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Abstract

We discuss the parallel implementation of two operations, A := L−1AL−H and A := LHAL, that are
important to the solution of dense generalized Hermitian-definite eigenproblems. Here A is Hermitian
and L is lower triangular. We use the FLAME formalisms to derive and represent a family of algorithms
and implement these using Elemental, a new C++ library for distributed memory architectures that
may become the successor to the widely-used ScaLAPACK and PLAPACK libraries. It is shown that,
provided the right algorithm is chosen, excellent performance is attained on a large cluster.

1 Introduction

The generalized Hermitian-definite eigenvalue problem usually occurs in one of two forms: Ax = λBx and
ABx = λx, where A is Hermitian and B is Hermitian and positive-definite. The typical solution strategy
for each of these problems is to exploit the positive-definiteness of B in order to compute its Cholesky
factorization and transform the problem into a standard Hermitian eigenvalue problem, solve the Hermitian
eigenproblem, and then backtransform the eigenvectors if necessary.

In particular, the following steps are performed for the Ax = λBx case: (1) Compute the Cholesky
factorization B = LLH . (2) Transform C := L−1AL−H so that Ax = λBx is transformed to Cy =
λy with y = L−Hx. (3) Reduce C to tridiagonal form: C := QCTQ

H
C where QC is unitary and T is

tridiagonal. (4) Compute the spectral decomposition of T : T := QTDQ
H
T where QT is unitary and D is

diagonal. (5) Form X := LQCQT so that AX = BXD. Then the eigenvalues can be found on the diagonal
of D and the corresponding eigenvectors as the columns of X. In this paper, we focus on Step 2. For
the other form of the generalized Hermitian-definite eigenvalue problem this step becomes C := LHAL.
Typically C overwrites matrix A. The present paper demonstrates how Elemental benefits from the FLAME
methodology [15, 14, 18, 24, 2] by allowing families of algorithms for dense matrix computations to be
systematically derived and presented in a clear, concise fashion. This results in the most complete exposition
to date of algorithms for computing L−1AL−H and LHAL.

While a family of algorithms and their parallelization for these operations is the primary focus of this
paper, we also consider this paper the second in a series of papers related to the Elemental library for dense
matrix computations on distributed memory architectures. The first paper [17] gave a broad overview of the
vision behind the design of the Elemental library and performance comparisons between ScaLAPACK [6]
and Elemental for a representative subset of operations. Since the comparison is not the main focus of that
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paper, the reader is left wondering as to how much of the improvement in performance is due to algorithm
choice rather than implementation. This paper answers that question for the discussed operations. It thus
adds to the body of evidence that Elemental may be a worthy successor to ScaLAPACK and PLAPACK [23].

This paper is organized as follows. In Sections 2 and 3 we derive algorithms for computing L−1AL−H

and LHAL, respectively. In Section 4 we present results from performance experiments on a large cluster.
Concluding remarks are given in the final section.

2 Algorithms for Computing A := L−1AL−H

In this section, we derive algorithms for computing C := L−1AL−H , overwriting the lower triangular part
of Hermitian matrix A with the lower triangular part of Hermitian matrix C.

Derivation. We give the minimum information required so that those familiar with the FLAME methodol-
ogy can understand how the algorithms were derived. Those not familiar with the methodology can simply
take the resulting algorithms—presented in Figures 2 and 3—on face value and move on to the discussion
at the end of this section.

We reformulate the computation C := L−1AL−H as the constraint A = C ∧LCLH = Â where ∧ denotes
the logical AND operator. This constraint expresses that A is to be overwritten by matrix C, where C
satisfies the given constraint in which Â represents the input matrix A. This constraint is known as the
postcondition in the FLAME methodology.

Next, we form the Partitioned Matrix Expression (PME), which can be viewed as a recursive definition
of the operation. For this, we partition the matrices so that

A→
(
ATL ?

ABL ABR

)
, C →

(
CTL ?

CBL CBR

)
, and L→

(
LTL 0
LBL LBR

)
,

where ATL, CTL, and LTL are square submatrices and ? denotes the parts of the Hermitian matrices that
are neither stored nor updated. Substituting these partitioned matrices into the postcondition yields(

ATL ?

ABL ABR

)
=
(
CTL ?

CBL CBR

)
∧(

LTL 0
LBL LBR

)(
CTL ?

CBL CBR

)(
LTL 0
LBL LBR

)H

=

(
ÂTL ?

ÂBL ÂBR

)
︸ ︷︷ ︸(

LTLCTLLH
TL = ÂTL ?

LBRCBL = ÂBLL−H
TL − LBLCTL LBRCBRLH

BR = ÂBR − LBLCTLLH
BL

− LBLCH
BLLH

BR − LBRCBLLH
BL

)

This expresses all conditions that must be satisfied upon completion of the computation, in terms of the
submatrices. The bottom-right quadrant can be further manipulated into

LBRCBRL
H
BR = ÂBR − LBLCTLL

H
BL − LBLC

H
BLL

H
BR − LBRCBLL

H
BL

= ÂBR − LBL

(
1
2
CTLL

H
BL + CH

BLL
H
BR

)
︸ ︷︷ ︸

WH
BL

−
(

1
2
LBLCTL + LBRCBL

)
︸ ︷︷ ︸

WBL

LH
BL

using a standard trick to cast three rank-k updates into a single symmetric rank-2k update. Now, the PME
can be rewritten as(

ATL ?

ABL ABR

)
=
(
CTL ?

CBL CBR

)
∧ YBL = LBLCTL ∧WBL = LBRCBL −

1
2
YBL

∧
(

LTLCTLLH
TL = ÂTL ?

LBRCBL = ÂBLL−H
TL − YBL LBRCBRLH

BR = ÂBR − (LBLW H
BL + WBLLH

BL)

)
.
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Loop Invariant 10@ ATL ?

ABL ABR

1A =

0@ CTL ?

ÂBL ÂBR

1A
Loop Invariant 20@ ATL ?

ABL ABR

1A =

0@ CTL ?

ÂBLL−H
TL ÂBR

1A
Loop Invariant 30@ ATL ?

ABL ABR

1A =

0@ CTL ?

ÂBLL−H
TL ÂBR

1A ∧
0@ YTL

YBL YBR

1A =

0@
LBLCTL

1A
Loop Invariant 40@ ATL ?

ABL ABR

1A =

0@ CTL ?

ÂBLL−H
TL − LBLCTL ÂBR − (LBLW H

BL + WBLLH
BL)

1A
Loop Invariant 50@ ATL ?

ABL ABR

1A =

0@ CTL ?

CBL ÂBR − (LBLW H
BL + WBLLH

BL)

1A
Figure 1: Five loop invariants for computing A := L−1AL−H .

The next step of the methodology identifies loop invariants for algorithms. A loop invariant is a predicate
that expresses the state of a matrix (or matrices) before and after each iteration of the loop. In the case of this
operation, there are many such loop invariants. However, careful consideration for maintaining symmetry in
the intermediate update and avoiding unnecessary computation leaves the five tabulated in Figure 1.

The methodology finishes by deriving algorithms that maintain these respective loop invariants. The
resulting blocked algorithms are given in Figures 2 and 3 where Variant k corresponds to Loop Invariant k.
Unblocked algorithms result if the block size is chosen to equal 1.

Discussion. All algorithms in Figures 2 and 3 incur a cost of about n3 flops where n is the matrix size. A
quick way to realize where the algorithms spend most of their time is to consider the partitionings A00 ? ?

A10 A11 ?
A20 A21 A22

 ,

 L00 0 0
L10 L11 0
L20 L21 L22

 , and

 C00 ? ?

C10 C11 ?
C20 C21 C22

 ,

and to note that operations that involve at least one operand that is highlighted contribute to an O(n3)
(highest order) cost term while the others contribute to an O(bn2) term. Thus, first and foremost, it is
important that the highlighted operations in Figures 2 and 3 attain high performance.

On sequential architectures, all of the highlighted operations can attain high performance [11, 12]. How-
ever, as we will demonstrate, there is a notable difference on parallel architectures. As was already pointed
out in a paper by Sears, Stanley, and Henry [21], it is the parallel triangular solves with b right-hand sides
(trsm), A10 := A10L

−H
00 in Variant 1 and A21 := L−1

22 A21 in Variant 5, that inherently do not parallelize
well yet account for about 1/3 of the flops for Variants 1 and 5. The reason is that inherent dependencies
exist within the trsm operation, the details of which go beyond the scope of this paper. All of the other
highlighted operations can, in principle, asymptotically attain near-peak performance when correctly par-
allelized on an architecture with reasonable communication [22, 7, 13, 23]. Thus, Variants 1 and 5 cast a
substantial fraction of computation in terms of an operation that does not parallelize well, in contrast to
Variants 2, 3, and 4. Variant 3 has the disadvantage that intermediate result YBL must be stored. (In the
algorithm we show Y for all algorithms, but only Y10 or Y21 are needed for Variants 1, 2, 4, and 5.)

In Section 4 we will see that Variant 4 attains the highest performance. This is because its most compu-
tationally intensive operations parallelize most naturally when targeting distributed memory architectures.
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Algorithm: A := L−1AL−H and A := LHAL

Partition A→
(
ATL ATR

ABL ABR

)
, L→

(
LTL LTR

LBL LBR

)
, Y →

(
YTL YTR

YBL YBR

)
where ATL, LTL, and YTL are 0× 0.

while m(ATL) < m(A) do
Determine block size b
Repartition(

ATL ?

ABL ABR

)
→

 A00 ? ?

A10 A11 ?
A20 A21 A22

,
(
LTL 0
LBL LBR

)
→

 L00 0 0
L10 L11 0
L20 L21 L22

,

(
YTL 0
YBL YBR

)
→

 Y00 0 0
Y10 Y11 0
Y20 Y21 Y22


where A11, L11, and Y11 are b× b

Variant 4 for L−1AL−H (Section 2) Variant 4 for LHAL (Section 3)
A10 := L−1

11 A10

A20 := A20 − L21A10 (gemm)
A11 := L−1

11 A11L
−H
11

Y21 := L21A11

A21 := A21L
−H
11

A21 := W21 = A21 − 1
2Y21

A22 := A22 − (L21A
H
21 +A21L

H
21) (her2k)

A21 := A21 − 1
2Y21

Y10 := A11L10

A10 := W10 = A10 + 1
2Y10

A00 := A00 + (AH
10L10 + LH

10A10) (her2k)
A10 := A10 + 1

2Y10

A10 := LH
11A10

A11 := LH
11A11L11

A20 := A20 +A21L10 (gemm)
A21 := A21L11

Continue with(
ATL ?

ABL ABR

)
←

 A00 ? ?
A10 A11 ?

A20 A21 A22

,
(
LTL 0
LBL LBR

)
←

 L00 0 0
L10 L11 0
L20 L21 L22

,

(
YTL 0
YBL YBR

)
←

 Y00 0 0
Y10 Y11 0
Y20 Y21 Y22


endwhile

Figure 2: Blocked Variants 4 for computing A := L−1AL−H and A := LHAL. All blocked variants result
by inserting the commands in Figure 3.
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L−1AL−H LHAL

Variant 1 Variant 1
Y10 := L10A00 (hemm)
A10 := A10L

−H
00 (trsm)

A10 := W10 = A10 − 1
2Y10

A11 := A11 − (A10L
H
10 + L10A

H
10)

A11 := L−1
11 A11L

−H
11

A10 := A10 − 1
2Y10

A10 := L−1
11 A10

Y21 := A22L21 (hemm)
A21 := A21L11

A21 := W21 = A21 + 1
2Y21

A11 := LH
11A11L11

A11 := A11 + (AH
21L21 + LH

21A21)
A21 := A21 + 1

2Y21

A21 := LH
22A21 (trmm)

Variant 2 Variant 2
Y10 := L10A00 (hemm)
A10 := W10 = A10 − 1

2Y10

A11 := A11 − (A10L
H
10 + L10A

H
10)

A11 := L−1
11 A11L

−H
11

A21 := A21 −A20L
H
10 (gemm)

A21 := A21L
−H
11

A10 := A10 − 1
2Y10

A10 := L−1
11 A10

A10 = LH
11A10

A10 = A10 + LH
21A20 (gemm)

Y21 = A22L21 (hemm)
A21 = A21L11

A21 = A21 + 1
2Y21

A11 = LH
11A11L11

A11 = A11 + (AH
21L21 + LH

21 ∗A21)
A21 = A21 + 1

2Y21

Variant 3 Variant 3
A10 := W10 = A10 − 1

2Y10

A11 = A11 − (A10L
H
10 + L10A

H
10)

A11 = L−1
11 A11L

−H
11

A21 = A21 −A20L
H
10 (gemm)

A21 = A21L
−H
11

A10 = A10 − 1
2Y10

A10 = L−1
11 A10

Y20 = Y20 + L21A10 (gemm)
Y21 = L21A11

Y21 = Y21 + L20A
H
10 (gemm)

This variant performs O(n3) ad-
ditional computations and is
therefore not included.

Variant 4 Variant 4
A10 := L−1

11 A10

A20 := A20 − L21A10 (gemm)
A11 := L−1

11 A11L
−H
11

Y21 := L21A11

A21 := A21L
−H
11

A21 := W21 = A21 − 1
2Y21

A22 := A22 − (L21A
H
21 +A21L

H
21) (her2k)

A21 := A21 − 1
2Y21

Y10 := A11L10

A10 := W10 = A10 + 1
2Y10

A00 := A00 + (AH
10L10 + LH

10A10) (her2k)
A10 := A10 + 1

2Y10

A10 := LH
11A10

A11 := LH
11A11L11

A20 := A20 +A21L10 (gemm)
A21 := A21L11

Variant 5 Variant 5
A11 := L−1

11 A11L
−H
11

Y21 := L21A11

A21 := A21L
−H
11

A21 := W21 = A21 − 1
2Y21

A22 := A22 − (L21A
H
21 +A21L

H
21) (her2k)

A21 := A21 − 1
2Y21

A21 := L−1
22 A21 (trsm)

Y10 := A11L10

A10 := A10L00 (trmm)
A10 := W10 = A10 + 1

2Y10

A00 := A00 + (AH
10L10 + LH

10A10) (her2k)
A10 := A10 + 1

2Y10

A10 := LH
11A10

A11 := LH
11A11L11

Figure 3: All algorithms corresponding to the Invariants in Figures 1 and 4 for both A := L−1AL−H and
A := LHAL.
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Loop Invariant 10@ ATL ?

ABL ABR

1A =

0@ LH
TLÂTLLTL + (W H

BLLBL + LH
BLWBL) ?

LH
BR(ÂBLLTL + ÂBRLBL) ÂBR

1A
Loop Invariant 20@ ATL ?

ABL ABR

1A =

0@ LH
TLÂTLLTL + (W H

BLLBL + LH
BLWBL) ?

ÂBLLTL + ÂBRLBL ÂBR

1A
Loop Invariant 30@ ATL ?

ABL ABR

1A =

0@ LH
TLÂTLLTL ?

ÂBLLTL ÂBR

1A ∧
0@ YTL

YBL YBR

1A =

0@
ÂBRLBL

1A
Loop Invariant 40@ ATL ?

ABL ABR

1A =

0@ LH
TLÂTLLTL ?

ÂBLLTL ÂBR

1A
Loop Invariant 50@ ATL ?

ABL ABR

1A =

0@ LH
TLÂTLLTL ?

ÂBL ÂBR

1A
Figure 4: Five loop invariants for computing A := LHAL.

Variant 2 might be a good choice when implementing an out-of-core algorithm, since the highlighted com-
putations for it require the bulk of data (A00 and A20) to be read but not written.

3 Algorithms for Computing A := LHAL

In this section, we derive algorithms for computing C := LHAL, overwriting the lower triangular part of
Hermitian matrix A.

Derivation. We once again give the minimum information required so that those familiar with the FLAME
methodology understand how the algorithms were derived.

The postcondition for this operation is given by A = LHÂL where, again, Â represents the input matrix
A. We partition the matrices so that

A→
(
ATL ?

ABL ABR

)
, and L→

(
LTL 0
LBL LBR

)
,

where ATL and LTL are square submatrices and ? denotes the parts of the Hermitian matrices that are
neither stored nor updated. Substituting these partitioned matrices into the postcondition yields the PME(

ATL ?

ABL ABR

)
=

(
LH

TLÂTLLTL + (WH
BLLBL + LH

BLWBL) ?

LH
BR(ÂBLLTL + ÂBRLBL) LH

BRÂBRLBR

)
,

where WBL = ÂBLLTL + 1
2 ÂBRLBL. Letting YBL = ÂBRLBL yields five loop invariants for this operation

that exploit and maintain symmetry. These loop invariants are listed in Figure 4 while the corresponding
blocked algorithms were already given in Figures 2 and 3. One of the loop invariants yields an algorithm
that incurs O(n3) additional computation and we do not give the related algorithm.

Discussion. For this operation, in principle, all of the highlighted suboperations can be implemented to be
scalable on parallel architectures.
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Variant 4 (Elemental) Variant 4 (ScaLAPACK)

A10 := L−1
11 A10

A20 := A20 − L21A10 (gemm)

A11 := L−1
11 A11L−H

11
Y21 := L21A11

A21 := A21L−H
11

A21 := W21 = A21 − 1
2
Y21

A22 := A22 − (L21AH
21 + A21LH

21) (her2k)
A21 := A21 − 1

2
Y21

G21 := L21

R21 := A21

S10 := A10

R11 := tril(A11)

G21 := −G21L−1
11

R21 := R21 + 1
2
G21A11

A22 := A22 + G21RH
21 + R21GH

21 (her2k)
A20 := A20 + G21S10 (gemm)
A21 := A21 + G21R11

A10 := L−1
11 A10

C11 := tril(A11)
triu(C11) := tril(C11)H

C11 := L−1
11 C11

C11 := C11L−1
11

tril(A11) := tril(C11)

9>>>>=>>>>; A11 := L−1
11 A11L−H

11

A21 := A21L−H
11

Figure 5: Operations performance by Variant 4 for A := L−1AL−H in Elemental (left) and ScaLAPACK
(right).

4 Performance experiments

We now show the performance attained by the different variants on a large distributed memory parallel
architecture. We compare implementations that are part of the Elemental library to the implementations of
this operation that are part of netlib ScaLAPACK version 1.8.

Target Architectures. The performance experiments were carried out on Argonne National Laboratory’s
IBM Blue Gene/P architecture. Each compute node consists of four 850 MHz PowerPC 450 processors for a
combined theoretical peak performance of 13.6 GFlops (13.6× 109 floating-point operations per second) per
node using double-precision arithmetic. Nodes are interconnected by a three-dimensional torus topology and
a collective network that each support a per-node bidirectional bandwidth of 2.55 GB/s. Our experiments
were performed on one midplane (512 compute nodes, or 2048 cores), which has an aggregate theoretical
peak of just under 7 TFlops (7× 1012 floating-point operations per second). For this configuration, the X,
Y , and Z inter-node dimensions of the torus each of length 8, and the intra-node dimension, T , is of size 4.
The optimal decomposition of these four dimensions into a two-dimensional topology was empirically found
to be (Z, T ) × (X,Y ) in every experiment, which is to say that the Z and T dimensions are combined to
form the column dimension of our two-dimensional process grid, while the X and Y dimensions form the
row dimension. This decomposition results in a 32× 64 process grid.

ScaLAPACK. ScaLAPACK [8, 1, 6, 4] was developed in the 1990s as a distributed memory dense matrix
library coded in Fortran-77 in the style of LAPACK. It uses a two-dimensional block cyclic data distribution,
meaning that p MPI processes are viewed as a logical r×c mesh and the matrices are partitioned into br×bc
blocks (submatrices) that are then cyclically wrapped onto the mesh. It is almost always the case that
br = bc = bdistr, where bdistr is the distribution block size. The vast majority of the library is layered so
that the algorithms are coded in terms of parallel implementations of the Basic Linear Algebra Subprograms
(BLAS) [16, 10, 9]. An important restriction for ScaLAPACK is that the algorithmic block size b in Figure 2
is tied to the distribution block size.

The ScaLAPACK routines p[sd]sygst and p[cz]hegst implement Variant 5 from Figure 2 when used
to compute A := L−1AL−H and Variant 5 from Figure 2 when computing A := LHAL. In addition, for
A := L−1AL−H , a vastly more efficient algorithm (Variant 4 from Figure 2) is implemented as the routines
p[sd]syngst and p[cz]hengst. These faster routines currently only support the case where the lower
triangular part of A is stored. Routines p[sd]syngst and p[cz]hengst appears to have been derived from
the work by Sears et al. There are a few subtle differences between the algorithm used by those routines
and Variant 4 in Figure 2, as illustrated in Figure 5. Expansion of each of the dark gray updates in terms
of the states of A and L at the beginning of the iteration reveals that they are identical. Likewise, the light
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gray update on the right is merely an expanded version of the update A11 := L−1
11 A11L

−H
11 that could have

been performed more simply via a call to LAPACK’s [sd]sygs2 or [cz]hegs2 routines.

Elemental. We think of Elemental as a modern replacement for ScaLAPACK and PLAPACK [23]. It is
coded in C++ in a style that resembles the FLAME/C API [3] used to implement the libflame library [25, 26]
(a modern replacement for LAPACK, coded in C). Elemental uses a two-dimensional elemental distribution
that can be most easily described as the same distribution used by ScaLAPACK except that bdistr = 1. The
algorithmic block size is not restricted by the distribution block size. Elemental uses a more flexible layering
so that calls to global BLAS-like operations can be easily fused, which means that communication overhead
can be somewhat reduced by combining communications from within separate calls to BLAS-like operations.
See [17] for details.

Tuning. Both packages were run with one MPI process per core using IBM’s non-threaded ESSL library
for sequential BLAS calls.1 Both packages were tested over a wide range of typical block sizes; ScaLAPACK
was tested with block sizes {16, 24, 32, 48, 64}, while the block sizes {64, 80, 96, 112, 128} were investigated
for Elemental. Only the results for the best-performing block size for each problem size are reported in the
graphs. In the case of ScaLAPACK, the algorithmic and distribution block sizes are equal, since this is a
restriction of the library. In the case of Elemental, the distribution is elemental (block size of one) and the
block size refers to the algorithmic block size.

Results. In Figure 6 and 7 we report performance of the different variants for the studied computations.
We do so for the case where only the lower triangular part of A is stored, since this case is the most
commonly used and it exercises ScaLAPACK’s fastest algorithms (the more efficient routines p[sd]syngst
and p[cz]hengst are only implemented for the lower triangular storage case). In order to lower the required
amount of compute time, all experiments were performed with real double-precision (64-bit) data.

In Figure 6 performance for computing A := L−1AL−H is given. As expected, the variants that cast
a significant part of the computation in terms of a triangular solve with multiple right-hand sides (trsm)
attain significantly worse performance. Variant 4 performs best, since it casts most computation in terms of a
symmetric (Hermitian) rank-2k update (A22−(L21A

H
21+A21L

H
21)) and general rank-k update, (A20−L21A10),

which parallelize more naturally. Variants 2 and 3 underperform since symmetric (Hermitian) or matrix-panel
multiplies (matrix multiply where the result matrix is narrow), like L10A00, A21−A20L

H
10, and Y21 +L20A

H
10,

require local contributions to be summed (reduced) across processes, a collective communication that often
requires significantly more time than the simpler duplications needed for rank-k updates. Also, the local
matrix-panel multiply that underlies these parallel operations is often less optimized than the local rank-k
update that underlies the parallel implementations of the symmetric (Hermitian) rank-2k and general rank-k
updates. For Variant 4, bdistr = balg = 32 was typically optimal for ScaLAPACK, while balg = 112 was the
almost always the best blocksize for Elemental.

We believe that ScaLAPACK’s Variant 4 is slower than Elemental’s Variant 4 for two reasons: (1)
ScaLAPACK’s implementation is layered on top of the PBLAS and therefore redundantly communicates
data, and (2) ScaLAPACK has a hard-coded block size for the local updates of their parallel symmetric
(Hermitian) rank-2k update that is therefore not a parameter that is easily tuned in that package (and we
did not tune it for that reason). Thus, part of the increased performance attained by parallel implementations
stems from the proper choice of algorithm, part is the result of implementation details, and part comes from
how easily the implementation can be tuned.

In Figure 7 performance for computing A := LHAL is given. As can be expected given the above
discussion, Variant 4, which casts the bulk of computation in terms of a symmetric (Hermitian) rank-2k
update and general rank-k update, attains the best performance.

1Elemental also efficiently supports SMP+MPI parallelism while ScaLAPACK does not seem to benefit from this kind of hy-
brid parallelism on this architecture [17]. For the sake of an apples-to-apples comparison, performance of hybrid implementations
is not given for either package.
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Figure 6: Performance of the various implementations for A := L−1AL−H on 2048 cores of Blue Gene/P.
The top of the graph represents the theoretical peak of this architecture. (The three curves for Variants 1
and 5, which cast substantial computation in terms of a parallel trsm, essentially coincide near the bottom
of the graph.) The legend lists the implementations from fastest to slowest for the largest problem size.
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Figure 7: Performance of the various implementations for A := LHAL on 2048 cores of Blue Gene/P. The
legend lists the implementations from fastest to slowest for the largest problem size.
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5 Conclusion

We have systematically derived and presented a multitude of algorithms for the transformation of the gen-
eralized Hermitian-definite eigenvalue problem to the standard Hermitian eigenvalue problem. While the
concept of avoiding the unscalability in the traditional algorithm for A := L−1ALH was already discussed in
the paper by Sears et al., we give a clear derivation of that algorithm as well as several other new algorithmic
possibilities. For A := LHAL we similarly present several algorithms, including one that is different from
that used by ScaLAPACK and achieves superior performance.

The performance improvements of Elemental over ScaLAPACK are not the central message of this paper.
Instead, we argue that a systematic method for deriving algorithms combined with a highly-programmable
library has allowed us to thoroughly explore the performance of a wide variety of algorithms. Still, Elemental
outperforms ScaLAPACK even when the same algorithm is used and hence Elemental is clearly faster on
this architecture.

Availability

The Elemental library can be found at
http://code.google.com/p/elemental.

This library includes all discussed variants for single, double, complex, and double complex datatypes, and
for updating either the upper or lower triangular parts of A. The algorithms are also implemented as part of
the libflame library [25] (a modern replacement library for LAPACK) including algorithm-by-blocks that
can be scheduled for parallel execution on multi-threaded and/or multi-GPU accelerated architectures via
the SuperMatrix runtime system [20, 5, 19]. M-script implementations for Matlab and Octave can be found
at

http://www.cs.utexas.edu/users/flame/Extras/FLAWN56/.
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