
TITLE

Basic Linear Algebra Subprograms

BYLINE

Robert A. van de Geijn
Department of Computer Science
The University of Texas at Austin
Austin, TX
USA
rvdg@cs.utexas.edu

Kazushige Goto
Texas Advanced Computing Center
The University of Texas at Austin
Austin, TX
USA
kgoto@tacc.utexas.edu

Synonym

BLAS

Definition

The Basic Linear Algebra Subprograms (BLAS) are an interface to commonly
used fundamental linear algebra operations.

Discussion

Introduction

The BLAS interface supports portable high-performance implementation of
applications that are matrix and vector computation intensive. The library

1

or application developer focuses on casting computation in terms of the oper-
ations supported by the BLAS, leaving the architecture-specific optimization
of that software layer to an expert.

A Motivating Example

The use of the BLAS interface will be illustrated by considering the Cholesky
factorization of an n× n matrix A. When A is Symmetric Positive Definite
(a property that guarantees that the algorithm completes) its Cholesky fac-
torization is given by the lower triangular matrix L such that A = LLT .

An algorithm for this operation can be derived as follows: Partition

A→
(
α11 ?
a21 A22

)
and L→

(
λ11 0
l21 L22

)
,

where α11 and λ11 are scalars, a21 and l21 are vectors, A22 is symmetric, L22

is lower triangular, and the ? indicates the symmetric part of A that is not
used. Then(
α11 ?
a21 A22

)
=

(
λ11 0
l21 L22

)(
λ11 0
l21 L22

)T

=

(
λ2

11 ?
λ11l21 l21l

T
21 + L22L

T
22.

)
This yields the following algorithm for overwriting A with L:

• α11 ←
√
α11.

• a21 ← a21/α11.

• A22 ← −a21a
T
21 + A22, updating only the lower triangular part of A22.

(This is called a symmetric rank-1 update.)

• Continue by overwriting A22 with L22 where A22 = L22L
T
22.

A simple code in Fortran is given by

do j=1, n
A(j,j) = sqrt(A(j,j))
do i=j+1,n
A(i,j) = A(i,j) / A(j,j)

enddo
do k=j+1,n
do i=k,n
A(i,k) = A(i,k) - A(i,j) * A(k,j)

enddo
enddo

enddo

2

Vector-Vector Operations (Level-1 BLAS)

The first BLAS interface was proposed in the 1970s when vector supercom-
puters were widely used for computational science. Such computers could
achieve near-peak performance as long as the bulk of computation was cast
in terms of vector operations and memory was accessed mostly contiguously.
This interface is now referred to as the Level-1 BLAS.

Let x and y be vectors of appropriate length and α be scalar. Commonly
encountered vector operations are multiplication of a vector by a scalar (x←
αx), inner (dot) product (α← xTy), and scaled vector addition (y ← αx+y).
This last operation is known as an axpy: alpha times x plus y.

The Cholesky factorization, coded in terms of such operations, is given
by

do j=1, n
A(j,j) = sqrt(A(j,j))
call dscal(n-j, 1.0d00 / A(j,j), A(j+1, j), 1)
do k=j+1,n
call daxpy(n-k+1, -A(k,j), A(k,j), 1, A(k, k), 1);

enddo
enddo

Here

• The first letter in dscal and daxpy indicates that the computation is
with double precision numbers.

• The call to dscal performs the computation a21 ← a21/α11.

• The loop

do i=k,n
A(i,k) = A(i,k) - A(i,j) * A(k,j)

enddo

is replaced by the call

call daxpy(n-k+1, -A(k,j), A(k,j), 1, A(k, k), 1)

If the operations supported by dscal and daxpy achieve high performance
on a target archecture then so will the implementation of the Cholesky fac-
torization, since it casts most computation in terms of those operations.

A representative calling sequence for a Level-1 BLAS routine is given by

3

axpy(n, alpha, x, incx, y, incy)

which implements the operation y = αx+ y. Here

• The “ ” indicates the data type. The choices for this first letter are

s single precision
d double precision
c single precision complex
z double precision complex

• The operation is identified as axpy: alpha times x plus y.

• n indicates the number of elements in the vectors x and y.

• alpha is the scalar α.

• x and y indicate the memory locations where the first elements of x
and y are stored, respectively.

• incx and incy equal the increment by which one has to stride through
memory to locate the elements of vectors x and y, respectively.

The following are the most frequently used Level-1 BLAS:

routine/ operation
function

swap x↔ y
scal x← αx
copy y ← x
axpy y ← αx+ y
dot xTy
nrm2 ‖x‖2
asum ‖re(x)‖1 + ‖im(x)‖1
i max min(k) : |re(xk)|+ |im(xk)| = max(|re(xi)|+ |im(xi)|)

4

Matrix-Vector Operations (Level-2 BLAS)

The next level of BLAS supports operations with matrices and vectors. The
simplest example of such an operation is the matrix-vector product: y ←
Ax where x and y are vectors and A is a matrix. Another example is the
computation A22 = −a21a

T
21+A22 (symmetric rank-1 update) in the Cholesky

factorization. This operation can be recoded as

do j=1, n
A(j,j) = sqrt(A(j,j))
call dscal(n-j, 1.0d00 / A(j,j), A(j+1, j), 1)
call dsyr(‘Lower triangular’, n-j, -1.0d00,

A(j+1,j), 1, A(j+1,j+1), lda)
enddo

Here dsyr is the routine that implements a double precision symmetric rank-1
update. Readability of the code is improved by casting computation in terms
of routines that implement the operations that appear in the algorithm:
dscal for a21 = a21/α11 and dsyr for A22 = −a21a

T
21 + A22.

The naming convention for Level-2 BLAS routines is given by

XXYY,

where

• “ ” can take on the values s, d, c, z.

• XX indicates the shape of the matrix:

XX matrix shape

ge general (rectangular)
sy symmetric
he Hermitian
tr triangular

In addition, operations with banded matrices are supported, which we
do not discuss here.

• YY indicates the operation to be performed:

5

YY matrix shape

mv matrix vector multiplication
sv solve vector
r rank-1 update
r2 rank-2 update

A representative call to a Level-2 BLAS operation is given by

dsyr(uplo, n, alpha, x, incx, A, lda)

which implements the operation A = αxxT +A, updating the lower or upper
triangular part of A by choosing uplo as ‘Lower triangular’ or ‘Upper

triangular’, respectively. The parameter lda (the leading dimension of
matrix A) indicates the increment by which memory has to be traversed in
order to address successive elements in a row of matrix A.

The following table gives the most commonly used Level-2 BLAS opera-
tions:

routine/ operation
function

gemv general matrix-vector multiplication
symv symmetric matrix-vector multiplication
trmv triangular matrix-vector multiplication
trsv triangular solve vector
ger general rank-1 update
syr symmetric rank-1 update
syr2 symmetric rank-2 update

There are also interfaces for operation with banded matrices stored in packed
format as well as for operations with Hermitian matrices.

Matrix-Matrix Operations (Level-3 BLAS)

The problem with vector operations and matrix-vector operations is that
they perform O(n) computations with O(n) data and O(n2) computations
with O(n2) data, respectively. This makes it hard, if not impossible, to lever-
age cache memory now that processing speeds greatly outperform memory
speeds, unless the problem size is relatively small (fits in cache memory).

6

The solution is to cast computation in terms of matrix-matrix operations
like matrix-matrix multiplication. Consider again Cholesky factorization.
Partition

A→
(
A11 ?
A21 A22

)
and L→

(
L11 0
L21 L22

)
,

where A11 and L11 are nb × nb submatrices. Then(
A11 ?
A21 A22

)
=

(
L11 0
L21 L22

)(
L11 0
L21 L22

)T

=

(
L11L

T
11 ?

L21L
T
11 L21L

T
21 + L22L

T
22

)

This yields the algorithm

• A11 = L11 where A11 = L11L
T
11 (Cholesky factorization of a smaller

matrix).

• A21 = L21 where L21L
T
11 = A21 (triangular solve with multiple right-

hand sides).

• A22 = −L21L
T
21 + A22, updating only the lower triangular part of A22

(symmetric rank-k update).

• Continue by overwriting A22 with L22 where A22 = L22L
T
22.

A representative code in Fortran is given by

do j=1, n, nb
jb = min(nb, n-j+1)
call chol(jb, A(j, j), lda)

call dtrsm(‘Right’, ‘Lower triangular’, ‘Transpose’, ‘Nonunit diag’,
J-JB+1, JB, 1.0d00, A(j, j), lda, A(j+jb, j), lda)

call dsyrk(‘Lower triangular’, ‘No transpose’, J-JB+1, JB,
-1.0d00, A(j+jb, j), lda, 1.0d00, A(j+jb, j+jb), lda)

enddo

Here subroutine chol performs a Cholesky factorization; dtrsm and dsyrk

are level-3 BLAS routines:

• The call to dtrsm implements A21 ← L21 where L21L
T
11 = A21.

• The call to dsyrk implements A22 ← −L21L
T
21 + A22.

7

The bulk of the computation is now cast in terms of matrix-matrix operations
which can achieve high performance.

The naming convention for Level-3 BLAS routines are similar to those
for the Level-2 BLAS. A representative call to a Level-3 BLAS operation is
given by

dsyrk(uplo, trans, n, k, alpha, A, lda, beta, C, ldc)

which implements the operation C ← αAAT + βC or C ← αATA + βC
depending on whether trans is chosen as ‘No transpose’ or ‘Transpose’,
respectively. It updates the lower or upper triangular part of C depending
on whether uplo equal ‘Lower triangular’ or ‘Upper triangular’, re-
spectively. The parameters lda and ldc are the leading dimensions of arrays
A and C, respectively.

The following table gives the most commonly used Level-3 BLAS opera-
tionsx

routine/ operation
function

gemm general matrix-matrix multiplication
symm symmetric matrix-matrix multiplication
trmm triangular matrix-matrix multiplication
trsm triangular solve with multiple right-hand sides
syrk symmetric rank-k update
syr2k symmetric rank-2k update

Impact on performance

Figure 1 illustrates the performance benefits that come from using the dif-
ferent levels of BLAS on a typical architecture.

BLAS-like interfaces

CBLAS A C interface for the BLAS, CBLAS, has also been defined to
simplify the use of the BLAS from C and C++. The CBLAS support matrices
stored in row and column major format.

8

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

n

G
Fl

op
s

One thread

Hand optimized
BLAS3
BLAS2
BLAS1
triple loops

Figure 1: Performance of the different implementations of Cholesky factor-
ization that use different levels of BLAS. The target processor has a peak
of 11.2 Gflops (billions of floating point operations per second). BLAS1,
BLAS2, and BLAS3 indicate that the bulk of computation was cast in terms
of Level-1, -2, or -3 BLAS, respectively.

libflame The libflame library that has resulted from the FLAME project
encompasses the functionality of the BLAS as well as higher level linear
algebra operations. It uses an object-based interface so that a call to a
BLAS routine like syrk becomes

FLA Syrk(uplo, trans, alpha, A, beta, C)

thus hiding many of the dimension and indexing details.

Sparse BLAS Several efforts were made to define interfaces for BLAS-like
operations with sparse matrices. These do not seem to have caught on,
possibly because the storage of sparse matrices is much more complex.

9

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

35

40

n

G
Fl

op
s

Four threads

Hand optimized
BLAS3
BLAS2
BLAS1
triple loops

Figure 2: Performance of the different implementations of Cholesky factor-
ization that use different levels of BLAS, using four threads on a architectures
with four cores and a peak of 44.8 Gflops.

Parallel BLAS

Parallelism with BLAS operations can be achieved in a number of ways.

Multithreaded BLAS On shared-memory architectures multithreaded BLAS
are often available. Such implementations achieve parallelism within each
BLAS call without need for changing code that is written in terms of the
interface. In Figure 2 shows the performance of the Cholesky factorization
codes when multithreaded BLAS are used on a multicore architecture.

PBLAS As part of the ScaLAPACK project, an interface for distributed
memory parallel BLAS was proposed, the PBLAS. The goal was to make this
interface closely resemble the traditional BLAS. A call to dsyrk becomes

pdsyrk(uplo, trans, n, k, alpha, A, iA, jA, descA,

beta, C, iC, jC, descC)

10

where the new parameters iA, jA, descA, etc., encapsulate information about
the submatrix with which to multiply and the distribution to a logical two-
dimensional mesh of processing nodes.

PLAPACK The PLAPACK project provides an alternative to ScaLAPACK.
It also provides BLAS for distributed memory architectures, but (like libflame)
goes one step further towards encapsulation. The call for parallel symmetric
rank-k update becomes

PLA Syrk(uplo, trans, alpha, A, beta, C)

where all information about the matrices, their distribution, and the storage
of local submatrices is encapsulated in the parameters A and C.

Available Implementations

Many of the software and hardware vendors market high-performance im-
plementations of the BLAS. Examples include IBM’s ESSL, Intel’s MKL,
AMD’s ACML, NEC’s MathKeisan, and HP’s MLIB libraries. Widely used
open source implementations include ATLAS and the GotoBLAS. Compar-
isons of performance of some of these implementations are given in Figures 3
and 4.

The details about the platform on which the performance data was gath-
ered nor the versions of the libraries that were used are given because archi-
tectures and libraries continuously change and therefore which is faster or
slower can easily change with the next release of a processor or library.

Related Entries

ATLAS

FLAME

LAPACK

PBLAS

PLAPACK

ScaLAPACK

11

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

n

G
Fl

op
s

One thread

GotoBLAS
MKL
ACML
ATLAS

Figure 3: Performance of different BLAS libraries for matrix-matrix multi-
plication (dgemm).

Bibliographic Notes and Further Reading

What came to be called the Level-1 BLAS were first published in 1979,
followed by the Level-2 BLAS in 1988 and Level-3 BLAS in 1990 [10, 5, 4].

Matrix-matrix multiplication (gemm) is considered the most important
operation, since high-performance implementations of the other Level-3 BLAS
can be coded in terms of it [9]. Many implementations of gemm are now based
on the techniques developed by Kazushige Goto [8]. These techniques ex-
tend to the high-performance implementation of other Level-3 BLAS [7] and
multithreaded architectures [11]. Practical algorithms for the distributed
memory parallel implementation of matrix-matrix multiplication, used by
ScaLAPACK and PLAPACK, were first discussed in [12, 1] and for other
Level-3 BLAS in [3].

As part of the BLAS Technical Forum an effort was made in the late
1990s to extend the BLAS interfaces to include additional functionality [2].
Outcomes included the CBLAS interface, which is now widely supported,

12

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

35

40

n

G
Fl

op
s

One thread

GotoBLAS
MKL
ACML
ATLAS

Figure 4: Parallel performance of different BLAS libraries for matrix-matrix
multiplication (dgemm).

and an interface for Sparse BLAS [6].

References

[1] R. C. Agarwal, F. Gustavson, and M. Zubair. A high-performance ma-
trix multiplication algorithm on a distributed memory parallel computer
using overlapped communication. IBM Journal of Research and Devel-
opment, 38(6), 1994.

[2] L. Susan Blackford, James Demmel, Jack Dongarra, Iain Duff, Sven
Hammarling, Greg Henry, Michael Heroux, Linda Kaufman, Andrew
Lumsdaine, Antoine Petitet, Roldan Pozo, Karin Remington, and
R. Clint Whaley. An updated set of Basic Linear Algebra Subprograms
(BLAS). ACM Transactions on Mathematical Software, 28(2):135–151,
June 2002.

13

[3] Almadena Chtchelkanova, John Gunnels, Greg Morrow, James Overfelt,
and Robert A. van de Geijn. Parallel implementation of BLAS: General
techniques for level 3 BLAS. Concurrency: Practice and Experience,
9(9):837–857, Sept. 1997.

[4] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff.
A set of level 3 basic linear algebra subprograms. ACM Trans. Math.
Soft., 16(1):1–17, March 1990.

[5] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J.
Hanson. An extended set of FORTRAN basic linear algebra subpro-
grams. ACM Trans. Math. Soft., 14(1):1–17, March 1988.

[6] Iain S. Duff, Michael A. Heroux, and Roldan Pozo. An overview of the
Sparse Basic Linear Algebra Subprograms: The new standard from the
BLAS Technical Forum. ACM Transactions on Mathematical Software,
28(2):239–267, June 2002.

[7] Kazushige Goto and Robert van de Geijn. High-performance imple-
mentation of the level-3 BLAS. ACM Trans. Math. Softw., 35(1):1–14,
2008.

[8] Kazushige Goto and Robert A. van de Geijn. Anatomy of high-
performance matrix multiplication. ACM Trans. Math. Softw., 34(3):1–
25, 2008.

[9] B. K̊agström, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS:
High performance model implementations and performance evaluation
benchmark. ACM Trans. Math. Soft., 24(3):268–302, 1998.

[10] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic
linear algebra subprograms for Fortran usage. ACM Trans. Math. Soft.,
5(3):308–323, Sept. 1979.

[11] Bryan Marker, Field G. Van Zee, Kazushige Goto, Gregorio Quintana-
Ort́ı, and Robert A. van de Geijn. Toward scalable matrix multiply
on multithreaded architectures. In A.-M. Kermarrec, L. Bougé, and
T. Priol, editors, Euro-Par, LNCS 4641, pages 748–757, 2007.

14

[12] Robert van de Geijn and Jerrell Watts. SUMMA: Scalable universal
matrix multiplication algorithm. Concurrency: Practice and Experience,
9(4):255–274, April 1997.

15

