
.

So, χ1 = ζ1/υ11 after which x0 can be computed by solving U00x0 = z0 − χ1u01. The resulting
algorithm is then given by

Solve Ux = z, overwriting z with x (Variant 1)

U →
(
UTL UTR
UBL UBR

)
, z →

(
zT
zB

)
UBR is 0× 0 and zB has 0 elements

while n(UBR) < n(U)(
UTL UTR
UBL UBR

)
→

 U00 u01 U02
uT10 υ11 uT12
U20 u21 U22

 ,( zT
zB

)
→

 z0
ζ1
z2


ζ1 := ζ1/υ11
z0 := z0 − ζ1u01(
UTL UTR
UBL UBR

)
←

 U00 u01 U02
uT10 υ11 uT12
U20 u21 U22

 ,( zT
zB

)
←

 z0
ζ1
z2


endwhile

5.3.5.2 · Algorithmic Variant 2
Homework 5.3.5.2 Solution. Partition(

υ11 uT12
0 U22

)(
χ1
x2

)
=
(
ζ1
z2

)
.

Multiplying this out yields (
υ11χ1 + uT12x2

U22x2

)
=
(
ζ1
z2

)
.

So, if we assume that x2 has already been computed and has overwritten z2, then χ1 can be
computed as

χ1 = (ζ1 − uT12x2)/υ11
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which can then overwrite ζ1. The resulting algorithm is given by

Solve Ux = z, overwriting z with x (Variant 2)

U →
(
UTL UTR
UBL UBR

)
, z →

(
zT
zB

)
UBR is 0× 0 and zB has 0 elements

while n(UBR) < n(U)(
UTL UTR
UBL UBR

)
→

 U00 u01 U02
uT10 υ11 uT12
U20 u21 U22

 ,( zT
zB

)
→

 z0
ζ1
z2


ζ1 := ζ1 − uT12z2
ζ1 := ζ1/υ11(
UTL UTR
UBL UBR

)
←

 U00 u01 U02
uT10 υ11 uT12
U20 u21 U22

 ,( zT
zB

)
←

 z0
ζ1
z2


endwhile

Homework 5.3.5.3 Solution. Let us analyze Variant 1.
Let L00 be k×k in a typical iteration. Then y2 is of size m−k−1 and y2 := y2−ψ1l21 requires

2(m− k − 1) flops. Summing this over all iterations requires

m−1∑
k=0

[2(m− k − 1)] flops.

The change of variables j = m− k − 1 yields

m−1∑
k=0

[2(m− k − 1)] = 2
m−1∑
j=0

j ≈ m2.

Thus, the cost is approximately m2 flops.

5.4 · Cholesky factorization
5.4.1 · Hermitian Positive Definite matrices
Homework 5.4.1.1 Answer. ALWAYS

Now prove it!
Solution. Let x ∈ Cm be a nonzero vector. Then xHBHBx = (Bx)H(Bx). Since B has linearly
independent columns we know that Bx 6= 0. Hence (Bx)HBx > 0.

Homework 5.4.1.2 Hint. Consider the standard basis vector ej .
Answer. ALWAYS

Now prove it!
Solution. Let ej be the jth unit basis vectors. Then 0 < eHj Aej = αj,j .

Homework 5.4.1.3 Answer. ALWAYS
Now prove it!

Solution. We need to show that xH2 A22x2 > 0 for any nonzero x2 ∈ Cm−1.
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Let x2 ∈ Cm−1 be a nonzero vector and choose x =
(

0
x2

)
. Then

0
< < A is HPD >

xHAx
= < partition >(
0
x2

)H (
α11 aH21
a21 A22

)(
0
x2

)
= < multiply out >

xH2 A22x2.

We conclude that A22 is HPD.

5.4.3 · Cholesky factorization algorithm (right-looking variant)
Homework 5.4.3.1 Answer. 1

3n
3 flops.

Solution.

YouTube: https://www.youtube.com/watch?v=6twDI6QhqCY
The cost of the Cholesky factorization of A ∈ Cn×n can be analyzed as follows: In Figure 5.4.3.1

during the kth iteration (starting k at zero) A00 is k × k. Thus, the operations in that iteration
cost

• α11 := √α11: this cost is negligible when k is large.

• a21 := a21/α11: approximately (n− k − 1) flops. This operation is typically implemented as
(1/α11)a21.

• A22 := A22−a21a
H
21 (updating only the lower triangular part of A22): approximately (n−k−1)2

flops.

https://www.youtube.com/watch?v=6twDI6QhqCY
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Thus, the total cost in flops is given by

CChol(n)
≈ < sum over all iterations >
n−1∑
k=0

(n− k − 1)2

︸ ︷︷ ︸
(Due to update of A22)

+
n−1∑
k=0

(n− k − 1)︸ ︷︷ ︸
(Due to update of a21)

= < change of variables j = n− k − 1 >∑n−1
j=0 j

2 +
∑n−1
j=0 j

≈ <
∑n−1
j=0 j

2 ≈ n3/3;
∑n−1
j=0 j ≈ n2/2 >

1
3n

3 + 1
2n

2

≈ < remove lower order term >
1
3n

3.

Homework 5.4.3.2 Solution. See Assignments/Week05/answers/Chol_right_looking.m. (Assign-
ments/Week05/answers/Chol_right_looking.m)

5.5 · Enrichments
5.5.1 · Other LU factorization algorithms
5.5.1.1 · Variant 1: Bordered algorithm
Homework 5.5.1.1 Solution. During the kth iteration, A00 is k× k, for k = 0, . . . , n− 1. Then
the (approximate) cost of each of the steps is given by

• Solve L00u01 = a01, overwriting a01 with the result. Cost: approximately k2 flops.

• Solve lT10U00 = aT10 (or, equivalently, UT00(lT10)T = (aT10)T for lT10), overwriting aT10 with the
result. Cost: approximately k2 flops.

• Compute υ11 = α11 − lT10u01, overwriting α11 with the result. Cost: 2k flops.

Thus, the total cost is given by

n−1∑
k=0

(
k2 + k2 + 2k

)
≈ 2

n−1∑
k=0

k2 ≈ 21
3n

3 = 2
3n

3.

5.5.1.2 · Variant 2: Up-looking algorithm
Homework 5.5.1.2 Solution. During the kth iteration, A00 is k× k, for k = 0, . . . , n− 1. Then
the (approximate) cost of each of the steps is given by

• Solve lT10U00 = aT10, overwriting aT10 with the result. Approximate cost: k2 flops.

• Update α11 := υ11 = α11 − lT10u01 = α11 − aT10a01. Approximate cost: 2k flops.

• Update aT12 := uT12 = aT12 − lT10U02 = aT12 − aT10A02. Approximate cost: 2k(n− k − 1) flops.

Assignments/Week05/answers/Chol_right_looking.m
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Thus, the total cost is approximately given by∑n−1
k=0

(
k2 + 2k + 2k(n− k − 1)

)
= < simplify >∑n−1
k=0

(
2kn− k2)

= < algebra >

2n
∑n−1
k=0 k −

∑n−1
k=0 k

2

≈ <
∑n−1
k=0 k ≈ n2/2;

∑n−1
k=0 k

2 ≈ k3/3 >
n3 − n3

3
= < simplify >

2
3n

3.

5.5.1.3 · Variant 3: Left-looking algorithm
Homework 5.5.1.3 Solution. During the kth iteration, A00 is k× k, for k = 0, . . . , n− 1. Then
the (approximate) cost of each of the steps is given by

• Solve L00u01 = a01, overwriting a01 with the result. Approximate cost: k2 flops.

• Update α11 := υ11 = α11 − lT10u01 = α11 − aT10a01. Approximate cost: 2k flops.

• Update a21 := l21 = (a21−L20u01)/υ11 = (a21−A20a01)/α11. Approximate cost: 2(n−k−1)
flops.

Thus, the total cost is approximately given by∑n−1
k=0

(
k2 + 2k + 2k(n− k − 1)

)
= < simplify >∑n−1
k=0

(
2kn− k2)

)
= < algebra >

2n
∑n−1
k=0 k −

∑n−1
k=0 k

2

≈ <
∑n−1
k=0 k ≈ n2/2;

∑n−1
k=0 k

2 ≈ k3/3 >
n3 − n3

3
= < simplify >

2
3n

3.

5.5.1.4 · Variant 4: Crout variant
Homework 5.5.1.4 Solution. During the kth iteration, A00 is k× k, for k = 0, . . . , n− 1. Then
the (approximate) cost of each of the steps is given by

• Update α11 := υ11 = α11 − lT10u01 = α11 − aT10a01. Approximate cost: 2k flops.

• Update aT12 := uT12 = aT12 − lT10U02 = aT12 − aT10A02. Approximate cost: 2k(n− k − 1) flops.

• Update a21 := l21 = (a21 −L20u01)/υ11 = (a21 −A20a01)/α11. Approximate cost: 2k(n− k−
1) + (n− k − 1) flops.

Thus, ignoring the 2k flops for the dot product and the n− k − 1 flops for multiplying with 1/α11
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in each iteration, the total cost is approximately given by∑n−1
k=0 4k(n− k − 1)
≈ < remove lower order term >

∑n−1
k=0 4k(n− k)

= < algebra >

4n
∑n−1
k=0 k − 4

∑n−1
k=0 k

2

≈ <
∑n−1
k=0 k ≈ n2/2;

∑n−1
k=0 k

2 ≈ k3/3 >
2n3 − 4n3

3
= < simplify >

2
3n

3.

5.5.1.5 · Variant 5: Classical Gaussian elimination
Homework 5.5.1.5 Solution. During the kth iteration, A00 is k× k, for k = 0, . . . , n− 1. Then
the (approximate) cost of each of the steps is given by

• Update a21 := l21 = a21/α11. Approximate cost: k flops.

• Update A22 := A22− l21u
T
12 = A22− a21a

T
12. Approximate cost: 2(n− k− 1)(n− k− 1) flops.

Thus, ignoring n− k− 1 flops for multiplying with 1/α11 in each iteration, the total cost is approx-
imately given by ∑n−1

k=0 2(n− k − 1)2

= < change of variable j = n− k − 1 >
2
∑n−1
j=0 j

2

≈ <
∑n−1
k=0 k

2 ≈ k3/3 >
2n3

3

6 · Numerical Stability
6.1 · Opening Remarks
6.1.1 · Whose problem is it anyway?
Ponder This 6.1.1.1 Solution.

• If
‖b−Ax̂‖
‖b‖

is small, then we cannot necessarily conclude that

‖x̂− x‖
‖x‖

is small (in other words: that x̂ is relatively close to x).

• If
‖b−Ax̂‖
‖b‖

is small, then we can conclude that x̂ solves a nearby problem, provided we trust whatever
routine computes Ax̂. After all, it solves

Ax̂ = b̂
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where
‖b− b̂‖
‖b‖

is small.

So, ‖b−Ax̂‖/‖b‖ being small is a necessary condition, but not a sufficient condition. If ‖b−Ax̂‖/‖b‖
is small, then x̂ is as good an answer as the problem warrants, since a small error in the right-
hand side is to be expected either because data inherently has error in it or because in storing the
right-hand side the input was inherently rounded.
Homework 6.1.1.2 Solution. All are possible causes. This week, we will delve into this.

6.2 · Floating Point Arithmetic
6.2.2 · Error in storing a real number as a floating point number
Homework 6.2.2.1 Solution.

• Write the number 1 as a floating point number.
Answer:

.10 · · · 0︸ ︷︷ ︸
t

digits

× 21.

• What is the εmach for this system?
Answer:

.10 · · · 0︸ ︷︷ ︸
t digits

× 21

︸ ︷︷ ︸
1

+ .00 · · · 1︸ ︷︷ ︸
t digits

× 21

︸ ︷︷ ︸
2−(t−1)

= .10 · · · 1︸ ︷︷ ︸
t digits

× 21

︸ ︷︷ ︸
> 1

and
.10 · · · 0︸ ︷︷ ︸
t digits

× 21

︸ ︷︷ ︸
1

+ .00 · · · 0︸ ︷︷ ︸
t digits

11 · · · × 21

︸ ︷︷ ︸
< 2−(t−1)

= .10 · · · 0︸ ︷︷ ︸
t digits

11 · · · × 21

︸ ︷︷ ︸
truncates to 1

Notice that
.00 · · · 1︸ ︷︷ ︸
t digits

× 21

can be represented as
.10 · · · 0︸ ︷︷ ︸
t digits

× 2−(t−2)

and
.00 · · · 0︸ ︷︷ ︸
t digits

11 · · · × 21

as
.11 · · · 1︸ ︷︷ ︸
t digits

× 2−(t−1)

Hence εmach = 2−(t−1).
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6.2.4 · Stability of a numerical algorithm
Homework 6.2.4.1 Answer.

• ALWAYS: Under the SCM from the last unit, floating point subtraction, κ := χ − ψ, is a
backward stable operation.

• ALWAYS: Under the SCM from the last unit, floating point multiplication, κ := χ× ψ, is a
backward stable operation.

• ALWAYS: Under the SCM from the last unit, floating point division, κ := χ/ψ, is a backward
stable operation.

Now prove it!
Solution.

• ALWAYS: Under the SCM from the last unit, floating point subtraction, κ := χ − ψ, is a
backward stable operation.

κ̌
= < computed value for κ >

[χ− ψ]
= < SCM >

(χ− ψ)(1 + ε−)
= < distribute >

χ(1 + ε−)− ψ(1 + ε−)
=

(χ+ δχ)− (ψ + δψ)
where

◦ |ε−| ≤ εmach,
◦ δχ = χε−,
◦ δψ = ψε−.

Hence κ̌ equals the exact result when subtracting nearby inputs.

• ALWAYS: Under the SCM from the last unit, floating point multiplication, κ := χ× ψ, is a
backward stable operation.

κ̌
= < computed value for κ >

[χ× ψ]
= < SCM >

(χ× ψ)(1 + ε×)
= < associative property >

χ× ψ(1 + ε×)
=

χ(ψ + δψ)
where
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◦ |ε×| ≤ εmach,
◦ δψ = ψε×.

Hence κ̌ equals the exact result when multiplying nearby inputs.

• ALWAYS: Under the SCM from the last unit, floating point division, κ := χ/ψ, is a backward
stable operation.

κ̌
= < computed value for κ >

[χ/ψ] <
= SCM >

(χ/ψ)(1 + ε/)
= < commutative property >

χ(1 + ε/)/ψ
=

(χ+ δχ)/ψ

where

◦ |ε/| ≤ εmach,
◦ δχ = χε/,

Hence κ̌ equals the exact result when dividing nearby inputs.

6.2.6 · Absolute value of vectors and matrices
Homework 6.2.6.1 Answer. ALWAYS

Now prove it.
Solution. Let C = AB. Then the (i, j) entry in |C| is given by

|γi,j | =

∣∣∣∣∣∣
k−1∑
p=0

αi,pβp,j

∣∣∣∣∣∣ ≤
k−1∑
p=0
|αi,pβp,j | =

k−1∑
p=0
|αi,p||βp,j |

which equals the (i, j) entry of |A||B|. Thus |AB| ≤ |A||B|.

Homework 6.2.6.2 Solution.
• Show that if |A| ≤ |B| then ‖A‖F ≤ ‖B‖F :

‖A‖2F =
m−1∑
i=0

n−1∑
j=0
|αi,j |2 ≤

m−1∑
i=0

n−1∑
j=0
|βi,j |2 = ‖B‖2F .

Hence ‖A‖F ≤ ‖B‖F .

• Show that if |A| ≤ |B| then ‖A‖1 ≤ ‖B‖1:
Let

A =
(
a0 · · · an−1

)
and B =

(
b0 · · · bn−1

)
.
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Then
‖A‖1

= < alternate way of computing 1-norm >
max0≤j<n ‖aj‖1

= < expose individual entries of aj >
max0≤j<n

(∑m−1
i=0 |αi,j |

)
= < choose k to be the index that maximizes >(∑m−1
i=0 |αi,k|

)
≤ < entries of B bound corresponding entries of A >(∑m−1
i=0 |βi,k|

)
= < express sum as 1-norm of column indexed with k >

‖bk‖1
≤ < take max over all columns >

max0≤j<n ‖bj‖1
= < definition of 1-norm >

‖B‖1.

• Show that if |A| ≤ |B| then ‖A‖∞ ≤ ‖B‖∞:
Note:

◦ ‖A‖∞ = ‖AT ‖1 and ‖B‖∞ = ‖BT ‖1.
◦ If |A| ≤ |B| then, clearly, |AT | ≤ |BT |.

Hence
‖A‖∞ = ‖AT ‖1 ≤ ‖BT ‖1 = ‖B‖∞.

6.3 · Error Analysis for Basic Linear Algebra Algorithms
6.3.1 · Initial insights
Homework 6.3.1.1 Answer. χ0
χ1
χ2


T
 (1 + ε

(0)
∗ )(1 + ε

(1)
+ )(1 + ε

(2)
+ ) 0 0

0 (1 + ε
(1)
∗ )(1 + ε

(1)
+ )(1 + ε

(2)
+ ) 0

0 0 (1 + ε
(2)
∗ )(1 + ε

(2)
+ )


 ψ0
ψ1
ψ2

 ,
where |ε(0)

∗ |, |ε(1)
∗ |, |ε(1)

+ |, |ε
(2)
∗ |, |ε(2)

+ | ≤ εmach.
Solution. Here is a solution that builds on the last example and paves the path toward the general
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solution presented in the next unit.

κ̌

= < κ̌ =
[
xT y

]
>

[(χ0ψ0 + χ1ψ1) + χ2ψ2]
= < each suboperation is performed in floating point arithmetic >

[[χ0ψ0 + χ1ψ1] + [χ2ψ2]]
= < reformulate so we can use result from Example 6.3.1.1 >( χ0
χ1

)T (
ψ0
ψ1

)+ [χ2ψ2]


= < use Example 6.3.1.1; twice SCM >( χ0
χ1

)T (
(1 + ε

(0)
∗ )(1 + ε

(1)
+ ) 0

0 (1 + ε
(1)
∗ )(1 + ε

(1)
+ )

)(
ψ0
ψ1

)
+χ2ψ2(1 + ε

(2)
∗ )
)

(1 + ε
(2)
+ )

= < distribute, commute >(
χ0
χ1

)T (
(1 + ε

(0)
∗ )(1 + ε

(1)
+ ) 0

0 (1 + ε
(1)
∗ )(1 + ε

(1)
+ )

)
(1 + ε

(2)
+ )

(
ψ0
ψ1

)
+ χ2(1 + ε

(2)
∗ )(1 + ε

(2)
+ )ψ2

= < (perhaps too) slick way of expressing the final result > χ0
χ1
χ2


T
 (1 + ε

(0)
∗ )(1 + ε

(1)
+ )(1 + ε

(2)
+ ) 0 0

0 (1 + ε
(1)
∗ )(1 + ε

(1)
+ )(1 + ε

(2)
+ ) 0

0 0 (1 + ε
(2)
∗ )(1 + ε

(2)
+ )


 ψ0
ψ1
ψ2


,

where |ε(0)
∗ |, |ε(1)

∗ |, |ε(1)
+ |, |ε

(2)
∗ |, |ε(2)

+ | ≤ εmach.

6.3.2 · Backward error analysis of dot product: general case
Homework 6.3.2.2 Solution.

γn
= < definition >

(nεmach)/(1− nεmach)
≤ < b ≥ 1 >

((n+ b)εmach)/(1− nεmach)
≤ < 1/(1− nεmach) ≤ 1/(1− (n+ b)εmach) if (n+ b)εmach < 1 >

((n+ b)εmach)/(1− (n+ b)εmach)
= < definition >

γn+b.
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and
γn + γb + γnγb

= < definition >
nεmach

1−nεmach
+ bεmach

1−bεmach
+ nεmach

(1−nεmach)
bεmach

(1−bεmach)
= < algebra >

nεmach(1−bεmach)+(1−nεmach)bεmach+bnε2mach
(1−nεmach)(1−bεmach)

= < algebra >
nεmach−bnε2mach+bεmach−bnε2mach+bnε2mach

1−(n+b)εmach+bnε2mach
= < algebra >

(n+b)εmach−bnε2mach
1−(n+b)εmach+bnε2mach
≤ < bnε2mach > 0 >

(n+b)εmach
1−(n+b)εmach+bnε2mach
≤ < bnε2mach > 0 >

(n+b)εmach
1−(n+b)εmach

= < definition >
γn+b.

6.3.3 · Dot product: error results
Homework 6.3.3.1 Solution. Case: k = 0.

Then (
I + Σ(k) 0

0 (1 + ε1)

)
(1 + ε2)

= < k = 0 means (I + Σ(k)) is 0× 0 and (1 + ε1) = (1 + 0) >
(1 + 0)(1 + ε2)

=
(1 + ε2)

=
(1 + θ1)

=
(I + Σ(1)).

Case: k = 1.
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Then (
I + Σ(k) 0

0 (1 + ε1)

)
(1 + ε2)

=(
1 + θ1 0

0 (1 + ε1)

)
(1 + ε2)

=(
(1 + θ1)(1 + ε2) 0

0 (1 + ε1)(1 + ε2)

)
=(
(1 + θ2) 0

0 (1 + θ2)

)
=

(I + Σ(2)).

Case: k > 1.
Notice that

(I + Σ(k))(1 + ε2)
=
1 + θk 0 0 · · · 0

0 1 + θk 0 · · · 0
0 0 1 + θk−1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1 + θ2

 (1 + ε2)

=
1 + θk+1 0 0 · · · 0

0 1 + θk+1 0 · · · 0
0 0 1 + θk · · · 0
...

...
... . . . ...

0 0 0 · · · 1 + θ3


Then (

I + Σ(k) 0
0 (1 + ε1)

)
(1 + ε2)

=(
(I + Σ(k))(1 + ε2) 0

0 (1 + ε1)(1 + ε2)

)
=


1 + θk+1 0 0 · · · 0

0 1 + θk+1 0 · · · 0
0 0 1 + θk · · · 0
...

...
... . . . ...

0 0 0 · · · 1 + θ3

 0

0 (1 + θ2)


=

(I + Σ(k+1)).
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Homework 6.3.3.2 Solution. From Theorem 6.3.3.1 we know that

κ̌ = xT (I + Σ(n))y = (x+ Σ(n)x︸ ︷︷ ︸
δx

)T y.

Then

|δx| = |Σ(n)x| =

∣∣∣∣∣∣∣∣∣∣∣∣


θnχ0
θnχ1
θn−1χ2

...
θ2χn−1



∣∣∣∣∣∣∣∣∣∣∣∣
=


|θnχ0|
|θnχ1|
|θn−1χ2|

...
|θ2χn−1|

 =


|θn||χ0|
|θn||χ1|
|θn−1||χ2|

...
|θ2||χn−1|



≤


|θn||χ0|
|θn||χ1|
|θn||χ2|

...
|θn||χn−1|

 ≤


γn|χ0|
γn|χ1|
γn|χ2|

...
γn|χn−1|

 = γn|x|.

(Note: strictly speaking, one should probably treat the case n = 1 separately.)

6.3.4 · Matrix-vector multiplication
Ponder This 6.3.4.1 Solution. The answer is "sort of". The reason is that for each individual
element of y

ψ̌i = ãTi (x+ δx)

which would appear to support that
ψ̌0
ψ̌1
...

ψ̌m−1

 =


ãT0 (x+ δx)
ãT1 (x+ δx)

...
ãTm−1(x+ δx)

 .

However, the δx for each entry ψ̌i is different, meaning that we cannot factor out x+ δx to find that
y̌ = A(x+ δx).

However, one could argue that we know that y̌ = Ax + δy where |δy| ≤ γn|A||x|. Hence if
Aδx = δy then A(x+ δx) = y̌. This would mean that δy is in the column space of A. (For example,
if A is nonsingular). However, that is not quite what we are going for here.

6.3.5 · Matrix-matrix multiplication
Homework 6.3.5.2 Solution. Partition

C =
(
c0 c1 · · · cn−1

)
and B =

(
b0 b1 · · · bn−1

)
.

Then (
c0 c1 · · · cn−1

)
:=
(
Ab0 Ab1 · · · Abn−1

)
.
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From R-1F 6.3.4.1 regarding matrix-vector multiplication we know that(
č0 č1 · · · čn−1

)
=

(
Ab0 + δc0 Ab1 + δc1 · · · Abn−1 + δcn−1

)
=

(
Ab0 Ab1 · · · Abn−1

)
+
(
δc0 δc1 · · · δcn−1

)
= AB + ∆C.

where |δcj | ≤ γk|A||bj |, j = 0, . . . , n− 1, and hence |∆C| ≤ γk|A||B|.

6.4 · Error Analysis for Solving Linear Systems
6.4.1 · Numerical stability of triangular solve
Homework 6.4.1.1 Hint. Use the Alternative Computations Model (Subsubsection 6.2.3.3)
appropriately.
Solution. We know that

• From Corollary 6.3.3.2 R-1B: if β = xT y then β̌ = (x+ δx)T y where |δx| ≤ γn|x|.

• From the ACM (Subsubsection 6.2.3.3): If ν = (α− β)/λ then

ν̌ = α− β
λ

1
(1 + ε−)(1 + ε/)

,

where |ε−| ≤ εmach and |ε/| ≤ εmach.

Hence
ν̌ = α− (x+ δx)T y

λ

1
(1 + ε−)(1 + ε/)

,

or, equivalently,
λ(1 + ε−)(1 + ε/)ν̌ = α− (x+ δx)T y,

or,
λ(1 + θ2)ν̌ = α− (x+ δx)T y,

where |θ2| ≤ γ2, which can also be written as

(λ+ δλ)ν̌ = α− (x+ δx)T y,

where δλ = θ2λ and hence |δλ| ≤ γ2‖λ|.

Homework 6.4.1.2 Solution. Case 1: n = 1.
The system looks like λ11χ1 = ψ1 so that

χ1 = ψ1/λ11

and
χ̌1 = ψ1/λ11

1
1 + ε/

Rearranging gives us
λ11χ̌1(1 + ε/) = ψ1

or
(λ11 + δλ11)χ̌1 = ψ1
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where δλ11 = ε/λ11 and hence

|δλ11| = |ε/||λ11|
≤ γ1|λ11|
≤ γ2|λ11|
≤ max(γ2, γn−1)|λ11|.

Homework 6.4.1.3 Solution. Case 2: n = 2.
The system now looks like (

λ00 0
λ10 λ11

)(
χ0
χ1

)
=
(
ψ0
ψ1

)
.

From the proof of Case 1 we know that

(λ00 + δλ00)χ̌0 = ψ0, where |δλ00| ≤ γ1|λ00|. (E.0.4)

Since χ1 = (ψ1 − λ10χ̌0)/λ11, Lemma 6.4.1.2 tells us that

(λ10 + δλ10)χ̌0 + (λ11 + δλ11)χ̌1 = ψ1, (E.0.5)

where
|δλ10| ≤ γ1|λ10| and |δλ11| ≤ γ2|λ11|.

(E.0.4) and (E.0.5) can be combined into(
λ00 + δλ00 0
λ10 + δλ10 λ11 + δλ11

)(
χ̌0
χ̌1

)
=
(
ψ0
ψ1

)
,

where (
|δλ00| 0
|δλ10| |δλ11|

)
≤
(
γ1|λ00| 0
γ1|λ10| γ2|λ11|

)
.

Since γ1 ≤ γ2 ∣∣∣∣∣
(
δλ00 0
δλ10 δλ11

)∣∣∣∣∣ ≤ max(γ2, γn−1)
∣∣∣∣∣
(
λ00 0
λ10 λ11

)∣∣∣∣∣ .
Homework 6.4.1.4 Solution. We will utilize a proof by induction.

• Case 1: n = 1.
See Homework 6.4.1.2.

• Case 2: n = 2.
See Homework 6.4.1.3.

• Case 3: n > 2.
The system now looks like (

L00 0
lT10 λ11

)(
x0
χ1

)
=
(
y0
ψ1

)
, (E.0.6)
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where L00 ∈ R(n−1)×(n−1), and the inductive hypothesis states that

(L00 + ∆L00)x̌0 = y0 where |∆L00| ≤ max(γ2, γn−2)|L00|.

Since χ1 = (ψ1 − lT10x̌0)/λ11, Lemma 6.4.1.2 tells us that

(l10 + δl10)T x̌0 + (λ11 + δλ11)χ̌1 = ψ1, (E.0.7)

where |δl10| ≤ γn−1|l10| and |δλ11| ≤ γ2|λ11|.
(E.0.6) and (E.0.7) can be combined into(

L00 + δL00 0
(l10 + δl10)T λ11 + δλ11

)(
x̌0
χ̌1

)
=
(
y0
ψ1

)
,

where (
|δL00| 0
|δlT10| |δλ11|

)
≤
(

max(γ2, γn−2)|L00| 0
γn−1|lT10| γ2|λ11|

)
and hence ∣∣∣∣∣

(
δL00 0
δlT10 δλ11

)∣∣∣∣∣ | ≤ max(γ2, γn−1)
∣∣∣∣∣
(
L00 0
lT10 λ11

)∣∣∣∣∣ .
• By the Principle of Mathematical Induction, the result holds for all n ≥ 1.

6.4.3 · Numerical stability of linear solve via LU factorization
Homework 6.4.3.1 Solution.

Ax = y and (A+ ∆A)(x+ δx) = y

implies that
(A+ ∆A)(x+ δx) = Ax

or, equivalently,
∆Ax+Aδx+ ∆Aδx = 0.

We can rewrite this as
δx = A−1(−∆Ax−∆Aδx)

so that
‖δx‖ = ‖A−1(−∆Ax−∆Aδx)‖ ≤ ‖A−1‖‖∆A‖‖x‖+ ‖A−1‖‖∆A‖‖δx‖.

This can be rewritten as

(1− ‖A−1‖‖∆A‖)‖δx‖ ≤ ‖A−1‖‖∆A‖‖x‖

and finally
‖δx‖
‖x‖

≤ ‖A−1‖‖∆A‖
1− ‖A−1‖‖∆A‖

and finally
‖δx‖
‖x‖

≤
‖A‖‖A−1‖‖∆A‖‖A‖

1− ‖A‖‖A−1‖‖∆A‖‖A‖

.
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6.4.5 · Is LU with Partial Pivoting Stable?
Homework 6.4.5.1 Solution. Notice that no pivoting is necessary. Eliminating the entries
below the diagonal in the first column yields: 1 0 1

0 1 2
0 −1 2

 .
Eliminating the entries below the diagonal in the second column again does not require pivoting
and yields:  1 0 1

0 1 2
0 0 4

 .
Homework 6.4.5.2 Solution. Consider

A =



1 0 0 · · · 0 1
−1 1 0 · · · 0 1
−1 −1 1 · · · 0 1
...

...
... . . . ...

...
−1 −1 · · · 1 1
−1 −1 · · · −1 1


.

Notice that no pivoting is necessary when LU factorization with pivoting is performed.
Eliminating the entries below the diagonal in the first column yields:

1 0 0 · · · 0 1
0 1 0 · · · 0 2
0 −1 1 · · · 0 2
...

...
... . . . ...

...
0 −1 · · · 1 2
0 −1 · · · −1 2


.

Eliminating the entries below the diagonal in the second column again does not require pivoting
and yields: 

1 0 0 · · · 0 1
0 1 0 · · · 0 2
0 0 1 · · · 0 4
...

...
... . . . ...

...
0 0 · · · 1 4
0 0 · · · −1 4


.

Continuing like this for the remaining columns, eliminating the entries below the diagonal leaves
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us with the upper triangular matrix

1 0 0 · · · 0 1
0 1 0 · · · 0 2
0 0 1 · · · 0 4
...

...
... . . . ...

...
0 0 · · · 1 2n−2

0 0 · · · 0 2n−1


.

7 · Solving Sparse Linear Systems
7.1 · Opening Remarks
7.1.1 · Where do sparse linear systems come from?
Homework 7.1.1.1 Hint. An outline for a matlab script can be found in Assignments/Week07/
matlab/Poisson_Jacobi_iteration.m.When you execute the script, in the COMMAND WINDOW
enter "RETURN" to advance to the next iteration.
Solution. Assignments/Week07/answers/Poisson_Jacobi_iteration.m.When you execute the script,
in the COMMAND WINDOW enter "RETURN" to advance to the next iteration.

7.2 · Direct Solution
7.2.1 · Banded matrices
Homework 7.2.1.1 Hint. Consider Ax = 0. We need to prove that x = 0. If you instead
consider the equivalent problem

1 0 0
−1
0
...
0
0


2 −1 · · · 0
−1 2 −1 · · · 0

. . . . . . . . . ...
−1 2 −1

−1 2


0
0
...
0
−1

0 0 1





χ−1
χ0
χ1
...

χn−2
χn−1
χn


=



0
0
0
...
0
0
0


that introduces two extra variables χ−1 = 0 and χn = 0, the problem for all χi, 0 ≤ i < n, becomes

−χi−1 + 2χi − χi+1 = 0.

or, equivalently,
χi = χi−1 + χi+1

2 .

Reason through what would happen if any χi is not equal to zero.
Solution. Building on the hint: Let’s say that χi 6= 0 while χ−1, . . . , χi−1 are. Then

χi = χi−1 + χi+1
2 = 1

2χi+1

and hence
χi+1 = 2χi 6= 0..

Assignments/Week07/matlab/Poisson_Jacobi_iteration.m
Assignments/Week07/matlab/Poisson_Jacobi_iteration.m
Assignments/Week07/answers/Poisson_Jacobi_iteration.m
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Next,
χi+1 = χi + χi+2

2 = 2χi

and hence
χi+2 = 4χi − χi = 3χi 6= 0.

Continuing this argument, the solution to the recurrence relation is χn = (n− i+ 1)χi and you find
that χn 6= 0 which is a contradiction.
Homework 7.2.1.2 Answer.

L =


2 0 0 0
−1 2 0 0

0 −1 3 0
0 0 2 1

 .
Homework 7.2.1.3 Solution.

• If you play with a few smaller examples, you can conjecture that the Cholesky factor of
(7.2.2) is a bidiagonal matrix (the main diagonal plus the first subdiagonal). Thus, A = LLT

translates to
α0,0 α1,0
α1,0 α1,1 α2,1

. . . . . . . . .
αn−2,n−3 αn−2,n−2 αn−1,n−2

αn−1,n−2 αn−1,n−1



=


λ0,0
λ1,0 λ1,1

. . . . . .
λn−2,n−3 λn−2,n−2

λn−1,n−2 λn−1,n−1




λ0,0 λ1,0

λ1,1 λ2,1
. . . . . .

λn−2,n−2 λn−1,n−2
λn−1,n−1



=



λ0,0λ0,0 λ0,0λ1,0
λ1,0λ0,0 λ1,0λ1,0 + λ1,1λ1,1 λ1,1λ2,1

λ21λ11
. . . . . .
. . . ?? λn−2,n−2λn−1,n−2

λn−1,n−2λn−2,n−2 λn−1,n−2λn−1,n−2
+ λn−1,n−1λn−1,n−1


,

where ?? = λn−3,n−2λn−3,n−2 + λn−2,n−2λn−2,n−2. With this insight, the algorithm that
overwrites A with its Cholesky factor is given by

for i = 0, . . . , n− 2
αi,i := √αi,i
αi+1,i := αi+1,i/αi,i
αi+1,i+1 := αi+1,i+1 − αi+1,iαi+1,i

endfor
αn−1,n−1 := √αn−1,n−1

• A cost analysis shows that this requires n square roots, n − 1 divides, n − 1 multiplies, and
n− 1 subtracts.
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• The cost, had we not taken advantage of the special structure, would have been (approxi-
mately) 1

3n
3.

Homework 7.2.1.4 Solution.
• Use the algorithm from Homework 7.2.1.3 to overwrite A with its Cholesky factor.

• Since A = LLT , we need to solve Lz = y and then LTx = z.

◦ Overwriting y with the solution of Lz = y (forward substitution) is accomplished by the
following algorithm (here L had overwritten A):

for i = 0, . . . , n− 2
ψi := ψi/αi,i
ψi+1 := ψi+1 − αi+1,iψi

endfor
ψn−1 := ψn−1/αn−1,n−1

◦ Overwriting y with the solution of Lx = z (where z has overwritten y (back substitution)
is accomplished by the following algorithm (here L had overwritten A):

for i = n− 1, . . . , 1
ψi := ψi/αi,i
ψi−1 := ψi−1 − αi,i−1ψi

endfor
ψ0 := ψ0/α0,0

Homework 7.2.1.5 Solution. See the below video.
7.2.2 · Nested dissection
Homework 7.2.2.1 Solution.

• The Cholesky factor of this matrix has the structure

L =

 L00 0 0
0 L11 0
L20 L21 L22

 .
• We notice that A = LLT means that A00 0 AT20

0 A11 AT21
A20 A21 A22

 =

 L00 0 0
0 L11 0
L20 L21 L22


 L00 0 0

0 L11 0
L20 L21 L22


T

,

︸ ︷︷ ︸ L00L
T
00 0 ?

0 L11L
T
11 ?

L20L
T
00 L21L

T
11 L20L

T
20 + L21L

T
21 + L22L

T
22


where the ?s indicate "symmetric parts" that don’t play a role. We deduce that the following
steps will yield the Cholesky factor:

◦ Compute the Cholesky factor of A00:

A00 = L00L
T
00,
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overwriting A00 with the result.
◦ Compute the Cholesky factor of A11:

A11 = L11L
T
11,

overwriting A11 with the result.
◦ Solve

XLT00 = A20

for X, overwriting A20 with the result. (This is a triangular solve with multiple right-
hand sides in disguise.)
◦ Solve

XLT11 = A21

for X, overwriting A21 with the result. (This is a triangular solve with multiple right-
hand sides in disguise.)
◦ Update the lower triangular part of A22 with

A22 − L20L
T
20 − L21L

T
21.

◦ Compute the Cholesky factor of A22:

A22 = L22L
T
22,

overwriting A22 with the result.

• If we now want to solve Ax = y, we can instead first solve Lz = y and then LTx = z. Consider L00 0 0
0 L11 0
L20 L21 L22


 z0
z1
z2

 =

 y0
y1
y2

 .
This can be solved via the steps

◦ Solve L00z0 = y0.
◦ Solve L11z1 = y1.
◦ Solve L22z2 = y2 − L20z0 − L21z1.

Similarly,  LT00 0 LT20
0 LT11 LT21
0 0 LT22


 x0
x1
x2

 =

 z0
z1
z2

 .
can be solved via the steps

◦ Solve LT22x2 = z2.
◦ Solve LT11x1 = z1 − LT21x2.
◦ Solve LT00x0 = z0 − LT20x2.
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7.3 · Iterative Solution
7.3.2 · Gauss-Seidel iteration
Homework 7.3.2.1 Solution. Assignments/Week07/answers/Poisson_GS_iteration.m.

When you execute the script, in the COMMAND WINDOW enter "RETURN" to advance to
the next iteration.

You may also want to observe the Jacobi and Gauss-Seidel iterations in action side-by-side in
Assignments/Week07/answers/Poisson_Jacobi_vs_GS.m.

Homework 7.3.2.2 Solution.



4
−1 4

−1 4
−1 4

−1 4
−1 −1 4

−1 −1 4
−1 −1 4

−1 4
. . . . . . . . .





υ
(k+1)
0
υ

(k+1)
1
υ

(k+1)
2
υ

(k+1)
3
υ

(k+1)
4
υ

(k+1)
5
υ

(k+1)
6
υ

(k+1)
7
υ

(k+1)
8
...



:=



0 1 1
0 1 1

0 1 1
0 1

0 1 1

0 1 . . .
0 1

0

0 . . .
. . .





υ
(k)
0
υ

(k)
1
υ

(k)
2
υ

(k)
3
υ

(k)
4
υ

(k)
5
υ

(k)
6
υ

(k)
7
υ

(k)
8
...



+



h2φ0
h2φ1
h2φ2
h2φ3
h2φ4
h2φ5
h2φ6
h2φ7
h2φ8
...



.

Homework 7.3.2.3 Solution. The reverse order is given by χ(k+1)
n−1 , χ

(k+1)
n−2 , . . .. This corresponds

to the splitting M = D − LT and N = L so that

(D − LT )x(k+1) = Lx(k) + y.

Homework 7.3.2.4 Hint.
• From this unit and the last homework, we know that MF = (D − L), NF = LT , MR =

(D − LT ), and NR = L.

• Show that
(D − LT )x(k+1) = L(D − L)−1LTx(k) + (I + L(D − L)−1)y.

• Show that I + L(D − L)−1 = D(D − L)−1.

Assignments/Week07/answers/Poisson_GS_iteration.m
Assignments/Week07/answers/Poisson_Jacobi_vs_GS.m
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• Use these insights to determine M and N .

Solution.

• From this unit and the last homework, we know that MF = (D − L), NF = LT , MR =
(D − LT ), and NR = L.

• Show that
(D − LT )x(k+1) = L(D − L)−1LTx(k) + (I + L(D − L)−1)y.

We show this by substituting MR and NR:

(D − LT )x(k+1) = Lx(k+ 1
2 ) + y

and then substituting in for x(k+ 1
2 ), MF and NF :

(D − LT )x(k+1) = L((D − L)−1(LTx(k) + y)) + y.

Multiplying out the right-hand side and factoring out y yields the desired result.

• Show that I + L(D − L)−1 = D(D − L)−1.
We show this by noting that

I + L(D − L)−1

=
(D − L)(D − L)−1 + L(D − L)−1 =
(D − L+ L)(D − L)−1 =
D(D − L)−1.

• Use these insights to determine M and N .
We now notice that

(D − LT )x(k+1) = L(D − L)−1LTx(k) + (I + L(D − L)−1)y

can be rewritten as (Someone check this... My brain hurts.)

(D − LT )x(k+1) = L(D − L)−1LTx(k) +D(D − L)−1y

(D − L)D−1(D − LT )︸ ︷︷ ︸
M

x(k+1) = (D − L)D−1L(D − L)−1LT︸ ︷︷ ︸
N

x(k) + y

7.3.3 · Convergence of splitting methods
Homework 7.3.3.1 Solution. Both methods have two advantages:

• The multiplication Nx(k) can exploit sparsity in the original matrix A.

• Solving with M is relatively cheap. In the case of the Jacobi iteration (M = D) it is trivial.
In the case of the Gauss-Seidel iteration (M = (D−L)), the lower triangular system inherits
the sparsity pattern of the corresponding part of A.
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Homework 7.3.3.2 Solution.

x(k) +M−1r(k)

=
x(k) +M−1(y −Ax(k))

=
x(k) +M−1(y − (M −N)x(k))

=
x(k) +M−1y −M−1(M −N)x(k)

=
x(k) +M−1y − (I −M−1N)x(k)

=
M−1(Nx(k) + y)

Homework 7.3.3.5 Solution. M = A and N = 0. Then, regardless of the initial vector x(0),

x(1) := M−1(Nx(0) + y) = A−1(0x(0) + y) = A−1y.

Thus, convergence occurs after a single iteration.

8 · Descent Methods
8.2 · Search directions
8.2.1 · Basics of descent methods
Homework 8.2.1.1 Solution.

αk := p(k)T r(k)

p(k)TAp(k) 1 mvmult, 2 dot products
x(k+1) := x(k) + αkp

(k) 1 axpy
r(k+1) := b−Ax(k+1) 1 mvmult

Total: 2 matrix-vector multiplies (mvmults), 2 dot products, 1 axpy.

8.2.2 · Toward practical descent methods
Homework 8.2.2.1 Solution.

r(k+1) = b−Ax(k+1)

= < r(k) = b−Ax(k) >

r(k+1) = r(k) +Ax(k) −Ax(k+1)

= < rearrange, factor >

r(k+1) = r(k) −A(x(k+1) − x(k))
= < x(k+1) = x(k) + αkp

(k) >

r(k+1) = r(k) − αkAp(k)
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Alternatively:
r(k+1) = b−Ax(k+1)

= < x(k+1) = x(k) + αkp
(k) >

r(k+1) = b−A(x(k) + αkp
(k))

= < distribute >

r(k+1) = b−Ax(k) − αkAp(k)

= < definition of r(k) >

r(k+1) = r(k) − αkAp(k)

Homework 8.2.2.2 Solution.

q(k) := Ap(k) 1 mvmult
αk := p(k)T r(k)

p(k)T qx(k) 2 dot products
x(k+1) := x(k) + αkp

(k) 1 axpy
r(k+1) := r(k) − αkq(k) 1axpy

Total: 1 mvmults, 2 dot products, 2 axpys

8.2.3 · Relation to Splitting Methods
Homework 8.2.3.1 Solution.

• p(0) = e0.

• p(0)TAp(0) = eT0 Ae0 = α0,0 (the (0, 0) element in A, not to be mistaken for α0).

• r(0) = Ax(0) − b.

• p(0)T r(0) = eT0 (b−Ax(0)) = eT0 b− eT0 Ax(0) = β0− ãT0 x(0), where ãTk denotes the kth row of A.

• x(1) = x(0) + α0p
(0) = x(0) + p(0)T r(0)

p(0)TAp(0) e0 = x(0) + β0−ãT0 x
(0)

α0,0
e0. This means that only the first

element of x(0) changes, and it changes to

χ
(1)
0 = χ

(0)
0 + 1

α0,0

β0 −
n−1∑
j=0

α0,jχ
(0)
j

 = 1
α0,0

β0 −
n−1∑
j=1

α0,jχ
(0)
j

 .
This looks familiar...

8.2.5 · Preconditioning
Homework 8.2.5.1 Hint. You will want to do a prove by induction. To start, conjecture a
relationship between r̃(k) and r(k) and then prove that that relationship, and the relationship
x(k) = L−Tx(k) hold for all k, where r(k) and x(k) are as computed by the algorithm on the right.
Solution 1. Notice that Ã = L−1AL−T implies that ÃLT = L−1A. We will show that for all
k ≥ 0

• x̃(k) = LTx(k)

• r̃(k) = L−1r(k),

• p̃(k) = LT p(k),
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• α̃k = αk

via a proof by induction.

• Base case: k = 0.

◦ x̃(0) is initialized as x̃(0) := LTx(0).
◦ r̃(0)

= < algorithm on left >

b̃− Ãx̃(0)

= < initialization of b̃ and x̃(0) >

L−1b− ÃLTx(0)

= < initialization of Ã >

L−1b− L−1Ax(0)

= < factor out and initialization of r(0) >

L−1r(0)

◦ p̃(0)

= < initialization in algorithm >

r̃(0)

= < r̃(0) = L−1r(0) >

L−1r(0)

= < from right algorithm: r(k) = Mp(k) and M = LLT >

L−1LLT p(0)

= < L−1L = I >

= LT p(0).

◦ α̃0
= < middle algorithm >

p̃(0)T r̃(0)

p̃(0)T Ãp̃(0)

= < p̃(0) = LT p(0) etc. >
(LT p(0))TL−1r(0)

(LT p(0))TL−1AL−TLT p(0)

= < transpose and cancel >
p(0)T r(0)

p(0)TAp(0)

= < right algorithm >
α0.

• Inductive Step: Assume that x̃(k) = LTx(k), r̃(k) = L−1r(k), p̃(k) = LT p(k), and α̃k = αk.
Show that x̃(k+1) = LTx(k+1), r̃(k+1) = L−1r(k+1), p̃(k+1) = LT p(k+1), and α̃k+1 = αk+1.

◦ x̃(k+1)

= middle algorithm
x̃(k) + α̃kp̃

(k)

= < I.H. >
LTx(k) + αkL

T p(k)

= < factor out; right algorithm >

LTx(k+1)
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◦ r̃(k+1)

= < middle algorithm >

r̃(k) − α̃kÃp̃(k)

= < I.H. >
L−1r(k) − αkL−1AL−TLT p(k)

= < L−TLT = I; factor out; right algorithmn >

L−1r(k+1)

◦ p̃(k+1)

= < middle algorithm >

r̃(k+1)

= < r̃(k+1) = L−1r(k+1) >

L−1r(k+1)

= < from right algorithm: r(k+1) = Mp(k+1) and M = LLT >

L−1LLT p(k+1)

= < L−1L = I >

= LT p(k+1).

◦ α̃k+1
= < middle algorithm >

p̃(k+1)T r̃(k+1)

p̃(k+1)T Ãp̃(k+1)

= < p̃(k+1) = LT p(k+1) etc. >
(LT p(k+1))TL−1r(k+1)

(LT p(k+1))TL−1AL−TLT p(k+1)

= < transpose and cancel >
p(k+1)T r(k+1)

p(k+1)TAp(k+1)

= < right algorithm >
αk+1.

• By the Principle of Mathematical Induction the result holds.
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Solution 2 (Constructive solution). Let’s start with the algorithm in the middle:

Given : A, b, x(0),
M = LLT

Ã = L−1AL−T

b̃ = L−1b

x̃(0) = LTx(0)

r̃(0) := b̃− Ãx̃(0)

k := 0
while r̃(k) 6= 0
p̃(k) := r̃(k)

q̃(k) := Ãp̃(k)

α̃k := p̃(k)T r̃(k)

p̃(k)T q̃(k)

x̃(k+1) := x̃(k) + α̃kp̃
(k)

r̃(k+1) := r̃(k) − α̃kq̃(k)

x(k+1) = L−T x̃(k+1)

k := k + 1
endwhile

We now notice that Ã = L−1AL−T and we can substitute this into the algorithm:

Given : A, b, x(0),
M = LLT

b̃ = L−1b

x̃(0) = LTx(0)

r̃(0) := b̃− L−1AL−T x̃(0)

k := 0
while r̃(k) 6= 0
p̃(k) := r̃(k)

q̃(k) := L−1AL−T p̃(k)

α̃k := p̃(k)T r̃(k)

p̃(k)T q̃(k)

x̃(k+1) := x̃(k) + α̃kp̃
(k)

r̃(k+1) := r̃(k) − α̃kq̃(k)

x(k+1) = L−T x̃(k+1)

k := k + 1
endwhile

Next, we notice that x(k+1) = L−T x̃(k+1) or, equivalently,

x̃(k) = LTx(k).
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We substitute that

Given : A, b, x(0),
M = LLT

b̃ = L−1b

x̃(0) = LTx(0)

r̃(0) := b̃− L−1AL−TLTx(0)

k := 0
while r̃(k) 6= 0
p̃(k) := r̃(k)

q̃(k) := L−1AL−T p̃(k)

α̃k := p̃(k)T r̃(k)

p̃(k)T q̃(k)

LTx(k+1) := LTx(k) + α̃kp̃
(k)

r̃(k+1) := r̃(k) − α̃kq̃(k)

x(k+1) = L−T x̃(k+1)

k := k + 1
endwhile

or, equivalently Given : A, b, x(0),
M = LLT

b̃ = L−1b

r̃(0) := b̃− L−1Ax(0)

k := 0
while r̃(k) 6= 0
p̃(k) := r̃(k)

q̃(k) := L−1AL−T p̃(k)

α̃k := p̃(k)T r̃(k)

p̃(k)T q̃(k)

x(k+1) := x(k) + α̃kL
−T p̃(k)

r̃(k+1) := r̃(k) − α̃kq̃(k)

k := k + 1
endwhile

Now, we exploit that b̃ = L−1b and r̃(k) equals the residual b̃− Ãx̃(k) = L−1b−L−1AL−TLTx(k) =
L−1(b−Ax(k)) = L−1r(k). Substituting these insights in gives us

Given : A, b, x(0),
M = LLT

L−1b = L−1b

L−1r(0) := L−1(b−Ax(0))
k := 0
while L−1r(k) 6= 0
p̃(k) := L−1r(k)

q̃(k) := L−1AL−T p̃(k)

α̃k := p̃(k)TL−1r(k)

p̃(k)T q̃(k)

x(k+1) := x(k) + α̃kL
−T p̃(k)

L−1r(k+1) := L−1r(k) − α̃kq̃(k)

k := k + 1
endwhile

or, equivalently Given : A, b, x(0),
M = LLT

r(0) := b−Ax(0)

k := 0
while r(k) 6= 0
p̃(k) := L−1r(k)

q̃(k) := L−1AL−T p̃(k)

α̃k := p̃(k)TL−1r(k)

p̃(k)T q̃(k)

x(k+1) := x(k) + α̃kL
−T p̃(k)

r(k+1) := r(k) − α̃kLq̃(k)

k := k + 1
endwhile
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Now choose p̃(k) = LT p(k) so that AL−T p̃(k) becomes Ap(k):

Given : A, b, x(0),
M = LLT

r(0) := b−Ax(0)

k := 0
while r(k) 6= 0
p(k) := L−TL−1r(k)

q̃(k) := L−1Ap(k)

α̃k := (LT p(k))TL−1r(k)

(LT p(k)))T q̃(k)

x(k+1) := x(k) + α̃kL
−TLT p(k)

r(k+1) := r(k) − α̃kLq̃(k)

k := k + 1
endwhile

or, equivalently Given : A, b, x(0),
M = LLT

r(0) := b−Ax(0)

k := 0
while r(k) 6= 0
p(k) := M−1r(k)

q̃(k) := L−1Ap(k)

α̃k := p(k)T r(k)

p(k)TLq̃(k)

x(k+1) := x(k) + α̃kp
(k)

r(k+1) := r(k) − α̃kLq̃(k)

k := k + 1
endwhile

Finally, if we choose Lq̃(k) = q(k) and α̃k = αk we end up with

Given : A, b, x(0),
M = LLT

r(0) := b−Ax(0)

k := 0
while r(k) 6= 0
p(k) := M−1r(k)

q(k) := Ap(k)

αk := p(k)T r(k)

p(k)T q(k)

x(k+1) := x(k) + αkp
(k)

r(k+1) := r(k) − αkq(k)

k := k + 1
endwhile

8.3 · The Conjugate Gradient Method
8.3.1 · A-conjugate directions
Homework 8.3.1.1 Hint.

x ∈ Span(p(0), . . . , p(k−1), p(k))

if and only if there exists

y =
(
y0
ψ1

)
∈ Rk+1 such that x =

(
P (k−1) p(k)

)( y0
ψ1

)
.
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Solution.

minx∈Span(p(0),...,p(k−1),p(k)) f(x)
= < equivalent formulation >

miny f(
(
P (k−1) p(k)

)
y)

= < partition y =
(
y0
ψ1

)
>

miny f(
(
P (k−1) p(k)

)( y0
ψ1

)
)

= < instantiate f >

miny

1
2

[(
P (k−1) p(k)

)( y0
ψ1

)]T
A
(
P (k−1) p(k)

)( y0
ψ1

)

−
[(

P (k−1) p(k)
)( y0

ψ1

)]T
b

 .
= < multiply out >

miny
[

1
2

[
yT0 P

(k−1)T + ψ1p
(k)T

]
A
[
P (k−1)y0 + ψ1p

(k)
]
− yT0 P (k−1)T b− ψ1p

(k)T b
]

= < multiply out some more >

miny
[

1
2y

T
0 P

(k−1)TAP (k−1)y0 + ψ1y
T
0 P

(k−1)TAp(k)

+1
2ψ

2
1p

(k)TAp(k) − yT0 P (k−1) T b− ψ1p
(k)T b

]
= < rearrange >

miny
[

1
2y

T
0 P

(k−1)TAP (k−1)y0 − yT0 P (k−1)T b+ ψ1y
T
0 P

(k−1) TAp(k)

+1
2ψ

2
1p

(k)TAp(k) − ψ1p
(k)T b

]
.

Homework 8.3.1.2 Answer. ALWAYS
Now prove it.
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Solution.
P TAP

= < partition P by columns >(
p0 · · · pk−1

)T
A
(
p0 · · · pk−1

)
= < transpose > pT0
...

pTk−1

A ( p0 · · · pk−1
)

= < multiply out > pT0
...

pTk−1

( Ap0 · · · Apk−1
)

= < multiply out >
pT0 Ap0 pT0 Ap1 · · · pT0 Apk−1
pT1 Ap0 pT1 Ap1 · · · pT1 Apk−1

...
...

pTk−1Ap0 pTk−1Ap1 · · · pTk−1Apk−1


= < A = AT >
pT0 Ap0 pT1 Ap0 · · · pTk−1Ap0
pT1 Ap0 pT1 Ap1 · · · pTk−1Ap1

...
...

pTk−1Ap0 pTk−1Ap1 · · · pTk−1Apk−1


Now, if the columns of P are A-conjugate, then

pT0 Ap0 pT1 Ap0 · · · pTk−1Ap0
pT1 Ap0 pT1 Ap1 · · · pTk−1Ap1

...
...

pTk−1Ap0 pTk−1Ap1 · · · pTk−1Apk−1

 = < multiply out >


pT0 Ap0 0 · · · 0

0 pT1 Ap1 · · · 0
...

... . . . ...
0 0 · · · pTk−1Apk−1

 ,

and hence P TAP is diagonal.
If, on the other hand, P TAP is diagonal, then the columns of P are A-conjugate.

Homework 8.3.1.3 Answer. ALWAYS
Now prove it!

Solution. We employ a proof by contradiction. Suppose the columns of P are not linearly inde-
pendent. Then there exists y 6= 0 such that Py = 0. Let D = P TAP . From the last homework we
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know that D is diagonal and has positive diagonal elements. But then

0
= < Py = 0 >

(Py)TA(Py)
= < multiply out >

yTP TAPy
= < P TAP = D >

yTDy
> < D is SPD >

0,

which is a contradiction. Hence, the columns of P are linearly independent.

8.3.5 · Practical Conjugate Gradient Method algorithm
Homework 8.3.5.1 Hint. Use the fact that p(k) = r(k) + γkp

(k−1) and the fact that r(k) is
orthogonal to all previous search directions to show that p(k)T r(k) = r(k)T r(k).
Solution. We need to show that p(k)T r(k) = r(k)T r(k).

p(k)T r(k)

= < r(k) + γkp
(k−1) >

(r(k) + γkp
(k−1))T r(k)

= < distribute >

r(k)T r(k) + γkp
(k−1)T r(k)

= < p(k−1)T r(k) = 0 >
r(k)T r(k).

Homework 8.3.5.2 Hint. Recall that

r(k) = r(k−1) − αk−1Ap
(k−1). (E.0.8)

and rewrite (E.0.8) as
Ap(k−1) = (r(k−1) − r(k))/αk−1.

and recall that in the previous iteration

p(k−1) = r(k−1) − γk−1p
(k−2).

Solution.
r(k)T r(k) = r(k)T r(k−1) − αk−1r

(k)TApk−1 = −αk−1r
(k)TApk−1.

p(k−1)TAp(k−1)

=
(r(k−1) − γk−1p

(k−2))TAp(k−1)

=
r(k−1)TAp(k−1)

=
r(k−1)T (r(k−1) − r(k))/αk−1

=
r(k−1)T r(k−1)/αk−1.
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8.3.6 · Final touches for the Conjugate Gradient Method
8.3.6.2 · Preconditioning
Homework 8.3.6.1 Solution. To add preconditioning to

Ax = b

we pick a SPD preconditioner M = L̃L̃T and instead solve the equivalent problem

L̃−1AL̃−T︸ ︷︷ ︸
Ã

L̃Tx︸︷︷︸
x̃

= L̃−1b.︸ ︷︷ ︸
b̃

This changes the algorithm in Figure 8.3.5.2 (right) to

Given : A, b,M = L̃L̃T

x̃(0) := 0
Ã = L̃−1AL̃−T

r̃(0) := L̃−1b
k := 0
while r̃(k) 6= 0

if k = 0
p̃(k) = r̃(0)

else
γ̃k := (r̃(k)T r̃(k))/(r̃(k−1)T r̃(k−1))
p̃(k) := r̃(k) + γ̃kp̃

(k−1)

endif
α̃k := r̃(k)T r̃(k)

p̃(k)T Ãp̃(k)

x̃(k+1) := x̃(k) + α̃kp̃
(k)

r̃(k+1) := r̃(k) − α̃kÃp̃(k)

k := k + 1
endwhile

Now, much like we did in the constructive solution to Homework 8.2.5.1 we now morph this
into an algorithm that more directly computes x(k+1). We start by substituting

Ã = L̃−1AL̃−T , x̃(k) = L̃Tx(k), r̃(k) = L̃−1r(k), p̃(k) = L̃T p(k),
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which yields
Given : A, b,M = L̃L̃T

L̃Tx(0) := 0
L̃−1r(0) := L̃−1b
k := 0
while L̃−1r(k) 6= 0

if k = 0
L̃T p(k) = L̃−1r(0)

else
γ̃k := ((L̃−1r(k))T L̃−1r(k))/(L̃−1r(k−1))T L̃−1r(k−1))
L̃T p(k) := L̃−1r(k) + γ̃kL̃

T p(k−1)

endif
α̃k := (L̃−1r(k))T L̃−1r(k)

((L̃T p(k))T L̃−1AL̃−T L̃T p(k)

L̃Tx(k+1) := L̃Tx(k) + α̃kL̃
T p(k)

L̃−1r(k+1) := L̃−1r(k) − α̃kL̃−1AL̃−T L̃T p(k)

k := k + 1
endwhile

If we now simplify and manipulate various parts of this algorithm we get

Given : A, b,M = L̃L̃T

x(0) := 0
r(0) := b
k := 0
while r(k) 6= 0

if k = 0
p(k) = M−1r(0)

else
γ̃k := (r(k)TM−1r(k))/(r(k−1)TM−1r(k−1))
p(k) := M−1r(k) + γ̃kp

(k−1)

endif
α̃k := r(k)TM−1r(k)

p(k)TAp(k)

x(k+1) := x(k) + α̃kp
(k)

r(k+1) := r(k) − α̃kAp(k)

k := k + 1
endwhile
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Finally, we avoid the recomputing of M−1r(k) and Ap(k) by introducing z(k) and q(k):

Given : A, b,M = L̃L̃T

x(0) := 0
r(0) := b
k := 0
while r(k) 6= 0
z(k) := M−1r(k)

if k = 0
p(k) = z(0)

else
γ̃k := (r(k)T z(k))/(r(k−1)T z(k−1))
p(k) := z(k) + γ̃kp

(k−1)

endif
q(k) := Ap(k)

α̃k := r(k)T z(k)

p(k)T q(k)

x(k+1) := x(k) + α̃kp
(k)

r(k+1) := r(k) − α̃kq(k)

k := k + 1
endwhile

(Obviously, there are a few other things that can be done to avoid unnecessary recomputations of
r(k)T z(k).)

The Algebraic Eigenvalue Problem
9 · Eigenvalues and Eigenvectors
10 · Practical Solution of the Hermitian Eigenvalue Problem
11 · Computing the SVD
12 · Attaining High Performance
9 · Eigenvalues and Eigenvectors
9.1 · Opening Remarks
9.1.1 · Relating diagonalization to eigenvalues and eigenvectors
Homework 9.1.1.1 Solution.
A = [ 2 0

0 -0.5 ]

A = [ 2 1
0 -0.5 ]

A = [ 2 1
1 -0.5 ]

If you try a few different symmetric matrices, you will notice that the eigenvectors are always
mutually orthogonal.
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theta = pi/4;
A = [ cos( theta) -sin( theta )

sin( theta ) cos( theta ) ]

In the end, no vectors are displayed. This is because for real-valued vectors, there are no vectors
such that the rotated vector is in the same direction as the original vector. The eigenvalues and
eigenvectors of a real-valued rotation are complex-valued. Unless θ is an integer multiple of π.

A = [ 2 1
0 2 ]

We will see later that this is an example of a Jordan block. There is only one linearly independent
eigenvector associated with the eigenvalue 2. Notice that the two eigenvectors that are displayed
are not linearly independent (they point in opposite directions).

A = [ 2 -1
-1 0.5 ]

This matrix has linearly dependent columns (it has a nonzero vector in the null space and hence 0
is an eigenvalue).

A = [ 2 1.5
1 -0.5 ]

If you look carefully, you notice that the eigenvectors are not mutually orthogonal.

A = [ 2 -1
1 0.5 ]

Another example of a matrix with complex-valued eigenvalues and eigenvectors.

9.2 · Basics
9.2.1 · Singular matrices and the eigenvalue problem
Homework 9.2.1.1 Answer. TRUE

Now prove it!
Solution.

• (⇒): Assume 0 ∈ Λ(A). Let x be an eigenvector associated with eigenvalue 0. Then Ax =
0x = 0. Hence there exists a nonzero vector x such that Ax = 0. This implies A is singular.

• (⇐): Assume A is singular. Then there exists x 6= 0 such that Ax = 0. Hence Ax = 0x and
0 is an eigenvalue of A.

Homework 9.2.1.2 Answer. ALWAYS
Now prove it!

Solution. Let (λ, x) be an eigenpair of A. Then

Ax = λx
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and hence
xHAx = λxHx.

If we now conjugate both sides we find that

xHAx = λxHx

which is equivalent to
(xHAx)H = (λxHx)H

which is equivalent to
xHAx = λxHx

since A is Hermitian. We conclude that

λ = xHAx

xHx
= λ

(since xHx 6= 0).

Homework 9.2.1.3 Answer. ALWAYS
Now prove it!

Solution. Let (λ, x) be an eigenpair of A. Then

Ax = λx

and hence
xHAx = λxHx

and finally (since x 6= 0)

λ = xHAx

xHx
.

Since A is HPD, both xHAx and xHx are positive, which means λ is positive.

Homework 9.2.1.4 Answer. ALWAYS
Now prove it!

Solution. Since
Ax = λx and Ay = µy

we know that
yHAx = λyHx and xHAy = µxHy

and hence (remembering that the eigenvalues are real-valued)

λyHx = yHAx = xHAy = µxHy = µyHx.

We can rewrite this as
(λ− µ)yHx = 0.

Since λ 6= µ this implies that yHx = 0 and hence xHy = 0.

Homework 9.2.1.5 Solution. Proof by contradiction: Under the assumptions of the homework,
we will show that assuming that x and y are linearly dependent leads to a contradiction.
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If nonzero x and nonzero y are linearly dependent, then there exists γ 6= 0 such that y = γx.
Then

Ay = µy

implies that
A(γx) = µ(γx)

and hence
γλx = µγx.

Rewriting this we get that
(λ− µ)γx = 0.

Since λ 6= µ and γ 6= 0 this means that x = 0 which contradicts that x is an eigenvector.
We conclude that x and y are linearly independent.

Homework 9.2.1.6 Hint. Prove by induction.
Solution. Proof by induction on k.

• Base Case: k = 1. This is trivially.

• Assume the result holds for 1 ≤ k < m. Show it holds for k + 1.
The I.H. means that x0, . . . , xk−1 are linearly independent. We need to show that xk is not a
linear combination of x0, . . . , xk−1. We will do so via a proof by contradiction.
Assume xk is a linear combination of x0, . . . , xk−1 so that

xk = γ0x0 + · · ·+ γk−1xk−1

with at least one γj 6= 0. We know that Axk = λkxk and hence

A(γ0x0 + · · ·+ γk−1xk−1) = λk(γ0x0 + · · ·+ γk−1xk−1).

Since Axi = λixi, we conclude that

γ0λ0x0 + · · ·+ γk−1λk−1xk−1 = γ0λxk−1x0 + · · ·+ γk−1λkxk−1

or, equivalently,
γ0(λ0 − λk)x0 + · · ·+ γk−1(λk−1 − λk)xk−1 = 0.

Since at least one γi 6= 0 and λi 6= λk for 0 ≤ i < k, we conclude that x0, . . . , xk−1 are linearly
dependent, which is a contradiction.
Hence, x0, . . . , xk are linearly independent.

• By the Principle of Mathematical Induction, the result holds for 1 ≤ k ≤ m.

Homework 9.2.1.7 Answer. ALWAYS: All eigenvalues of these matrices are nonnegative.
ALWAYS: All eigenvalues of the first matrix are positive. (So are all the eigenvalues of the

second matrix, but proving that is a bit trickier.)
Now prove it!

Solution. For the first matrix, we can use the Gershgorin disk theorem to conclude that all
eigenvalues of the matrix lie in the set {x s.t. |x − 2| ≤ 2. We also notice that the matrix is
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symmetric, which means that its eigenvalues are real-valued. Hence the eigenvalues are nonnegative.
A similar argument can be used for the second matrix.

Now, in Homework 7.2.1.1 we showed that the first matrix is nonsingular. Hence, it cannot
have an eigenvalue equal to zero. We conclude that its eigenvalues are all positive.

It can be shown that the second matrix is also nonsingular, and hence has positive eigenvalues.
However, that is a bit nasty to prove...

9.2.2 · The characteristic polynomial
Homework 9.2.2.1 Solution. Recall that, for square matrices, B = A−1 if and only if AB = I.(

α0,0 α0,1
α1,0 α1,1

)
1

α0,0α1,1−α1,0α0,1

(
α1,1 −α0,1
−α1,0 α0,0

)
=

1
α0,0α1,1−α1,0α0,1

(
α0,0α1,1 − α0,1α1,0 −α0,0α0,1 + α0,1α0,0
α1,0α1,1 − α1,1α1,0 −α0,1α1,0 + α0,0α1,1

)
=(
1 0
0 1

)
.

9.2.3 · More properties of eigenvalues and vectors
Homework 9.2.3.1 Solution. A set S ⊂ Cm is a subspace if and only if for all α ∈ C and
x, y ∈ Cm two conditions hold:

• x ∈ S implies that αx ∈ S.

• x, y ∈ S implies that x+ y ∈ S.

• x ∈ Eλ(A) implies αx ∈ Eλ(A):
x ∈ Eλ(A) means that Ax = λx. If α ∈ C then αAx = αλx which, by commutivity and
associativity means that A(αx) = λ(αx). Hence (αx) ∈ Eλ(A).

• x, y ∈ Eλ(A) implies x+ y ∈ Eλ(A):

A(x+ y) = Ax+Ay = λx+ λy = λ(x+ y).

Homework 9.2.3.2 Solution. Let

D =


δ0 0 · · · 0
0 δ1 · · · 0
...

... . . . ...
0 0 · · · δm−1

 .
Then

λI −D =


λ− δ0 0 · · · 0

0 λ− δ1 · · · 0
...

... . . . ...
0 0 · · · λ− δm−1


is singular if and only if λ = δi for some i ∈ {0, . . . ,m− 1}. Hence Λ(D) = {δ0, δ1, . . . , δm−1}.
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Now,
Dej = the column of D indexed with j = δjej

and hence ej is an eigenvector associated with δj .

Homework 9.2.3.3 Solution. The eigenvalues can be found on the diagonal: {−2, 1, 2}.
• To find an eigenvector associated with −2, form

(−2)I −A =

 0 −3 7
0 −3 −1
0 0 −4


and look for a vector in the null space of this matrix. By examination, 1

0
0


is in the null space of this matrix and hence an eigenvector of A.

• To find an eigenvector associated with 1, form

(1)I −A =

 3 −3 7
0 0 −1
0 0 −1


and look for a vector in the null space of this matrix. Given where the zero appears on the
diagonal, we notice that a vector of the form χ0

1
0


is in the null space if χ0 is choosen appropriately. This means that

3χ0 − 3(1) = 0

and hence χ0 = 1 so that  1
1
0


in the null space of this matrix and hence an eigenvector of A.

• To find an eigenvector associated with 2, form

(2)I −A =

 4 −3 7
0 1 −1
0 0 0


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and look for a vector in the null space of this matrix. Given where the zero appears on the
diagonal, we notice that a vector of the form χ0

χ1
1


is in the null space if χ0 and χ1 are choosen appropriately. This means that

χ1 − 1(1) = 0

and hence χ1 = 1. Also,
4χ0 − 3(1) + 7(1) = 0

so that χ0 = −1,  −1
1
1


is in the null space of this matrix and hence an eigenvector of A.

Homework 9.2.3.4 Solution. Let

U =


υ0,0 υ0,1 · · · υ0,m−1
0 υ1,1 · · · υ1,m−1
...

... . . . ...
0 0 · · · υm−1,m−1

 .
Then

λI − U =


λ− υ0,0 −υ0,1 · · · −υ0,m−1

0 λ− υ1,1 · · · −υ1,m−1
...

... . . . ...
0 0 · · · λ− υm−1,m−1

 .
is singular if and only if λ = υi,i for some i ∈ {0, . . . ,m−1}. Hence Λ(U) = {υ0,0, υ1,1, . . . , υm−1,m−1}.

Let λ be an eigenvalue of U . Things get a little tricky if λ has multiplicity greater than one.
Partition

U =

 U00 u01 U02
0 υ11 uT12
0 0 U22


where υ11 = λ. We are looking for x 6= 0 such that (λI − U)x = 0 or, partitioning x, υ11I − U00 −u01 −U02

0 0 −uT12
0 0 υ11I − U22


 x0
χ1
x2

 =

 0
0
0

 .
If we choose x2 = 0 and χ1 = 1, then

(υ11I − U00)x0 − u01 = 0

and hence x0 must satisfy
(υ11I − U00)x0 = u01.
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If υ11I − U00 is nonsingular, then there is a unique solution to this equation, and (υ11I − U00)−1u01
1
0


is the desired eigenvector. HOWEVER, this means that the partitioning

U =

 U00 u01 U02
0 υ11 uT12
0 0 U22


must be such that υ11 is the FIRST diagonal element that equals λ.

9.2.4 · The Schur and Spectral Decompositions
Homework 9.2.4.1 Answer. (λ, Y −1x).

Now justify your answer.
Solution. Since Ax = λx we know that

Y −1AY Y −1x = λY −1x.

Hence (λ, Y −1x) is an eigenpair of B.

Homework 9.2.4.2 Solution.
• How are the elements of Λ related to the elements of U?

The diagonal elements of U equal the diagonal elements of Λ.

• How are the columns of X related to the eigenvectors of A?

A = QUQH = QXΛX−1QH = (QX)Λ(QX)−1.

Hence the columns of QX equal eigenvectors of A.

Homework 9.2.4.3 Solution.

A
=(
ATL ATR

0 ABR

)
=(
QTLUTLQ

H
TL ATR

0 QBRUBRQ
H
BR

)
=(
QTL 0

0 QBR

)
︸ ︷︷ ︸

Q

(
UTL QHTLATRQBR

0 UBR

)
︸ ︷︷ ︸

U

(
QTL 0

0 QBR

)H
︸ ︷︷ ︸

QH
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Homework 9.2.4.4 Solution. For i = 0, . . . , N − 1, let Ai.i = QiUiQ
H
i be the Schur decompo-

sition of Ai,i. Then

A
=
A0,0 A0,1 · · · A0,N−1

0 A1,1 · · · A1,N−1

0 0 . . . ...
0 0 · · · AN−1,N−1


=
Q0U0Q

H
0 A0,1 · · · A0,N−1

0 Q1U1Q
H
1 · · · A1,N−1

0 0 . . . ...
0 0 · · · QN−1UN−1Q

H
N−1


=
Q0 0 · · · 0
0 Q1 · · · 0

0 0 . . . ...
0 0 · · · QN−1



U0 QH0 A0,1Q1 · · · QH0 A0,N−1QN−1
0 U1 · · · QH1 A1,N−1QN−1

0 0 . . . ...
0 0 · · · UN−1



Q0 0 · · · 0
0 Q1 · · · 0

0 0 . . . ...
0 0 · · · QN−1


H

.

9.2.5 · Diagonalizing a matrix
Homework 9.2.5.1 Solution. The eigenpairs computed for Homework 9.2.3.3 were

(−2,

 1
0
0

), (1,

 1
1
0

), and (2,

 −1
1
1

).

Hence  1 1 −1
0 1 1
0 0 1


−1 −2 3 −7

0 1 1
0 0 2


 1 1 −1

0 1 1
0 0 1

 =

 −2 0 0
0 1 0
0 0 2

 .
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We can check this: −2 3 −7
0 1 1
0 0 2


 1 1 −1

0 1 1
0 0 1


︸ ︷︷ ︸ −2 1 −2

0 1 2
0 0 2



=

 1 1 −1
0 1 1
0 0 1


 −2 0 0

0 1 0
0 0 2

 .
︸ ︷︷ ︸ −2 1 −2

0 1 2
0 0 2


Homework 9.2.5.2 Answer. ALWAYS

Now prove it!
Solution. Let A = QUQH be the Schur decomposition of matrix A. Since U is upper triangular,
and has the same eigenvalues as A, it has distinct entries along its diagonal. Hence, by our earlier
observations, there exists a nonsingular matrix X such that X−1UX = D, a diagonal matrix. Now,

X−1QHAQX = X−1UX = D

and hence Y = QX is the nonsingular matrix that diagonalizes A.

9.2.6 · Jordan Canonical Form
Homework 9.2.6.1 Hint.

• How many linearly independent columns does λI − Jk(µ) have?

• What does this say about the dimension of the null space N (λI − Jk(µ))?

• You should be able to find eigenvectors by examination.

Solution. Since the matrix is upper triangular and all entries on its diagonal equal µ. Now,

µI − Jk(µ) =



0 −1 0 · · · 0 0

0 0 −1 . . . 0 0
... . . . . . . . . . ...

...

0 0 0 . . . 0 −1
0 0 0 · · · 0 0


has k − 1 linearly independent columns and hence its nullspace is one dimensional: dim(N (µI −
Jk(µ))) = 1. So, we are looking for one vector in the basis of N (µI − Jk(µ)). By examination,
Jk(µ)e0 = µe0 and hence e0 is an eigenvector associated with the only eigenvalue µ.

Homework 9.2.6.2 Solution. Let A ∈ Cm×m have the form

A =
(
A00 0
0 A11

)

where A00 and A11 are square. Show that

• If (λ, x) is an eigenpair of A00 then (λ,
(
x
0

)
) is an eigenpair of A.
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(
A00 0
0 A11

)(
x
0

)
=
(
A00x

0

)
=
(
λx
0

)
= λ

(
x
0

)
.

• If (µ, y) is an eigenpair of A11 then (µ,
(

0
y

)
) is an eigenpair of A.

(
A00 0
0 A11

)(
0
y

)
=
(

0
A11y

)
=
(

0
µy

)
= µ

(
0
y

)
.

•
(
A00 0
0 A11

)(
x

y

)
= λ

(
x

y

)
implies that

(
A00x

A11y

)
=
(
λx

λy

)
,

and hence A00x = λx and A11y = λy.

• Λ(A) = Λ(A00) ∪ Λ(A11).
This follows from the first three parts of this problem.

9.3 · The Power Method and related approaches
9.3.1 · The Power Method
9.3.1.4 · The Rayleigh quotient
Homework 9.3.1.1 Answer. ALWAYS

Now prove it!
Solution. Let x be an eigenvector of A and λ the associated eigenvalue. Then Ax = λx. Multi-
plying on the left by xH yields xHAx = λxHx which, since x 6= 0 means that λ = xHAx/(xHx).

9.3.2 · The Power Method: Convergence
Homework 9.3.2.1 Solution. We need to show that

• If y 6= 0 then ‖y‖X−1 > 0:
Let y 6= 0 and z = X−1y. Then z 6= 0 since X is nonsingular. Hence

‖y‖X−1 = ‖X−1y‖ = ‖z‖ > 0.

• If α ∈ C and y ∈ Cm then ‖αy‖X−1 = |α|‖y‖X−1 :

‖αy‖X−1 = ‖X−1(αy)‖ = ‖αX−1y‖ = |α|‖X−1y‖ = |α|‖y‖X−1 .

• If x, y ∈ Cm then ‖x+ y‖X−1 ≤ ‖x‖X−1 + ‖y‖X−1 :
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‖x+ y‖X−1

=
‖X−1(x+ y)‖

=
‖X−1x+X−1y‖
≤

‖X−1x‖+ ‖X−1y‖
=

‖x‖X−1 + ‖y‖X−1 .

9.3.3 · The Inverse Power Method
Homework 9.3.3.1 Answer. (1/λ, x).

Now justify your answer.
Solution. Since Ax = λx and A is nonsingular, we know that A−1 exists and λ 6= 0. Hence

1
λ
x = A−1x

which can be rewritten as
A−1x = 1

λ
x.

We conclude that (1/λ, x) is an eigenpair of A−1.

9.3.4 · The Rayleigh Quotient Iteration
Homework 9.3.4.1 Answer. (λ− ρ, x).

Now justify your answer.
Solution. Let Ax = λx. Then

(A− ρI)x = Ax− ρx = λx− ρx = (λ− ρ)x.

We conclude that (λ− ρ, x) is an eigenpair of A− ρI.

Homework 9.3.4.2 Solution.

A− ρI = XΛX−1 − ρXX−1 = X(Λ− ρI)X−1.

10 · Practical Solution of the Hermitian Eigenvalue Problem
10.1 · Opening Remarks
10.1.1 · Subspace iteration with a Hermitian matrix
Homework 10.1.1.1 Solution. Watch the video regarding this problem on YouTube: https:

//youtu.be/8Bgf1tJeMmg. (embedding a video in a solution seems to cause PreTeXt trouble...)

Homework 10.1.1.2 Solution.
• Assignments/Week10/answers/PowerMethodLambda1.m

Watch the video regarding this problem on YouTube: https://youtu.be/48HnBJmQhX8. (embed-
ding a video in a solution seems to cause PreTeXt trouble...)

https://youtu.be/8Bgf1tJeMmg
https://youtu.be/8Bgf1tJeMmg
Assignments/Week10/answers/PowerMethodLambda1.m
https://youtu.be/48HnBJmQhX8
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Homework 10.1.1.3 Solution.
• Assignments/Week10/answers/PowerMethodLambda1Reorth.m

Watch the video regarding this problem on YouTube: https://youtu.be/YmZc2oq02kA. (embed-
ding a video in a solution seems to cause PreTeXt trouble...)

Homework 10.1.1.4 Solution.
• Assignments/Week10/answers/SubspaceIteration.m

Watch the video regarding this problem on YouTube: https://youtu.be/Er7jGYs0HbE. (embed-
ding a video in a solution seems to cause PreTeXt trouble...)

10.2 · From Power Method to a simple QR algorithm
10.2.1 · A simple QR algorithm
Homework 10.2.1.1 Solution. The algorithm computes the QR factorization of A(k)

A(k) = Q(k+1)R(k+1)

after which
A(k+1) := R(k+1)Q(k+1)

Hence
A(k+1) = R(k+1)Q(k+1) = Q(k+1) HA(k)Q(k+1).

Homework 10.2.1.2 Hint. The QR factorization is unique, provided the diagonal elements of
R are taken to be positive.xs
Solution. We will employ a proof by induction.

• Base case: k = 0
This is trivially true:

◦ Â(0) = A = A(0).
◦ R̂(0) = I = R(0).
◦ V̂ (0) = I = V (0).

• Inductive step: Assume that Â(k) = A(k), R̂(k) = R(k), and V̂ (k) = V (k). Show that Â(k+1) =
A(k+1), R̂(k+1) = R(k+1), and V̂ (k+1) = V (k+1).
From the algorithm on the left, we know that

AV̂ (k) = V̂ (k+1)R̂(k+1).

Assignments/Week10/answers/PowerMethodLambda1Reorth.m
https://youtu.be/YmZc2oq02kA
Assignments/Week10/answers/SubspaceIteration.m
https://youtu.be/Er7jGYs0HbE
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and
A(k)

= < (I.H.) >
Â(k)

= < algorithm on left >

V̂ (k)HAV̂ (k)

= < algorithm on left >

V̂ (k)H V̂ (k+1)R̂(k+1)

= < I.H. >
V (k)H V̂ (k+1)R̂(k+1).

(E.0.9)

But from the algorithm on the right, we know that

A(k) = Q(k+1)R(k+1). (E.0.10)

Both (E.0.9) and (E.0.10) are QR factorizations of A(k) and hence, by the uniqueness of the
QR factorization,

R̂(k+1) = R(k+1)

and
Q(k+1) = V (k)H V̂ (k+1)

or, equivalently and from the algorithm on the right,

V (k)Q(k+1)︸ ︷︷ ︸
V (k+1)

= V̂ (k+1).

This shows that

◦ R̂(k+1) = R(k+1) and
◦ V̂ (k+1) = V (k+1).

Also,
Â(k+1)

= < algorithm on left >

V̂ (k+1)HAV̂ (k+1)

= < V̂ (k+1) = V (k+1) >

V (k+1)HAV (k+1)

= < algorithm on right >

Q(k+1)HV (k)HAV (k)Q(k+1)

= < I.H. >
Q(k+1)H V̂ (k)HAV̂ (k)Q(k+1)

= < algorithm on left >

Q(k+1)HÂ(k)Q(k+1)

= < I.H. >
Q(k+1)HA(k)Q(k+1)

= < last homework >
A(k+1).

• By the Principle of Mathematical Induction, the result holds.
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Homework 10.2.1.3 Solution. We will employ a proof by induction.
• Base case: k = 0

A0︸︷︷︸
I

=
V (0)︸︷︷︸
I

A0 =
R(0)︸ ︷︷ ︸
I

.

• Inductive step: Assume that V (k) = Q(0) · · ·Q(k) and Ak = V (k)R(k) · · ·R(0). Show that
V (k+1) = Q(0) · · ·Q(k+1) and Ak+1 = V (k+1)R(k+1) · · ·R(0).

V (k+1) = V (k)Q(k+1) = Q(0) · · ·Q(k)Q(k+1).

by the inductive hypothesis.
Also,

Ak+1

= < definition >
AAk

= < inductive hypothesis >

AV (k)R(k) · · ·R(0)

= < inductive hypothesis >

AV̂ (k)R(k) · · ·R(0)

= < left algorithm >

V̂ (k+1)R̂(k+1)R(k) · · ·R(0)

= < V (k+1) = V̂ (k+1);R(k+1) = R̂(k+1) >

V (k+1)R(k+1)R(k) · · ·R(0).

• By the Principle of Mathematical Induction, the result holds for all k.

Homework 10.2.1.4 Solution. Discuss what you observe online with others!

Homework 10.2.1.5 Solution.
• Assignments/Week10/answers/SimpleQRAlg.m

Discuss what you observe online with others!

10.2.2 · A simple shifted QR algorithm
Homework 10.2.2.1 Solution.

• Assignments/Week10/answers/SimpleShiftedQRAlgConstantShift.m

Discuss what you observe online with others!

Homework 10.2.2.2 Solution. The algorithm computes the QR factorization of A(k) − µkI

A(k) − µkI = Q(k+1)R(k+1)

after which
A(k+1) := R(k+1)Q(k+1) + µkI

Assignments/Week10/answers/SimpleQRAlg.m
Assignments/Week10/answers/SimpleShiftedQRAlgConstantShift.m
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Hence
A(k+1)

=
R(k+1)Q(k+1) + µkI

=
Q(k+1) H(A(k) − µkI)Q(k+1) + µkI

=
Q(k+1) HA(k)Q(k+1) − µkQ(k+1) HQ(k+1) + µkI

=
Q(k+1) HA(k)Q(k+1).

Homework 10.2.2.3 Solution. In this problem, we need to assume that Q(0) = I. Also, it helps
to recognize that V (k) = Q(0) · · ·Q(k), which can be shown via a simple inductive proof.

This requires a proof by induction.

• Base case: k = 1.

A− µ0I

= < A(0) = A >

A(0) − µ0I
= < algorithm >

Q(1)R(1)

= < Q(0) = R(0) = I

Q(0)Q(1)R(1)R(0)

• Inductive Step: Assume

(A− µk−1I)(A− µk−2I) · · · (A− µ1I)(A− µ0I)
= Q(0)Q(1) · · ·Q(k)︸ ︷︷ ︸

V (k)

R(k) · · ·R(1)R(0).︸ ︷︷ ︸
upper triangular

Show that
(A− µkI)(A− µk−1I) · · · (A− µ1I)(A− µ0I)

= Q(0)Q(1) · · ·Q(k+1)︸ ︷︷ ︸
V (k+1)

R(k+1) · · ·R(1)R(0).︸ ︷︷ ︸
upper triangular
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Notice that
(A− µkI)(A− µk−1I) · · · (A− µ0I)

= < last homework >

(V (k+1)A(k+1)V (k+1)H − µkI)(A− µk−1I) · · · (A− µ0I)
= < I = V (k+1)V (k+1)H >

V (k+1)(A(k+1) − µkI)V (k+1)H(A− µk−1I) · · · (A− µ0I)
= < I.H. >

V (k+1)(A(k+1) − µkI)V (k+1)HV (k)R(k) · · ·R(0)

= < V (k+1)H = Q(k+1)HV (k)H >

V (k+1)(A(k+1) − µkI)Q(k+1)HR(k) · · ·R(0)

= < algorithm >

V (k+1)R(k+1)Q(k+1)Q(k+1)HR(k) · · ·R(0)

= < Q(k+1)Q(k+1)H = I >

V (k+1)R(k+1)R(k) · · ·R(0)

• By the Principle of Mathematical Induction, the result holds.

Homework 10.2.2.4 Solution.
• Assignments/Week10/answers/SimpleShiftedQRAlg.m

Discuss what you observe online with others!

10.2.3 · Deflating the problem
Homework 10.2.3.1 Solution.(

V

(
V00 0
0 V11

))H
A

(
V

(
V00 0
0 V11

))
= < (XY )H = Y HXH >(
V00 0
0 V11

)H
V HAV

(
V00 0
0 V11

)
= < (V HAV = diag(A00, A11) >(
V00 0
0 V11

)H (
A00 0
0 A11

)(
V00 0
0 V11

)
= < partitioned matrix-matrix multiplication >(
V H

00A00V00 0
0 V H

11A11V11

)
= < V H

00A00V00 = Λ0;V H
11A11V11 = Λ1 >(

Λ0 0
0 Λ1

)
.

Homework 10.2.3.2 Solution.
• Assignments/Week10/answers/SimpleShiftedQRAlgWithDeflation.m

Discuss what you observe online with others!

10.3 · A Practical Hermitian QR Algorithm
10.3.1 · Reduction to tridiagonal form

Assignments/Week10/answers/SimpleShiftedQRAlg.m
Assignments/Week10/answers/SimpleShiftedQRAlgWithDeflation.m
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Homework 10.3.1.1 Solution. During the kth iteration, for k = 0, 1, . . . ,m − 1 the costs for
the various steps are as follows:

• Compute y21 = A22u21. (Hermitian matrix-vector multiplication). Cost: approximately
2(m− 1)2 flops.

• Compute B22 = A22 − 1
τ u21y

H
21. (Rank-1 update yielding a nonHermitian intermediate ma-

trix). Cost: approximately 2(m−1)2 flops since the intermediate matrix B22 is not Hermitian.

• Compute x21 = B22u21. (Matrix-vector multiplication). Cost: approximately 2(m−1)2 flops.

• Compute A22 = B22 − 1
τ x21y

H
21. Only the lower triangular part of A22 needs to be computed.

Cost: approximately (m− 1)2 flops.

Thus, the total cost per iteration is, approximately

7(m− 1)2 flops.

The total cost is then, approximately,

m−1∑
k=0

7(m− k − 1)2 flops = 7
m−1∑
j=0

j2 flops ≈ 7
∫ m

0
x2dx = 7

3m
3 flops.

This almost doubles the cost of the reduction to tridiagonal form.
An additional disadvantage is that a nonsquare intermediate matrix must be stored.

Homework 10.3.1.3 Hint. If A holds Hermitian matrix A, storing only the lower triangular
part, then Ax is implemented in Matlab as
( tril( A ) + tril( A, -1)' ) * x;

Updating only the lower triangular part of array A with A := A−B is accomplished by

A = A - tril( B );

Solution.

• Assignments/Week10/answers/TriRed.m.

10.3.2 · Givens’ rotations
Homework 10.3.2.1 Solution. Take γ = χ1/‖x‖2 and σ = χ2/‖x‖2, then γ2 + σ2 = (χ2

1 +
χ2

2)/‖x‖22 = 1 and(
γ −σ
σ γ

)T (
χ1
χ2

)
=
(

γ σ
−σ γ

)(
χ1
χ2

)
=
(

(χ2
1 + χ2

2)/‖x‖2
(χ1χ2 − χ1χ2)/‖x‖2

)
=
(
‖x‖2

0

)
.

10.3.4 · The implicit Q theorem
Homework 10.3.4.1 Solution. Assume that q1, . . . , qk and the column indexed with k − 1 of
B have been shown to be uniquely determined under the stated assumptions. We now show that
then qk+1 and the column indexed by k of B are uniquely determined. (This is the inductive step
in the proof.) Then

Aqk = β0,kq0 + β1,kq1 + · · ·+ βk,kqk + βk+1,kqk+1.

Assignments/Week10/answers/TriRed.m
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We can determine β0,k through βk,k by observing that

qHj Aqk = βj,k

for j = 0, . . . , k. Then

βk+1,kqk+1 = Aqk − (β0,kq0 + β1,kq1 + · · ·+ βk,kqk) = q̃k+1.

Since it is assumed that βk+1,k > 0, it can be determined as

βk+1,k = ‖q̃k+1‖2

and then
qk+1 = q̃k+1/βk+1,k.

This way, the columns of Q and B can be determined, one-by-one.

10.3.5 · The Francis implicit QR Step
Homework 10.3.5.1 Solution. Since the subscripts will drive us crazy, let’s relabel, add one of
the entries above the diagonal, and drop the subscripts on γ and σ:

× × × 0
ε̂ κ̂ λ̂ 0
0 λ̂ µ̂ ×
0 χ̂ ψ̂ ×

 =


1 0 0 0
0 γ σ 0
0 −σ γ 0
0 0 0 1



× × × 0
ε κ λ 0
φ λ µ ×
0 0 ψ ×




1 0 0 0
0 γ −σ 0
0 σ γ 0
0 0 0 1


With this, the way I would compute the desired results is via the steps

• ε̂ := γε+ σφ

•
(
κ̂ λ̂

λ̂ µ̂

)
:=
[(

γ σ
−σ γ

)(
κ λ
λ µ

)](
γ −σ
σ γ

)

• χ̂ := σψ

ψ̂ := γψ

Translating this to the update of the actual entries is straight forward.

11 · Computing the SVD
11.1 · Opening Remarks
11.1.1 · Linking the Singular Value Decomposition to the Spectral
Decomposition
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Homework 11.1.1.1 Solution.

AHA
= < A = UΣV H >

(UΣV H)H(UΣV H)
= < (BC)H = CHBH ;UHU = I >

V ΣTΣV H

=

V

(
Σ2
TL 0r×(n−r)

0(n−r)×r 0(n−r)×(n−r)

)
V H .

Homework 11.1.1.2 Solution.

AAH

=
(UΣV H)(UΣV H)H

=
UΣΣTUH

=

U

(
Σ2
TL 0r×(m−r)

0(m−r)×r 0(m−r)×(m−r)

)
UH .

11.2 · Practical Computation of the Singular Value Decomposition
11.2.1 · Computing the SVD from the Spectral Decomposition
Homework 11.2.1.1 Solution. Since A is nonsingular, so is AHA and hence D has positive real
values on its diagonal. If we take V = Q and Σ = D1/2 then

A = UΣV H = UD1/2QH .

This suggests that we choose
U = AV Σ−1 = AQD−1/2.

We can easily verify that U is unitary:

UHU
=

(AQD−1/2)H(AQD−1/2)
=

D−1/2QHAHAQD−1/2

=
D−1/2DD−1/2

=
I.

The final detail is that the Spectral Decomposition does not require the diagonal elements of D to
be ordered from largest to smallest. This can be easily fixed by permuting the columns of Q and,
correspondingly, the diagonal elements of D.
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Homework 11.2.1.2 Solution. We notice that if A has full column rank, then its Reduced
Singular Value Decomposition is given by A = ULΣV H , where UL ∈ Cm×n, Σ ∈ Rn×n, and
V ∈ Cn×n. Importantly, AHA is nonsingular, and D has positive real values on its diagonal. If we
take V = Q and Σ = D1/2 then

A = ULΣV H = ULD
1/2QH .

This suggests that we choose
UL = AV Σ−1 = AQD−1/2,

where, clearly, Σ = D1/2 is nonsingular. We can easily verify that UL has orthonormal columns:

UHL UL
=

(AQD−1/2)H(AQD−1/2)
=

D−1/2QHAHAQD−1/2

=
D−1/2DD−1/2

=
I.

As before, the final detail is that the Spectral Decomposition does not require the diagonal elements
of D to be ordered from largest to smallest. This can be easily fixed by permuting the columns of
Q and, correspondingly, the diagonal elements of D.

Homework 11.2.1.3 Solution. The Reduced SVD of A is given by A = ULΣTLV
H
L , where ΣTL

is r × r is diagonal with positive real values along its diagonal, ordered from largest to smallest. If
we take VL = QL and ΣTL = D

1/2
TL then

A = ULΣTLV
H
L = ULD

1/2QHL .

This suggests that we choose
UL = AVLΣ−1

TL = AQLD
−1/2
TL .
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We can easily verify that UL has orthonormal columns:

UHL UL
=

(AQLD−1/2
TL )H(AQLD−1/2

TL )
=

D
−1/2
TL QHLA

HAQLD
−1/2
TL

=

D
−1/2
TL QHL

(
QL QR

)( DTL 0r×(n−r)
0(n−r)×r 0(n−r)×(n−r)

)(
QL QR

)H
QLD

−1/2
TL

=

D
−1/2
TL

(
I 0

)( DTL 0r×(n−r)
0(n−r)×r 0(n−r)×(n−r)

)(
I 0

)H
D
−1/2
TL

=
D
−1/2
TL DTLD

−1/2
TL

=
I.

Homework 11.2.1.4 Hint. Start by computing the Spectral Decomposition of ATA.
Solution. The strategy is to observe that if A = UΣV T , then ATA = V Σ2V T . Thus, if we
compute the Spectral decomposition of ATA, we have determined V and Σ. From these, we can
then compute U .

Note that

B = ATA =
( √

2 1
0
√

2

)T ( √
2 1

0
√

2

)
=
(

2
√

2√
2 3

)
.

If we now form the characteristic polynomial of B we find that

det(λI −B) = det(
(
λ− 2 −

√
2

−
√

2 λ− 3

)
) = (λ− 2)(λ− 3)− 2

= λ2 − 5λ+ 4 = (λ− 4)(λ− 1).

Thus, the eigenvalues of B equal 4 and 1.
Now, let’s compute eigenvectors associated with these eigenvalues:

• λ = 4:

(
λ− 2 −

√
2

−
√

2 λ− 3

)
=
(

4− 2 −
√

2
−
√

2 4− 3

)
=
(

2 −
√

2
−
√

2 1

)
.

We want a vector in the null space of this matrix:(
2 −

√
2

−
√

2 1

)(
χ0
χ1

)
=
(

0
0

)
.

By examination,

ṽ0 =
(

1√
2

)



APPENDIX E. ANSWERS AND SOLUTIONS TO HOMEWORKS 613

is an eigenvector. However, we would like it to have length one:

v0 = ṽ0/‖ṽ0‖2 = ṽ0/
√

3 = 1√
3

(
1√
2

)
=
( √

3/3√
6/3

)
.

• λ = 1:

(
λ− 2 −

√
2

−
√

2 λ− 3

)
=
(

1− 2 −
√

2
−
√

2 1− 3

)
=
(
−1 −

√
2

−
√

2 −2

)
.

We want a vector in the null space of this matrix:(
−1 −

√
2

−
√

2 −2

)(
χ0
χ1

)
=
(

0
0

)
.

By examination,

ṽ1 =
(
−
√

2
1

)
is an eigenvector. However, we would like it to have length one:

v1 = ṽ1/‖ṽ1‖2 = ṽ0/
√

3 = 1√
3

(
−
√

2
1

)
=
(
−
√

6/3√
3/3

)
.

We conclude that V =
(
v0 v1

)
and

ATA = V Σ2V T =
( √

3/3 −
√

6/3√
6/3

√
3/3

)(
2 0
0 1

)2( √
3/3 −

√
6/3√

6/3
√

3/3

)T

is the Spectral Decomposition of A. (Recall that the eigenvectors corresponding to distinct eigen-
values of a symmetric matrix are orthogonal and we have chosen the eigenvectors to have length
one. Hence, V is a unitary matrix.) We thus now know V and Σ.

Since A = UΣV T we know that

U = AV Σ−1 =
( √

2 1
0
√

2

)( √
3/3 −

√
6/3√

6/3
√

3/3

)(
1/2 0
0 1

)

=
(

2
√

6/3 −
√

3/3
2
√

3/3
√

6/3

)(
1/2 0
0 1

)

=
( √

6/3 −
√

3/3√
3/3

√
6/3

)

so that ( √
2 1

0
√

2

)
︸ ︷︷ ︸

A

=
( √

6/3 −
√

3/3√
3/3

√
6/3

)
︸ ︷︷ ︸

U

(
2 0
0 1

)
︸ ︷︷ ︸

Σ

( √
3/3 −

√
6/3√

6/3
√

3/3

)T
.︸ ︷︷ ︸

V T
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11.2.2 · A strategy for computing the SVD
Homework 11.2.2.1 Solution.

A
=

QR
=

QÛΣRV̂
H

=
(QÛ)︸ ︷︷ ︸
U

Σ̂︸︷︷︸
Σ

V̂ H .︸︷︷︸
V H ,

which tells us the Reduced SVD A = ULΣTLV
T
L where UL = QÛ , ΣTL = Σ̂, and VL = V̂ .

11.2.3 · Reduction to bidiagonal form
Homework 11.2.3.1 Solution.

BTB
=
β0,0 β0,1 0 · · ·
0 β1,1 β1,2 · · ·
0 0 β2,2 · · ·
... . . . . . . . . .


T 

β0,0 β0,1 0 · · ·
0 β1,1 β1,2 · · ·
0 0 β2,2 · · ·
... . . . . . . . . .

 =


β0,0 0 0 · · ·
β0,1 β1,1 0 · · ·
0 β1,2 β2,2 · · ·
... . . . . . . . . .



β0,0 β0,1 0 · · ·
0 β1,1 β1,2 · · ·
0 0 β2,2 · · ·
... . . . . . . . . .


=
β2

0,0 β0,1β0,0 0 · · ·
β0,1β0,0 β2

0,1 + β2
1,1 β1,2β1,1 · · ·

0 β1,2β1,1 β2
1,2 + β2

2,2 · · ·
... . . . . . . . . .


11.3 · Jacobi’s Method
11.3.1 · Jacobi rotation
Ponder This 11.3.1.1 Hint. For this exercise, you need to remember a few things:

• How is a linear transformation, L, translated into the matrix A that represents it, Ax = L(x)?

• What do we know about the orthogonality of eigenvectors of a symmetric matrix?

• If A is not already diagonal, how can the eigenvectors be chosen so that they have unit length,
first one lies in Quadrant I of the plane, and the other one lies in Quadrant II?

• Draw a picture and deduce what the angle θ must be.

Homework 11.3.1.2 Solution.
>> A = [
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-1 2
2 3

]

A =

-1 2
2 3

>> [ Q, Lambda ] = eig( A )

Q =

-0.9239 0.3827
0.3827 0.9239

Lambda =

-1.8284 0
0 3.8284

We notice that the columns of Q need to be swapped for it to become a Jacobi rotation:

J =
(

0.9239 0.3827
−0.3827 0.9239

)
=
(

0.3827 −0.9239
0.9239 0.3827

)(
0 −1
1 0

)
= Q

(
0 −1
1 0

)
.

>> A = [
2 -1

-1 -2
]

A =

2 -1
-1 -2

>> [ Q, Lambda ] = eig( A )

Q =

-0.2298 -0.9732
-0.9732 0.2298

Lambda =
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-2.2361 0
0 2.2361

We notice that the columns of Q need to be swapped for it to become a Jacobi rotation. If we
follow our "recipe", we also need to negate each column:

J =
(

0.9732 −0.2298
0.2298 0.9732

)
.

These solutions are not unique. Another way of creating a Jacobi rotation is to, for example,
scale the first column so that the diagonal elements have the same sign. Indeed, perhaps that is
the easier thing to do:

Q =
(
−0.9239 0.3827

0.3827 0.9239

)
−→ J =

(
0.9239 0.3827
−0.3827 0.9239

)
.

11.3.2 · Jacobi’s method for computing the Spectral Decomposi-
tion
Homework 11.3.2.1 Solution. Hopefully you noticed that the matrix converges to a diagonal
matrix, with the eigenvalues on its diagonal.

Homework 11.3.2.2 Solution. We notice that

‖off(A)‖2F =
‖off(A00)‖2F +‖a10‖2F +‖AT20‖2F +‖a30‖2F +‖AT40‖2F

+‖aT10‖2F +‖aT21‖2F +α2
31 +‖aT41‖2F

+‖A20‖2F +‖a21‖2F +‖off(A22)‖2F +‖a32‖2F ‖AT42‖2F
+‖aT30‖2F +α2

31 +‖aT32‖2F +‖aT43‖2F
+‖A40‖2F +‖a41‖2F +‖A42‖2F +‖a43‖2F +‖off(A44)‖2F .

and
‖off(Â)‖2F =
‖off(A00)‖2F +‖â10‖2F +‖AT20‖2F +‖â30‖2F +‖AT40‖2F

+‖âT10‖2F +‖âT21‖2F + 0 +‖âT41‖2F
+‖A20‖2F +‖â21‖2F +‖off(A22)‖2F +‖â32‖2F ‖AT42‖2F
+‖âT30‖2F + 0 +‖âT32‖2F +‖âT43‖2F
+‖A40‖2F +‖â41‖2F +‖A42‖2F +‖â43‖2F +‖off(A44)‖2F .

All submatrices in black show up for ‖off(A)‖2F and ‖off(Â)‖2F . The parts of rows and columns that
show up in red and blue is what changes. We argue that the sum of the terms in red are equal for
both.

Since a Jacobi rotation is unitary, it preserves the Frobenius norm of the matrix to which it
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applied. Thus, looking at the rows that are modified by applying JT from the left, we find that

‖aT10‖2F +‖aT21‖2F +‖aT41‖2F
+‖aT30‖2F +‖aT32‖2F +‖aT43‖2F

=∥∥∥∥∥
(
aT10 aT21 aT41
aT30 aT32 aT43

)∥∥∥∥∥
2

F

=∥∥∥∥∥
(

γ11 σ31
−σ31 γ33

)(
aT10 aT21 aT41
aT30 aT32 aT43

)∥∥∥∥∥
2

F

=∥∥∥∥∥
(
âT10 âT21 âT41
âT30 âT32 âT43

)∥∥∥∥∥
2

F

=

‖âT10‖2F +‖âT21‖2F +‖âT41‖2F
+‖âT30‖2F +‖âT32‖2F +‖âT43‖2F .

Similarly, looking at the columns that are modified by applying JT from the right, we find that

‖a10‖2F +‖a30‖2F

+‖a21‖2F +‖a32‖2F

+‖a41‖2F +‖a43‖2F

=

∥∥∥∥∥∥∥∥∥∥∥


a10 a30

a21 a32

a41 a43



∥∥∥∥∥∥∥∥∥∥∥

2

F

=

∥∥∥∥∥∥∥∥∥∥∥


a10 a30

a21 a32

a41 a43


(
γ11 −σ31
σ31 γ33

)∥∥∥∥∥∥∥∥∥∥∥

2

F

=

∥∥∥∥∥∥∥∥∥∥∥

â10 â30

â21 â32

â41 â43

∥∥∥∥∥∥∥∥∥∥∥

2

F

=

‖â10‖2F +‖â30‖2F

+‖â21‖2F +‖â32‖2F

+‖â41‖2F +‖â43‖2F .

We conclude that
off(Â) = off(A)− 2α2

31.

12 · Attaining High Performance
12.1 · Opening Remarks
12.1.1 · Simple Implementation of matrix-matrix multiplication
Homework 12.1.1.2 Answer.

3! = 6.

Solution.

• There are three choices for the outer-most loop: i, j, or p.

• Once a choice is made for the outer-most loop, there are two choices left for the second loop.
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• Once that choice is made, there is only one choice left for the inner-most loop.

Thus, there are 3! = 3× 2× 1 = 6 loop orderings.

Homework 12.1.1.3 Solution.
• Assignments/Week12/answers/Gemm_IPJ.c

• Assignments/Week12/answers/Gemm_JIP.c

• Assignments/Week12/answers/Gemm_JPI.c

• Assignments/Week12/answers/Gemm_PIJ.c

• Assignments/Week12/answers/Gemm_PJI.c

Homework 12.1.1.4 Solution. On Robert’s laptop:

Left: Plotting only simple implementations. Right: Adding the performance of the reference
implementation provided by BLIS.

Note: the performance in the graph on the left may not exactly match that in the graph earlier
in this unit. My laptop does not always attain the same performance. When a processor gets hot,
it "clocks down." This means the attainable performance goes down. A laptop is not easy to cool,
so one would expect more fluctuation than when using, for example, a desktop or a server.

Here is a video from our course "LAFF-On Programming for High Performance", which explains
what you observe. (It refers to "Week 1" or that course. It is part of the launch for that course.)

YouTube: https://www.youtube.com/watch?v=eZaq451nuaE

12.2 · Linear Algebra Building Blocks
12.2.2 · Opportunities for optimization

Assignments/Week12/answers/Gemm_IPJ.c
Assignments/Week12/answers/Gemm_JIP.c
Assignments/Week12/answers/Gemm_JPI.c
Assignments/Week12/answers/Gemm_PIJ.c
Assignments/Week12/answers/Gemm_PJI.c
http://www.ulaff.net
https://www.youtube.com/watch?v=eZaq451nuaE
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Homework 12.2.2.1 Solution.
• How many floating point operations are required to compute this operation?

The axpy operation requires m multiplies and m additions, for a total of 2m flops.

• If the scalar α and the vectors x and y are initially stored in main memory and (if neces-
sary) are written back to main memory, how many reads and writes (memory operations) are
required? (Give a reasonably tight lower bound.)

◦ The scalar α is moved into a register, and hence only needs to be read once. It does not
need to be written back to memory.
◦ The m elements of x are read, and the m elements of y must be read and written.

Hence the number of memops is 3m+ 1 ≈ 3m.

• What is the ratio of flops to memops?

2m flops
3m+ 1 memops ≈

2
3

flops
memops .

We conclude that the axpy operation also does not exhibit an opportunity for the reuse of most
data.
Homework 12.2.2.2 Solution.

• How many floating point operations are required to compute this operation?
y := Ax+ y requires m2 multiplies and m2 additions, for a total of 2m2 flops.

• If the matrix and vectors are initially stored in main memory and are written back to main
memory, how many reads and writes (memops) are required? (Give a reasonably tight lower
bound.)
To come up with a reasonably tight lower bound, we observe that every element of A must
be read (but not written). Thus, a lower bound is m2 memops. The reading and writing of
x and y contribute a lower order term, which we tend to ignore.

• What is the ratio of flops to memops?

2m2 flops
m2 memops ≈ 2 flops

memops .

While this ratio is better than either the dot product’s or the axpy operation’s, it still does not
look good.

Homework 12.2.2.3 Solution.
• How many floating point operations are required to compute this operation?
A := xyT +A requires m2 multiplies and m2 additions, for a total of 2m2 flops. (One multiply
and one add per element in A.)

• If the matrix and vectors are initially stored in main memory and are written back to main
memory, how many reads and writes (memops) are required? (Give a reasonably tight lower
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bound.)
To come up with a reasonably tight lower bound, we observe that every element of A must
be read and written. Thus, a lower bound is 2m2 memops. The reading of x and y contribute
a lower order term. These vectors need not be written, since they don’t change.

• What is the ratio of flops to memops?

2m2 flops
2m2 memops ≈ 1 flops

memops .

Homework 12.2.2.4 Solution.
• How many floating point operations are required to compute this operation?
C := AB + C requires m3 multiplies and m3 additions, for a total of 2m3 flops.

• If the matrices are initially stored in main memory and (if necessary) are written back to main
memory, how many reads and writes (memops) are required? (Give a simple lower bound.)
To come up with a reasonably tight lower bound, we observe that every element of A, B,
and C must be read and every element of C must be written. Thus, a lower bound is 4m2

memops.

• What is the ratio of flops to memops?

2m3 flops
4m2 memops ≈

m

2
flops

memops .

12.3 · Casting Computation in Terms of Matrix-Matrix Multipli-
cation
12.3.2 · Blocked LU factorization
Homework 12.3.2.1 Solution.

• How many floating point operations are required to compute this operation?
From Homework 5.2.2.1, we know that this right-looking algorithm requires 2

3m
3 flops.

• If the matrix is initially stored in main memory and is written back to main memory, how
many reads and writes (memops) are required? (Give a simple lower bound.)
We observe that every element of A must be read and written. Thus, a lower bound is 2m2

memops.

• What is the ratio of flops to memops?
2
3m

3 flops
2m2 memops ≈

m

3
flops

memops .

Homework 12.3.2.2 Solution. During the kth iteration, when A00 is (kb) × (kb), we perform
the following number of flops in these operations:

• A11 := LU(A11): approximately 2
3b

3 flops.

• A12 := L−1
11 A12: During the kth iteration, A00 is (kb)× (kb), A11 is b× b, and A12 is b× ((K−

k− 1)b). (It helps to draw a picture.) Hence, the total computation spent in the operation is
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approximately ((K − k − 1)b)b2 = (K − k − 1)b3 flops.

• A21 := A21U
−1
11 : During the kth iteration, A00 is (kb) × (kb), A11 is b × b, and A21 is ((K −

k− 1)b)× b. Hence, the total computation spent in the operation is approximately ((K − k−
1)b)b2 = (K − k − 1)b3 flops.

If we sum this over all K iterations, we find that the total equals∑K−1
k=0

[
2
3b

3 + 2(K − k − 1)b3
]

=[
2
3K + 2

∑K−1
k=0 (K − k − 1)

]
b3

=[
2
3K + 2

∑K−1
j=0 j

]
b3

≈[
2
3K +K2

]
b3 =

2
3b

2m+ bm2.

Thus, the ratio of time spent in these operation to the total cost of the LU factorization is

2
3b

2m+ bm2.
2
3m

3 =
(
b

m

)2
+ 3

2
b

m
.

Homework 12.3.2.3 Hint. You can extract L11 and U11 from A11 with
L11 = tril( A11,-1 ) + eye( size( A11 ) );
A11 = triu( A11 );

Don’t invert L11 and U11. In the command window execute

help /
help \

to read up on how those operators allow you to solve with a matrix.
Solution.

• LU_blk_right_looking.m.

Notice that your blocked algorithm gets MUCH better performance than does the unblocked al-
gorithm. However, the native LU factorization of Matlab does much better yet. The call lu( A
) by Matlab links to a high performance implementation of the LAPACK interface, which we will
discuss later.

Assignments/Week12/answers/LU_blk_right_looking.m
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(Euclidean) length, 54
I, 30
[·], 248
εmach, 119
fl(·), 247
γn, 258, 274
∞-norm (vector), 54
∞-norm, vector, 22
κ(A), 47, 58
maxi(·), 203
A, 35
x, 64
, 17

θj , 257, 273
| · |, 16
ej , 67
p-norm (vector), 54
p-norm, matrix, 39
p-norm, vector, 22
1-norm (vector), 54
1-norm, vector, 22
2-norm (vector), 54
2-norm, matrix, 39
2-norm, vector, 19

absolute value, 16, 54
ACM, 249
Alternative Computational Model, 249
axpy, 211

backward stable implementation, 251
Basic Linear Algebra Subprograms, 218, 435
BLAS, 218, 435
blocked algorithm, 136

catastrophic cancellation, 469
Cauchy-Schwarz inequality, 19, 20
CGS, 107
characteristic polynomial, 338, 340
chasing the bulge, 395
Cholesky decomposition, 182
Cholesky factor, 213
Cholesky factorization, 155, 182
Cholesky factorization theorem, 213, 239
Classical Gram-Schmidt, 107
complex conjugate, 17
complex product, 54
condition number, 47, 58, 157, 177
conjugate, 17, 54
conjugate (of matrix), 57
conjugate (of vector), 54
conjugate of a matrix, 35
conjugate transpose (of matrix), 57
conjugate transpose (of vector), 54
consistent matrix norm, 44, 58
cost of basic linear algebra operations, 465
cubic convergence, 356, 370

defective matrix, 349, 368
deflation, 381
descent methods, 302
determinant, 339
direction of maximal magnification, 47
distance, 16
dot product, 54, 64

eigenpair, 334, 365
eigenvalue, 334, 365
eigenvector, 334, 365
elementary elementary pivot matrix, 170
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equivalence style proof, 486
Euclidean distance, 16
exact descent method, 305

fill-in, 285
fixed-point equation, 293
FLAME notation, 77
floating point numbers, 243
flop, 439–441
forward substitution, 186
Frobenius norm, 33, 57

Gauss transform, 194
Gaussian elimination, 185
Gaussian elimination with row exchanges,

197
Geometric multiplicity, 349, 368
Givens’ rotation, 388
gradient, 303
Gram-Schmidt orthogonalization, 107

Hermitian, 35
Hermitian Positive Definite, 155, 212
Hermitian positive definite, 212
Hermitian transpose, 19, 34
Hermitian transpose (of matrix), 57
Hermitian transpose (of vector), 54
Hessenberg matrix, 391
homogeneity (of absolute value), 17
homogeneity (of matrix norm), 33
homogeneity (of vector norm), 18, 54
homogeneneity (of matrix norm), 56
Householder reflector, 121, 144
Householder transformation, 121, 144
HPD, 155, 212

identity matrix, 30
Implicit Q Theorem, 392, 407
induced matrix norm, 36
infinity norm, 22
inner product, 54, 64

Jordan Canonical Form, 348

Krylov subspace, 320, 329

left pseudo inverse, 154
left pseudo-inverse, 60

left singular vector, 77, 101
Legendre polynomials, 104
linear convergence, 355, 369
linear least squares, 148
linear transformation, 28
LLS, 148
LU decomposition, 182, 190, 197, 234
LU factorization, 182, 185, 190, 197, 234
LU factorization - existence, 190, 234
LU factorization algorithm (bordered), 194
LU factorization algorithm (left-looking), 192
LU factorization algorithm (right-looking),

188
LU factorization with complete pivoting, 211
LU factorization with partial pivoting, 203
LU factorization with partial pivoting

(right-looking algorithm), 203
LU factorization with pivoting, 197

machine epsilon, 118, 246, 247, 272
magnitude, 16
matrix, 28, 29
matrix 1-norm, 57
matrix 2-norm, 39, 57
matrix ∞-norm, 57
matrix p-norm, 39
matrix norm, 32, 56
matrix norm, 2-norm, 39
matrix norm, p-norm, 39
matrix norm, consistent, 44, 58
matrix norm, Frobenius, 33
matrix norm, induced, 36
matrix norm, submultiplicative, 43, 44, 58
matrix norm, subordinate, 44, 57
matrix p-norm, 57
matrix-vector multiplication, 29
memop, 440, 620
Method of Multiple Relatively Robust

Representations (MRRR), 402
Method of Normal Equations, 153
method of normal equations, 150
MRRR, 402

natural ordering, 278
nested dissection, 286
norm, 12
norm, Frobenius, 33



INDEX 624

norm, infinity, 22
norm, matrix, 32, 56
norm, vector, 18, 54
normal equations, 150, 153
numerical stability, 241

orthogonal matrix, 68
orthogonal projection, 60
orthogonal vectors, 65
orthonormal matrix, 67
orthonormal vectors, 67
over-relaxation, 296

parent functions, 526
partial pivoting, 198, 203
pivot, 198
pivot element, 198
positive definite, 212
positive definiteness (of absolute value), 17
positive defnitenessx (of matrix norm), 32, 56
positive defnitenessx (of vector norm), 18, 54
precondition, 221
principal leading submatrix, 190, 234
pseudo inverse, 154, 156
pseudo-inverse, 60

QR algorithm, 377
QR decomposition, 103
QR Decomposition Theorem, 110, 143
QR factorization, 103
QR factorization with column pivoting, 170
quadratic convergence, 356, 370

Rank Revealing QR, 170
rank-k update, 455
Rayleigh quotent, 354, 369
Rayleigh Quotient Iteration, 361
reflector, 121, 144
residual, 13
right pseudo inverse, 154
right singular vector, 77, 101
rotation, 70
rowl pivoting, 198
RRQR, 170

Schur decomposition, 343, 344, 368
Schur Decomposition Theorem, 344, 368
SCM, 248

separator, 285
shifted inverse power method, 361
shifted QR algorithm, 379
similarity transformation, 343, 367
Singular Value Decomposition, 59, 61
singular vector, 77, 101
solving triangular systems, 207
SOR, 296
sparse linear system, 277
Spectral decomposition, 343
spectral decomposition, 345, 368
Spectral Decomposition Theorem, 345, 368
spectral radius, 335, 365
spectrum, 335, 365
stability, 241
standard basis vector, 28, 29, 55
Standard Computational Model, 248
submultiplicative matrix norm, 43, 44, 58
subordinate matrix norm, 44, 57
subspace iteration, 371, 374
successive over-relaxation, 296
superlinear convergence, 355, 369
superquadratic convergence, 370
SVD, 59, 61
symmetric positive definite, 212, 239

tall and skinny, 412
The Francis implicit QR Step, 393
The implicit Q theorem, 391
transpose, 34
transpose (of matrix), 57
transpose (of vector), 54
triangle inequality (for absolute value)), 17
triangle inequality (for matrix norms)), 33,

56
triangle inequality (for vector norms)), 18, 54
triangular solve with multiple right-hand

sides, 454
triangular system, 207
TRSM, 454

unit ball, 23, 54
unit roundoff, 246, 247, 272
unit roundoff error, 118
unitary matrix, 68, 99
unitary similarity transformation, 344, 368
upper Hessenberg matrix, 391
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Vandermonde matrix, 104
vector 1-norm, 22, 54
vector 2-norm, 19, 54
vector ∞-norm, 22, 54
vector p-norm, 54
vector p-norm, 22

vector norm, 18, 54
vector norm, 1-norm, 22
vector norm, 2-norm, 19
vector norm, ∞-norm, 22
vector norm, p-norm, 22

Wilkinson shift, 399
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