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In the past, we could rely on technology scaling and new micro-architectural

techniques to improve the performance of processors. Nowadays, both of these

methods are reaching their limits. The primary concern in future architectures

with billions of transistors on a chip and limited power budgets is power/energy

efficiency. Full-custom design of application-specific cores can yield up to two

orders of magnitude better power efficiency over conventional general-purpose

cores. However, a tremendous design effort is required in integrating a new

accelerator for each new application.

In this dissertation, we present the design of specialized compute fabrics

that maintain the efficiency of full custom hardware while providing enough

flexibility to execute a whole class of coarse-grain operations. The broad vision

is to develop integrated and specialized hardware/software solutions that are

xi



co-optimized and co-designed across all layers ranging from the basic hard-

ware foundations all the way to the application programming support through

standard linear algebra libraries.

We try to address these issues specifically in the context of dense linear

algebra applications. In the process, we pursue the main questions that ar-

chitects will face while designing such accelerators. How broad is this class of

applications that the accelerator can support? What are the limiting factors

that prevent utilization of these accelerators on the chip? What is the max-

imum achievable performance/efficiency? Answering these questions requires

expertise and careful codesign of the algorithms and the architecture to select

the best possible components, datapaths, and data movement patterns result-

ing in a more efficient hardware-software codesign. In some cases, codesign

reduces complexities that are imposed on the algorithm side due to the initial

limitations in the architectures.

We design a specialized Linear Algebra Processor (LAP) architecture

and discuss the details of mapping of matrix-matrix multiplication onto it. We

further verify the flexibility of our design for computing a broad class of linear

algebra kernels. We conclude that this architecture can perform a broad range

of matrix-matrix operations as complex as matrix factorizations, and even Fast

Fourier Transforms (FFTs), while maintaining its ASIC level efficiency.

We present a power-performance model that compares state-of-the-art

CPUs and GPUs with our design. Our power-performance model reveals

sources of inefficiencies in CPUs and GPUs. We demonstrate how to over-

xii



come such inefficiencies in the process of designing our LAP.

As we progress through this dissertation, we introduce modifications of

the original matrix-matrix multiplication engine to facilitate the mapping of

more complex operations. We observe the resulting performance and efficien-

cies on the modified engine using our power estimation methodology. When

compared to other conventional architectures for linear algebra applications

and FFT, our LAP is over an order of magnitude better in terms of power

efficiency. Based on our estimations, up to 55 and 25 GFLOPS/W single- and

double-precision efficiencies are achievable on a single chip in standard 45nm

technology.
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Chapter 1

Introduction and Background

Computer systems with the equivalent of 1 million to 10 million pro-

cessing elements (e.g., cores) are on the horizon, heralding the age of exascale

computing. This level of parallelism will be achieved by configuring computers

as clusters on the macro level and, several layers down, in each processor ex-

ploiting VLSI technology that will allow on the order of 50 billion transistors

to be packed onto a single chip [126]. In the past, we could rely on technol-

ogy scaling to provide exponentially more and faster transistors in a constant

area and at constant power with each new chip generation [31]. However, in

the future only a fraction of this integration capacity can be utilized due to

power constraints [36]. This provides the opportunity to integrate specialized

cores that are only utilized when needed. At the same time, sustaining signifi-

cant continued performance improvements will drive the need for optimization

through specialization. One of the key questions going forward will be how to

minimize, or at least greatly reduce, the power consumption while retaining

or improving the achieved performance.

It is well known that full-custom, application-specific design of on-chip

hardware accelerators, can provide orders of magnitude improvements in both
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power and performance for a wide variety of application domains [55, 154].

The flexibility provided by the programmability of general-purpose machines

comes with inherent overhead. By contrast, in application-specific designs

implementations are hardwired to directly realize the desired computation in

fixed hardware. This is possible in domains such as embedded or mobile com-

puting where applications are standardized and exponentially growing costs

of chip design can be reaped across a large volume of units. The question

is whether these concepts can be applied to a broader class of more general

applications.

1.1 Thesis Statement

Modern processors often integrate application-specific IP cores to meet

power restrictions of the dark silicon era. However, each Application-specific

IP core is limited to only one or a few applications/routines because the cost

of extra flexibility is substantial loss in efficiency.

An accelerator design without instruction pipeline or register file, and

optimized for matrix multiplication supports enough flexibility to perform

level-3 BLAS, matrix-factorizations, other complicated linear algebra opera-

tions, and FFTs only by exploiting the competence of algorithm/architecture

codesign. It is conjectured that such a design with all of the mentioned flexibil-

ity maintains at least an order of magnitude better power and area efficiency

compared to current existing programmable architectures.

The broader vision of this project that goes beyond this dissertation
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is to develop integrated and specialized hardware/software solutions that are

co-optimized and co-designed across all layers ranging from the basic hardware

foundations all the way to the application programming support through stan-

dard linear algebra packages. We study upper limits on performance/power

ratios that can be achieved, and fundamentally investigate both limitations

in current architectures and opportunities for targeted improvements in future

architectures that are specially designed to efficiently support this crucial class

of operations.

1.2 Linear Algebra Processor Overview

We target an ASIC implementation that will allow us to fully exploit

state-of-the-art technologies instead of programmable hardware like FPGAs.

Within this context, our goal is to develop a fixed Linear Algebra Proces-

sor (LAP) architecture that avoids inefficiencies of general-purpose processors

and GPUs. We remove the overheads of program pipeline and rearrange pro-

cessing elements in a more efficient way. Finally, in contrast to full custom

specialized accelerators, our architecture is flexible enough to optimally exe-

cute different matrix operations, but with the same level of efficiency.

We recognize that our class of linear algebra operations essentially con-

sists entirely of Multiply-Accumulate (MAC) computations with regular and

predictable, looping access patterns. As such, we design a datapath that con-

sists of specialized MAC units, which include local accumulators to avoid the

need for unnecessary transfers to/from the register file in every operation.
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We build on the SIMD concept of replicating Functional Units (FUs) to

exploit parallelism; instead of communicating through shared storage, wasting

cycles and instructions, our approach is based on partitioned and distributed

memories local to each FU. Memory hierarchies and interconnects are specif-

ically designed to realize available locality and required access patterns with

efficient reuse as well as careful prefetching of data that moves between memory

layers. Control is predominantly hardwired with a minimal set of micro-coded

commands to switch between different processing modes.

A taxonomy of accelerators and the possible programming models in

accelerator systems is proposed by Cascaval et al. [21], which we will discuss

further in the related work. Here, we classify the LAP along this design space

taxonomy. Based on all of the possible choices in the design space of acceler-

ators, [21] introduces a classification across three dimensions. The following

summarizes the possible choices and where the LAP design stands in this

design space.

1. Architecture type: Fixed architectures such as Floating-Point Units

(FPUs), programmable architectures like GPUs, or reprogrammable archi-

tectures like FPGAs are the possible choices. Our proposed architecture

is reprogrammable and flexible so it can handle variety of linear algebra

problems by microprogrammed control.

2. Invocation and Completion: There is a correlation between the in-

vocation granularity and the coupling of the accelerator to the host sys-
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tem. In instruction-level invocation, Streaming SIMD Extensions (SSE)

or FPUs are invoked as a part of the Instruction Set Architecture (ISA).

In command packet invocation, an accelerator is connected as a device

with memory mapped I/O, and its invocation is asynchronous. In task-

level invocation, the accelerators are programmable standalone systems

with coarse-grain invocation and are typically asynchronous. Finally,

workload systems are standalone systems connected to the host through

a network and perform the entire tasks offline.

The invocation granularity of our LAP is coarse-grain at the task level

to maintain maximum utilization of the host processor. The host could

assign a series of tasks on the same data without interfering in between.

The LAP interrupts the host when the result matrix is ready.

3. Memory Addressing: Memory addressing determines whether the ad-

dress space of the host is shared with the accelerator. Memory par-

titioning shows if the accelerator’s addressable memory is completely

distributed, shared with, or hidden from the CPU. Possible coherency of

address spaces with the CPU or other devices is an option.

The LAP’s memory address space could be shared or separated from the

CPU memory; it depends on the granularity and the complexity of tasks.

In case of multiple LAPs, we need to schedule them in a shared memory

environment. We avoid cache coherency overheads in our solution.
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Figure 1.1: A single Linear Algebra Core (LAC) in LAP Architecture, SFU is
Special Functional Unit.

1.2.1 Architecture

In contrast to the conventional 1D arrangement of FUs in SIMD archi-

tectures, we use row and column buses in a 2D arrangement of PEs as illus-

trated in Figure 1.1. Each Processing Element (PE) contains a MAC unit,

SRAM Local Storage (LS), a microprogrammed controller, and necessary dat-

apath. Each PE is connected to all of the PEs in the same row and in the same

column via corresponding row and column broadcast buses, respectively. A

Special Functional Unit (SFU) performs special functions such as divide and

square-root operations. Cores are connected to the on-chip shared memory

and their own dedicated on-chip memory bank and communicate data in and

out using column broadcast buses.

We will see in Chapter 3 that this arrangement naturally maps a ma-
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Figure 1.2: LAP programming environment.

trix multiplication kernel using broadcast buses, and it eliminates the need for

communication through a register file by fully exploiting the communication

network. By distributing the control, we also remove the overheads of control

and unnecessary data communication between processing elements. Further,

we exploit the concept of separating the memory interface and intra-PE com-

munication interface by streaming the data through a particular channel to

the core.

1.2.2 Programming model

Figure 1.2 shows how a linear algebra application can employ a LAP.

Linear algebra (LA) libraries, such as the libflame [138, 139] and LAPACK [12]
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support built-in software layers that decompose big problems into smaller sub-

problems with so-called algorithms-by-blocks [90]. Routines with higher level

functionality (e.g, a LU factorization) are called from the host application.

The LA library’s internal routines break the large problem recursively into

smaller, simpler subroutine calls to Basic Linear Algebra Subroutines (BLAS)

and communication & packing routines, until the problems reach a certain

size. These small problems (for example 128 × 128) are atomic units of data

with which atomic computations are performed. On a typical general-purpose

CPU, these kernels are all implemented very efficiently, often in target ma-

chine assembly code [52]. One can view the LAP as an accelerator for these

atomic kernel operations and the atomic size of the kernels depends on the

LAP-supported kernel sizes. Instead of calling the assembly-coded kernel on

the host processor, necessary information including the data location address

and type of operation to be performed is passed to the LAP through the device

driver. After finishing the operation, the LAP puts the computed data back

in the memory. The LAP can overlap the communication with computation

by pipelining multiple operations.

1.3 Evaluation Methodology

We have developed both simulation and analytical power and perfor-

mance models of the LAP in comparison with other architectures. We vali-

dated the performance model and LAP operation in general by developing a

cycle-accurate LAP simulator. The simulator is configurable in terms of PE
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pipeline stages, bus latencies, and memory and register file sizes. Further-

more, by plugging in power consumption numbers for MAC units, memories,

register files, and buses, our simulator is able to produce an accurate power

profile of the overall execution. We accurately modeled the cycle-by-cycle con-

trol and data movement for GEneral Matrix-matrix Multiplication (GEMM),

TRiangular Solve with Multiple Right-hand Sides (TRSM), and Cholesky fac-

torization, and we verified functional correctness of the produced results. The

simulator provides a testbed for future investigation of other linear algebra

operations.

1.3.1 Performance Analyses

Linear algebra applications have predictable memory access behavior

and the custom-designed LAP architecture does not contain caches or any

other processing units with non-deterministic behavior. Therefore, one can

model the data movement and access patterns with analytical formulae. We

have verified our analytical formulae against our in-house cycle-accumulate

simulator for some of the applications. We derived the analytical formulae in

two different ways and matched the answers to bolster our confidence in their

the correctness. We derived the results first from inside of the core to the next

levels of the memory hierarchy as problem size grows, and then from lower

levels of memory hierarchy perspective into the core as problem size shrinks.
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1.3.2 Component selection

To investigate and demonstrate the performance and power benefits of

the LAP, we have studied the feasibility of a LAP implementation in current

bulk CMOS technology using publicly available components and their charac-

teristics as published in the literature.

State-of-the-art implementations of Fused Multiply Add (FMA) units

use various optimization techniques to reduce latency, area and power con-

sumption [117]. Fused Multiply Accumulate (FMAC) units with delayed nor-

malization achieve a throughput of one accumulation per cycle [141, 142] and

save around 15% of total power [63]. The number of pipeline stages typically

ranges between 5 and 9 and the same FMAC units can be reconfigured to

perform either integer, single-, or double-precision operations [132]. A precise

and comprehensive study of different FMA units across a wide range of both

current and estimated future implementations, design points and technology

nodes was presented in [43].

Our design utilizes SRAM storages with no tags and no associativity.

Given the sequential nature of access patterns to 64-bit wide double-precision

numbers, we carefully selected memories with one or two banks to minimize

power consumption by using CACTI [93] memory simulator. The optimized

choice is the low-power ITRS technology model and aggressive interconnect

projection.

To estimate latencies and power consumption of row and column buses,
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we use data reported in CACTI. Since the LAP does not require complex

logic for bus arbitration and address decoding, we only consider the power

consumption of the bus wires themselves.

For the overall system estimation, we project the dynamic power results

reported by CACTI to the target frequencies of the MAC units. According

to the CACTI low-power ITRS model, leakage power of the memory blocks

is estimated to be negligible in relation to the dynamic power. When more

bandwidth is needed for the on-chip memory, the technology changes into a

faster model and the leakage power ratio increases.

1.3.3 Power Modeling of Architectures

We developed a general analytical power model that builds on existing

component models (e.g. for FPUs and memories) described in the previous

section. The model is derived from methods described in [20, 88] and we

applied it to both our LAP and various existing architectures. Our power

model computes the total power as the sum of the dynamic power and idle

power over all components in the architecture:

Power = Pdyn + Pidle =
n∑

i=1

(Pdyn,i) +
n∑

i=1

(Pidle,i)

Pdyn,i = Pmax,i × activityi

Pidle,i = Pmax,i × ratio.

Dynamic power is modeled as a maximal component power multiplied by the

component’s activity factor. We estimate activity of memory components
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based on access patterns for matrix multiplications. Otherwise, we assume

activity factors of one or zero depending on whether a component is utilized

during the targeted operations. For leakage and idling, we use a model, derived

from calibrations, that estimates idle power as a constant fraction of dynamic

power ranging between 25% and 30%, depending on the technology used.

We calibrate our power model and its parameters against power and

performance numbers presented for the NVidia GTX280 Tesla GPGPU when

performing matrix multiplication [60, 149]. We used the sizes of different GPU

memory levels reported in [149] together with numbers from [60] and [4] to

match logic-level, FPU, CACTI and leakage parameters and factors in order

to achieve consistent results across published work and our model. We then

apply this model to other architectures, such as the NVidia GTX480 Fermi

GPGPU [2, 68] or the Intel Penryn [47] dual-core processor. To the best of our

knowledge, there are no detailed power models yet for these architectures. We

adapted our model to the architectural details as far as reported in literature

using calibrated numbers for basic components such as scalar logic, FPUs or

various memory layers. In all cases, we performed sanity checks to ensure that

total power numbers match reported numbers in literature.

1.4 Contributions

The main contributions of this dissertation are as follows:

1. The design, simulation, and power estimation of a highly optimized linear
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algebra core for matrix computations.

2. A multi-dimensional design space exploration of a multi-core linear al-

gebra processor for the GEMM algorithm.

3. An analytical tool for evaluating the memory hierarchy size and band-

width balance for linear algebra operations.

4. A thorough study of the behavior of level-3 BLAS operations across the

linear algebra core and conventional SIMD architectures.

5. A generalization of the base architecture to support all level-3 BLAS and

important matrix factorizations.

6. The power and performance details for PE and floating-point unit exten-

sions to support special functions for divide and square-root operations.

7. A study of Fast Fourier Transform (FFT) operation in contrast with

GEMM operation and the corresponding algorithm/architecture trade-

offs.

8. A design of a Hybrid FFT/Linear Algebra core with minimum loss in

efficiency.

Together, these advance the state-of-the-art in this domain.
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1.5 Thesis Outline

The rest of this dissertation is organized as follows. In Chapter 2, we

present an overview and analysis of the state-of-the-art conventional and cus-

tom designed architectures. In Chapter 3, we introduce the linear algebra

core (LAC) design, using matrix multiplication as a driving example, and re-

port the estimated area, power, performance, and efficiency of the core for that

operation. In Chapter 4, we develop a multi-LAC system and discuss trade-

offs for matrix multiplication at different levels of the memory hierarchy. We

demonstrate the potential for flexibility and support of level-3 BLAS kernels

on the linear algebra core in Chapter 5. Chapter 6 discusses generalization

opportunities by showing how more complicated linear algebra and signal pro-

cessing algorithms like matrix factorizations and FFT, can be mapped to the

LAC. We summarize the dissertation and discuss future goals in Chapter 7.

In Appendix A the details of matrix factorization algorithms are dis-

cussed. Appendix B provides the details of the algorithm and mapping for

FFT operation on the LAC.
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Chapter 2

Related Work

Matrix-matrix multiplication and related kernels are of interest because

these operations are often what deliver high-performance to many crucial ap-

plications [120]. Key to a successful implementation are insights related to

the optimal exploitation of parallelism and locality in general-purpose proces-

sors [52], GPUs [133, 143], and other examples of parallel architectures [141].

These insights can have a greater impact if directly applied to the co-design

of algorithms and architectures.

Within the domain of linear algebra computations, it is well understood

that many problems can be efficiently reduced down to a canonical set of Basic

Linear Algebra Subroutines (BLAS), such as matrix-matrix operations (level-3

BLAS) and matrix-vector operations (level-2 BLAS). The response to this has

been the definition of interfaces to these key operations [32, 33, 85], and high-

performance libraries that are layered upon the BLAS, like the Linear Algebra

Package (LAPACK) [12] and, more recently, the libflame library [138, 139].

As a result, the time to solution for the complete application is often heavily

dictated by the performance of dense linear algebra operations with relatively

small matrices (e.g., of size 100 × 100 to 10, 000 × 10, 000). If one improves

15



the performance and/or reduces the power consumption of such operations at

the node or core level, all applications potentially benefit.

In the following, we will briefly re-examine traditional general-purpose

architectures, vector extension architectures, and GPGPUs, with a discussion

of their strengths and sources of overhead specifically when performing matrix

computations. Next, we focus on accelerator designs and discuss their archi-

tectures. This provides the basis for developing our proposed matrix processor

architecture aimed at removing such inefficiencies.

2.1 General-Purpose Processors

A general-purpose data path, illustrated in Figure 2.1, executes com-

putation by repeatedly reading operands from storage, performing ALU oper-

ations on them, and writing results back to register files. In order to provide

flexibility and generality, functional units are typically only provided for basic

operators, and every sequence of two or more operations has to go through the

register file and interconnect. In many modern general-purpose CPUs, only

15%-25% of the area and power consumption is actually dedicated to Func-

tional Units (FUs) [1, 11]. The rest is spent on aggressive superscalar, out

of order execution, and multi-threading techniques to recover instruction-level

parallelism out of a serialized instruction stream, and keep the FUs utilized.

Furthermore, with unknown sequences of operands, the storage and intercon-

nect has to be effectively designed for random access patterns.

A CPU takes advantage of temporal and spatial locality to reduce de-
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mand on the remote slow DRAM. It supports complex memory hierarchies and

multiple levels of caches to provide local high bandwidth to the core. Specu-

lative prefetching, and associated bookkeeping and prediction overheads, are

often employed to keep the core utilized. In the lowest level of memory hierar-

chy data access through multi-port register files is expensive and can become

the bottleneck [121]. In higher levels of hierarchy, complexity of tag handling

and address decoding in caches limits the size available for actual data stor-

age. For example, in large data sets such as matrices the bulk of data is stored

in higher levels of the hierarchy. While deep caching allows general-purpose

architectures to recover enough locality and hence parallelism to keep their

FUs busy, extraneous transfers to bring data in and out from/to far memories

consume a large amount of energy, often far more than that used for computing

with the data.

The costs for increased single-threaded performance gains have reached

the point where old techniques incur tremendous overhead [55] and outweigh

the benefits of any further improvements. Even more importantly, technology

scaling is also reaching physical limits. Additional transistors will only be

provided at reduced performance and increased power consumption [46, 61].

General matrix multiplication (GEMM) implementation on traditional

general-purpose architectures has received a lot of attention [3, 8, 51, 118, 146].

However, general instruction handling overhead remains and, even with SIMD

instructions, long computations have to be split into multiple operations that

exchange data through a wide register file.
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Figure 2.1: (a) A typical general-purpose processor memory hierarchy and core
architecture.

2.1.1 SIMD ALUs and Vector Processors

Adding vector units to conventional processors has been a solution to

increase efficiency of CPUs [38, 39]. Modern CPUs include Single-Instruction

Multiple-Data (SIMD) vector units, such as Intel’s Streaming SIMD Exten-

sions (SSE) [119]. In a SIMD solution, the data path contains multiple FUs

of the same type that can simultaneously perform a single operation on mul-

tiple data items. SIMD processors exploit data parallelism while reducing the

number of instructions, which is particularly beneficial for matrix operations.

A taxonomy of register file architectures is presented in [121]. Along three

main dimensions: data-parallel, instruction level parallel, and memory hierar-

chy resulting into 12 different organizations, each organization shows different

behaviors in terms of area, power, and delay.

Three main limitations of conventional vector architectures are known

18



to be (1) complexity of central register file; (2) implementation difficulties of

precise exception handling; and (3) expensive on-chip memory [75]. Although

the throughput has increased in these architectures, basic instruction handling

overhead still remains and fused operations like multiply-accumulate still have

to be performed in multiple instructions that exchange data through a shared

register file or, when spilled, through the memory. Associated costs are am-

plified by the fact that in each step a complete vector has to be transferred

through multiple ports of a register file, wide wires, and complex point-to-point

interconnects such as crossbars. CODE architecture [75] is designed around a

clustered vector register file with decoupled interconnect trying to overcome

these inherent limitations.

In recent years several projects were dedicated to evaluation and opti-

mization of vector architectures. Tarantula [37] is an alpha EV8 architecture

with vector unit capable of 32 FLOPs per cycle. The vector and multithreaded

compute models are unified in the SCALE [76] vector-thread architecture. The

vector architectures are compared with conventional superscalar and VLIW

architectures for multimedia benchmarks in [74]. Energy-efficiency potentials

of vector accelerators for high performance computing systems are discussed

in [86]. The efficiency of an architecture depends on the organization of the

SIMD units and how they are employed with regard to instruction pipeline

and memory hierarchy. In the rest of this section we present examples of the

different architectures based on SIMD concept and their different power and

performance features.
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2.1.2 GPGPUs

Graphical Processing Units(GPUs) have recently shifted away from spe-

cialization to providing general-purpose computing capabilities. While this

makes such General-Purpose GPUs (GPGPUs) interesting for a wider class

of applications, the added flexibility invariably re-introduces overhead. Apart

from some remaining special graphics FUs, GPGPUs essentially replicate a

large number of SIMD processors on a single chip. To provide matching local-

ity, SIMD processors are clustered into groups that share common levels of the

memory hierarchy. Their pipeline is kept simple with no branch prediction or

out-of-order execution but multithreading is used in GPU cores to hide long

memory access latency. However, inherent characteristics and deficiencies of a

SIMD processor remain.

A typical GPU today, shown in Figure 2.2, has 64Kbytes or more of

local storage per core to keep the execution context. A read-only texture

cache has been a part of GPUs. Modern GPUs like Nvidia Fermi [2] and
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Intel Larabee [125] have recently supported the memory cache hierarchy but

their on-chip cache size is relatively small (around 0.5 Mbytes). Although

GPUs support high bandwidth DRAM organizations like DDR3-5 with wide

150 Gbytes/sec bus, their bandwidth to computation ratio is still much lower

than CPUs. As a result GPUs have to carefully schedule memory requests to

efficiently use the available bandwidth.

GPUs were originally developed as specialized hardware for graphics

processing that provided massive parallelism but were not a good match for

matrix computations because they did not support enough data throughput

to computation ratio [40]. In recent years, GPUs have become a popular tar-

get for acceleration.shifting back towards general-purpose architectures. Such

GPGPUs replicate a large number of Single Instruction Multiple Data (SIMD)

processors on a single shared-memory chip. GPGPUs can be effectively used

for matrix computations [10, 143] with throughputs of more than 300 GFLOPS

for Single-precision GEMM (SGEMM), utilizing around 30-60% of the theo-

retical peak performance. In the latest GPGPUs, two single-precision units

can be configured as one double-precision unit, achieving more than 700 single-

precision and 350 double-precision GFLOPS at around 70% utilization [133]

for matrices larger than 512 × 512. Even when ignoring the power consump-

tion of components such as texture caches or special functional units (SFUs),

actual GEMM efficiencies in terms of GigaFlops/Watt are an order of magni-

tude lower than what is inherently possible. Later in this dissertation we will

address the causes of this inefficiency.
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The main difference between LAP and GPU design lies with the com-

munication through a shared context and instruction handling in the GPU

cores. Multithreading to hide memory latencies also adds overhead for GPU

cores. In the same manner as in GPGPUs with shared on-chip memory, LAP

basic cores can in the future be replicated and dropped into a larger linear

algebra processor arrangement.

2.2 Custom Design Architectures and Accelerators

Accelerators are “specialized functional units integrated with the core,

specialized cores, attached processors, or attached appliances” [21]. They are

tuned to provide low power, low cost, higher performance, and less devel-

opment, while maximizing throughput per unit area of silicon. An accel-

erator does not function on its own; it requires invocation from host pro-

grams [103, 112]. The strategy is specialization and it cannot be used as a

“general-purpose” compute engine. A sustainable accelerator model requires

an application domain where “too much performance is never enough” [103].

These domains are open to an accelerator-based solution for which a combi-

nation of parallelism, pipelining, and regularity of computation is necessary.

“The single-thread performance reduction of Moore’s law makes accelerators

economically viable to a degree they have never been before” [112]. Since

parallelizing the code is far from trivial in the case of multithreaded solu-

tions, avoiding it by direct hardware implementation may be a major benefit

of accelerators.
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There are major problems with the development of accelerators in to-

day’s technology. By nature, accelerators are separate from the host CPU and

as a result data transfer overheads affect performance. There is no standard

architecture model and most accelerator design spaces are less mature, frag-

mented, and highly dynamic. Accelerators are designed to maximize computa-

tion throughput, which is often achieved at the expense of ease of programma-

bility. They often have software managed memories and special-purpose, or

raw hardware, interfaces. With their narrow applicability, the optimization

process for accelerators is a multivariable optimization that includes paral-

lelization, data structure selection, thread granularity, data tiling dimensions,

register usage, data prefetch distance, and loop unrolling. These parameters

are not necessarily orthogonal to each other [116] .

According to the taxonomy of accelerators and the possible program-

ming models in accelerator systems in [21], the system characterization is af-

fected by two factors: system architecture and workload characteristics. Work-

load characterization determines parallelism granularity and type of synchro-

nization between accelerator and host. Parallelism granularity affects invoca-

tion overhead, CPU and memory coupling, and addressing. The authors in [21]

recognize architecture, invocation and completion, and memory addressing as

the main dimensions of the design space.

To manage and program the hardware, device drivers and initialization

routines are needed even for tightly coupled accelerators. Typically, “libraries

are the first and the universal programming model that is developed for any
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accelerator, and higher-level programming models are often built (and depend

internally) on the interfaces provided by libraries” [21]. High-level libraries

encapsulate the functionality of an accelerator into an API. Once a set of

services is defined, one can change the implementation of the library without

the need to change the application using the services. In auto-exploitation like

auto vectorization, the compiler and runtime system discover sections of code

(instructions or entire procedures) that can be offloaded on an acceleration

engine.

GEMM on accelerators with 2D grid of PEs A taxonomy of matrix

multiplication algorithms on 2D grids of Processing Elements (PE)s and their

interconnect requirements is presented in [87]. The algorithms for matrix

multiplication are based on three basic classes: Cannon’s algorithms (roll-

roll-multiply) [22, 91], , Fox’s algorithm (broadcast-roll-multiply) [26, 42, 87],

, and SUMMA (broadcast-broadcast-multiply) [6, 137]. Cannon’s algorithm

shifts the data in two of the three matrices circularly and keeps the third one

stationary. Required initial and final alignment of the input matrices needs

extra cycles and adds control complexity. In addition, a torus interconnect

is needed to avoid data contention. Fox’s algorithms and its improvements

broadcast one of the matrices to overcome alignment requirements. However,

a shift operation is still required and such algorithms may show poor symmetry

and sub-optimal performance. Finally, the SUMMA algorithm does not need

any initial or post-computation alignment. The broadcast is a simple and
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Figure 2.3: (a) Cell BE processor architecture [23].

uniform, single communication primitive, and does not have any bandwidth

contention as in circular shifting. In addition, SUMMA is much easier to

generalize to non-square meshes of processing units.

The flexibility of the SUMMA algorithm has made it the most prac-

tical solution for distributed memory systems [137] and FPGAs [34], and the

SUMMA class of algorithms is the basis for our design. A broadcast operation

is an efficient way of data movement to achieve high performance in other ma-

trix operations. We will see that the cost and latency of broadcast operation

does not add extra overhead in our cores.

2.2.1 Cell Broadband Engine

Cell [66] is a heterogenous multi-core design with Power Architecture

compatibility. Three following main objectives were sought in the design of
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this architecture: power and area efficiency while maintaining programmabil-

ity, good responsiveness, and wide applicability. Cell was targeted to work at

3.2 GHz frequency in which it can deliver up to 230 GFLOPS single and 19

GFLOPS double precision theoretical peak performance. The third genera-

tion of Cell in 45nm technology with 40 Watt estimated power consumption

achieves over 5 SP-GFLOPS/Watt power efficiency [131].

The Cell architecture(Figure 2.3), contains a dual-threaded, 4-way in-

order 64-bit PowerPC core (PPE), and eight synergetic processing elements

(SPEs). These cores are connected to each other through a high bandwidth

(204 GB/S) coherent element interconnect bus(EIB [73]). PPE and SPE archi-

tectures are both based on SIMD vector unit organization. PPE supports a

conventional cache hierarchy and virtualization for multiple operating sys-

tems. The SPE architecture [41, 54, 59] is designed to optimize power and

performance on media applications as well as compute-intensive applications.

SPE is dual issue, coarse grain multi-threaded RISC architecture. SPE does

not support hardware branch prediction; its pipeline is kept short to overcome

branch miss penalties and reduce area. Instead of a cache a 256-KB Local

Store (LS) is employed that allows a large number of memory transactions

to be in flight. The SRAM design of the LS eliminates the complexities and

latency of caches and also occupies less area on the chip. The LS that holds

both instructions and data, is shared between SPE load store unit, instruction

fetch unit, and the DMA unit. DMA unit facilitates direct access to main

memory with high bandwidth (25 GB/S). A large (2 KB) 128-entry 8-ported
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register file provides data for the SIMD ALU. SIMD unit can perform four

single precision multiply-accumulate operations in each cycle.

The ground breaking techniques and rational described in [59], were

used in the Cell architecture to improve power and area efficiency. However,

SPEs still support conventional pipeline overheads. A big, multi-ported regis-

ter file is a huge bottleneck here. All SPEs might end up executing the same

code over and over wasting power, while each is only 4-way SIMD. The lo-

cal store is software controlled resulting in more energy consumption, becaus

more instructions must be executed to manage it. At the chip level keeping the

interconnect network coherent adds to complexity and energy usage. These

overheads are paid to make this architecture more flexible.

Implementations of scientific applications have been targeted on the

Cell processor by many works in the literature [23, 148]. Cell can reach over

200 GFLOPS, 90% of theoretical peak performance, for single precision matrix

multiplication problems [23, 80, 84, 122, 148]. Level 1-3 BLAS [122], Cholesky

factorization [80], QR factorization [81], LINPACK benchmark [23], and sparse

vector matrix multiplication [148] achieve high performance on this architec-

ture. Other scientific kernels like 1-D and 2-D FFT are also mapped on the

Cell processor [14, 53, 148]. Cell achieves 5 GFLOPS/W for linear algebra

kernels that is an order of magnitude less than what is possible.
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2.2.2 ClearSpeed CSX

CSX architecture [28] is the computation core of ClearSpeed CSX600[95,

97] and CSX700 [5] processors. ClearSpeed CSX700 is well known as the cut-

ting edge accelerator that targets scientific computing and provides BLAS

and LAPACK library facilities with double precision. This chip delivers up

to 96 GFLOPS theoretical peak for just 12 watts power consumption (8

DGFLOPS/Watt power efficiency) at 250 MHz frequency in 90nm technol-

ogy.

ClearSpeed CSX is a SIMD architecture with long 96 PE dimension

similar to vector architectures. The major difference is that the data stream-

ing can be done independent of the control path (similar to SPEs in Cell [66]).

Each PE is a VLIW core with a complete pointer model that results in inherent

overheads. This 1D long arrangement of PEs has the problem of communica-
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tion between PEs. By supporting up to 8 prioritized multithreaded execution,

the long 1D array of PEs can be broken into smaller groups. Although mul-

tithreading helps hiding memory access latencies to 128 KB on chip scratch

pad memory and 2Gbyte DDR2 external memory, it adds overhead to the

hardware. CSX PEs do not contain a fused multiply accumulate unit, hence

they have to pay the overheads of performing two instructions for multipli-

cation and addition. The computational units are connected to a five ported

128-byte register file that is closely coupled with a 6KByte SRAM local store.

All data access to local SRAM and even communication to adjacent PEs are

through the register file that could become a bottleneck in design. PEs can

communicate with each other through the “Clearconnect” network. In [96] au-

thors demonstrate that sending and receiving overheads at each core are the

bottleneck of this architecture. They suggest that evaluation of other topolo-

gies like 2-D mesh for future SIMD interconnects can affect the performance

of such architectures.

75 GFlops for double precision matrix multiplication with 78% of the-

oretical peak performance is achieved on this architecture [5]. Scientific appli-

cations like FFT [5], singular value decomposition, and QR factorization [152]

have been mapped on this accelerator as well. This architecture has high power

efficiency but low performance and area efficiency. The frequency of the chip

is kept low because the memory cannot sustain the bandwidth demands of

PEs in high frequencies.

In contrast with Clearspeed CSX architecture, LAP design has a micro-
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programmed distributed control. The data movement and computation order

is microcoded in the local controller of the PEs. Caches and instructions are

excluded from the LAP design. LAP supports specialized fused MAC units

with throughput of one, which helps eliminate complexities of data/instruction

handling through a register file. The LAP design is a 2D arrangement with

broadcast buses, which benefits from a simple control. There is no send and

receive or any acknowledgement involved in this communication mechanism,

which is the main communication overhead in the ClearSpeed architecture.

Finally, the register file used in LAP PEs is 32 bytes with only two ports

and is bypassed in most of the data transfers to significantly reduce power

consumption.

2.2.3 Systolic Arrays

Systolic arrays were popularized in the 80s [78, 79]. Different optimiza-

tions and algorithms for matrix multiplication and more complicated matrix

computations are compared and implemented on both 1D [104, 115, 134] and

2D systolic arrays [62, 89, 134]. In [65], the concept of a general systolic array

and a taxonomy of systolic array designs is presented.

Systolic arrays are usually designed as a 2D array of processing ele-

ments, where each PE shares its processed data with its adjacent neighbor

PEs immediately in the next cycle. The data flows in the pipe network across

the array, often with different data flowing in different directions in a pipeline

fashion. The PEs do not hold more than a few pieces of storage. Their ineffi-
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ciency is in their complex design and difficulties in building them.

The LAP core design has several similarities and differences with sys-

tolic arrays. Both designs use the same 2D arrangement of PEs: PEs have

simple functional units and both perform very well for applications like matrix

multiplication. PEs in a LAP core are sitting on a shared bus and there is no

data streaming flow in them. Each PE in a LAP core has a relatively simple

but large local store. The communication is done in a broadcast fashion across

rows and columns. There are no data dependencies between the computed val-

ues by adjacent neighboring PEs for operations like GEMM. In other words,

the PEs do not pass processed data to their neighbors in the LAP design.

A LAP core supersedes systolic solutions by decreasing unnecessary

communication between the PEs and performing inner products within each

PE. This way, operations on elements of matrix C have register/accumulator

level access locality, and no extra transaction in the PE data-path or between

PEs is required. Performing the inner product operations locally allows op-

timization for single-cycle accumulation in the MAC units and hence, as we

will discuss later, saving power by using a wide accumulator register to avoid

unnecessary consecutive normalizations.

The broadcast bus nature of communication avoids pipelining the input

data, reduces the data read transactions and register accesses. This way the

interface of each PE to the other neighbors requires much simpler logic. Later,

we will see that a broadcast bus solution saves cycles in the inner kernels of

complicated operations where a whole row or column is dependent on a result

31



of a certain PE. The length of the critical path decreases since the critical data

arrives at the same time to all the PEs in the same row or column.

2.2.4 FPGA Implementation

Moving toward TeraFlops peak performance, recent FPGAs [45, 101]

have achieved high standards both in performance and power efficiency. Re-

cent designs have provided floating point logic blocks along with fixed point

multipliers and adders, and fused data facilities in their toolchain [101]. Given

the potential of FPGAs there is more motivation to use FPGAs as acceler-

ators next to the processor with hardcoded functional units. Complex func-

tional units that might be used frequently and do not achieve efficiency or

performance on the processors could be hardcoded in the FPGAs.

Some of the drawbacks of using FPGAs are that they typically have

much higher power dissipation compared to an ASIC implementation of the

same logic, they are un-programmed at power up and need a PROM or host to

store an image of the hardware program. FPGAs offer limited logic capacity

on the chip and with slow clock frequency (100-300 MHz) FPGAs can reach

high GFLOPs/Watt, but their peak performance is then limited. According

to FPGA vendors like Altera/Xilinx, an FPGA with 40nm technology can

achieve at most 100 DP-GFLOPS performance at 7 GFLOPs/Watt of power

efficiency [100].

Specialized hardware implementations of GEMM on FPGAs have been

explored before, either as dedicated hardware implementation [155, 156] or
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in combination with a flexible host architecture [82]. Such approaches show

promising results (up to 99% utilization) but are limited by the performance

and size restrictions in FPGAs. Matrix multiplication on Stratix III with up

to 50 GFLOPS [83], on Xilinx vertex II FPGA with up to 15.6 GFLOPS [34],

and on Virtex-5 SX240T with up to 30 GFLOPs [77] are some of the many

implementations in the literature. Performance and energy efficiency of FPGA

implementation of matrix multiplication with DSPs and embedded processors

has been compared in [124]. New algorithms and architectures [64] offer trade-

offs among the number of I/O ports, the number of registers, and the number

of PEs to significantly reduce the energy dissipation and latency. However,

with the flexibility of being able to implement various algorithms directly in

hardware comes an inherent overhead for a general, reconfigurable hardware

fabric.
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Chapter 3

Linear Algebra Core (LAC) Design

Our design methodology starts by focusing on the inner kernel of gen-

eral matrix-matrix multiplication (GEMM). Most dense linear algebra algo-

rithms can be cast to spend most computations in GEMM. With its high ratio

of computation to data motion and its balanced use of addition and multi-

plication, GEMM provides the opportunity to attain near peak sustainable

floating-point computation rates for a given computer system. The lessons

learned from optimizing the design for GEMM are crucial and fundamental

for other important linear algebra operations. We start in a bottom-up fash-

ion with algorithm/architecture co-design of a linear algebra core and study

its memory hierarchy tradeoffs. We fine tune the core design for efficiency and

performance. We design our engine with an outlook of supporting algorithms

beyond GEMM.

A high-level design for a Linear Algebra Core (LAC) is shown in Fig-

ure 3.1. It consists of a 2D array of nr × nr processing elements (PEs), each

of which has a MAC unit with a local accumulator, local storage, simple dis-

tributed control, and bus interfaces to communicate data within rows and

columns. For illustrative purposes we will focus our discussion on the case of
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the buses and the other PEs read these. The dashed lines show the current
data movement on the buses.

a mesh with nr × nr = 4× 4 PEs.

3.1 Basic Operation

A special case of GEMM will be used in this section to describe the

Linear Algebra Processor: Let C, A, and B be 4 × 4, 4 × kc, and kc × 4

matrices, respectively1. Then C += AB can be computed as a “block dot

product” illustrated by Figure 3.2.

1The choice of parameter labels like nr and kc mirrors those used in [52].
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B4,kc

+= ×
A4,kcC4,4

Figure 3.2: Matrix multiplication as a series of Rank-1 updates.

γ0,0 · · · γ0,3...
. . .

...
γ3,0 · · · γ3,3

 +=

α0,0

...
α3,0

(β0,0 · · · β0,3 )+

α0,1

...
α3,1

(β1,0 · · · β1,3 )+ · · ·

so that C is updated in the ith iteration with γ0,0 + α0,iβi,0 · · · γ0,3 + α0,iβi,3
...

. . .
...

γ3,0 + α3,iβi,0 · · · γ3,3 + α3,iβi,3

 . (3.1)

Each such update is known as a rank-1 update. In our discussions,

upper case letters denote (sub)matrices while Greek lower case letters denote

scalars.

Let us assume that 4×kc matrix A and kc×4 matrix B are distributed to

the array in a 2D cyclic round-robin fashion, much like one distributes matrices

on distributed memory architectures [25, 57]. In other words, αi,j and βi,j are

assigned to PE (i mod 4, j mod 4). Also, element γi,j of matrix C is assumed

to reside in an accumulator of PE (i, j). A simple algorithm for performing this

special case of GEMM among the PEs is to, for p = 0, . . . , kc − 1, broadcast

the pth column of A within PE rows, the pth row of B within PE columns,
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after which a local MAC operation on each PE updates the local element of

C.

3.2 PE Micro-Architecture

The prototypical rank-1 update given in Equation 3.1 gives a clear indi-

cation of possible parallelism: all updates to elements of C can be performed in

parallel. Elements of C are repeatedly updated by a multiply-add operation.

This suggests a natural top-level design for a processor performing repeated

rank-1 updates as a 2D mesh of PEs, depicted in Figure 3.1 (left). Each PE

(i, j) will update element γi,j.

Details of the PE-internal architecture are shown in Figure 3.1 (right).

At the core of each PE is a MAC unit to perform the computations γi,j +=

αi,pβp,j. Each MAC unit has a local accumulator register that holds the in-

termediate and final values of one inner dot product of the result matrix C

being updated. Apart from preloading accumulators with initial values of

γ, all accesses to elements of C are performed directly inside the MAC units,

avoiding the need for any register file or memory accesses. We utilize pipelined

units that can achieve a throughput of one MAC operation per cycle. Such

throughputs can be achieved by postponing normalization of results until the

last accumulation [142]. Being able to leverage a fused MAC unit with delayed

normalization significantly decreases power consumption while increasing pre-

cision.

As outlined in Section 3.1, we store the 4× kc matrix A and the kc× 4
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matrix B distributed among the PEs in local memories. It is well-understood

for dense matrix operations [25, 57] that communication is greatly simplified

and its cost is reduced if it is arranged to be only within PE rows and columns.

When considering γi,j += αi,pβp,j, one notes that if αi,p is stored in the same

PE row as γi,j, it only needs to be communicated within that row. Similarly,

if βp,j is stored in the same column as γi,j, it only needs to be communicated

within that PE column. This naturally leads to the choice of a 2D round-robin

assignment of elements, where αi,p is assigned to PE (i, p mod nr) and βp,j to

PE (p mod nr, j).

Each rank-1 update (fixed p, Eqn. 3.1) then requires simultaneous

broadcasts of elements αi,p from PE (i, p mod nr) within PE rows and of

elements βp,j from PE (p mod nr, j) within PE columns. This is illustrated

for the p = 1 update in Figure 3.1. In our design, we connect PEs by horizon-

tal and vertical broadcast buses. Interconnect is realized in the form of simple,

data-only buses that do not require overhead for address decoding or complex

control. PEs are connected to horizontal and vertical data wires via separate

read and write latches. This allows for simultaneous one-cycle broadcast of

two elements, αi,p and βp,j, to all PEs in the same row and column.

3.2.1 LAC Communication

The simple, symmetric and regular 2D mesh is scalable and easy to

route during physical design and layout. However, the number of PEs de-

termines the length and capacitive load of data buses. As such, wire delays
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put limits on the possible size, nr, of a LAP array that can perform one-cycle

broadcasts. In this case, buses can be pipelined and latencies are hidden by

overlapping with successive computations in the pipelined MAC units. This

makes the design reminiscent of a systolic array, with the major difference be-

ing that we locally store inputs and results. Hence, we only pipeline a subset

of input data but no intermediate results through the array.

Column buses in the PE mesh are multiplexed to perform column

broadcasts and also transfer elements of A, B and C to/from external memory

during initial preloading of input data and writing back of results at the end of

computation. For the latter purpose, PEs can internally read and write column

bus values from/to the MAC accumulator or local memory. In regular opera-

tion, row and column buses carry αi,p and βp,j values that continuously drive

PE-internal MAC inputs in a pipelined fashion. Sending PEs (i, p mod nr)

and (p mod nr, j) drive the buses in each row and column with values out of

their local memories, where diagonal PEs (i = j) simultaneously load two val-

ues from local memory onto both buses. For simplicity and regularity, sending

PEs receive their own broadcasted values back over the buses into the MAC

inputs like all other PEs. In such a setup, no additional registers or control

are necessary.

Alternatively, we can consider a setup in which all elements βp,j, p =

0, . . . , kc− 1 of B are replicated among all PEs in each row j. This eliminates

the need to broadcast these values across columns. Instead, elements of B
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are always accessed locally through an additional register file2. Trading off

storage for communication requirements, this setup avoids all column transfers,

freeing up column buses for prefetching of subsequent input data in parallel

to performing computations (see Section 3.3).

3.2.2 Local Store

Overall, the local storage in each PE consists of a larger single-ported

and a smaller dual-ported memory to store elements of matrix A and B re-

spectively. A small register file with one write and two read ports is considered

to store temporary values. Access patterns are predictable and in most cases

sequential. As such, only simple, auto-incrementing address generators are

required. Furthermore, memories can be efficiently banked to increase band-

width and reduce power. All combined, the data path is regular and simple

without any overhead associated with tags, large multiplexers or complex ad-

dress computations to support random accesses.

We note that the described approach, where essentially nr × nr inner

products update a nr×nr submatrix of C, adds the benefit of saving power in

MAC units by keeping elements of C in accumulator as long as possible and

performing normalization rarely.

2We include a small, general register file that carries little additional overhead but pro-
vides the flexibility of storing a number of intermediate values that can be (re)used as
MAC inputs and can be read or written from/to local memory. This will be beneficial in
supporting other linear algebra operations in the future.
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3.2.3 Control

LAC control is distributed and each PE has a state machine that drives

a predetermined sequence of communication, storage and computation opera-

tions. Local controllers in each PE are equally smart and all agents operate

in parallel and in lock step. PE executions are implicitly coordinated and

synchronized without any additional handshaking. Instead, inter- and intra-

PE data movement is predetermined, and each PE implicitly knows when and

where to communicate. Global control and handshaking is limited to coarse-

grain coordination for simultaneous triggering or stalling of all PEs at the

start of operation or in combination with external memory accesses. State

machines are microprogrammed via a few external control bits to select the

type of linear algebra operation that the PE should perform. Using only these

control signals and counter presets, we expect to be able to support the full

flexibility we want for executing, for example, all level-3 BLAS (matrix-matrix

operations) [32].

The basic state machine in each PE requires eight states, two address

registers and one loop counter. In the following sections, we will discuss LAP

and PE operation for bigger matrix multiplications that are broken into a

sequence of basic rank-k updates using a hierarchical blocking of input ma-

trices. Each additional level of blocking will require an additional loop and

loop counter. Since there are no loop-carried dependencies, we pipeline the

outer loops to effectively overlap the rank-k computation of the current kernel

with prefetching of the next kernel’s input data and writeback of the previous
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Figure 3.3: Memory hierarchy while doing GEMM. In each of the top three
layers of the pyramid, the largest matrix is resident, while the other matrices
are streamed from the next layer down.

kernel’s results. With B replicated and all of a larger A in local store, the re-

sulting state machine has a combined inner core state that runs all operations

in a single-cycle loop with full parallelism and 100% sustained LAP utiliza-

tion. With three levels of blocking, such PE control only requires a total of

four counters and ten states.
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3.3 GEMM Algorithm

In designing a complete Linear Algebra Processor (LAP), we not only

need to optimize the core, but also describe how data can move and how

computation can be blocked to take advantage of multiple layers of memory.

In order to analyze the efficiency attained by the core itself, we first need to

describe the multiple layers of blocking that are required. We do so with the

aid of Figure 3.3. For now it suffices to think of the LAP as consisting of one

of the described cores plus on-chip memory. Later, we will generalize this to

one with multiple cores.

Assume the matrices A, B and C are stored in memory external to the

LAP. We can observe that C += AB can be broken down into a sequence of

smaller matrix multiplications (rank-k updates with k = kc in our discussion):

C +=
(
A0 · · · AK−1

) B0
...

BK−1

 =
K−1∑
i=0

AiBi

so that the main operation to be mapped to the LAP becomes C += ApBp.

This partitioning of matrices is depicted in the bottom layer in Figure 3.3.

In the next higher layer (third from the top), we then focus on a single

update C += ApBp. If one partitions

C =

 C0
...

CM−1

 ,and Ap =

 A0,p
...

AM−1,p

 ,

then each panel of C, Ci, must be updated by Ci + = Ai,pBp to compute

C += ApBp.
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Let us further look at a typical Ci += Ai,pBp. At this point, the mc×kc

block Ai,p is loaded into the local memories of the PEs using the previously

described 2D round-robin distribution. Partition Ci and Bp into panels of

nr(= 4) columns:

Ci =
(
Ci,0 · · · Ci,N−1

)
and Bp =

(
Bp,0 · · · Bp,N−1

)
.

Now Ci += Ai,pBp requires the update Ci,j += Ai,pBp,j for all j. For each j,

Bp,j is loaded into the local memories of the PEs in a replicated column-wise

fashion. The computation to be performed is described by the second layer

(from the top) of the pyramid, which is also magnified to its right.

Finally, Ai,p is partitioned into panels of four rows and Ci,j into squares

of 4×4, which are processed from top to bottom in a blocked, row-wise fashion

across i. The multiplication of each row panel of Ai,p with Bp,j to update the

4 × 4 block of Ci,j is accomplished by the individual cores via the rank-1

updates described in Section 3.1. What is still required is for the 4× 4 blocks

Ci,j to be brought in from main memory.

This blocking of the matrices facilitates reuse of data, which reduces the

need for high bandwidth between the memory banks of the PEs, the on-chip

LAP memory and the LAP-external storage: (1) fetching of a 4× 4 block Ci,j

is amortized over 4× 4×kc MAC operations (4× 4 of which can be performed

simultaneously); (2) fetching of a kc×4 block Bp,j is amortized over mc×4×kc

MAC operations; and (3) fetching of a mc × kc block Ai,p is amortized over

mc × n× kc MAC operations.
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This approach is very similar to how GEMM is mapped to a general-

purpose architecture [52, 140]. There, Ai,p is stored in the L2 cache, Bp,j is kept

in the L1 cache, and the equivalent of the 4× 4 block of C is kept in registers.

The explanation shows that there is symmetry in the problem: one could have

exchanged the roles of Ap and Bp, leading to an alternative, but very similar,

approach. Note that the description is not yet complete, since it assumes

that, for example, C fits in the on-chip memory. Even larger matrices can be

accommodated by adding additional layers of blocking, as will be described

later (see Section 4.2.3).

3.4 Core Architecture

With an understanding of LAC operation, the basic core design, and

how matrix multiplication can be blocked, we can now investigate specific core

implementations including tradeoffs between the size of the local store and the

bandwidth between the on-chip memory and the core (we will consider external

memory later). In our subsequent discussion, 4×4, the size of the submatrices

of C, is generalized to nr × nr. Furthermore, in accordance with the blocking

at the upper memory levels, we assume that each core locally stores a larger

mc × kc block of Ai,p, a nr × nr subblock of Ci,j and a kc × nr panel of Bp,j

(replicated across PEs).

The local memory requirements for the core are that matrices Ai,p and

Bp,j must be stored in the aggregate memories of the PEs. To avoid power

and area waste of a dual ported SRAM, we decided to separate the local stores
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for Ai,p and Bp,j in the PEs. A single ported SRAM keeps elements of Ai,p

with one access every nr cycles. Since the size of Bp,j is small, we can keep

copies of B in all PEs of the same column. This avoids extra column bus

transactions and allows overlapping of computation with data movement in

and out of the core. As a result, the second SRAM is dual ported and is much

smaller compared to the first one. In each cycle, an element of B is read from

this SRAM to feed the local MAC unit in each PE. This strategy reduces the

aggregate local store size and power consumption in each PE.

The goal is to overlap computation of the current submatrix of Ci,j with

the prefetching of the next such submatrix. This setup can achieve over 90% of

peak performance when kc is sufficiently large. Thus, the size of the local store,

aggregated over all PEs, is given bymc×kc elements for Ai,p, and by 2×kc×nr×

nr elements for the current and next Bp,j and Bp+1,j. In total, the local memory

must be able to hold mckc + 2kcn
2
r = (mc + 2n2

r)kc single or double precision

floating point numbers. Note that the nr × nr submatrix of Ci,j is always

in the accumulators and never stored. However, concurrent prefetching and

streaming out of the next and previous such submatrix, respectively, occupies

two additional entries in the register file of each PE. Together with a register

each for internal transfers of locally replicated βp,j, every PE requires a register

file of size 4 (a size of 3, rounded up to the next power of two).

To analyze performance, let us assume an effective bandwidth of x

elements/cycle and focus on one computation Ci += Ai,pBp. Reading Ai,p

requires mckc/x cycles. Reading and writing the elements of Ci and reading
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the elements of Bp requires (2mcn+ kcn)/x cycles. Finally, computing Ci +=

Ai,pBp assuming peak performance requires (mckcn)/n2
r cycles. Overlapping

the communication of Ci and Bp with the computation of Ci gives us an

estimate for computing Ci += Ai,pBp of

mckc
x

+ max

(
(2mc + kc)n

x
,
mcnkc
n2
r

)
cycles.

Given that at theoretical peak this computation would take (mckcn)/n2
r cycles,

the attained core utilization can easily be estimated as the fraction of the two.

Notice that the complete computation C += AB requires loops around this

“inner kernel” for one Ci. Thus, it is this kernel that dictates the performance

of the overall matrix multiplication.

To achieve peak performance, the prefetching of the next block of A,

Ai,p+1 should also be overlapped with the computations using the current

block of Ai,p resulting in full overlapping of communications with computation.

In such a scenario, each PE requires a bigger local memory for storing the

current and prefetching of the next block of A. Thus, the size of the local

store, aggregated over all PEs, will become 2mckc + 2kcn
2
r = 2(mc + n2

r)kc.

This extra memory is effective if there is enough bandwidth to bring data to

the cores.

3.5 Core-Level Exploration

Figure 3.4 reports performance of a single core as a function of the

size of the local memory and the bandwidth to the on-chip memory. Here
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we use nr ∈ {4, 8}, mc = kc (the submatrix Ai,p is square), and n = 512

(which is relatively small). This graph clearly shows that a trade-off can be

made between bandwidth and the size of the local memory, which in itself is a

function of the kernel size (kc, mc, and nr).The graph also shows under what

conditions we can achieve 100% utilization.

The tradeoff between the needed bandwidth per core and local store

per PE is shown in Figure 3.5. The curve shows the relation between the

bandwidth and local store size needed to maintain peak performance. It (and

the equation that generated it) shows that by doubling the dimension, nr, while

fixing the local store size, the bandwidth demand doubles and performance

quadruples. This suggests that making nr as large as possible is more efficient.

However, nr cannot grow arbitrarily: (1) when nr becomes too large, the intra-

core broadcast require repeaters, which adds overhead; (2) exploiting task-level

parallelism and achieving high utilization is easier with a larger number of

smaller cores; and (3 ) with our choice of nr = 4, the number of MAC units in

each core is comparable to modern GPUs, allowing us to more easily provide

a fair comparison.

3.6 Power Analysis

To investigate and demonstrate the performance and power benefits of

the LAP, we have studied the feasibility of a LAP implementation in current

bulk CMOS technology using publicly available components and their charac-

teristics as published in the literature.
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For our analysis, we use area and performance data reported in [43]. We

estimate that a single- and double-precision FMAC unit occupies an area of

0.01mm2 and 0.04mm2, respectively. Furthermore, all recent literature reports

similar power consumption estimates of around 8-10mW and 40-50mW (at ≈

1GHz and 0.8V operation), respectively.

Using CACTI [93] with low-power ITRS models and aggressive inter-

connect projection, we obtained area estimates of around 0.13mm2 and we

calculated the dynamic power of the local SRAM at frequencies over 2.5 GHz

to be around 13.5mW per port. For the overall system estimation (see Sec-

tion 4.5), we project the dynamic power results reported by CACTI to the

target frequencies of the MAC units. According to the CACTI with low-

power ITRS setting, leakage power is estimated to be negligible in relation to

the dynamic power.

With a nr × nr 2D array of PEs, our design contains a total of 2× nr

32-bit (single precision) or 64-bit (double-precision) row and column buses.

However, per PE we only have 2/nr of the power consumption of a single bus.

CACTI reports three different classes of wires (fast local, semi-global, and

global) for different layers of the memory hierarchy. For intra-core communi-

cation, we assume fast local wires. For wires with 30% overhead, the distance

between repeaters is a maximum of more than 1.62mm. The delay optimal

wire has the shortest latency but consumes much more power due to closer

and bigger repeaters compared to slower and less power hungry wires like wire

with 30% latency overhead. The 30% latency overhead wire on the other hand

50



Speed
[GHz]

Area
[mm2]

Memory
[mW]

FMAC
[mW]

PE
[mW]

PE
[W/mm2]

PE
[GFLOP/

mm2]
PE
[GFLOP/W]

PE
[GFLOP2/W]

2.08 0.148 15.22 32.3 47.5 0.331 28.12 84.8 352.7
SP 1.32 0.146 9.66 13.4 23.1 0.168 18.07 107.5 283.8

0.98 0.144 7.17 8.7 15.9 0.120 13.56 113.0 221.5
0.50 0.144 3.66 3.3 7.0 0.059 6.94 117.9 117.9

1.81 0.181 13.25 105.5 118.7 0.670 19.92 29.7 107.5
DP 0.95 0.174 6.95 31.0 38.0 0.235 10.92 46.4 88.2

0.33 0.167 2.41 6.0 8.4 0.068 3.95 57.8 38.1
0.20 0.169 1.46 3.4 4.8 0.046 2.37 51.1 20.4

Table 3.1: 45nm scaled performance and area for a LAP PE with 16KBytes
of dual-ported SRAM.

is 30% slower but consumes much less power and has longer distance between

its repeaters. According to our area estimates, each PE will not be wider than

0.4 mm. Hence, for nr = 4, a broadcast bus will not require any overhead

(no wire repeaters and even less power consumption) compared to a point-to

point connectivity. The wire model suggests that with any type of wire, we

can reach over 2.2 GHz or over 1.4GHz bus frequency on the broadcast bus for

nr = 4,8 or nr = 16, respectively. The area of the bus per PE is 0.023 mm2

and the worst case the bus power is negligible.

Overall area, power and performance estimates for our PE design at

various operating points are summarized in Table 3.1. Running at a clock

frequency of 1 GHz, a 4× 4 LAP core is estimated to achieve an efficiency of

110 single-precision or 45 double-precision GFLOPS/W. We stress that the

point of this section is not to present the ultimate design.

To find the best combination of components and the best operating

frequency we used energy-delay W/GFLOPS2 [50], as well as GFLOPS/W

and GFLOPS/mm2 efficiency metrics. The best design choice has a lower
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the design.

energy-delay value and maintains high efficiency. Figure 3.6 shows the power/

throughput and the energy-delay for different PE frequencies. At 1.8 GHz

there is not much degradation in the energy-delay while power/throughput

increases significantly. At the left side of the spectrum low frequency designs

have high efficiency but with high energy-delay and low area efficiency. A good

tradeoff is achieved at a frequency of around 1 GHz, where energy-delay is still

decreasing and there is high area and power efficiency. Figure 3.7 shows the

trade-off between area/throughput, power/throughput and energy-delay. Low

frequency designs are on the right side of spectrum. At 1 GHz, more than twice

the area efficiency and energy-delay (0.1 mm2/GFlop and 10 mW/GFLOPS2)

is achieved when compared to a design at 0.3 GHz. Also, compared to 1.8 GHz

core, while having almost the same energy-delay, the power efficiency is 40%

better.

Table 5.4 summarizes key metrics for various systems running GEMM

as a representative matrix computation. For GPU and CPU architectures we
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Figure 3.7: Power efficiency and energy-delay vs. area efficiency at different
frequencies.

compare the LAC to Streaming Multiprocessors (SMs) and CPU cores, re-

spectively [133]. For FPGAs we searched for the best GEMM implementation

in 45nm technology, as reported on an Altera Stratix IV [100]. For the Cell

Broadband Engine, we scaled the power reports for the SPEs [147] to 45nm

technology and used the utilization numbers from [84]. We used the perfor-

mance, power, and area reports for ClearSpeed CSX700 cores in [5] and scaled

them to 45nm technology. Finally, we include core-level comparisons with

tiles in a 80-tile network-on-chip architecture [141] and clusters of the Rigel

accelerator [70].

We note that for a single-precision LAC at around 1GHz clock fre-

quency, the estimated performance/power ratio is an order of magnitude better

than GPUs. The double-precision LAC design shows around 55 times better

efficiency compared to CPUs. The power density is also significantly lower as

most of the LAC area is used for the local store. Finally, the performance/area

ratio of our LAC is in all cases equal to or better than other processors. All
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Architecture W
mm2

GFLOPS
mm2

GFLOPS
W Utilization

Cell SPE 0.4 6.4 16 83%
Nvidia GTX280 SM 0.6 3.1 5.3 66%
Rigel cluster 0.3 4.5 15 40%
80-Tile @ 0.8V 0.2 1.2 8.3 38%
Nvidia GTX480 SM 0.5 4.5 8.4 70%
Altera Stratix IV 0.02 0.1 7.0 90+%
LAC (SP) 0.2 19.5 104 95+%

Intel Core 0.5 0.4 .85 95%
Nvidia GTX480 SM 0.5 2 4.1 70%
Altera Stratix IV 0.02 0.05 3.5 90+%
ClearSpeed CSX700 0.02 0.28 12.5 78+%
LAC (DP) 0.3 15.6 47 95+%

Table 3.2: 45nm scaled performance and area of various cores running GEMM.

in all, with a double-precision LAC we can get up to 40 times better perfor-

mance in the same area as a complex conventional core but using less than

three quarter the power.

3.7 Summary

In this chapter we presented algorithm/architecture codesign of the

linear algebra core. We showed the mapping of the GEMM algorithm on our

proposed architecture. We developed analytical formulae and used it to study

the core’s design space tradeoffs. Power and performance estimates of the core

and its components were presented. A LAC is expected to achieve a power

efficiency of up to 50 GFLOPS/W, which is two orders of magnitude better

than CPU cores and an order of magnitude better than GPU cores.
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Chapter 4

Linear Algebra Processor (LAP) Design

In the previous chapter, we showed how a LAC can easily compute

with data that already resides in on-chip memory. The question is now how

to compose the GEMM C + = AB for general (larger) matrices from the

computations that can occur on a (larger) Linear Algebra Processor (LAP)

that is composed of multiple cores. The key is to amortize the cost of moving

data in and out of the cores and the LAP. We describe that in this chapter

again with the aid of Figure 3.3 (refined in Figure 4.1) . This framework will

allow us to generally study tradeoffs in the memory hierarchy built around

the execution cores. Using an optimized linear algebra core, we further extend

our studies and codesign methodology to the next level of memory hierarchy

and discuss the tradeoffs and power analyses of the multi-core linear algebra

processor [111]. We observe the sources of inefficiency in other state-of-the-art

architectures using our power studies.

4.1 The LAP Architecture

We start by translating the insights about the hierarchical implementa-

tion of GEMM on the LAC into a practical implementation of a LAP system.
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Figure 4.1: Memory hierarchy with multiple cores in a LAP system.

We investigate a simple system architecture that follows traditional GPU and

multi-processor styles in which multiple cores are integrated on a single chip

together with a shared on-chip L2 memory. The shared memory can in turn

be banked or partitioned with a corresponding clustering of cores. In doing

so, we derive formulae for the size of the shared on-chip memory and the re-

quired bandwidth between the LAP and external memory, all in relation to

the number and size of the LAP cores themselves (see Section 3.4).

Figure 4.1 shows the use of the memory hierarchy for a larger matrix

multiplication distributed across multiple cores. As discussed previously, each

core locally stores a mc × kc (or 2mc × kc to allow for prefetching to achieve

peak performance) block of Ai,p , a n2
r subblock of Ci,j and a kc × nr panel of

Bp,j (replicated across PEs), where different row blocks and panels of A and

C are assigned to different cores. Bigger panels and blocks A, B and C are

then stored at the next higher level of the memory hierarchy. Since elements
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of C are both read and written, we aim to keep them as close as possible to

the execution units. Hence, the shared on-chip memory is mainly dedicated

to storing a complete n× n block of matrix C. In addition, we need to share

the current kc × n row panel of B among the cores. With S cores in the LAP

system and space for prefetching of blocks and panels of A and B, the total size

of the on-chip shared memory therefore becomes n2 + S ×mc × kc + 2kc × n.

This on-chip memory size does not reflect full overlapping of computations

with communication in the chip level.

The intra-chip bandwidth required between cores and the on-chip mem-

ory for optimal performance can be computed as: S×mc×n elements of C have

to be fed into the cores and the results collected back in Smcnkc/Sn
2
r cycles,

and kc×n elements of B have to be broadcast to all cores in mckcn/n
2
r cycles.

With this, the maximum bandwidth required for the shared, on-chip memory

becomes 2S×nr2

kc
+ n2

r

mc
. Extrapolating from the analysis presented in Section 3.4

with n/mc row panels and subblocks evenly distributed across S parallel cores,

and again assuming a limited memory bandwidth of y elements/cycle, a whole

C += ApBp computation including fetching of S mc × kc blocks of Ai,p will

require the following number of cycles:

n

Smc

(
Smckc
y

+ max

(
(2Smc + kc)n

y
,
Smcnkc
Sn2

r

))
.

When computation dominates (the second term in the “max” domi-

nates) the peak performance is independent of mc, i.e. independent of the

granularity at which C and the A panel are split into row chunks. Thus, mc
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can be chosen to optimize memory bandwidth and the size of local store.

Finally, the required bandwidth between the LAP and external memory

can be estimated. The bandwidth required for transfering the kc×n panels of

Ap and Bp in the n2kc/Sn
2
r cycles required to process one such set of blocks,

is 2Sn2
r/n

2. Furthermore, assuming we were to amortize reading and writ-

ing of n2 elements of C over the n3/Sn2
r cycles required to perform the whole

computation for all n/kc panels, the external bandwidth required would be the

same as what is internally needed to feed the cores, i.e. 2Sn2
r/n. All combined,

the maximum bandwidth required at the LAP’s memory interface can be esti-

mated as 3Sn2
r/n for reading and Sn2

r/n for writing from/to external memory.

Conversely, if we assume an external memory bandwidth of z elements/cycle

and overlap computation with communication of A and B but not of C, the

whole matrix multiplication will take

2n2

z
+ max

(
2n2

z
,
n3

Sn2
r

)
cycles.

Overlapping transfers of C can be estimated in a similar fashion. Furthermore,

given that at theoretical peak this computation would take n3/Sn2
r cycles, the

achievable utilization can be estimated.

4.2 Chip-Level Exploration

The overall system design is an optimization and exploration problem

that strives to minimize the size of and bandwidth between layers of the mem-

ory hierarchy, while optimizing the performance and utilization of the cores.
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Core

Local Memory size

[Words/PE]
Intra-core BW
[Words/Cycle]

Core-chip BW

[Words/Cycle]

partial overlap (mckc/n2
r + 2kc) nr(1 + (2/kc + 1/mc)) (2/kc + 1/mc)n2

r

full overlap (2mckc/n2
r + 2kc) nr(1 + (2/kc + 1/mc + 1/n)) (2/kc + 1/mc + 1/n)n2

r

Chip

Memory Size

[Words]

Intra-chip

[Words/Cycle]

Off-chip BW

[Words/Cycle]

partial overlap n2 + Smckc + 2kcn (2S/kc + 1(S)/mc)n2
r 2Sn2

r/n
full overlap 2n2 + Smckc + 2kcn (2S/kc + 1(S)/mc + S/n)n2

r 4Sn2
r/n

Table 4.1: Bandwidth and memory requirements of different layers of memory
hierarchy.

Given specific restrictions, e.g. on memory bandwidth or input matrix size,

this yields the number of PEs in each core, the number of cores on a chip and

the sizes and organization of the different levels of the memory hierarchy.

Table 4.1 summarizes the bandwidth and sizes of different layers of the

memory hierarchy. This table shows the demands of the partially overlapped

and the fully overlapped versions of the algorithm as a function of the number

of cores, block sizes, and matrix size when m = n = k. In the core level

analyses, the partially overlapped version assumes that bringing blocks of Ai,p

to the core is not overlapped with computation. At the chip level, partially

overlapped versions assume that transferring of matrix C to and from off-chip

memory is not overlapped with computation.

The main design challenge is to understand the dependency of design

parameters on each other and their effects on power, area, and performance. In

the following, we describe several explorations of the design space and analyze

the tradeoffs between parameters and the overall performance. Later, we will

merge the knowledge gained from these studies with power and area models

to explore the design space from a practical perspective.
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Figure 4.2: On-chip bandwidth vs. memory size for different core organiza-
tions, and problem sizes for fixed number of total PEs, and mc = kc. The
utilization in all cases is over 93%.

4.2.1 Memory size vs. bandwidth

Based on our analytical model, we can evaluate the trade-off between

the size of the on-chip memory and the intra-chip bandwidth between cores,

and the on-chip memory, as shown in Figure 4.2. The resulting utilization

in all cases is over 90%. We explore this trade off for S = 8, nr = 4 and

S = 2, nr = 8 with a total number of PEs on the chip (S × n2
r) equal to 128

in both cases. We can note that bandwidth demands grow quadratically as

the size of available on-chip memory is reduced. This graph also demonstrates

that bigger but fewer cores on the chip demand much less on-chip bandwidth.

However, for a fixed problem size of C, bigger cores will require a bigger size

for the on-chip memory, leading to a tradeoff between on-chip memory size

and bandwidth. This extra space requirement is due to wider panels of A and
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B that must be stored in the shared memory.

4.2.2 Number of LACs vs. on-chip bandwidth and memory size

We analyze the overall performance of the design when the number

of cores is increased for different on-chip memory sizes and on-chip memory

bandwidths. The curves in Figure 4.3 show the percentage of performance

compared to a single 4 × 4 core for different numbers of cores and available

on-chip bandwidths. The graph contains four sets of four curves where each

set has the same ratio for the number of cores to available on-chip band-

width S/BW, (indicated by same marker type). We observe that for small

memory sizes different points of the same set with the same S/BW ratio all

exhibit similar performance. Although the on-chip bandwidth is increased

linearly with the number of cores, there is no performance improvement. To

achieve performance gains when increasing the number of cores, the band-

width has to grow superlinearly. However, as the size of memory increases,

there is more benefit for using more cores to gain performance even with linear

bandwidth increases.

For configurations with the same number of cores S, (indicated by the

same line style or color) we observe that, as the bandwidth increases, the curves

reach a peak eventually. The point in each curve with the smallest on-chip

memory and peak performance is the optimal design point. Note that such a

point is on the optimal design curve in Figure 4.2, too. For example, for S = 8

cores, a bandwidth of 4 bytes or words/cycle, with an on-chip memory size of
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Figure 4.3: LAP performance for different on-chip memory sizes, different
number of cores, and different total on-chip bandwidths with nr = 4 and s=4,
8, 12, 16.

13 Mbytes, and a bandwidth of 8 bytes/cycle with an with on-chip memory

size around 3 MBytes are both optimal design points.

As mentioned above, the increase in bandwidth requirements needed

for maintaining optimal performance with an increase in the number of cores

is exponential. This can be further studied by finding the optimal points that

have same on-chip memory size, but a different number of cores. For example,

to achieve peak performance with different number of cores S = 4, 8, 16 at

2.5 MBytes on-chip memory, the required bandwidth is 2, 8, 32. This shows

the quadratical growth in bandwidth demand to maintain utilization when

increasing the number of the cores.
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memory. a) blocking for quarter size b,c)blocking for half size.

4.2.3 On-chip memory size vs. off-chip bandwidth

Finally, we analyze the tradeoff between the size of the on-chip memory

and the external, off-chip bandwidth. We assume that the problem size and

number of cores are fixed, and initially the optimal local store size is allocated

in the cores and PEs on the chip. Next, we shrink the available on-chip memory

and compute the external bandwidth demands to keep the performance over

90%. The algorithmic solution to this problem is adding another layer of

blocking as shown in Figure 4.4. The matrix dimension of the original problem

size is is n and the new block size is ns. We call this ratio d = n
ns

. After

shrinking the available on-chip memory, the solution assumes that a single

63



0 2 4 6 8 10 12 14 16 18
2

4

6

8

10

12

14

16

18

20

On−Chip Memory [MBytes]

E
x
t
e
r
n
a
l
 
B
a
n
d
w
i
d
t
h
 
[
b
y
t
e
/
c
y
c
l
e
]

 

 
N=2048
N=1024
N=512

Figure 4.5: External Bandwidth vs. Size of on-chip memory tradeoff for dif-
ferent original problem sizes. All utilization numbers are over 92%.

(Figure 4.4-(a)) or k ≤ d (Figure 4.4-(b,c) k=d) sub-blocks of the original

matrix C can fit on the new on-chip memory. Then, the algorithm performs

all operations and data movements necessary to compute these k sub-blocks

of C. The new off-chip bandwidth for the new smaller on-chip memory and a

sub-problem size k×(ns×ns) as part of the original n×n matrix multiplication

can be computed as

k((2)n2
s) + (k + 1)nns

kn2
sn

=
(2)k + (k + 1)d

kn
elements/cycle

Figure 4.5 shows the external bandwidth demands for three different prob-

lem sizes and how they increase as the size of on-chip memory is reduced.

With growing original problem sizes n× n, for the same on-chip memory size,

the external bandwidth drops. We observe that as the original problem size

increases, the external off-chip bandwidth requirement for the same system
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Figure 4.6: LAP performance as a function of external off-chip bandwidth and
the size of on-chip memory with nr = 4, mc = kc.

configuration decreases slightly. Still, the similar bandwidth vs. on-chip mem-

ory size trade-off exists to maintain high system utilization.

Figure 4.6 summarizes overall performance of a 1.4GHz LAP as a

function of the size of the on-chip memory (dictating the possible kernel

size), the number of cores, and the external bandwidth to the off-chip mem-

ory. Here we use nr = 4, mc = kc (the submatrix Ai,p is square) and

n = 256, 512, 768 or 1024 as the dimension of matrix C (kernel size, which

translates into a corresponding on-chip memory size). As we increase the

available core parallelism, the needed off-chip bandwidth increases for the same

problem size1. Also when problem size grows, with same off-chip bandwidth

1Note that the needed on-chip memory size also increases slightly due to additional
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we get better performance. This graph shows that a small L2 memory size

(e.g. as is the case in GPUs), which determines the possible on-chip problem

size, limits the achievable peak utilization (”exploitable parallelism”). Overall,

with 16 cores, 5 Mbytes of shared on-chip memory and an external bandwidth

of 16B/cycle, we can achieve 600 GFLOPS out of 700 GFLOPS peak.

4.3 Model Validation and Performance Prediction

The analytical models that we presented so far can help designers in

early stages of the design process verify performance and utilization of their

architecture for the class of matrix operations. In this section, we demonstrate

the benefits and feasibility of our analytical models for early performance pre-

diction by using them to discuss common sources of inefficiencies in existing

architectures. We specifically study examples of state-of-the-art GPU and

other accelerated architectures.

There are two common limitations in parallel architectures that re-

strict their performance and efficiency. First, the core architectural and micro-

architectural features can limit the accessibility of local register files and the

number of instructions executed in each cycle [106]. Second, the memory hier-

archy organization that includes sizes of layers and bandwidths between them

might not be able to sustain data movement from/to the computation cores.

In the following, we assume that the cores are perfectly designed. The main

storage required for prefetching across more cores.
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metric affected by core-level design issues is the achievable peak efficiency in

terms of both energy spent per operation (GFLOPS/W) and achievable uti-

lization. We have shown how to design such an ideal core in Chapter 3. A

further study of core-level micro-architectural tradeoffs is outside of the scope

of this document. Instead, we focus on analysis of the memory hierarchy. The

main efficiency metric affected by the memory hierarchy trade-off is achievable

utilization. In the following, we will specifically show how we can apply our

analytical memory hierarchy model to predict limitations in Nvidia’s Fermi

and Clearspeed’s CSX architectures.

The Nvidia Fermi C2050 architecture has 14 cores with 16 double-

precision MAC units in each core. The size of the on-chip cache is 768 KBytes.

The clock frequency is 1.15 GHz. Let us assume that cores are designed to

achieve up to peak performance. With 768 KBytes and S = 14 cores, the di-

mension of the largest block of matrix C that is evenly divisible by S and nr = 4

while fitting in the on-chip memory is ns = 280. Including the corresponding

panels of A and B, this setup fills 700 KBytes of on-chip L2 cache. Dividing the

block C into row panels among the 14 cores results in mc = ns/S = 280/14 =

20. Hence, the size of each row panel of C is mc×ns = 20×280. Thus, the pa-

rameters of the design are as follows: mc = kc = 20, S = 14, ns = 280. Assum-

ing full overlapping, the maximum required off-chip bandwidth according to

Figure 4.1 is (4×14×42

280
)×1.15GHz×8Bytes= 30GBytes/second, which is within

the 144 GBytes/second that Fermi offers. The required on-chip bandwidth is

(2S
kc

+ S
mc

)n2
r = (2×14

20
+ 14

20
)42×1.15 GHz ×8 Bytes= 310 GBytes/second, which
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is much more than the 230 GBytes/second that Fermi offers. To calculate

theoretically achievable utilization using such a configuration, we divide the

available bandwidth by the demanded bandwidth: 230/310 = 74%. In reality,

implementations of GEMM on C2050 achieve 70% of peak performance [133].

Hence, our model accurately predicts that the on-chip bandwidth of Fermi

does not meet the needs of matrix multiplication. One can overcome this

under-utilization by increasing the on-chip bandwidth (see above), or by in-

creasing the on-chip memory size. If the size of on-chip memory is doubled

in the previous case, the required on-chip bandwidth can drop to half, or 160

GBytes/second, using the solution in Figure 4.4-c.

We use the same methodology to analyze the Clearspeed CSX architec-

ture. The CSX architecture achieves up to 78% of peak performance for matrix

multiplication [5]. The CSX architecture has 128 KBytes of on-chip memory.

The block of C that fits on this memory is 64 × 128. Again, we assume that

this architecture has six optimal 4 × 4 cores. Using the algorithm described

in Figure 4.4, with d = 16, k̃ = 2, the minimum off-chip bandwidth demand is

4.7 GBytes/second. With an actual 4 GBytes/second off-chip bandwidth, our

predicted upper limit for achievable utilization for this architecture is 83%.

We can increase the utilization by increasing the size of on-chip memory. If

one doubles the size of memory it can fit 128 × 128 blocks of C. Using the

same algorithm with d = 8, k̃ = 1, the minimum off-chip bandwidth drops to

3.375 GBytes/second, which is less than off-chip bandwidth provided by the

CSX architecture.
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Figure 4.7: Area of a single PE in a 4x4 core for different local store sizes at
45nm.

4.4 Power and Area Exploration

In this section, we use power and area models to study the design space

that we created in Section 4.2. We explore various trade-offs and how each

design feature can affect the power and area consumption of the whole system.

We use analytical results from Section 4.2 and apply representative power and

area numbers to each point in the design space. This will allow us to evaluate

how size and bandwidth of different layers of the memory hierarchy affect the

overall performance and efficiency of the design.

At the core level, the goal is to have enough bandwidth and local store

to maintain peak performance (equivalent to Figure 3.5) . We select the size

of the core to be nr = 4, and show the core-level area and power consump-

tions. Figure 4.7 illustrates the area of different components within the PE.

With a local store size of 18 KByte, the local store occupies at most 2/3 of

the PE, which exhibits a linear relation to the local store capacity size. The
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Figure 4.8: Leakage, local store, and total power efficiency of a PE at in a 4x4
core at 45nm.

power/throughput ratio of the PE, the local store, and the total leakage is

shown in Figure 4.8. The graph suggests that with smaller local stores and

even with higher bandwidths still less power is consumed by each PE. The over-

all PE power consumption is dominated by the FPU. These graphs advocate

smaller local store sizes in terms of power and area consumption. However,

there are three reasons that force larger PE local stores. First, the power

density increases if local store size is reduced, which may limit the overall

performance. Second, although decreasing the local store size does not af-

fect the core power consumption, the required on-chip bandwidth will increase

quadratically, which decreases the utilization and also results in a significant

increase of the total power consumption. Finally, as we will discuss later for

algorithms like Cholesky factorization where all the data is in-core, a bigger lo-

cal store per PE yields to the ability of handling bigger kernels and amortizing

more of the irregular computations over the available parallelism.
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Figure 4.9: Area of cores, on-chip memory and a total 128 MAC unit system
with S=8 4x4 cores, different on-chip SRAM memory sizes, and n=2048.

At the chip level, we estimate the effect of on-chip memory size on

overall power and area while maintaining peak performance (similar to Fig-

ure 4.5). For each on-chip memory size, there are different options in terms of

core configuration. We choose the biggest possible local store size to minimize

intra-chip traffic and hence power consumption. Here, the power consumption

due to external accesses is not included. Figure 4.9 shows the area consump-

tion of the cores and on-chip memory. Figure 4.10 shows that with our domain

specific design of on-chip SRAM memory almost all of the power of the chip

is used by the eight cores and memory trade-offs are negligible.

In order to get a better sense of memory trade-offs in more general

systems, we performed the same analysis using the NUCA [93] memory sim-

ulator of CACTI and replacing the SRAM design by Nuca caches. Here, the

effects of increased bandwidth with smaller memory sizes are seen more real-

istically. In our LAP design, we use single-ported memory banks in low-power
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Figure 4.10: Power efficiency of cores, on-chip memory and a total 128 MAC
unit system with S=8 4x4 cores, different on-chip SRAM memory sizes, and
n=2048.

technology and with low clock frequencies. In a Nuca cache based design,

either multi-ported caches or high-performance, high-power banks have to be

used to maintain the same high bandwidths at small memory sizes. We chose

high-performance, high-power caches since they require less area and power

compared to multi-ported designs. As shown in Figure 4.11, in all cases the

on-chip Nuca memory occupies more space than the computation cores do.

Furthermore, a design with small capacity, high bandwidth banks ends up oc-

cupying more space than a larger, slower on-chip memory. Higher bandwidth

also affects the power consumption of the system. Figure 4.12 shows that at

lower capacities, on-chip Nuca memory consumes more power than the com-

putation cores. In other words, a design with larger, simpler on-chip Nuca

cache size is both more power and more area efficient.
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Figure 4.13: Normalized power breakdown of Nvidia Tesla GTX280 versus
LAP at 65nm.

4.5 Comparative Power and Performance Analysis

Figures 4.13, 4.14, and 4.15 show a breakdown of performance-normalized

power consumption for current high-performance GPGPU and multi-core archi-

tectures as compared to single- or double-precision versions of a prototypical

LAP with an equivalent number of cores (i.e. Shared Multiprocessors, SMs,

in GPUs2) running at equivalent raw single FMAC performance (1.3GHz or

1.4GHz). In the case of GPUs (Figures 4.13, 4.14), we show efficiencies for

both peak operation and when running GEMM. Current GPUs run single- or

double- precision GEMM (SGEMM or DGEMM) at only around 60% of their

2In the GTX480, each SM provides 16-way double-precision or 32-way single-precision
parallelism. Correspondingly, we replace SMs with one or two 4×4 double- or single-precision
LAP cores, respectively.
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Figure 4.14: Normalized power breakdown of Nvidia Fermi GTX480 versus
LAP at 45nm.

theoretical peak FPU performance [10, 94, 143]. As the graphs show, reduced

utilization has a significant effect on achievable efficiencies, even when con-

sidering that unneeded components, such as constant caches, texture caches,

extra ALUs or special functional units (SFUs) can be turned off. By contrast,

the Intel Penryn dual-core processor and a LAP with two 4× 4 cores running

at 1.4GHz, i.e. at around half of the Penryn’s 2.66GHz clock speed, achieve

near peak utilization at a moderate performance of 20 and 90 double- precision

GFLOPS, respectively (Figure 4.15).

Breakdowns show that traditional architectures include significant over-

head. The only units that are really useful for performing matrix multiplication

are FPUs/execution units, shared memories/L1 caches, L2 caches and TLBs.

In the GPUs, components like shared memories, instruction caches or regis-

ter files can consume up to 70% of the power, and in some cases the register
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Figure 4.15: Normalized power breakdown of Intel dual-core Penryn versus
LAP at 45nm.

file alone contributes more than 30%. By eliminating instructions, associated

cache power is removed from the LAP. Similarly, register files are very small

and shared memories are replaced by sequentially accessed, partitioned SRAM

with a maximum of 2 read/write ports. For the Penryn, we mainly relied on

the power breakdown presented in [47], where we assumed that GEMM utilizes

all of the core. In the graph, the SRAMs and MACs of the LAP are listed

under the MMU and execution unit categories. We conservatively added all of

the miscellaneous and IO power consumption factors to the LAP, which favors

the Penryn in this comparison. We can observe that the Penryn uses 40% of

the core power (over 5 W) in the Out of Order and Frontend units that do not

exist in LAP architecture. Furthermore, with around 5 W the execution unit

consumes one third of the core power, which may be attributed by support of

exception handling and IEEE-754 full compatibility.
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and a LAP of equivalent throughput.

Finally, we compare overall efficiency and inverse energy-delay [50] of

single- and double-precision realizations of our design against other systems.

Figure 4.16 shows an analysis of core- and chip-level efficiencies for studied

architectures and a LAP in which we vary the number of cores to match the

throughput in existing architectures. Our LAP with 30 single- or 15 double-

precision cores and 5Mbytes of on-chip memory achieves a GEMM performance

of 1200 and 600 GFLOPS at a utilization of 90% in an area of 115 mm2 or 120

mm2, respectively. By comparison, the dual-core CPU achieves 22 GFLOPS

in 100mm2 and the GTX480 runs SGEMM/DGEMM with 780/390 GFLOPS

and 58% utilization using 15 SMs in total 500mm2 chip area.

Table 5.4 summarizes key metrics for various systems running GEMM

as a representative matrix computation. For this table, we extended the anal-

77



ysis presented in [70] by including estimates for our LAP design, the 80-tile

network-on-chip architecture from [141], the Power7 processor [144], the Cell

processor [84], Intel Penryn [47], Intel Core i7-960 [27], CSX700 [5], Altera

Stratix IV [100], and the NVidia Fermi GPU (GTX480) [68] all scaled to

45nm technology and to GEMM utilizations.

We note that for a single-precision LAP at around 1.4GHz clock fre-

quency, the estimated performance/power ratio is an order of magnitude better

than GPUs. The double-precision LAP design shows around 30 times better

efficiency compared to CPUs. The power density is also significantly lower as

most of the LAP area is used for local store. The performance/area ratio of

our LAP is in all cases equal to or better than other processors. Finally, the

inverse of energy-delay of LAP is at least an order of magnitude better that

all other designs. All in all, with a double-precision LAP we can get up to 32

times better performance in the same area as a complex conventional core but

using almost the same power.

Overall, some of the major differences between traditional general-

purpose designs and a specialized linear-algebra architecture lie in the memory

architecture and the core execution unit datapaths. The LAP has relatively

large L1- and L2-equivalent PE and on-chip memories, comparable in size to

multi-core architectures but an order of magnitude bigger than in GPUs. This

keeps bandwidth between memory layers low. All memories are pure, banked

SRAMs with no tagging or cache consistency overhead. Consequently, mem-

ories are more power efficient and smaller than in other architectures despite
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Architecture GFLOPS W
mm2

GFLOPS
mm2

GFLOPS
W

GFLOPS2

W Utilization

Cell 200 0.3 1.5 5.0 1000 88%
Nvidia GTX280 410 0.3 0.8 2.6 1066 66%
Rigel 850 0.3 3.2 10.7 9095 40%
80-Tile @0.8V 175 0.2 1.2 6.6 1155 38%
80-Tile @1.07V 380 0.7 2.66 3.8 1444 38%
Nvidia GTX480 940 0.2 0.9 5.2 4230 70%
Core i7-960 96 0.4 0.50 1.14 109.44 95%
Altera Stratix IV 200 0.02 0.1 7 1400 90+%
LAP (SP) 1200 0.2 6-11 30-55 66000 90+%

Intel Quad-Core 40 0.5 0.4 0.8 32 95%
Intel Penryn 20 0.4 0.2 0.6 12 95%
IBM Power7 230 0.5 0.5 1.0 230 95%
Nvidia GTX480 470 0.2 0.5 2.6 1222 70%
Core i7-960 48 0.4 0.25 0.57 27.36 95%
Altera Stratix IV 100 0.02 0.05 3.5 350 90+%
ClearSpeed CSX700 75 0.02 0.2 12.5 937.7 78+%
LAP (DP) 600 0.2 3-5 15-25 15000 90+%

Table 4.2: 45nm scaled performance and area of various systems running
GEMM.

being larger. Shared on-chip memory can be partitioned among groups of

cores with each bank being only coupled with its set of cores. Note that we do

not include external memory in our analysis. With system architectures in-

creasingly integrating host processors and accelerators on a single die, we can

expect similar benefits to extend into other such memory layers. Again, larger

on-chip memories in the LAP help to decrease external memory bandwidth

and power consumption requirements.

For execution units and data paths, we can observe that unnecessary

overheads are removed by performing whole chains of operations in local accu-

mulators without any register file moves that become necessary in traditional

SIMD arrangements. This is further confirmed by low GEMM utilizations,
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Power Waste Sources CPUs GPUs LAP

Instruction Pipeline ICache, Out of Order, ICache, In order, No Instructions
Branch Prediction NA

Execution Unit 1D SIMD+RF 2D SIMD+RF 2D+Local SRAM/FPU
Register File & Move Many Ported Multiple Ported 8 Entry Single Ported

On-chip Memory Big Cache Small Cache Big SRAM
Organization Strong Coherency Weak Coherency Tightly Coupled Banks

Multi-Thread Support SMT Blocked MT Not Supported
BW/FPU Ratio High High Low (Enough)

Memory Size/ FPU Ratio High Low (Inadequate) High

Table 4.3: Comparison between main design choices in the studied platforms.

which indicates that despite existing architectural features, idiosyncrasies of

traditional architectures make it difficult to keep a large number of FPUs busy.

Overall, the 2D PE arrangement with local, partitioned memory is scalable

with exponential growth in computation power for a linear growth in inter-

connect and bus lengths. With relatively low overhead for specialized MAC

units and broadcast buses, we can envision such specialized data paths to be

integrated into standard processor pipelines for order of magnitude improved

efficiency in a linear algebra computation mode. Table 4.3 summarizes the

differences discussed in this section.

4.6 Summary

This chapter presented the integration of a multi-LAC architecture into

a LAP with on-chip SRAM. Like Chapter 3, we studied the architecture design

space of this multi-core environment. We completed our analytical formulae,

which demonstrate architectural tradeoffs between the memory bandwidth and

storage size in different layers of the memory hierarchy. We used our analytical

analyses and successfully predicted the utilization of some examples of existing
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architectures. We further presented power breakdowns for the LAP, and some

examples of existing CPUs and GPUs to compare sources of inefficiency in

those architecture. Our study shows how efficiency necessarily drops from a

core to a multi-core design.
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Chapter 5

Generalization to Level-3 BLAS

In previous chapters, we provided detailed studies for mapping of the

GEMM algorithm on the LAP and its design tradeoffs across different levels of

the memory hierarchy. The next goal that we pursue is codesign for flexibility

and support for a whole class of operations. In this chapter, we extend our

studies to other level-3 BLAS operations, demonstrating that with small micro-

architectural modifications, the computation cores (LACs) can be extended to

support the full set of level-3 BLAS operations with negligible loss in efficiency.

Main key to this success is the intra-core interconnect, which is real-

ized with simple, data-only buses that do not require overhead for address

decoding or complex control. This interconnect is specifically designed to ef-

ficiently realize all collective communications, including broadcast or transpo-

sition, necessary to support the execution of level-3 BLAS operations. While

other architectures waste cycles and instructions to move data to their desired

destination, the LAC architecture can inherently and transparently overlap

computation, communication, and transposition. In this chapter, we empha-

size some of these abilities by demonstrating the details of representative level-

3 BLAS operations on the LAC.
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5.1 Level-3 BLAS Operations

We start by describing the level-3 BLAS operations and their compu-

tation and data handling requirements.

• General Matrix Multiplication (GEMM): We discussed the details of this

operation in Chapters 3 and 4. GEMM is the building block of the rest

of the level-3 BLAS operations. Most of the computation intensity in

the rest of level-3 BLAS routines is cast as GEMM operations.

• Symmetric Matrix Multiplication (SYMM): The SYMM operation com-

putes C := C+AB with a symmetric matrix A ∈ Rm×m and rectangular

matrix B ∈ Rm×n, updating C ∈ Rm×n. This operation is like GEMM

with the difference that only the lower triangular part of matrix A is

stored. Hence, to perform this operation, some blocks of A need to be

transposed to recover the upper triangular part of A.

• Triangular Matrix Multiplication (TRMM): The TRMM operation com-

putes B := LB with a lower triangular matrix L ∈ Rm×m, and rectan-

gular matrix B ∈ Rm×n. This operation uses the same block panel

multiplication as in GEMM. However, the length of the panels increases

in each iteration.

• Symmetric Rank-K update (SYRK): The SYRK operation computes

C := C + AAT with a rectangular matrix A ∈ Rn×m, updating only

the lower triangular part of the symmetric matrix C ∈ Rn×n. Matrix
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transposition needs to be implemented to perform this operation effi-

ciently. We will discuss this operation in detail.

• Symmetric Rank-2K update (SYR2K): The SYR2K operation computes

C := C+ABT+BAT with a rectangular matricesA,B ∈ Rn×m, updating

only the lower triangular part of the symmetric matrix C ∈ Rn×n. This

operation is very similar to SYRK and uses the same principles.

• Triangular Solve with Multiple right-hand sides (TRSM): The TRSM

operation solves a system of equations LX = B, with lower triangular

matrix L ∈ Rn×n and rectangular matrix B ∈ Rn×m, for X ∈ Rn×m, so

that upon completion X = L−1B. This is the most complex operation

of the level-3 BLAS. Extra functions like division are needed in addition

to multiply and add. We will discuss this operation in details as well.

We chose SYRK and TRSM as the two representative operations for

which we show implementations on the LAC. If the data handling and func-

tions of these two operations are supported by the LAC efficiently, this provides

strong evidence for support of the rest of Level-3 BLAS operations. SYRK re-

quires special data handling, namely matrix transpose, as part of its operation.

TRSM requires extra functionality, namely the 1/x or reciprocal operation. We

will see that multiple techniques must be exploited to extract parallelism and

overcome dependencies in the TRSM operation.
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B4,kc

+= ×
A4,kcC4,4

Akc,4T

+= ×
A4,kcC4,4

Figure 5.1: Computing the SYRK of a 4× 4 matrix. While it looks similar to
the matrix-matrix multiplication in Figure 3.2, notice that each column of A
needs to be transposed as the sequence of rank-1 updates is performed.

5.2 SYRK and SYR2K

The SYRK operation computes C := C + AAT with a rectangular

matrix A ∈ Rn×m, updating only the lower (or upper) triangular part of

the symmetric matrix C ∈ Rn×n. There are two algorithms (blocked and

unblocked) for computing SYRK that will be utilized. Different algorithms

become appropriate at different levels of the memory hierarchy in which the

data used by the computation is stored.

5.2.1 Unblocked SYRK on LAC

Let C and A be 4×4, and 4×kc matrices, respectively. Then C += AAT

can be computed as a “block dot product” very similar to how GEMM is

computed as series of rank-1 updates. The difference here is that instead of

matrix B, AT is going to be multiplied by matrix A as illustrated by Figure 5.1:

γ0,0 · · · γ0,3...
. . .

...
γ3,0 · · · γ3,3

 +=

α0,0

...
α3,0

(α0,0 · · · α3,0

)
+

α0,1

...
α3,1

(α0,1 · · · α3,1

)
+ · · ·
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Figure 5.2: Second iteration of a 4× 4 SYRK on LAC.

so that C is updated in the ith iteration with γ0,0 + α0,iα0,i · · · γ0,3 + α0,iα3,i
...

. . .
...

γ3,0 + α3,iα0,i · · · γ3,3 + α3,iα3,i

 . (5.1)

Let us assume that the 4× kc matrix A is distributed to the PE array

in a 2D cyclic round-robin fashion. We notice that the resulting matrix C in

Equation 5.1 is symmetric. Also, to perform this operation, column vectors

of A need to be transposed to perform each rank-1 update. This transpose

operation can be overlapped with computation by taking advantage of the 2D

arrangement of PEs and the broadcast buses. The diagonal PEs can receive

columns of A from row buses and then broadcast them across the column buses

to produce the transposed vector.

Thus, at the lowest level, the unblocked algorithm computes the SYRK

of a nr × nr sub-matrix of C stored in the accumulators of the LAC from a
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nr×kc sub-matrix of A. Three different operations take place in the same cycle

in each iteration. Figure 5.2 illustrates the second (i = 1) iteration of a SYRK

operation. The ith column of PEs broadcasts the values of the ith column of

A, ai, across the row busses, where the PEs in each row keep a copy of these

values in their register file for use in the next iteration. At the same time, the

values ai−1 from the previous iteration are transposed along the diagonal PEs

by broadcasting them over the column busses. Hence, all PEs now have copies

of elements of ai−1 and aTi−1, and a rank-1 update is performed to compute

C := C + ai−1 × aTi−1. The aTi−1 is also kept in (i − 1)th row of PEs to store

AT . This is repeated for i = 0, . . . , kc cycles.

5.2.2 Blocked SYRK on LAC

A bigger SYRK for C of size mc × mc and A of size mc × kc can be

blocked into smaller subproblems using the smaller SYRK (mentioned above)

to update the diagonal nr × nr lower triangular blocks of C and produce the

transpose of the corresponding nr × kc panels of A in a single iteration. Most

of the computations are thereby cast into typical GEMM operations using the

produced panel of AT and the remaining panels of A.

The blocked algorithm that we will use can be derived by partitioning

A and C as

C =

 C00 0 0

C10 C11 0
C20 C21 C22

 , A =

 A0

A1

A2

 , and AT =
(
AT

0 AT
1 AT

2

)
Then, C = AAT means:
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C+ =

 C00 + A0A
T
0 ∗ ∗

C10 + A1A
T
0 C11 + A1A

T
1 ∗

C20 + A2A
T
0 C21 + A2A

T
1 C22 + A2A

T
2


If the computation has progressed to the point where C00, C10, and C20

have already been updated with their final results and the rest of C has not

yet been updated, then we can update C11 and C21 as:

C11+ = A1A
T
1 and C21+ = A2A

T
1 .

A blocked SYRK performs computations with matrices A and C that fit in

the LAC local memory, while the computation C11+ = A1A
T
1 is performed by

an unblocked variant of SYRK on the LAC.

For simplicity, we assume that mc and kc are divisible by nr, i.e. mc =

mnr, and kc = knr. The mc × kc block of matrix A is distributed among

the local stores in a 2-D round-robin fashion much like it was for GEMM (as

described previously). We will describe how a single iteration of the blocked

down-looking SYRK algorithm is mapped onto the LAC. Figure 5.3 shows a

case with mc = 8nr. Highlighted is the data involved in the fifth iteration. We

describe the different operations to be performed:

(1a) C11 := C11 + A1A
T
1 : The block C11 of C is moved to the accumulators

and C11 := A1A
T
1 is performed as a smaller SYRK, which is computed

by the LAC as described previously.

(1b) AT
1 := (A1)T : As mentioned before, as part of computing C11 in (1a),

88



Update 
Source 1

GEMM
Update

Transpose 
Update ComputedNot Yet 

Computed

C22

C00

C20

*

*C10

*

C21

(2) C21:=A2A1
T

C11

Update 
Source 2

(1a) C11:=A1A1
T

A0

A2

A1

C22

C00

C20

*

*C10

*

C21

C11
A1

T

(1b) Store A1
T:=(A1)T

A0

A2

A1
A1

T

Figure 5.3: Blocked SYRK, fifth iteration.

the transpose AT
1 is formed and stored in the PE rows for future use in

(2).

(2) C21 := A2A
T
1 : In this stage, a matrix multiplication as described in Chap-

ter 3 is performed. Successive nr × nr blocks of C21 are brought in and

out of the accumulators of the PEs. AT
1 was already broadcasted and
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saved in the PEs as part of (1). Finally, successive nr×mc row panels of

A2 are multiplied by AT
1 to update the corresponding successive nr × nr

blocks of C21.

The down-looking algorithm has very good data locality for the core

GEMM operations. No extra storage is needed for blocks of AT
1 and matrix A

is resident in the LAC throughout all computations.

For even larger matrices that do not fit into the LAC local memories,

a further hierarchically blocked SYRK is utilized. There, another level of

blocking is used, which is composed out of two smaller SYRK and GEMM

kernels that each fits in the LAC local store. Appropriate blocking of matrices

thereby facilitates reuse of data, which reduces the need for high bandwidth

between the memory banks of the PEs, the on-chip memory and the external

storage. Details go beyond the scope of this document.

The LAC uses very similar principles as for SYRK to perform the

SYR2K operation and its blocked versions. The SYR2K produces C :=

C + ABT + BAT by cross-multiplying rectangular matrices A,B ∈ Rn×m by

their transpose to update the lower triangular part of the symmetric matrix

C ∈ Rn×n. The amount of both communication and computation is doubled

in this case.
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5.3 TRSM

The TRSM operation solves a system of equations LX = B, with lower

(or upper) triangular matrix L ∈ Rn×n and rectangular matrix B ∈ Rn×m for

X ∈ Rn×m, such that upon completion X = L−1B. As with SYRK, there

are two of algorithms (one blocked and one unblocked) that will be utilized,

depending on the level of the memory hierarchy in which the data is stored at.

5.3.1 Unblocked TRSM on LAC

The inner kernel of TRSM uses an unblocked algorithm which we first

briefly describe.

Partition

X =

(
xT1
X2

)
, B =

(
bT1
B2

)
, and L =

(
λ11 0
l21 L22

)
,

where bT1 is a row vector and λ11 is a scalar. Then B = LX means that(
bT1
B2

)
=

(
λ11x

T
1 + 0

l21x
T
1 + L22X2

)
,

which in turn means that

bT1 = λ11x
T
1

B2 − l21x
T
1 = L22X2

.

We can thus compute X for matrix B as follows

bT1 := xT1 = bT1 /λ11

B2 := X2 = L−1
22 (B2 − l21x

T
1 )

.

In each iteration, i, the unblocked variant performs two operations: First, the

corresponding row vector of B, bTi is replaced with the result of the same row
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Figure 5.4: Second iteration of a 4× 4 TRSM operation mapping on LAC.

in X = L−1B by performing a scale operation bTi = bTi /λii. Then the same

row is used to update the rest of the B by performing a rank-1 update.

Basic TRSM (nr×nr): Figure 5.4 illustrates the mapping of an unblocked

down-looking TRSM algorithm for a nr×nr sub-matrix of B and lower trian-

gular nr×nr diagonal sub-matrix of L, both stored in the registers of the LAC

(with nr×nr PEs). The LAC is augmented with a reciprocal unit f(x) = 1/x,

implementation details of which are discussed in Section A.3.2. In each itera-

tion i = 0, . . . , nr−1, the algorithm performs three steps, S1 through S3, where

the figure shows the second such iteration (i = 1). In S1 and S2, the element

λi,i of L in PE(i,i) is updated with its inverse. The result is broadcast within

the ith PE row and used to multiply into the elements of the corresponding
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row of matrix B (effectively dividing row elements of B by λi,i). In S3, the

results of those computations are broadcast within their respective columns

to be multiplied by the corresponding column of L (which is broadcast within

the respective rows) in order to perform a rank-1 update that subtracts the

result of this multiplication from the remaining lower part of matrix B. This

completes the current iteration, which is repeated for i = 0, . . . , nr − 1. Given

a MAC unit with p pipeline stages, this nr×nr TRSM takes 2pnr cycles. Due

to the data dependencies between different PEs within and between iterations,

each element has to go through p stages of MAC units while other stages are

idle.

Stacked TRSM (nr × pnr): Careful examination of the mapping of the

nr × nr TRSM above exposes that a lot of cycles are wasted. Given current

floating-point unit designs, fine grain data dependencies keep all but one of

the stages of the FPU pipeline idle. To overcome this inefficiency, we can stack

several successive nr × nr TRSM operations and thus fill the empty slots of

the FPU pipeline. With a p stage pipelined FPU design, the LAC can finish

the computation of p blocks in almost the same amount of time as a single

nr × nr TRSM.

This solution is illustrated in Figure 5.5. In each iteration, p multipli-

cation operations (colored yellow) and p rank-1 updates (colored blue) on the

target elements of B are pipelined through each FPU. The stacked solution

for TRSM of a nr × pnr panel of B (distributed among the local stores) takes
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Figure 5.5: Overcoming the data dependency by pipelining TRSM operations.
Eight blocks of 4 × 4 TRSMs are stacked in each of the four iterations to fill
empty slots of an eight stage pipelined MAC unit.

approximately 2pnr +p cycles. All the intermediate values are stored in actual

pipeline registers of the MAC units and therefore no extra temporary registers

are required. However, this solution still does not fully utilize the resources.

Software pipelined TRSM (nr × gpnr): The previous solution filled the

empty pipeline stages of the floating-point units. However, dependencies ex-

isting within each iteration of the stacked TRSM allow only one row out of the

available nr row of PEs to be utilized for computing bT1 := xT1 = bT1 /λ11 (step

S2) while the other PEs are waiting for the result to perform the B2 := X2 =

B2 − l21b
T
1 (S3) computation (rank-1 update). In cases where B panels are

relatively large, we can adopt software pipelining techniques to overcome this

inefficiency. The wide panel of B is blocked into smaller panels (sub-panels).

The solution is shown in Figure 5.6, where the panel of B is blocked into four

smaller sub-panels. Within each iteration, the result of a stacked TRSM for

bT1 := bT1 /λ11 in one sub-panel will be used to update B2 := B2− l21b
T
1 simulta-
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v TRSM

v TRSM
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Figure 5.6: TRSM operation mapping on LAC, increasing utilization by soft-
ware pipelining four stacked TRSM operations.

neously with computing the next set of bT1 := bT1 /λ11 in the following sub-panel.

Hence, within each iteration, we can overlap multiplication updates (yellow)

with rank-1 updates (blue) by pipelining and hence simultaneously working

on different sub-panels.

This solution further improves the utilization and almost doubles the

speed of computation. The software pipelined solution for stacked TRSM

takes p(nr(g + 1)) cycles for a nr × gpnr panel of B. This solution only

reorders the operations between stacked TRSM calls and therefore does not

need extra storage. The utilization of this operation can be estimated as

1
nr

(1 + (g−1)(nr+1)
2

+ nr

2
nr−1
nr

)/(g + 1) = g(nr+1)
2(g+1)nr

× 100% ' 60%, where nr = 4.

However, what we see next is that this is not where most computation happens

when performing a larger TRSM operation.
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5.3.2 Blocked TRSM on LAC

For larger matrices and to get higher performance, a blocked algorithm

is employed that casts most computation in terms of GEMM operations. Only

the updates by diagonal blocks of L use the lower-order unblocked TRSM. We

show how the blocked algorithm is derived. Partition

X =

 X0

X1

X2

 , B =

 B0

B1

B2

 , and L =

 L00 0 0

L10 L11 0
L20 L21 L22

 .

Then LX = B means that

B =

 B0

B1

B2

 =

 L00X0

L10X0 + L11X1

L20X0 + L21X1 + L22X2

 .

Now, if the computation has progressed so that X0 has already been

computed, then X1 can be computed by solving X1 = L−1
11 (B1 − L10X0) , re-

quiring a matrix-matrix multiply followed by a small triangular solve. This

motivates the operations in the blocked variant. This blocked algorithm com-

putes on a matrix that fits in the LAC local memory while the computation

B1 := L−1
11 B1 is performed by the unblocked variants on the LAC.

Let us now assume that a larger matrices B of size knr ×mnr and L

of size knr × knr are distributed among the PE local stores of the LAC in a

2-D round-robin fashion much like the matrix was for GEMM in Chapter 3.

We now describe how a single iteration of the blocked TRSM algorithm is per-

formed by the LAC. In Figure 5.7 we show the case where k = 8. Highlighted

is the data involved in the fifth iteration. We describe the different operations

to be performed:
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Figure 5.7: Blocked TRSM, fifth iteration.

(1) B1 := B1−L10B0: Blocks of B1 are moved in and out of the accumulators

of the PEs. This is a matrix multiplication, which is orchestrated like

similar operations were for GEMM.

(2) B1 := L−1
11 B1: The block of L11 is moved to the registers of the PEs.

An unblocked (either stacked or software pipelined) TRSM operation is

performed on B1 as described before.

We chose this algorithmic variant primarily because it exhibits better data

locality. In this algorithm, the data above the current row panel being com-

puted, which represents the bulk of data being processed, is read but needs not

be written. The alternative would be an algorithm in which the blocks below

the current row panel are updated, meaning that they need to be read and
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written. In other words, in the chosen algorithm a block is repeatedly updated

by data that can be streamed, enhancing both temporal and spatial locality.

This is also of advantage when mapping even larger matrices to the LAC,

where data must be brought in from higher levels of memory. The important

insight is that by designing the algorithm and architecture hand-in-hand, the

appropriate algorithm can guide the hardware design and vice versa.

Computations with large matrices do not fit in the aggregate PE local

memories of the LAC. Hence, we need another level of blocking. This results

in a hierarchical TRSM that is composed of two main smaller kernels, where

each of them fits in the LAC local store. This is simply another level of

blocking. The question of scheduling and locality needs to be answered again

at this scale. Shared on-chip memory and multiple LACs pose more challenges

in efficiency and utilization of the available resources and parallelism. Also,

there are more options for the granularity with which we move blocks of data.

5.3.3 Performance Analysis

It is clear that if one considers dynamic bandwidth, the knr × gpnr

TRSM kernel needs more bandwidth in its earlier stages. We can compute

the maximum bandwidth demand of TRSM by computing the bandwidth de-

mands of a TRSM factorization in which computation and communication are

overlapped. This includes fetching the first row panel of the input matrix to

perform a nr × mnr (m = gp) TRSM operations on it and then updating

the next row panel with its result. Now, n2
r × gpnr operations are performed

98



that take gpnr + p cycles. Hence, the bandwidth demand for updating could

reach up to (gpn2
r)/(gpnr + p) ' nr elements per cycle. This is the maxi-

mum bandwidth that TRSM requires in order to overlap computation and

communication without prefetching while updating B.

The required average bandwidth demand is much lower since more cal-

culations need to be performed per fetching of subsequent row panels of B.

The average bandwidth demand can be calculated as the ratio of total com-

putations to total communications. The total communication for B includes

bringing B in and out of the LAC, i.e. 2knrgpnr values. The total number of

cycles for computation is
k∑

i=0

(ig + g + 1)pnr. Hence, the average bandwidth is

2knrgpnr

k∑
i=0

(ig + g + 1)pnr

' 2knrgpnr

0.5k2gpnr

≤ 4nr

k
.

To calculate the utilization, we have to measure the total computation

time/cycles of all GEMM and TRSM suboperations in all iterations and divide

them by the total amount of actual useful computations that are performed.

The total number of cycles can be estimated as

k∑
i=0

nr(inr)(gpnr)/(n
2
r) + (g + 1)pnr =

k∑
i=0

(ig + g + 1)pnr.

The total number of MAC operations for this operation can be computed

as
k∑

i=0

nr(gnr)(gpnr) + gpnr(n
2
r)/2, which, at 100% utilization, should take

k∑
i=0

(i+ 1/2)(gpnr) cycles. Hence, the utilization can be calculated as:

99



k∑
i=0

(i+ 1/2)(gpnr)

k∑
i=0

(ig + g + 1)pnr

'

k∑
i=0

(i+ 1/2)(gpnr)

k∑
i=0

(i+ 1)(gpnr)

=

k∑
i=0

(i+ 1/2)

k∑
i=0

(i+ 1)

.

In our analysis, we assumed (conservatively) that the utilization of the soft-

ware pipelined TRSM operation is 50%. This is less than what we estimated

previously in Section 5.3.1, especially for large gs. Still, according to the above

estimation, the utilization number for a 32 × 128 TRSM operation becomes

90%.

5.4 Results

Details of analytical performance models and LAC operation for GEMM

were described in Chapters 3 and 4. We derived similar models for the other

level-3 BLAS operations. Figures 5.8, and 5.9 report performance results of

a single core as a function of the size of the local memory and the band-

width to the on-chip memory for TRSM and SYRK, respectively. Here, we

use nr ∈ {4, 8}, mc = kc (this determines the size of the blocks that are

mapped to the LAC), and n = 512. These graphs demonstrate the funda-

mental trade-off between bandwidth to the external memory and the size of

the local memory, which in itself is a function of the kernel size (kc, mc, and

nr). Performance is either limited by under-utilization in some parts of an

operation or by limitations of the off-core bandwidth.

The GEMM operation typically achieves the best utilization and hence
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Figure 5.8: Estimated core performance for SYRK as a function of the band-
width between LAC and on-chip memory, and the size of local memory with
nr = 4 and nr = 8, mc = kc = 256.
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Figure 5.9: Estimated core performance for TRSM as a function of the band-
width between LAC and on-chip memory, and the size of local memory with
nr = 4 and nr = 8, mc = kc = 256.
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Figure 5.10: Utilizations for representative level-3 BLAS operations for nr = 4.

performance among all other level-3 BLAS. Figure 5.10 shows a comparison

between selected curves from Figures 5.8, 5.9, and 3.4 for nr ∈ {4, 8}, mc = kc

and n = 512. We can observe that for a PE memory size of 20 KBytes and off-

core memory bandwidth of 4 B/cycles, GEMM, TRSM, SYRK, and SYR2K

achieve 100%, 95%, 90%, and 85% utilization, respectively.

The LAC shows utilizations for TRSM, SYRK, and SYR2K that are

close to what GEMM can achieve. The reason why none of the other opera-

tions reach 100% utilization is that their basic operations do not fully utilize

all the PEs. This is due to the triangular shape of the diagonal blocks in

each of these cases. However, since lower-order terms only form a fraction of

all computations, the overall performance approaches the peak as the size of

problem grows.

TRSM achieves better performance for smaller problem sizes, even
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Algorithm W
mm2

GFLOPS
mm2

GFLOPS
W Utilization

GEMM nr = 4 0.397 21.61 54.4 100%
TRSM nr = 4 0.377 20.53 51.7 95%
SYRK nr = 4 0.357 19.45 49.0 90%
SYR2K nr = 4 0.314 17.07 43.0 79%

GEMM nr = 8 0.397 21.61 54.4 100%
TRSM nr = 8 0.377 20.53 51.7 95%
SYRK nr = 8 0.346 18.80 47.3 87%
SYR2K nr = 8 0.290 15.77 39.7 73%

Table 5.1: LAC efficiency for level-3 BLAS algorithms at 1.1 GHz.

though the computation of the triangular part of the lower order term of TRSM

is less efficient than SYRK. The difference between SYRK and TRSM is in the

bandwidth demand. SYRK needs more bandwidth than TRSM for the same

problem size. In small problems, the amount of bandwidth directly affects the

performance and results in a higher utilization for TRSM. By contrast, SYRK

has higher utilization of the lower order term and better performance in bigger

problem sizes. For example, with 25 Kbytes of local memory per PE, SYRK

with 98% utilization overtakes TRSM with 96% utilization.

SYR2K performs worse than SYRK as is expected for this operation.

For the same PE memory size, only a smaller SYR2K operation can be mapped

on the LAC. A typical level-3 BLAS has O(n2) communication and O(n3)

computation complexity. The SYR2K operation doubles the amount of com-

munication and computation, which is not bandwidth efficient compared to

solving a bigger SYRK problem.

Since GEMM results in the highest utilization and load, we used access

patterns of the GEMM algorithm obtained from our simulator to estimate
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SRAM power consumption for the rest of level-3 BLAS operations. Table 5.4

summarizes detailed performance and area efficiencies of the LAC for all pre-

sented level-3 BLAS operations at 1.1 GHz.

5.5 Summary

In this chapter, we discussed generalization of the LAC architecture

to support level-3 BLAS operations. We presented an overview of represen-

tative level-3 BLAS operations and picked SYRK and TRSM to show algo-

rithm/architecture for them on LAC. We utilized the 2D architecture of the

LAC to optimally map SRYK. Furthermore, we showed mapping of TRSM

across layers of the memory hierarchy. The results that we presented conclude

that with minimal modifications, this architecture can achieve high efficiency

across all level-3 BLAS.
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Chapter 6

Generalization Beyond Level-3 BLAS

The next step towards generalization is moving towards algorithms with

more irregularities not only in the domain of linear algebra, but also in the

signal processing domain. This allows us to further examine the capacities

of our codesign methodology and the flexibility of our proposed architecture.

In this chapter, we first discuss matrix factorization algorithms and their re-

quirements. Details of each algorithm and its mapping are presented in Ap-

pendix A. Here, we only summarize the modifications to some components in

the architecture and the resulting design metrics.

We then go beyond the linear algebra domain by exploring FFTs, a

completely different set of algorithms with very different behavior. We show

them to also be suitable for the baseline LAC architecture (details can be

found in Appendix B). We exploit similarities between the original LAC and

the FFT-optimized design to introduce a flexible, hybrid architecture that can

perform both of these applications efficiently. Comparing both full-custom

designs with our proposed hybrid core, we demonstrate the costs of flexibility

versus efficiency.
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6.1 Matrix Factorizations

Matrix factorizations are the natural next step towards making our

architecture more flexible. We choose three matrix factorization algorithms:

Cholesky, LU (with partial pivoting), and QR factorization [107]. These algo-

rithms are typically the first (and most compute intensive) step towards the

solution of linear systems of equations or linear least-squares problems [48],

which have applicability in scientific computing applications. These operations

also solve more complex kernels like Kalman filters [145], and updating and

downdating algorithms [136].

Many current solutions use heterogeneous computing for more compli-

cated algorithms like Cholesky, QR, and LU factorization [7, 143]. Often, only

the most parallelizable and simplest parts of these algorithms, that exhibit

ample parallelism, are performed on accelerators. Specifically, the part of the

computations that can be cast in terms of level-3 BLAS operations is typically

mapped to the accelerators. Other more complex parts, which are added to

the algorithm to overcome floating-point limitations or which would require

complex hardware to exploit fine grain parallelism, are off-loaded to a general-

purpose host processor. Unlike traditional heterogeneous solutions, we aim to

support such complex kernels directly on our LAP. To do so, we focus only on

the inner kernels of these algorithms. Problems with larger sizes are cast into

level-3 BLAS operations and these the inner kernels.

Quality implementations of these algorithms aim to ensure numerical

stability and try to prevent spurious overflow and underflow errors. As a result,
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algorithms become more complex leading to inherent overhead. The question

we pursue is how to accommodate such complexities when mapping these

algorithms onto accelerators and/or into custom hardware. Our solution is to

avoid the inefficiencies caused by limitations in current architectures. We show

that by adding minimal logic, we can overcome corresponding complexities.

We show the challenges and limitations in current architectures to per-

form these matrix factorizations efficiently. We propose a new solution that

tries to avoid all inefficiencies caused by limitations in current architectures

and thereby overcomes the complexities in matrix factorization algorithms

themselves. The problem is that architecture designers typically only have a

high-level understanding of algorithms, while algorithm designers try to op-

timize for already existing architectures. We specifically focus on the design

of the floating-point units to satisfy algorithm requirements. Our solution

allows architectural changes to the design in order to reduce complexity di-

rectly in the algorithm whenever possible. Thus, the solution is to exploit

algorithm/architecture codesign.

A linear system of equation, is represented as Ax = b , where n × n

matrix A and vector b are known, and x is the solution vector that we wish to

compute. This system is often solved by first factoring matrix A. As the most

generic example, LU factorization can be exploited to compute L and U such

that A→ LU , where L is a lower triangular matrix L ∈ Rn×n and U is an upper

triangular matrix U ∈ Rn×n. After computing L and U , two triangular solves

with single right hand side (similar to TRSM in Chapter 5) are performed,
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which are known as forward substitution and backward substitution. Forward

substitution solves Ly = b for y and backward substitution then solves Ux = y

for x.

6.1.1 Cholesky Factorization

Cholesky factorization is the most straight-forward factorization oper-

ation. Given a Symmetric Positive Definite (SPD) matrix1, A ∈ Rn×n, the

Cholesky factorization produces a lower triangular matrix, L ∈ Rn×n such

that A = LLT .

We start by deriving the algorithm. Partition

A =

(
α11 a

T
12

a21 A22

)
and L =

(
λ11 0
l21 L22

)
,

where α11 and λ11 are scalars. Then A = LLT means that,(
α11 α

T
12

a21 A22

)
=

(
λ2

11 ∗
λ11l21 L22L

T
22 + l21l

T
21

)
which in turn means that

α11 = λ2
11 ?

a21 = λ11l21 A22 − l21l
T
12 = L22L

T
22

.

We can compute L from A via the operations

α11 :=λ11 =
√
α11 ?

a21 := l21 =(1/λ11)a21 A22 :=L22 =Chol(A22 − l21l
T
12)
,

1A condition required to ensure that the square root of a non-positive number is never
encountered.
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Figure 6.1: 4x4 Cholesky decomposition mapping on LAC, 2nd iteration.

overwriting A with L. For high performance, it is beneficial to also derive

a blocked algorithm that casts most computations in terms of matrix-matrix

operations, but we will not need these in our discussion. The observation

is that the “square-root-and-reciprocal” operation α11 :=
√
α11; t = 1/α11

is important, and that it should therefore be beneficial to augment the mi-

croarchitecture with a unit that computes f(x) = 1/
√
x when mapping the

Cholesky factorization onto the LAC.

We now focus on how to factor a nr×nr submatrix when stored in the

registers of the LAC (with nr × nr PEs). In Figure 6.1, we show the second

iteration of the algorithm. For this subproblem, the matrix has also been

copied to the upper triangular part, which simplifies the design.

In each iteration, i = 0, . . . , nr − 1, the algorithm performs three steps

109



S1 through S3. In S1, the inverse-square-root is computed. In S2, the element

in PE(i,i) is updated with its inverse square root. The result is broadcast

within the ith PE row and ith PE column. It is then multiplied into all

elements of the column and row which are below and to the right of PE(i,i).

In S3, the results of these computations are broadcast within the columns

and rows to be multiplied by each other as part of a rank-1 update of the

remaining part of matrix A. This completes one iteration, which is repeated

for i = 0, . . . , nr − 1.

Given a MAC unit with p pipeline stages and an inverse square root

unit with q stages, this nr × nr Cholesky factorization takes 2p(nr − 1) +

q(nr) cycles. Due to the data dependencies between different PEs within and

between iterations, each element has to go through p stages of MAC units while

other stages are idle. The last iteration only replaces the PE(nr − 1,nr − 1)

value by its square root, which only requires q additional cycles.

Clearly, there are a lot of dependencies and there will be wasted cycles.

However, this smaller subproblem is not where most computations happen

when performing a larger Cholesky factorization. For this reason, we do not

discuss details of how to fully optimize the LAC for this operation here.

The important idea is that by introducing an inverse square-root unit,

that operation needs not to be performed on a host nor in software or emulation

on the LAC, which yields a substantial savings in cycles.
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Figure 6.2: Second iteration of a K×nr LU factorization with partial pivoting
on the LAC.

6.1.2 LU Factorization with Partial Pivoting

LU factorization with partial pivoting is a more general solution for

decomposing matrices. The LU factorization of a square matrix A is the
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first and most computationally intensive step towards solving Ax = b. It

decomposes a matrix A into a unit lower-triangular matrix L and an upper-

triangular matrix U such that A = LU .

We again briefly motivate the algorithm that we utilize: partition

A =

(
α11 aT12

a21 A22

)
, L =

(
1 0
l21 L22

)
, U =

(
υ11 u

T
12

0 U22

)
,

where α11, and υ11 are scalars. Then A = LU means that(
α11 a

T
12

a21 A22

)
=

(
υ11 uT12

l21υ11 L22U22 + l21u
T
12

)
so that

α11 = υ11 aT12 = uT12

a21 = υ11l21 A22 − l21u
T
12 = L22U22

.

We can thus compute L and U in place for matrix A. The diagonal elements

of L are not stored (all of them are ones). The strictly lower triangular part

of A is replaced by L. The upper triangular part of A, including its diagonal

elements, is replaced by U as follows:

α11 := υ11 (no-op) aT12 := uT12 (no-op)
a21 := l21 = a21/υ11 A22 := LU(A22 − l21u

T
12)
.

Again, we do not need the blocked version of this algorithm for the discussion

in this document.

In practice, the use of finite precision arithmetic yields this naive al-

gorithm for numerical accuracy reasons: the update to matrix A in the first
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iteration is given by
α11 α12 · · · α1,n

0 α22 − λ21α12 · · · α2,n − λ21α1,n

0 α32 − λ31α12 · · · α3,n − λ31α1,n
...

...
. . .

...
0 αn,2 − λn,1α12 · · ·αn,n − λn,1α1,n

 ,

where λi,1 = αi,1/α11, 2 ≤ i ≤ n. The algorithm clearly fails if α11 = 0. If

α11 6= 0 and |αi,1| � |α11|, then λi,1 will be large in magnitude and it can

happen that for some i and j the value |αi,j−λi,1αi,j| � |αi,j|, 2 ≤ j ≤ n; that

is, the update greatly increases the magnitude of αi,j. This is a phenomenon

known as large element growth and leads to numerical instability. The problem

of element growth can be solved by rearranging (pivoting) the rows of the

matrix (as the computation unfolds). Specifically, the first column of matrix

A is searched for the largest element in magnitude. The row that contains such

element, the pivot row, is swapped with the first row, after which the current

step of the LU factorization proceeds. The net effect is that |λi,1| ≤ 1 so that

|αi,j − λi,1α1,j| is of a magnitude comparable to the largest of |αi,j| and |α1,j|,

thus keeping element growth bounded. This is known as the LU factorization

with partial pivoting. The observation is that finding the (index of the) largest

value in magnitude in a vector is important for this operation. For practical

purposes, LU factorization with partial pivoting is numerically stable.

To study opportunities for corresponding architecture extensions, we

focus on how to factor a knr × nr submatrix (see Figure 6.3) stored in a 2D

round-robin fashion in the local store and registers of the LAC (with nr ×
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Figure 6.3: Operations and data manipulation in the second iteration of a
k × nr LU factorization inner kernel.

nr PEs). In Figure 6.2, we show the second iteration of the right-looking

unblocked algorithm (i = 1).

In each iteration, i = 0, . . . , nr − 1, the algorithm performs four steps,

S1 through S4. In S1, the elements in the ith column below the diagonal are

searched for the maximum element in magnitude. Note that this element can

be in any of the ith column’s PEs. Here, we just assume that it is in the row

with j = 2. After the row with maximum value (the pivot row) is found, in

S2, the pivot value is sent to the reciprocal (1/x) unit and the pivot row is

swapped with the diagonal (ith) row concurrently. In S3, the reciprocal (1/x)

is broadcast within the ith column and multiplied into the elements below

PE(i,i). In S4, the results of the division (in the ith column) are broadcast

within the rows. Simultaneously, the values in the ith (pivot) row to the

right of the ith column are broadcast within the columns. These values are

multiplied as part of a rank-1 update of the remaining part of matrix A. This

completes the current iteration, which is repeated for i = 0, . . . , nr − 1.
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According to the above mapping, most of the operations are cast as

rank-1 updates and multiplications that are already provided in the existing

LAC architecture. In addition to these operations, two other essential com-

putations are required: first, a series of floating-point comparisons to find the

maximal value in a vector (column); and second, a reciprocal (1/x) operation

needed to scale the values in the ith column by the pivot. Due to these extra

complexities, most existing accelerators send the whole knr×nr block to a host

processor to avoid performing the factorization themselves [7, 143]. By con-

trast, we will discuss a small set of extensions that will allow us to efficiently

perform all needed operations and hence the complete LU factorization within

dedicated hardware.

6.1.3 QR Factorization and Vector Norm

Householder QR factorization is often used when solving a linear least-

squares problem. QR factorization decomposes a matrix A ∈ Rm×n(m ≥ n)

into a orthonormal matrix matrix Q ∈ Rm×n and an upper-triangular matrix

R ∈ Rn×n such that A = QR. The key to practical QR factorization algorithms

is the Householder transformation. Given u 6= 0 ∈ Rn, the matrix H =

I − uuT/τ is a reflector or Householder transformation if τ = uTu/2. In

practice, u is scaled so that its first element is “1”. We will now show how to

compute A→ QR, the QR factorization, of m× n matrix A as a sequence of

Householder transformations applied to A.

In the first iteration, we partition A →
(
α11 a

T
12

a21 A22

)
. Let

(
1
u1

)
and
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Algorithm:

[(
ρ1
u2

)
, τ1

]
= HOUSEV

(
α1

a21

)
χ2 := ‖a21‖2
α :=

∥∥∥∥( α1

χ2

)∥∥∥∥
2

(= ‖x‖2)

ρ1 = −sign(α1)‖x‖2 ρ1 := −sign(α1)α
ν1 = α1 + sign(α1)‖x‖2 ν1 := α1 − ρ1
u2 = a21/ν1 u2 := a21/ν1

χ2 = χ2/|ν1|(= ‖u2‖2)
τ1 = (1 + uT2 u2)/2 τ1 = (1 + χ2

2)/2

Table 6.1: Computing the Householder transformation. Left: simple formula-
tion. Right: efficient computation.

τ1 define the Householder transformation that zeroes a21 when applied to the

first column. Then, applying this Householder transform to A yields:(
α11 aT12

a21 A22

)
:=

(
I −

(
1
u2

)(
1
u2

)T

/τ1

)(
α11 aT12

a21 A22

)

=

(
ρ11 aT12 − wT

12

0 A22 − u21w
T
12

)
,

where wT
12 = (aT12 + uT21A22)/τ1. Computation of a full QR factorization of A

will now proceed with submatrix A22.

The new complexity introduced in this algorithm is in the computation

of u2, τ1, and ρ1 from α11 and a21, captured in Table 6.1, which require a

vector-norm computation and scaling (division). This is referred to as the

computation of the Householder vector. We first focus on the computation of

the vector norm.

The 2-norm of a vector x with elements χ0, · · · , χn−1 is given by ‖x‖ :=

(
∑n

i=0 |χi|2)1/2 =
√
χ2

0 + χ2
2 + . . .+ χ2

n−1. The problem is that intermediate

values can overflow or underflow. This is avoided by normalizing x and per-
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forming the following operations instead.

t =
n−1
max
i=0
|xi| ; y = x/t; ‖x‖2 := t× ‖y‖2.

If not for overflow and underflow, the operation would be no more complex

than an inner product followed by a square root. To avoid overflow and under-

flow, the maximum of all inputs must be found, the vector be normalized, and

an extra multiplication is needed to scale the result back. As such, with the

exception of the mentioned normalization and the introduction of a matrix-

vector multiplication, the overall mapping of QR factorization to the LAC is

similar to that of LU factorization. Due to space reasons, we focus our fol-

lowing discussions on the computation of this Householder vector and vector

norm only.

To compute the vector norm, two passes over the data should be per-

formed: a first pass to search and find the largest value in magnitude fol-

lowed by a second pass to scale the vector elements and accumulate the inner-

product. In addition to being slow, “this algorithm also involves more rounding

errors than the unscaled evaluation, which could be obviated by scaling by a

power of the machine base [58]”. A one-pass algorithm has been presented

in [19]. It uses three accumulators for different value sizes. This algorithm

avoids overflow and underflow. However, it still needs to perform division.

More details about how this is computed in software are discussed in [58, 85].

We now focus on how to perform a vector norm of a scaled knr × 1

vector (see Figure 6.4) when stored in the local store and registers of the LAC
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Figure 6.4: Mapping of the Vector Norm operation of a single vector stored in
the third column of the LAC.

(with nr×nr PEs). Recall that such a column is only stored in one column of

the LAC. In Figure 6.4, we show the iterations for calculating a vector norm

that is stored in the 3rd column of PEs. The algorithm performs three steps,

S1 through S3.

In S1, the third column of PEs starts computing the inner product

with half of the vector elements. Simultaneously, the PEs in this row share

the elements of the other half of the vector with the adjacent PEs in the next

column (fourth column in Figure 6.4). PEs in the adjacent column also start

performing inner products. After all the PEs in both columns have computed

their parts, in S2 the partial inner products are reduced back into the original

LAC column, leaving that column with nr partial results. In S3, a reduce-

all operation that requires nr broadcast operations across the corresponding

column bus produces the final vector norm result in all the PEs of the owner

column. Thus, performing a vector norm in the LAC is straightforward. The
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real challenge is the extra complexity to find the maximum value and to scale

the vector by it, which is introduced for avoiding overflow and underflow. This

will be discussed in the next section.

6.1.4 Hardware Extensions

In the previous sections, we discussed how the LAC architecture re-

quires extensions to support matrix factorizations. We categorize these ex-

tensions into two groups. The first group extends each MAC unit to remove

complexity from operations like vector-norm and LU with pivoting. The sec-

ond group supports special functions like reciprocal and inverse square-root

that are used in TRSM, Cholesky, and LU factorization. In the following, we

summarize possible extensions. Further details of each extension are described

in Section A.2.

Floating-Point Unit Extensions We add a comparator to each floating-

point unit of each PE to find the pivot while performing dot-product com-

putations. We also add support for an extra exponent bit in the MAC unit

to avoid overflow or underflow. In Section A.2 we discuss how this extra bit

eliminates the required normalization part in the vector-norm computation.

Special Functions Support We add a special function unit that can com-

pute reciprocal, inverse square-root, square-root, and division functions for

the LAC. An alternative option is to extend the PEs on the LAC so they can
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Figure 6.5: LAC area break-down with different divide/square-root extensions.

directly support such operations themselves. We use multiplicative methods,

which use iterative MAC operations and table look-ups for approximation.

Such multiplicative methods allow us to use the existing MAC units to per-

form the computations.

6.1.5 Results

We study the performance and efficiency behavior of our extensions for

these algorithms and different inner kernel problem sizes. A very important

point is that even larger problems sizes are usually blocked into smaller sub-

problems that cast most of the operations into a combination of highly efficient

level-3 BLAS operations and the complex inner kernels that we discuss here.

For our study, we first assumed three different LAC architectures with

three options for divide/square-root extensions: first, a software-like imple-

mentation that uses a micro-programmed state machine to perform Gold-

schmidt’s [123] operation on the MAC unit in the PE; second, an isolated
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divide/square-root unit; and third, a hardware extension to the PEs that adds

extra logic around the available MAC units in the diagonal PEs. Area over-

head for each of these options is shown in Figure 6.5. We can observe that

in case of a 4 × 4 LAC, the overhead for these extensions is around 10% if

an isolated unit is added to the LAC. If the extensions are added to all the

diagonal PEs, more area is used.

We further assumed two types of extensions for the MAC units in the

LAC, which include the maximum finder comparator and the extra exponent
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bit. Resulting power efficiencies for vector norm and LU operations are pre-

sented in Figures 6.6, and 6.7, respectively. We can observe that for the LU

factorization, there is a 20% speed and 15% energy improvement with the

comparator added to the MAC units. The exponent extension halves the total

cycles of the vector-norm, and the divide/square-root unit saves up to 30%

cycles compared to the baseline. Energy savings reach up to 60% with the

exponent bit extension.

In summary, with limited logic extensions for these algorithms save

cycles and consume less power. However, the bigger impact is the fact that

the LAC does not need to waste cycles and energy to send such inner kernels

to a host processor for computation.

6.2 Fast Fourier Transform

To investigate fundamental tradeoffs between flexibility and efficiency

in our architecture, we further studied applications that go beyond the tradi-

tional linear algebra domain. Specifically, we explored the mapping of FFTs,

which are an important signal processing kernel [110]. While GEMM is a

straightforward kernel with simple, predictable data access patterns, the FFT

provides more challenges to obtaining high performance. First, the increased

ratio of data movement per computation (even with perfect caches) will cause

the algorithm to be memory bandwidth limited on most current computer sys-

tems. Second, memory access patterns include strides of 2, 4, 8, ...N/2, which

interfere pathologically with the cache indexing and the cache and memory
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banking for standard processor designs. Third, the butterfly operation con-

tains more additions than multiplications, so the “balanced” FPUs on most

current architectures will be under-utilized.

In this section, we briefly analyze the similarities between algorithms

and show how one might transform an optimized GEMM core into an FFT

core. We consider whether a combined core that can perform either operation

efficiently is practical, and we analyze the loss in efficiency required to achieve

this flexibility. Complete details of mapping an FFT on the LAC along with the

required modifications that need to be made to the existing core architecture

are discussed in Appendix B.

6.2.1 FFT Algorithm and Mapping

At the lowest level, FFT algorithms are based on combining a small

number of complex input operands via sum, difference, and complex multipli-

cations to produce an equal number of complex output operands. These are

referred to as “butterfly” operations because of the shape of the dataflow di-

agram (e.g., as shown later in Figure B.2). In this section, we briefly give the

mathematical description of Radix-2 and Radix-4 FFT butterfly operations

as optimized for execution on Fused Multiply-Add (FMA) units. Then, we

discuss the data communication patterns that are needed when applying these

operations to compute FFTs of longer sequences.

The Radix-2 Butterfly operation can be written as the following ma-

trix operation, where wj
L are constant values (usually referred to as “twiddle
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factors”) that we store in memory:(
x(j)

x(j + L/2)

)
:=

(
1 ωj

L

1 −ωj
L

)(
x(j)

x(j + L/2)

)
.

This operation contains a complex multiplication operation and two complex

additions, corresponding to 10 real floating-point operations. Using a floating-

point MAC unit, this operation takes six Multiply-ADD operations that yields

into 83% utilization.

A modified, FMA-optimized butterfly is introduced in [69], where the

multiplier matrix in the normal butterfly is factored and replaced by:(
1 ωj

L

1 −ωj
L

)
=

(
2 −1
0 1

)(
1 0

1 −ωj
L

)
.

This algorithm requires 12 floating point operations represented in six multiply-

adds. Although the total number of floating-point operations is increased, they

all utilize a fused multiply-add unit and the total number of FMAs remains

six.

A Radix-4 FFT butterfly is typically represented as the following matrix

operation: x(j)
x(j + L/4)
x(j + L/2)
x(j + 3L/4)

× =

 1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

 diag(1, ωj
L, ω

2j
L , ω

3j
L ).

This contains three complex multiplications and eight complex additions that

sum up to 34 real floating-point operations. The number of complex additions

is much larger than the number of multiplications. Hence, there is a clear

computation imbalance between multiplications and additions. Note also that
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three complex twiddle factors ωj
L, ω2

Lj, and ω3
Lj all have to be brought into

the butterfly unit.

Alternately, the Radix-4 matrix above can be permuted and factored

to give the following representation (ω = ωj
L): x(j)

x(j + L/4)
x(j + L/2)
x(j + 3L/4)

× =

 1 0 ω 1
0 1 0 −iω
1 0 −ω 0
0 1 0 −iω


 1 ω2 0 0

1 −ω2 0 0
0 0 1 ω2

0 0 1 −ω2

 .

This can be further divided recursively using the same factorization as in the

radix-2 FMA-adapted version. The result generates 24 FMA operations (as

depicted later in Figure B.1). The FMAC utilization for the Radix-4 butterfly

is 34/48=70.83%, but this corresponds to 40/48=83.33% if using the nominal

5NLogN2 operation count from the Radix-2 algorithm that is traditionally used

in computing the FLOP rate. Further details about this algorithm will be pre-

sented in Section B.2. The number of loads also drops because only two of the

three twiddle factors (ωj
L and ω2

Lj) are required to perform the computations.

The two implementations of an L-point Radix-4 FFT are shown below.

The pseudo-code for the standard implementation is shown on the left and the
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pseudo-code for the FMA optimized version is shown on the right:

for j = 0 : L/4− 1 for j = 0 : L/4− 1
a := x(j); a := x(j);

b := ωj
Lx(j + L/4) b := x(j + L/4)

c := ω2j
L x(j + L/2) c := x(j + L/2)

d := ω3j
L x(j + 3L/4) d := x(j + 3L/4)

τ0 := a+ c b := a− ω2j
L b

τ1 := a− c a := 2a− b
τ2 := b+ d d := c− ω2j

L d
τ3 := b− d c := 2c− d
x(j) := τ0 + τ2; x(j + L/2) := c = a− ωj

Lc
x(j + L/4) := τ1 − iτ3; x(j) := 2a− c
x(j + L/2) := τ0 − τ2; x(j + L/4) := d := b− iωj

l d
x(j + 3L/4) := τ1 + iτ3; x(j + 3L/4) := 2b− d

end for end for

The broadcast bus topology in the LAC allows a PE to communicate

with other PEs in the same row and with other PEs in the same column simul-

taneously. This can be effectively exploited for mapping of FFT algorithms.

To maximize locality, we consider only designs in which each butterfly oper-

ation is computed by a single PE, with communication taking place between

the butterfly computational steps. We note that if the LAC dimensions are se-

lected as powers of two, the communication across PEs between both Radix-2

or Radix-4 butterfly operations will be limited to the neighbors on the same

row or column, which naturally maps to our broadcast bus architecture.

6.2.2 Hardware Extensions

Details of core and PE configuration tradeoffs and design choices are

presented in Appendix B. Here we briefly mention the architectural modifica-
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tion for the core and the PEs.

Core Extensions The off-core bandwidth needs to be double that of the

original LAC design. Furthermore, the PEs must be able to overlap the

prefetching of input data and the post-storing of output data from/to off-core

memory concurrently with the computations. Doubling the memory band-

width can be implemented by expanding the memory interface so that both

row and column buses can transfer data to/from PEs.

The PE Extensisons The PE micro-architecture must perform the three

tasks of Radix-4 butterfly computation, FFT communication, and off-core

communication concurrently. Some extra logic and storage is needed to facil-

itate data movements and locality. These options are described with the help

of Figure 6.8. An 8-byte register file is needed to store the four complex input,

temporary, and output values of the FMA-optimized Radix-4 butterfly. The

twiddle factors take an extra four registers. The larger PE SRAM is divided

into two halves and an extra bus is added to provide enough data bandwidth

for both Radix-4 computations and off-core communications as in shown in

Figure 6.8 (right).

6.2.3 Results

In this section, we present area, power and performance estimates for

the LAC with the modifications introduced in previous sections.
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Figure 6.8: New PE configurations for full-overlap FMA-optimized Radix-4
FFT: (left) FFT-optimized PE with two 8-byte, single-ported SRAMs, and
(right) Hybrid PE with two 8-byte, single-ported SRAMs to contain matrix
A.

Figure 6.9 demonstrates the normalized efficiency metrics of the three

different PE designs based on the original LAC design. The first option is

the basic LAC, the second option is an FFT optimized core based on 2D

arrangement of PEs with MAC units, and the third option is a hybrid core

that can perform both GEMM and FFT operations. We can observe that the

hybrid design has lower efficiency when considering maximum power and area.

Note that in all cases, the efficiency numbers are already scaled by achievable

utilization.

Finally, Table 6.2 provides comparisons of estimated performance, area,

and power consumption between our proposed design and several alternative

processors for which performance, area, and power estimates were available

[30, 72, 150, 153]. In each case, we limit the comparison to double-precision 1D
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Figure 6.9: Efficiency of different designs normalized to the original LAC de-
sign at 1 GHz.

Platform Problem size FFT Power GFLOPS/ GFLOPS/ Utilization

Running FFT fits in KBytes GFLOPS (Watt) Watt mm2

Hybrid Core Core SRAM 288 26.7 0.66 40.50 12.12 83%
Hybrid Core+SRAM Off-core 2336 26.7 1.02 26.30 1.71 83%
Xeon E3-1270 core L2 $ 288 12.0 28 0.43 0.33 44%
ARM Cortex A9 L1 $ 32 0.6 0.28 2.13 0.45 60%

PowerXCell 8i SPE SPE local 2048 12.0 64 0.19 0.12 11%
NVIDIA C2050 L1+L2 $ 1728 110.0 150.00 0.73 0.21 21%

Table 6.2: Comparison between the proposed hybrid core and several alterna-
tives for cache-contained double-precision FFTs scaled to 45nm.

FFT performance for problem sizes that fit into either the first and/or second

levels of SRAM or cache. All area and power estimates are scaled to 45nm

technology and include only the cores and SRAM. In each case, the proposed

hybrid linear algebra and FFT engine provides at least an order of magnitude

advantage in performance per watt and unit area.

6.3 Summary

In this chapter, we discussed the opportunities for extending the basic

LAC architecture to support matrix factorizations and FFTs. We show how

adding moderate complexity to the architecture of the LAC greatly alleviates
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complexities in the matrix factorization algorithms. We also explored mapping

of FFTs on the core and showed how the 2D arrangement of PEs helps re-

moving unnecessary communication between PEs. With less than 10% loss in

efficiency, a hybrid core can perform FFT with orders of magnitude higher effi-

ciency compared to other architectures. All of these opportunities are achieved

by rethinking the process of design. The architecture is relaxed and therefore

adapted to better support the algorithm requirements.
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Chapter 7

Summary and Future Work

This chapter briefly reviews the dissertation Then, we discuss ongoing

and future research opportunities.

7.1 Summary

This dissertation provides initial evidence regarding the benefits of cus-

tom hardware for dense linear algebra computations. We proposed the design

and architecture of a specialized linear algebra processor (LAP), consisting of

a number of linear algebra cores (LACs). Our Analysis show that a prototype

LAP can achieve up to 600 GFLOPS for DGEMM while consuming less than

25 Watts in standard 45 nm technology, which is orders of magnitude more

energy efficient than cutting-edge CPUs. We studied the multi-dimensional

design trade-off space for our single- and multi-core design. Some of the axes

of this space include the number of cores, the different sizes of cores, and the

features of the different layers of the memory hierarchy, each layer with its

own storage size and bandwidth to the next level. We developed an analyti-

cal framework to evaluate associated performance tradeoffs, which provides a

powerful tool for designers to assess their design balance and its utilization.
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We also studied the different factors in power consumption of such

systems by coupling our analytical performance models with a power model.

We modeled the power consumption for our design and its competitors and

presented a power breakdown for different components of the architecture.

The basic conclusion is that, as had been postulated, one to two orders of

magnitude improvement in power and performance density can be achieved.

Further, we showed how this architecture can support the full range of level-3

BLAS operations if small changes are introduced in the micro-architecture.

We examined how generally applicable the LAC/LAP architecture is

by mapping more complex problems like matrix factorizations. Algorithms

like LU and QR factorization introduce extra complexities to ensure numeri-

cal stability. We proposed modifications to the micro-architectural design of

the LAC and its floating-point units to decrease the complexity of these al-

gorithms. We also showed how an existing PE can be enhanced to support

special functions for divide and square-root operations. This demonstrates the

potential of this architecture for achieving high efficiency while being flexible

enough to support a broad class of operations. The conclusion is that adding

moderate complexity to the architecture greatly alleviates complexities in the

algorithm.

To push the envelope, we studied the feasibility of mapping FFT, which

is an algorithm from a different domain of applications. FFT has far more com-

munications per operation, and more additions that multiplications. Current

architectures achieve less than 50% utilization for this operation. Careful al-
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gorithm analysis for the target architecture, combined with judiciously chosen

data-path modications, allowed us to produce a highly efficient accelerator for

FFT operations with minor changes to the original linear algebra core. The

proposed FFT engine provides at least an order of magnitude advantage in

performance per watt and unit area compared to other processors.

In summary, this dissertation provides evidence that a flexible yet

highly power efficient accelerator could be designed for the class of linear

algebra operations. This was achieved by careful analyses of possible algo-

rithms and existing architectures as a codesign process. We further showed

how such algorithm/architecture codesign we could expand the flexibility of

our architecture beyond linear algebra operations while maintaining its power

efficiency.

7.2 Future Work

In the following, we will point to some of the future directions that

could expand this multi-dimensional algorithm/architecture codesign space.

We briefly cover each category of potential future research.

Micro-Architecture Level. PE and LAC designs may need further mod-

ifications in their logic and architecture to provide facilities for supporting

more applications. An example is the design of floating-point units that can

operate at variable precision or extending capabilities of the PEs to provide

functionality for more special functions like Cordic. Furthermore, we have to
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design the logic for the core interface to on-chip memory and study its design

tradeoffs.

System-Level Explorations. System-level integration is an important di-

rection that opens up multiple research topics. The host interface for integra-

tion of one or more LAPs (or LACs) with one or more on-chip or off-chip host

processors is part of system level development. We will try to clarify more

design space details of the LAP when it is placed in heterogeneous systems.

To achieve this, we plan to extend our cycle accurate simulator and integrate it

into other multi-core simulators like MARSSx86 [102] or GEM5 [18] to study

detailed design tradeoffs both at the core and chip level. These details in-

clude invocation, completion, memory addressing and task granularity (see

Section 2.2.4). In a heterogeneous system, tasks have computational cost, and

there is communication cost as data is moved between resources. A research di-

rection can be to investigate how to best perform course-grain task scheduling

and load balancing to exploit heterogeneous multicore architectures.

Software Techniques and Programming Interface. Future research di-

rections more on the software side includes integration with existing libraries

and using software techniques to optimize performance. We plan to collab-

orate with members of the FLAME research group in order to integrate our

proposed LAP with libflame [138], a modern alternative to the widely used

LAPACK [12] library. Advanced software techniques like loop fusion could be
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used in our codesign process to further optimize kernels and take advantage

of data locality on target architectures.

Generalization. The goal of generalization is to map more algorithms on

the LAC and analyze the associated cost in power and efficiency. In the end,

a design space spectrum of flexibility and performance versus efficiency can

be derived from this study. We plan to implement the collective communica-

tion routines for the hardware interconnect between PEs and add necessary

hardware if needed. Furthermore, it becomes worthwhile to investigate widely

used operations like Singular Value Decomposition (SVD) in the domain of

linear algebra. We could try to go beyond FFT and codesign the LAC to map

a wider class of signal processing applications as well. Finally, algorithms like

Multi-Layer Perceptron (MLP), and Local Linear Model Tree (LOLIMOT) are

based on computations on huge data sets that are processed as matrices [109].

We aim to study trade-offs and costs of adding such functionalities to the LAC.
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Appendix A

Core Level Extensions for

Matrix Factorizations

Within the dense linear algebra domain, a typical computation can be

blocked into sub-problems that expose highly parallelizable parts like GEn-

eral Matrix-matrix Multiplication (GEMM). These can be mapped very effi-

ciently to accelerators. However, many current solutions use heterogeneous

computing for more complicated algorithms like Cholesky, QR, and LU fac-

torization [7, 143]. Often, only the most parallelizable and simplest parts of

these algorithms, which exhibit ample parallelism, are performed on the ac-

celerator. Other more complex parts, which are added to the algorithm to

overcome floating point limitations or which would require complex hardware

to exploit fine grain parallelism, are offloaded to a general-purpose processor.

The problem with heterogeneous solutions is the overhead for communi-

cation back and forth with a general-purpose processor. In the case of current

GPUs, data has to be copied to the device memory and then back to the host

memory through slow off-chip buses. Even when GPUs are integrated on the

chip, data has to be moved all the way to off-chip memory in order to per-

form transfers between (typically) incoherent CPU and GPU address spaces.
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While the CPU could be used to perform other tasks efficiently, it is wasting

cycles synchronizing with the accelerator and copying data. Often times the

accelerator remains idle waiting for the data to be processed by the CPU,

also wasting cycles. This is particularly noticeable for computation with small

matrices.

In this appendix, we propose a new solutions that try to avoid all

inefficiencies caused by limitations in current architectures and thereby over-

come the complexities in matrix factorization algorithms. The problem is that

architecture designers typically only have a high-level understanding of algo-

rithms, while algorithm designers try to optimize for already existing archi-

tectures. Our solution is to revisit the whole system design by relaxing the

architecture design space. By this we mean allowing architectural changes to

the design in order to reduce complexity directly in the algorithm whenever

possible. Thus, the solution is to exploit algorithm/architecture co-design.

We add minimal, necessary but sufficient logic to the LAC design to avoid the

need for running complex computations on a general-purpose core.

A.1 Related Work

Implementation of matrix factorizations on both conventional high per-

formance platforms and accelerators has been widely studied. Many existing

solutions perform more complex kernels on a more general-purpose (host) pro-

cessor while the high-performance engine only computes paralellizable blocks

of the problem [7, 143].
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The typical solution for LU factorization on GPUs is presented in [143].

The details of multi-core, multi-GPU QR factorization scheduling are discussed

in [7]. A solution for QR factorization that can be entirely run on the GPU

is presented in [71]. For LU factorization on GPUs, a technique to reduce

matrix decomposition and row operations to a series of rasterization problems

is used [44]. There, pointer swapping is used instead of data swapping for

pivoting operations.

On FPGAs, [151] discusses LU factorization without pivoting. How-

ever, when pivoting is needed, the algorithm mapping becomes more challeng-

ing and less efficient due to complexities of the pivoting process and wasted

cycles. LAPACKrc [49] is a FPGA library with functionality that includes

Cholesky, LU and QR factorizations. The architecture has similarities to the

LAP. However, due to limitations of FPGAs, it does not have enough local

memory. Similar concepts as in this document for FPGA implementation and

design of a unified, area-efficient unit that can perform the necessary com-

putations (division, square root and inverse square root operations that will

be discussed later) for calculating Householder QR factorization is presented

in [13]. Finally, a tiled matrix decomposition based on blocking principles is

presented in [130].

A.2 Hardware Extensions

In this section, we discuss how to overcome the challenges that are dis-

cussed in Section 6.1 with regards to the mapping of factorization algorithms
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on the LAC. These extensions allow an architecture to perform more complex

operations more efficiently. We will introduce architecture extensions that

provide such improvements specifically for factorizations. However, such ex-

tensions also introduce a base overhead in all operations, since they add extra

logic and cause more power and area consumption. Corresponding trade-offs

will be analyzed in the results section.

Here, we focus on small problems that fit in the LAC memory. Bigger

problem sizes can be blocked into smaller problems that are mainly composed

of Level-3 BLAS operations (discussed in [135]) and algorithms for smaller

problems discussed here. We briefly review the relevant algorithms and their

micro-architecture mapping in Section 6.1. The purpose is to expose special-

ized operations, utilized by these algorithms, that can be supported in hard-

ware. We start by analyzing opportunities for extensions targeting Cholesky

and LU factorization, followed by solutions to complexities in vector norm

operations.

A.2.1 Cholesky Factorization

We observe that the key complexity when performing Cholesky factor-

ization is the inverse square-root operation. If we add this ability to the core’s

diagonal PEs, the LAC can perform the inner kernel of the Cholesky factor-

ization natively. The last state of the nr × nr Cholesky factorization will save

even more cycles if a square-root function is available. The nr × nr Cholesky

factorization is purely sequential with minimal parallelism in rank-1 updates.
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However, it is a very small part of a bigger, blocked Cholesky factorization.

Again, the goal here is to avoid sending data back and forth to a general pur-

pose processor or performing this operation in emulation on the existing MAC

units, which would keep the rest of the core largely idle.

A.2.2 LU Factorization with Partial Pivoting

For LU factorization with partial pivoting, PEs in the LAC must be able

to compare floating-point numbers to find the pivot (S1 in Section 6.1.2). In

the blocked LU factorization, we have used the left-looking algorithm, which is

the most efficient variant with regards to data locality [17]. In the left-looking

LU factorization, the PEs themselves are computing the temporary values that

they will compare in the next iteration of the algorithm. Knowing this fact,

the compare operation and its latency could be done implicitly without any

extra latency and delay penalty.

The next operation that is needed for LU factorization is the recipro-

cal (1/x). The reciprocal of the pivot needs to be computed for scaling the

elements by the pivot (S2 in Section 6.1.2). This way, we avoid multiple di-

vision operations and simply multiply all the values by the reciprocal of the

pivot and scale them.

A.2.3 QR Factorization and Vector Norm

In Section 6.1.3, we showed how the vector norm operation is performed

in conventional computers to avoid overflow and underflow. The extra oper-
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ations that are needed to perform vector norm in a conventional fashion are

the following: a floating-point comparator to find the maximum value in the

vector just as in LU factorization, a reciprocal function to scale the vector by

the maximum value, again just as in LU factorization, and a square-root unit

to compute the length of the scaled vector just as what is needed to optimize

the last iteration of a nr × nr Cholesky factorization. However, we can ob-

serve that all these extra operations are only necessary due to limitations in

hardware representations of real numbers.

Consider a floating number f that, according to the IEEE floating-point

standard, is represented as 1.m1×2e1 , where 1 ≤ 1.m1 < 2. Lets investigate the

case of an overflow for p = f 2, and as a result p = (1.m2)×2e2 = (1.m1)2×22e1 ,

where 1 ≤ (1.m1)2 < 4. If (1.m1)2 ≤ 2, then e2 = 2e1. But, if 2 ≤ (1.m1)2,

then 2 ≤ (1.m1)2 = 2 × 1.m2 ≤ 2 and therefore e2 = 2e1 + 1. In both cases,

a single extra exponent bit suffices for avoiding overflow and underflow in

computations of the square of a floating-point number.

Still, there might be the possibility of overflow/underflow due to ac-

cumulation of big/small numbers that could be avoided by adding a second

exponent bit. However, the square-root of such inner product is still out of

the bounds of a standard floating-point number. Therefore, only a single ad-

ditional bit suffices. Hence, what is needed is a floating-point unit that has

the ability to add one exponent bit for computing the vector norm to avoid

overflows and corresponding algorithm complexities.
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Figure A.1: Extended reconfigurable single-cycle accumulation MAC unit [63]
with addition of a comparator and extended exponent bit-width, where shaded
blocks show which logic should change for exponent bit extension.

A.3 Architecture

In this section, we describe the proposed architecture for our floating-

point MAC unit and the extensions made to it for matrix factorization ap-

plications. We start from a single-cycle accumulating MAC unit and explain

the modifications for LU and vector norm operations. Then, we describe the

extensions for reciprocal, inverse square-root, and square-root operations.
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A.3.1 Floating-Point MAC Unit

A floating-point MAC unit with single-cycle accumulation is presented

in [142]. Using the same design principles, [63] presents a reconfigurable

floating-point MAC that is also able to perform multiplication, addition and

multiply-add operations. This design does not support operations on denor-

malized numbers [142]. We describe our modifications to the same design as

shown in Figure A.1.

The first extension is for LU factorization with partial pivoting, where

the LAC has to find the pivot by comparing all the elements in a single column.

We noted that PEs in the same column have produced temporary results by

performing rank-1 updates. To find the pivot, we add a comparator after the

normalization stage in the floating-point unit of each PE. There is also a reg-

ister that keeps the maximum value produced by the corresponding PE. If the

new normalized result is greater than the maximum, it replaces the maximum

and its index is saved by the external controller. An extra comparator is a

simple logic in terms of area/power overhead [129]. It is also not a part of

the critical path of the MAC unit and does not add any delay to the original

design. With this extension, finding the pivot is simplified to a search among

only nr elements that are the maximum values produced by each PE in the

same column.

The second extension is for vector norm operations in the Householder

QR factorization. Previously, we have shown how adding an extra exponent

bit can overcome overflow/underflow problems in computing the vector norm
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without the need for performing extra operations to find the biggest value

and scale the vector by it. In Figure A.1, the shaded blocks show where

the architecture has to change. These changes are minimal and their cost is

negligible. Specifically, with the architecture in [142], the same shifting logic

for a base-32 shifter can be used. The only difference here is that the logic

decides between four exponent input bits instead of three.

A.3.2 Reciprocal and (Inverse) Square-root Units

In Cholesky factorization, we observed that the LAC needs a way to

compute the inverse square-root of the diagonal elements and scale the cor-

responding column with the result. Adding a square-root unit can also save

more cycles in the last iteration of a nr × nr Cholesky factorization. Further-

more, LU factorization needs a reciprocal operation to scale the elements by

the pivot. As discussed in [108], a reciprocal unit is also mandatory for TRian-

gular Solve with Multiple right-hand side (TRSM) operations to support the

complete Level-3 BLAS. In this section, we will give details and design options

for such a unit.

Division, reciprocal, square-root, and inverse square-root functions are

used in many applications in the domain of signal processing, computer graph-

ics, and scientific computing [99, 127]. Several floating-point divide and square-

root units have been introduced and studied in the literature [35, 98, 113].

There are mainly two categories of implementations in modern architectures:

multiplicative (iterative) and subtractive methods. An extensive presentation
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of these methods and their hardware implementations are presented in [127].

Two main multiplicative methods for calculating divide and square-

root functions are Newton-Raphson and Goldschmidt’s. These algorithms

work iteratively to refine an initial approximation. They utilize a look-up ta-

ble for initial approximation and the number of result digits doubles after each

iteration (converging at a quadratic rate). In each iteration, a series of multi-

plication, subtraction, and shifts are performed, which means a multiply-add

unit could be utilized for these operations. Hence, they can be implemented as

an enhancement on top of such existing units. Goldschmidt’s method, which

is based on a Taylor series with two independent multiplication operations,

is more suitable for pipelined floating-point units than the Newton-Raphson

method.

Subtractive (digit recurrence), which are also known as SRT methods,

directly calculate (multiple) digits of the desired result. They have high latency

and generally are implemented as a dedicated, complex component. However,

there are redundancies between the division and square-root units that allow a

single unit to perform both operations. For the higher radix implementations

with lower latencies, these designs become complex and area consuming.

In [127, 128], it is concluded that a separate SRT-based subtractive

divide and square-root unit is more efficient for a Givens rotation application.

This is because multiplicative methods occupy the Multiply-Add (MAD) unit

and prevent it to do anything else, while subtractive methods work in parallel

with an existing MAC unit, resulting into a faster design.
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Figure A.2: Floating-point unit extensions: (left) original divide, reciprocal,
square-root and inverse square-root design with the Minimax logic [113] used
for the isolate unit; (right) a single MAC unit design to support special func-
tions. The overheads on top of an existing MAC unit are encapsulated in
the big rounded rectangle. PEs in the LAC with that overhead can perform
special functions.

Operation G = RH V = 1 −RW Z = G + GV Ct0 Ct1

Division G = RY V = 1 −RX Z = G + GV 00
Reciprocal − V = 1 −RX Z = R + RV 01
Squar-root G = RX V = 1 −GS Z = G + GV/2 10
Inv Sqrt G = RX V = 1 −GS Z = R + RV/2 11

Table A.1: Operations of the divide and square-root unit with control sig-
nals [113].

Given the nature of linear algebra operations and the mapping of algo-

rithms on the LAC, a multiplicative method is chosen. The reason lies within

the fact that there are many MAC units in the core, and exploiting one of
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them for divide or square-root will not harm performance. In our class of ap-

plications, a divide and square-root operation is often performed when other

PEs are waiting in idle mode for the its result. As the iterations of Cholesky

and LU factorization go forward, only a part of the LAC is utilized, and the

top left parts are idle. Therefore, a diagonal PE is the best candidate for such

extensions on top of its MAC unit.

The design we are considering for this work is the architecture pre-

sented in [113]. It uses a 29-30 bit approximation with a second-degree min-

imax polynomial approximation that is known as the optimal approximation

of a function [114]. This approximation is performed by using table look-ups.

Then, a single iteration of a modified Goldschmidt’s method is applied. This

architecture, which is shown in Figure A.2(left), guarantees the computation

of exactly rounded IEEE double-precision results [113]. It can perform all four

operations: divide Y/X, reciprocal 1/X, square-root
√
X, and inverse square-

root 1/
√
X. While utilizing the same architecture for all operations, the divi-

son/reciprocal operations take less time to be computed, since computing G

and V can be done in parallel. In case of square-root/inverse square-root, all

operations are sequential and, as a result, the latency is higher. Figure A.3.2

shows the type of operations and control signals that are performed for all four

functions.

The design in Figure A.2(left) could be reduced to use a single recon-

figurable MAC unit, which performs all the computations itself. This strategy

reduces the design area and overhead. This reduction does not increase the
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latency, but reduces the throughput. However, as indicated before, for our

class of linear algebra operations, there is no need for a high-throughput divi-

sion/square root unit. Therefore, the design with a single reconfigurable MAC

unit as shown in Figure A.2(right) is preferred. The extra overhead on top

of an unmodified MAC unit includes the approximation logic and its look-

up tables. A simple control logic performs the signal selection for the MAC

inputs.

In summary, the changes we apply to the PEs in the LAC are as follows:

all PEs in the LAC design will get the extra-exponent bit and the comparator

logic for vector norm and LU with partial pivoting operations, respectively.

There are three options for the divide and square-root unit implementation in

the LAC: first, a separate unit can be used to be shared by all of PEs, or the

top-left PE can be modified to hold the extra logic on top of its MAC unit.

A third option is to add the divide and square-root logic to all diagonal PEs.

We will evaluate these options and their trade-offs for our applications in the

next section.

A.4 Experimental Results and Implementations

In this section, we present area, power and performance estimates for

the LAC with the modifications introduced in previous sections. We will

compare the performance to a pure software-like (micro-coded) implementa-

tion of additional complex operations using existing components and micro-

programmed state machines. We chose three different problem sizes and we
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perform an area, power, and efficiency study to evaluate the benefits of these

architectural extensions.

A.4.1 Area and Power Estimation

We use the power and area data from [43] and combine it with com-

plexity and delay reports from [113] for floating-point units. We assumed two

types of extensions for the MAC units in the LAC, which include the maximum

finder comparator and the extra exponent bit (Figure A.1). We also assumed

three different LAC architectures with three options for divide/square-root ex-

tensions: first, a software-like implementation that uses a micro-programmed

state machine to perform Goldschmidt’s operation on the MAC unit in the PE;

second, an isolated divide/square-root unit that performs the operation with

the architecture in Figure A.2(left); and third, an extension to the PEs that

adds extra logic and uses the available MAC units in the diagonal PEs (Fig-

ure A.2(right)).

The comparator is not on the critical path of the MAC pipeline and

the extensions for the extra exponent bit are negligible. Therefore, we assume

that there is no extra latency added to the existing MAC units with these

extensions. The divide and square-root unit’s timing, area, and power esti-

mations are calculated using the results in [113]. For a software solution with

multiple Godlschmidt iterations, we assume no extra power or area overhead

for the micro-programmed state machine.

The area overhead for diagonal PEs includes the selection logic and the
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Problem Total Cycles Dynamic Energy
Size SW Isolated Diagonal SW Isolated Diagonal

Cholesky
4 496 192 176 4 nJ 1 nJ 1 nJ

LU Factorization
64 524 340 340 62 nJ 60 nJ 60 nJ
128 700 644 644 121 nJ 119 nJ 119 nJ
256 1252 1252 1252 239 nJ 236 nJ 236 nJ

LU Factorization With Comparator
64 500 316 316 53 nJ 51 nJ 51 nJ
128 612 556 556 103 nJ 101 nJ 101 nJ
256 1036 1036 1036 202 nJ 200 nJ 200 nJ

Vector norm
64 282 158 150 32 nJ 29 nJ 29 nJ
128 338 214 206 59 nJ 56 nJ 56 nJ
256 418 294 286 114 nJ 111 nJ 111 nJ

Vector norm With Comparator
64 276 152 144 23 nJ 20 nJ 20 nJ
128 308 184 176 41 nJ 38 nJ 38 nJ
256 372 248 240 78 nJ 75 nJ 75 nJ

Vector norm With Exponent bit extension
64 154 80 76 12 nJ 10 nJ 10 nJ
128 170 96 92 21 nJ 19 nJ 19 nJ
256 202 128 124 39 nJ 37 nJ 38 nJ

Table A.2: Total cycle counts and dynamic energy consumption for different
architecture options (columns for divide/square-root options, and row sets for
MAC unit extension options), algorithms and problem sizes.

minimax function computation. In case of a 4 × 4 LAC, we observe that the

overhead for these extensions is around 10% if an isolated unit is added to

the LAC (see Figure 6.5 in Section 6.1). If the extensions are added to all

the diagonal PEs, more area is used. However, with an isolated unit more

multipliers and multiply-add unit logic is required. The benefit of using the

diagonal PEs is in avoiding the extra control logic and in less bus overhead for

sending and receiving data.
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A.4.2 Performance and Efficiency Analysis

In this part, we analyze the unblocked inner kernels of the three fac-

torization algorithms. We study the performance and efficiency behavior of

our extensions for these algorithms and different inner kernel problem sizes.

A very important point is that even larger problems sizes are usually blocked

into smaller subproblems that cast most of the operations into a combination

of highly efficient level-3 BLAS operations and the complex inner kernels that

we discuss here. Many accelerators only support level-3 BLAS and perform

more complex kernels on the host processor. The overhead of sending the data

associated with these computations back and forth is significant and affects

the performance by wasting cycles. However, such issues are out of the scope

of this document. What we want to show here is how effective our proposed

extensions are in achieving high performance for the inner kernels compared

to the baseline architecture with a micro-coded software solution.

Cholesky factorization can be blocked in a 2D fashion by breaking the

problem down to a few level-3 BLAS operations and a Cholesky inner ker-

nel. For our experiment, we evaluate a 4 × 4 unblocked Cholesky. We study

the effects of different divide/square-root schemes on the performance of this

inner kernel. The kernel performance and utilization is low because of the

dependencies and the latency of the inverse square-root operation. We ob-

serve (Table A.2) that the number of cycles drops by a third by switching

from a software solution to hardware extensions on the LAC.

LU factorization with partial pivoting is not a 2D-scalable algorithm.
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Figure A.3: The effect of hardware extensions and problem sizes on the power
efficiency of LU factorization with partial pivoting inner kernel.
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Figure A.4: The effect of hardware extensions and problem sizes on the area
efficiency of LU factorization with partial pivoting inner kernel.
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Figure A.5: The effect of hardware extensions and problem sizes on the inverse
E-D metric of LU factorization with partial pivoting inner kernel.
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The pivoting operation and scaling needs to be done for all rows of a given

problem size. Hence, for a problem size of k × k, the inner kernel that should

be implemented on the LAC is a LU factorization of a k×nr block of the orig-

inal problem. For our studies, we use problems with different k = 64, 128, 256,

which are typical problem sizes that fit on the LAC. We compare the perfor-

mance of a LAC with different divide/square-root unit extensions in different

columns and with/without the built-in comparator to find the pivot. As we

have shown in Section 6.1, the reciprocal operation and pivoting (switching

the rows) can be performed concurrently in the LAC owing to the column

broadcast buses. The pivoting delay is the dominating term. Hence, bigger

problem sizes are not sensitive to the latency of the reciprocal unit architec-

ture. However, there is a 20% speed and 15% energy improvement with the

comparator added to the MAC units.

Vector norm as part of a Householder transformation only utilizes a

single column of PEs for the inner product and reduce. To measure the maxi-

mum achievable efficiency, we assume that there are four different vector norms

completing concurrently one in each column. Note that the baseline is the orig-

inal normalizing vector norm. We have three options for divide/square-root

operations, and three options for MAC unit extensions. The first option is a

micro-coded software solution, the second option is utilizing the comparator in

the MAC unit without an exponent extension, and the last is a MAC unit with

an extra exponent bit. The problem sizes are again k = 64, 128, 256 different

vector lengths. As shown in Table A.2, we can observe that the exponent

154



extension halves the total cycles, and the divide/square-root unit saves up to

30% cycles compared to the baseline. Energy savings reach up to 60% with

the exponent bit extension. By contrast, different divide/square-root units do

not differ in terms of dynamic energy consumption.

We assume a clock frequency of 1GHz for the LAC. Utilization and ef-

ficiency can be calculated from the number of total cycles the hardware needs

to perform an operation and the number of operations in each factorization.

Power efficiency for vector norm and LU are presented in Figures A.6, A.3

respectively. Figures A.7, A.4 also represent the area efficiency respectively.

Another metric that we use is the inverse energy-delay. It shows how extensions

reduce both latency and energy consumption. Note that for LU factorization,

the pivoting operation is also taken into account. Therefore, we used GOPS

instead of GFLOPS as performance metric. For LU factorization problems

with k = 64, 128, 256, we estimated the corresponding total number of opera-

tions to be 1560, 3096 and 6168, respectively. For the vector norm, we use the

original algorithm as the baseline, which requires 257, 769 or 1025 operations

per corresponding vector norm of size k = 64, 128, 256. Since our implemen-

tation will result in an effective reduction in the number of actually required

computations, the extensions have higher GOPS/W than what is reported as

peak GFLOPS/W for the LAC in [105].

Results for LU factorization confirm that there is no improvement in

efficiency with different reciprocal architectures when solving big problem sizes.

Given this fact, isolated unit seems to be a better option for LU factorization.
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Figure A.6: The effect of hardware extensions and problem sizes on the power
efficiency of vector norm inner kernel.
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Figure A.7: The effect of hardware extensions and problem sizes on the area
efficiency of vector norm inner kernel.
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By contrast, vector norm benefits from all types of extension. However, the

exponent bit is what brings significant improvements in efficiency.

Since there are not many options for Cholesky, we only summarize the

numbers here in the text. The number of operations in a 4 × 4 Cholesky

kernel is 30. For different divide/square unit architectures (software, iso-

lated, and on diagonal PEs), the achieved efficiencies are as follows: 1.95,

4.67 and 5.75 GFLOPS/W; 0.52, 4.95, and 5.15 GFLOPS2/W; and 0.03, 0.06,

0.07 GFLOPS/mm2. The reason for the very poor efficiency (less than 5

GFLOPS/W) is the small size of the kernel and limited available parallelism.

Still, adding the special function unit improves efficiency around ten times,

while reducing dynamic energy consumption by 75%.

A.5 Summary

In this appendix, we propose two modifications to the MAC unit designs

to decrease the complexity of factorization algorithms. We also show how

existing processing elements can be enhanced to perform special functions

such as divide and square-root operations. To demonstrate the effectiveness

of our proposed extensions, we applied them to the mapping of Cholesky, LU

and QR factorizations on such an improved architecture. Results show that

our extensions significantly increase efficiency and performance.

Future work includes comparison and mapping of big, tiled matrix fac-

torization problems onto the LAC, including its integration into a heteroge-

neous system architecture next to general-purpose CPUs and a heterogeneous
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shared memory systems, which will allow comparisons between the trade-offs

of complexity and flexibility.

158



Appendix B

Core Level Extensions for

Fast Fourier Transform

FFTs are fundamentally linked to the underlying mathematics of many

areas of computational science. They are perhaps the most important single

tool in “signal processing” and analysis, and play a fundamental role in indirect

imaging technologies, such as synthetic aperture radar [24] and computerized

tomographic imaging [67]. FFTs are a widely-used tool for the fast solution

of partial differential equations, and support fast algorithms for the multipli-

cation of very large integers. Unlike GEMM, the FFT has a more modest

number of computations per data element (this is one of the main reasons

that it is “fast”), so that performance of FFT algorithms is typically limited

by the data motion requirements rather than by the arithmetic computations.

For both the GEMM and FFT algorithms, application-specific designs

have been proposed that promise orders of magnitude improvements in power/area

efficiency relative to general-purpose processors [92, 105]. However, each of

these have been isolated and dedicated design instances limited to one algo-

rithm. With full-custom design increasingly becoming cost-prohibitive, there

is a need for solutions that have enough flexibility to run a range of opera-
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tions at the efficiency of full-custom designs. In this appendix, we analyze the

similarities between algorithms and show how one might transform an opti-

mized GEMM core to an FFT core. We consider whether a combined core

that can perform either operation efficiently is practical, and analyze the loss

in efficiency required to achieve this flexibility.

We begin by exploring FFT algorithms that may be suitable for the

baseline LAC architecture. After evaluating LAC limitations and trade-offs

for possible solutions, we introduce an “FFT core” that we have optimized

for FFTs over a wide range of vector lengths. While optimized for performing

FFTs, this core is based on a minimal set of modifications to the existing LAC

architecture. We then take similarities between the original LAC and the FFT-

optimized design to introduce a flexible, hybrid design that can perform both

of these applications efficiently. Comparing both full-custom designs with our

proposed hybrid core, we demonstrate the costs of flexibility versus efficiency.

B.1 Related Work

The literature related to fixed-point FFT hardware in the digital signal

processing domain is immense. Literature reviews of hardware implementa-

tions date back to 1969 [16] – only four years after the publication of the

foundational Cooley-Tukey algorithm [29].

The literature related to floating-point FFT hardware is considerably

more sparse, especially for double-precision implementations. Important re-

cent work includes the automatic generation of hardware FFT designs from
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high-level specifications [92]. These hardware designs can be used in either

ASIC or FPGA implementations [27], but the published double-precision re-

sults for these designs are currently limited to FPGAs [9]. Hemmert and

Underwood [56] provide performance comparisons between CPU and FPGA

implementations of double-precision FFTs, and include projections of antici-

pated performance. Finally, a broad survey of the power, performance, and

area characteristics of single-precision FFT performance on general-purpose

processors, GPUs, FPGAs and ASICs is provided by Chung [27].

Performance of FFT algorithms varies dramatically across hardware

platforms and software implementations, depending largely on the effort ex-

pended on optimizing data motion. General-purpose, microprocessor-based

systems typically deliver poor performance, even with highly optimized im-

plementations, because the power-of-2 strides of the FFT algorithms inter-

act badly with set-associative caches, with set-associative address translation

mechanisms, and with power-of-2-banked memory subsystems.

We compare the performance, area, and power of our proposed designs

with a sampling of floating-point FFT performance results on general-purpose

processors, specialized computational accelerators, and GPUs.

B.2 FFT Algorithm Mapping

In this section, we show the details of mapping an FFT on the LAC

along with the required modifications that need to be made to the existing

core architecture. We start by focusing on small problems that fit in the local
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core memory. Then, we present solutions for bigger problems that do not fit

in the local store.

B.2.1 Radix-4 FFT Algorithms on the PEs

In Section 6.2.1 we gave a description of regular and FMA optimized

versions of the Radix-2 and Radix-4 butterfly operations. Here, we show the

details of mapping such operations on the PEs. A Radix-2 operation takes

six FMA operations. Performing Radix-2 operations in each PE, the LAC can

perform 32-point FFTs, but can only hide the latency of FMA pipeline for

FFT transforms with 64 or more points. The Radix-4 butterfly on the PE

is more complicated due to data dependencies within the butterfly operation.

Figure B.1 shows the DAG of the Radix-4 butterfly. Solid ellipse nodes take

4 FMA operations and dashed nodes take 2 FMA operations. A pipelined

FMAC unit has q pipeline stages with q = 5 ∼ 9. The nodes in the DAG

should be scheduled in a way that data dependency hazards do not occur

due to pipeline latency. However, the FMAC units have single cycle accu-

mulation capabilities. Hence, no data dependency hazards can occur among

addition/accumulations (dashed arrows). For the multiplication dependen-

cies (solid arrows), there should be at least q cycles between start of a child

node and the last cycle of its parent. The start-finish cycle numbers next to

each node show an execution schedule that tolerates pipeline latencies of up

to 9 cycles with no stalls, thus providing 100% FMA utilization.
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add unit. Rectangles on top indicate the input data, solid nodes show complex
computations with four FMA operations each, nodes with dashed lines show
complex computations with two FMA operations each. The nodes are executed
in an order that avoids data dependency hazards due to pipeline latencies, as
shown by the start-finish cycle numbers next to each node.

B.2.2 FFT on the Core

Here, we describe both Radix-2 and Radix-4 based FFTs on the LAC.

We compare the computation and communication of these two options, in-

cluding the bus access behavior.

Radix-2 based FFT When PEs perform Radix-2 butterfly operations, each

PE has to exchange one of its outputs with its neighbor of distance 20 (one)
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after the first stage. All PEs on the same row perform communication between

PE2n and PE2n+1. After the second stage, PEs exchange outputs with those

of neighbors at a distances of 21 (two). These PEs also fall on the same row of

the 4 × 4 arrangement of the LAC. After the third stage, each PE exchanges

its output with a PE that has a distance of 22 (four). In our architecture, with

nr = 4, this translates to adjacent neighbors on the same column. Finally, after

the fourth stage, each PE switches its outputs with the PE that has a distance

of 23 (eight). This also requires a column bus communication. In subsequent

stages, the distances are multiples of 42 = 16. In a 4 × 4 arrangement, these

are mapped to the same PE. Therefore, there is no communication between

PEs for these stages.

The shortcoming of performing Radix-2 butterflies on the PEs comes

from a computation/communication imbalance. In stages two through four,

broadcast buses are being used for exchanging data. For each exchange, nr

complex numbers are transferred on the bus, which takes 2nr (eight) cycles.

Since computation requires only six cycles, this imbalance decreases utilization

by an undesirable 25%.

Radix-4 based FFT The Radix-4 algorithm is similar to the Radix-2 al-

gorithm, but with more work done per step and with communication per-

formed over larger distances in each step. Figure B.2 shows a 64-point FFT

where each PE performs Radix-4 butterfly operations. This transform con-

tains three stages. The communication pattern for the first PE in the second

164



and third stages is shown with highlighted lines in the figure. In the sec-

ond stage, PE0=PE(0,0) has to exchange its last three outputs with the first

outputs of its three neighboring PEs(1,2,3)×40 , or PE1=PE(0,1), PE2=PE(0,2),

and PE3=PE(0,3) (See figure B.3). Similarly, in the third stage, PE(0,0) has

to exchange its last three outputs with the first outputs of PEs that have

distance with multiples of 4 or PEs(4,8,12) = PE(1,2,3)×41 , or PE4=PE(1,0),

PE8=PE(2,0), and PE12=PE(3,0). Since there are only 16 PEs in a core, PEs

that have distances of multiples of 42 = 16 fall onto the same PE, and there is

no PE-to-PE communication. When communication is required, all the PEs

on the same row or column have to send and receive a complex number to/from

each of their neighbors. The amount of data that needs to be transferred be-

tween PEs is 2nr(nr − 1). For the case of nr = 4, the communication takes

24 cycles, which exactly matches the required cycle count for the radix-4 com-

putations. As such, the remainder of the appendix will focus on the Radix-4

solution only.

The approach used for the 64-point FFT can be generalized to any

(power of 4) size for which the data and twiddle factors fit into the local

memory of the PEs. Consider an N = 4m point FFT using the Radix-4

butterfly implementation described above. The transform includes logN4 = m

stages. Out of these m stages, only two use broadcast buses for data transfer

– one stage using the row buses and one stage using the column buses. The

rest of data reordering is done by address replacement locally in each PE.

Therefore as discussed in the next section, as the transform size increases, the
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Figure B.3: Data communication access pattern between PEs of the LAC for
Radix-4 FFT.

broadcast buses are available for bringing data in and out of the LAC for an

increasing percentage of the total time.

For larger problem sizes, the radix computations can be performed in

a depth-first or breadth-first order (or in some combination). We choose the

breadth-first approach due to its greater symmetry and simpler control. In

this approach, all the butterflies for each stage are performed before beginning

the butterflies for the next stage.

B.2.3 FFT Memory Hierarchy for Larger Transform Sizes

The local memory in the PEs will allow storage of input data, output

data, and twiddle factors for problems significantly larger than the 64-element

example above, but the local memory size will still be limited. We will use

4096 as a “typical” value for the maximum size that can be transformed in

PE-local memory, but we note that this is a configurable parameter.

Given a core capable of computing FFTs for vectors of length 64, . . . , 4096,

it is of interest to explore the off-core memory requirements to support the data
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access patterns required by these small FFTs as well as those of more general

transforms, such as larger 1D FFTs or multidimensional FFTs. This anal-

ysis is limited to on-chip (but off-core) memory. Considerations for off-chip

memory are out of scope of this document and are deferred to future work.

First, we note that the butterfly computations shown in Figure B.2

produce results in bit-reversed order. Although some algorithms are capa-

ble of working with transformed results in permuted orders, in general it is

necessary to invert this permutation to restore the results to their natural or-

der. Converting from bit-reversed to natural order (or the converse) generates

many power-of-two address strides, which are problematic for memory systems

based on power-of-two banking with multi-cycle bank cycle times. The most

straightforward solutions are based on high-speed, multi-port SRAM arrays,

capable of sourcing or sinking contiguous, strided, or random addresses at

a rate matching or exceeding the bandwidth requirement of the core. Each

of the solutions discussed below will be capable of handling the bit-reversal

transformation, as well as any other data access patterns required.

Algorithm for Larger 1D FFTs Support for larger one-dimensional FFTs

is provided through the generalized Cooley-Tukey factorization, commonly

referred to as the “four-step” algorithm [15]. For an FFT of length N , we

split the length into the product of two integer factors, N = N1N2. The

1D discrete Fourier transform can then be computed by the sequence: (1)

Perform N1 DFTs of size N2; (2) Multiply the result by an array of complex

168



FFT
Core

256x256 FFT Input 256x256 FFT Input

1D FFT 2D FFT

FFT
Core

Stage 1:
Read 

Transform
Write Back 
Columns

Stage 2:
Read 

Transform
Write Back

 Rows

Stage 1/2:
Read 

Transform
Write Back 
Columns

Stage 2/1:
Read 

Transform
Write Back

 Rows

Figure B.4: Overview of data motion to/from the core for performing a 64K
1D FFT (left), and for a 256× 256 2D FFT (right).

roots of unity (called “twiddle factors”); (3) Perform N2 DFTs of size N1.

For a core capable of performing transforms of up to N=4096, this algorithm

allows computing a 1D transform for lengths of up to 40962 = 224 ' 16 million

elements. (On-chip memory capacity will not be adequate for the largest sizes,

but the algorithm suffices for this full range of sizes.)

The overall data motion for the 1D and 2D FFTs is shown in Figure B.4.

For the 1D FFT, the first set of DFTs must operate on non-contiguous data

– essentially the “columns” of a row-major array. In our design, the data is

loaded from these non-contiguous locations in the on-chip memory into the

core using a stride of N2 complex elements, as indicated in the left panel of

Figure B.4.

After each column is loaded, the core transforms the data in its local
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memory as described in the previous section. Note that since the columns are

all of the same length, the twiddle factors for these transforms can be held in

PE-local memory and re-used for every column. The results of the transform

are written back to their original locations in the SRAM array while applying

a bit-reversal permutation to restore them to natural order.

After the first set of transforms, the 1D FFT requires multiplication by

an additional set of twiddle factors, which are loaded from a second SRAM

array. Next, the 1D FFT requires a second set of DFTs to be performed along

the “rows”. For this second set of transforms the data is loaded from contigu-

ous locations in SRAM to the cores. It is then transformed and written back

to its original location in the SRAM after applying a bit-reversal permutation.

This completes computations for the 1D FFT, but the results are, at

this point, stored in the transpose of the natural order. Given the ability of

the SRAM to source data in arbitrary order, it is assumed that subsequent

computational steps will simply load the data using transposed addressing.

Note that this requires that the subsequent processing step knows how the

original N was decomposed into the product of N1 and N2.

Algorithm for 2D FFTs For a core capable of computing 1D FFTs of

lengths 64, . . . , 4096, two-dimensional FFTs of sizes up to 4096 × 4096 are

straightforward. These transforms are similar to large 1D FFTs, but are sim-

pler to implement since there are no additional “twiddle factors” required.

The data motion for the 2D FFT is also shown in Figure B.4. The row and
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FFT N ×N 2D No-Ov 2D Ov 1D No-Ov 1D Ov
Core Local Store 4N 6N 6N 8N

Radix-4 Cycles 6NlogN4 /n2
r

Twiddle Mult Cycles - - 6N/n2
r 4N/n2

r

Communication 4N = 2N(R)+2N(W) 6N = 4N(R)+2N(W)

Table B.1: Different FFT core requirements for both overlapped and non-
overlapped versions of N ×N 2D and N2 1D FFTs.

column transforms can be performed in either order, but choosing to perform

the column transforms first emphasizes the similarity with a 1D FFT that

is decomposed into the same 2D layout. The column data is read into the

cores using a stride of N2 elements, then transformed and written back to its

original location in the SRAM (using bit-reversal to obtain natural ordering).

Then the rows are processed in a similar fashion and written back to their

original locations in the SRAM. In this case the output contains the trans-

form in the natural ordering, so subsequent processing steps can read the data

contiguously.

B.3 Architecture Trade-offs and Configurations

In previous sections, we provided the fundamentals for mapping a

Radix-4 based FFT transform to a modified LAC. In this section, we describe

the necessary modifications to the PEs, the core, and the off-core SRAM to

support the efficient mapping of FFTs. We first describe analytical models

before demonstrating the tradeoff analysis using them.
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B.3.1 Analytical models

The number of PEs in each row/column is denoted with nr(=4) and

problem sizes are chosen in the range of N = 64, . . . , 4096. Each FMA-

optimized Radix-4 butterfly takes 24 cycles as presented in Section 6.2.1.

Therefore, an N -point FFT requires a cycle count of TotalCycles = N/4 ×

24× logN4 /n2
r.

We consider two cases in our analysis for FFT on the core: no or full

overlap of communication with computation. Note that the FFT operation has

a much higher ratio of communication/computation (O(N)/O(N logN)) com-

pared to a typical level-3 BLAS operation like matrix multiplication (O(N2)/

O(N3)). Therefore, the non-overlap FFT solution suffers significantly resulting

in low utilization. The different cases of the core requirements are presented

in Table B.1.

Core constraints for 2D FFTs For both stages of the 2D FFT and the

first stage of the 1D FFT, each core is performing independent FFT operations

on rows and columns. The twiddle factors remain the same and therefore the

core bandwidth and local store size can be calculated as follows. The amount of

data transfer for a problem of sizeN includesN complex inputs andN complex

transform outputs resulting in a total of 4N real number transfers. In case of

no overlap, data transfer and computation are performed sequentially. For the

case of full overlap, the average bandwidth for a FFT of size N can be derived

from the division of the total data transfers by the total computation cycles as
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a core with column buses used for external transfers.

BWAvg = 2n2
r/3 logN

4 . However, out of logN4 stages, stage 2 utilizes row buses

and stage 3 uses column buses for inter-PE communications. If column buses

are used to bring data in and out of the PEs, the effective required bandwidth

is increased to BWeff = 2n2
r/3(logN

4 −1).

The aggregate local store of PEs includes the N complex input points

and N complex twiddle factors. In the no-overlap case, this amount of stor-

age suffices since there is no need for extra buffering capacity. However, the

overlapped case requires an extra N point buffer to hold the prefetched input

values for the next transform. Therefore, the aggregate PE local stores in a

core should be 6N floating-point values.

Core constraints for 1D FFTs The second set of FFTs in the “four-step”

1D FFT, require more input bandwidth to the cores. Each core is performing

independent FFT operations on rows. The twiddle factors are changing with
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Figure B.6: Local store/PE and respective utilization for both cases of non-
overlap and overlapped solutions.

each new N point input vector. However, each twiddle factor is going to

be multiplied with the corresponding input before the FFT computation gets

started. An extra 4N real multiplications are added to the total computations

of this transform. Therefore the total cycle count is TotalCycles = (6NlogN4 +

4N)/n2
r. The amount of data transfer for a problem of size N includes 2N

complex inputs (transform inputs and twiddle factors), andN complex outputs

resulting in a total of 6N real number transfers. In case of no overlap, data

transfer and computation are performed sequentially. For the case of full

overlap, the average bandwidth for an FFT of size N can be derived from

the division of the total data transfers by the total computation cycles as

BWAvg = 3n2
r/(3 logN

4 +2). However, If column buses are used to bring data

in and out of the PEs, the effective required bandwidth is increased (as in the

2D case described above) to BWeff = 3n2
r/(3 logN

4 −1) (see Figure B.5).

Each N -point input to the core has to be pre-multiplied by a different
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Figure B.7: Average communication load on core for 64K 1D FFT.

set of twiddle factors, so another buffer is needed for the corresponding twiddle

factors.

Finally, as described earlier, one can compute the 1D discrete Fourier

transform by splitting N into the product of two integer factors, N = N1×N2.

Earlier we noted that the fully-overlapped solution has lower communication

load for larger transform lengths. Noting also that the second set of FFTs put

more communication load on the core/external memory, we expect that order-

ing the factors so that the larger factor corresponds to the length of the second

set of transforms will provide more balanced memory transfer requirements.

Figure B.7 demonstrates this effect for the case of a 64K point 1D FFT with

three different options for 64K = N1 ×N2.

B.3.2 Core Configuration

Figure B.6 shows the core bandwidth and local store requirements for

the overlapped and non-overlapped algorithms. The utilization of the non-
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overlapped version increases from 35% to 50% as the size of the transform in-

creases. The overlapped algorithm can fully utilize the FMA units for all these

sizes, maintaining its optimum utilization of slightly over 83.3%. Depending

on the FFT type (1D or 2D), the overlapped algorithm requires 33%∼50%

extra local storage.

Note that the non-overlapped bandwidth is assumed to be at a fixed

rate of four doubles/cycles, which is the maximum capacity of the LAC. How-

ever, for the overlapped algorithm at problem sizes N <= 1024, extra off-core

bandwidth is required to attain the peak achievable efficiency. The chart on

the left side of Figure B.5 shows that the maximum required off-core band-

width does not exceed eight doubles/cycle. Therefore, the off-core bandwidth

needs to double that of the original LAC design. Furthermore, the PE must

be able to overlap the prefetching of input data and the post-storing of output

data from/to off-core memory concurrently with the computations.

Doubling the memory bandwidth could be implemented in three ways:

doubling the width of the column buses, doubling the number of column buses,

or connecting the row buses to the off-core memory. The first choice would be

complex to implement, since the original column bus bandwidth is matched

to the PE-local SRAM bandwidth. The second choice is not quite as complex,

but still requires an expansion of the PE local SRAM bandwidth. The best

solution is therefore to expand the memory interface so that both row and

column buses can transfer data to/from PEs. This solution does not impose

any area overhead for additional broadcast buses and provides an interface
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Figure B.8: New PE configurations for full-overlap FMA-optimized Radix-4
FFT: (left) FFT-optimized PE with two 8-byte, single-ported SRAMs (right)
Modified linear algebra PE with two 8-byte, single-ported SRAMs to contain
matrix A (“Hybrid”).

to the memory that is always free of inter-PE use during phases in which

the column buses are busy with inter-PE transfers. Further, this design is

symmetric and natively supports transposition.

B.3.3 PE Configuration

The PE micro-architecture must perform the three tasks of Radix-4

butterfly computation, FFT communication, and off-core communication con-

currently. Some extra logic and storage is needed to facilitate data movements

and locality. These options are described with the help of Figure B.9.

An 8-byte register file is needed to store the four complex input, tempo-

rary, and output values of the FMA-optimized Radix-4 butterfly (Figure B.1).

The twiddle factors take an extra four registers. We separate these two reg-
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(a)Figure B.9: New core configurations with extended external row bus interface
for full-overlap FMA-optimized Radix-4 FFT.

ister files to avoid adding extra ports to the existing (large) register file and

hence save energy and area. The PE SRAM needs enough bandwidth to pro-

vide data for both Radix-4 computations and off-core communications. Each

butterfly has six complex inputs and produces four complex outputs. This

data transfer would require 20 cycles from a typical single-ported 8-byte wide

SRAM. The remaining four cycles of the 24-cycle radix-4 compute phase do

not provide enough time to implement the required off-core communications.

There are three solutions to provide the required bandwidth to the PE-local

stores: an extra port to the same PE SRAM could be added, a wider (16 byte

wide) port could replace the existing port, or a separate SRAM block with its

own 8-byte port can be added.

A simple study of memory power and area consumption of these op-

tions is presented in Table B.2. The dual ported solution consumes much
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more power and area than the other two. Hence, the wide solution needs ex-

tra buffering and a more complicated control to transmit data to/from other

components. The two SRAM solution is the best one with the simplest con-

trol. This FFT PE is presented in Figure B.8(left). It has a symmetric design

with two separate buses – each is connected to all the components in the PE

and to one of the SRAMs.

So far, we have described the options for an FFT PE that is based

on the baseline architecture but is specifically designed for FFT operation. If

one starts with an existing linear algebra PE to make a hybrid FFT/Linear

Algebra architecture, the register file design has to be extended with more

ports and more capacity to match the requirements of the FFT. There are

two options for extending this micro-architecture to facilitate FFT bandwidth

for the hybrid design. The original linear algebra PE has one larger, single-

ported SRAM and one smaller, dual-ported SRAM. Since the smaller SRAM

is already dual ported, we must modify the larger SRAM to provide extra

bandwidth. As discussed above, the best solution is to divide the larger SRAM

into two halves and adding an extra bus to the PE (see Figure B.8(right)).

B.3.4 Off-core Memory Configuration

As noted in Section B.3, the maximum core bandwidth required for

the non-overlapping case is four double-precision elements per cycle. The

non-overlapped configuration requires an effective bandwidth of up to eight

double-precision elements per cycle for problems sizes smaller than N=1024.
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16Kbyte SRAM Wide Dual-port Separate
# SRAMs, # ports x bus-width 1,1x16 1, 2x16 2, 1x8

Cycle time (nS) 0.73 0.79 0.67
Energy per access (nJ) 0.010 0.009 0.005

Total area (mm2) 0.054 0.141 0.054
Max Power at Target Freq (mW) 0.010 0.017 0.010

Worst case FFT Access/Cycle 0.613 1.227 1.227
Worst Case FFT total dynamic energy (J) 0.006 0.011 0.006

Table B.2: PE SRAM options and their area, performance, and energy con-
sumption report by CACTI [93].

Core changes are required to support external bandwidths above four double-

precision values per cycle, with the addition of memory interfaces on the row

buses providing the most symmetric solution. The effective bandwidth re-

quired for pre-fetch/post-store is decreased by opening up more cycles in which

at least one of the buses is not used.

For the case of double-precision complex data, the natural data size

is 2 × 64 = 128 bits, so we will assume 128-bit interfaces. As shown in sec-

tion 6.2.1, the first step of a large 1D FFT requires less memory traffic than

the second stage which includes loading an additional set of twiddle factors,

so we focus on the second stage here. We consider whether the instantaneous

read and write requirements of the algorithm can be satisfied by two separate

memories, one for data (SRAM0) and one for twiddle factors (SRAM1), each

with a single 128-bit-wide port operating at twice the frequency of the core,

giving each a bandwidth of 4 double-precision elements per cycle.

The worst case occurs for N = 64, where full overlap of data trans-

fers with computation requires that the external memory be able to provide
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256 double-precision elements (64 complex input elements plus 64 complex

twiddle factors) and receive 128 double-precision elements (64 complex output

elements) during the 72 cycles required to perform the three radix-4 compu-

tations. The proposed memory interface bandwidth is clearly adequate to

provide for the average traffic – the SRAMs require 64 cycles (of the 72 avail-

able) to provide the 256 words prefetched by the core for its next iteration.

The writes require only 32 of the 72 cycles, and these can be overlapped with

the reads.

The detailed scheduling is not particularly complex, but does require

careful design, as shown in Figure B.10. Recall (Figure B.2) that during the

first radix-4 step (24 cycles) of the 64-point FFT neither row nor column

buses are in use, while the row buses are in use during the second (24-cycle)

radix-4 step and the column buses are in use during the third 24-cycle radix-4

step. The SRAMs requires 64 cycles to source the input data and twiddle

factors, so reads must occur during all three of these phases, with reads on

the column buses during phase 2 (while the row buses are busy) and on the

row buses during phase 3 (while the column buses are busy). Similarly, the
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writes require 32 cycles at the SRAM, so they must occur during at least two

of the three phases. Since the data is both read from and written to SRAM0,

the reads during the 24 cycles of “stage 1” of Figure B.10 must be reads of

twiddle factors from SRAM1. The remaining 8 cycles of twiddle factor reads

can occur during either stage 2 or stage 3.

If we further assume that only a single SRAM bank within each PE

is available for this pre-fetch/post-store communication (with the other bank

being used for the concurrent computation step), then a PE can read or write

to a row or column bus, but cannot use both row and column buses in the

same cycle without additional buffering. Fortunately, due to the shared bus

architecture, each PE can only write to the column bus on 1/4 of the cycles

and can only write to the row bus on 1/4 of the cycles, so it is straightforward

to swizzle the active PEs so that no PE is both reading and writing on the

same cycle. For all cases with N > 64, there are additional radix-4 stages with

no use of the row and column buses, making full overlap of communication

and computation easier to schedule.

B.4 Experimental Results and Implementations

In this section, we present area, power and performance estimates for

the LAC with the modifications introduced in previous sections.

Table B.3 reports the projected power and area consumption of the

components of the PE for the three different designs, along with the corre-

sponding design metrics. The power consumption of the FFT design is con-
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PE Design LAC FFT Hybrid

SRAM
Total SRAM Area (mm2) 0.070 0.054 0.073

Total SRAMs MAX Power (W) 0.013 0.010 0.015
Total SRAM Actual Dynamic Power (W) 0.005 0.006 0.006

Floating-Point Unit
FP Area (mm2) 0.042 0.042 0.042
FP Power (W) 0.031 0.031 0.031

Register File
RF Area (mm2) 0.000 0.008 0.008

RF MAx Power (W) 0.000 0.004 0.004
RF Actual Power (W) 0.000 0.003 0.003

Broad-cast Buses
Bus Area /PE (mm2) 0.014 0.014 0.014
Max Bus Power (W) 0.001 0.001 0.001

PE Total
Total PE Area (mm2) 0.126 0.119 0.138

Total PE MAx Power (W) 0.045 0.047 0.052
Total PE Real Power (W) (GEMM,FFT) 0.037 0.041 ( 0.037, 0.041 )

GFLOPS/W (GEMM, FFT) 53.82 40.53 ( 53.80, 40.50 )
GFLOPS/MAX W (GEMM, FFT) 44.59 35.80 ( 38.55, 32.12 )

GFLOPS/mm2 (GEMM, FFT) 15.84 14.00 ( 14.54, 12.11 )
W/mm2 0.334 0.391 0.377

Table B.3: PE designs for dedicated LAC, dedicated FFT, and a hybrid design
that can perform both operations.

sidered for the worst case and highest possible number of accesses. For the

hybrid design, we report a pair of numbers, one for GEMM and one for FFT.

Figures B.11, and B.12 summarize the actual and maximum power

consumption breakdown of the three proposed designs respectively. For the

pure FFT and hybrid cores, the “actual” power considers the worst case power

consumption when running an FFT. The maximum power breakdown shows

the “maximum power” that is used by the three different PE designs. We

observe that the power consumption is dominated by the FMAC unit, with

secondary contributions from the PE-local SRAMs. Since the leakage power

consumption of the SRAM blocks are negligible, the actual power efficiency is

maintained in the hybrid PE.
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Figure B.11: Actual PE power consumption of each design for target applica-
tions at 1GHz.
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Figure B.12: Maximum PE power consumption of each target design at 1GHz.
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Figure B.13: Total area breakdown of the PE for each design.
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Finally, the area breakdown in Figure B.13 emphasizes that most of

the PE area is occupied by the memory blocks. The hybrid design has the

largest aggregate PE SRAM capacity.

B.5 Summary

Starting with a baseline linear algebra architecture, this appendix presents

analysis and modication of the design to efficiently support 1D and 2D complex

FFT algorithms. We presented a hybrid core that can perform both algorithms

while maintaining the efficiency characteristic of the original application-specc

design. Our results show that this hybrid design can achieve up to 40 GFLOPS/W

power efficiency for double-precision complex FFTs with 83% effective utiliza-

tion of the FMAC units.
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